
SIMPLE PROBLEM SOLVING IN JAVA:

A PROBLEM SET FRAMEWORK

Viera K. Proulx. Richard Rasala, Jason Jay Rodrigues

College of Computer Science

Northeastern University

Boston, MA 02115

617-373-2462

vkp@ccs.neu.edu, rasala@ccs.neu.edu, jjayr@ccs.neu.edu

ABSTRACT

We present an application that allows for easy creation of simple

problem solving exercises in Java, providing robust and safe I/O as well

as a basic graphics window. We discuss possible uses for unit testing

of classes and explore how the design of this application can be a case

study in an object oriented design course.

1. INTRODUCTION

 Java is becoming the programming language for introductory courses. Looking through

a plethora of textbooks, it is clear that one of the hardest problems is to provide

students with an environment where simple program segments can be easily tested

with minimal overhead. Some of the solutions such as the GUI package by Koffman

and Wolz [5] and breezyGUI by Lambert and Osborne[6] try to solve the problem by

creating very elementary graphical user interfaces. Others such as BlueJ from Monash

University [4] and MiniJava from Stanford [9] provide entire separate environments

for this purpose.

 In this paper we describe our solution that is based on the Java Power Tools [7,8].

With the Java Power Tools, it is possible to rapidly create sophisticated graphical user

interfaces for complex programs. However, that is not what we wish to discuss here.

For simple problems, we want the interface to be created entirely automatically with no

manual intervention by the faculty member or the student. We will explain how we

create an action button for each member function of the “problem set class” that is

public, synchronized, void, with no arguments, and not static. Thus, the faculty

member or student can simply add member functions with these properties to the

“problem set class” and buttons will appear to execute the functions when the program

is run.

 The “problem set application” that manages the “problem set class” also automatically

provides a console window with robust error-checked I/O and a graphics output

window for the display of simple graphics.

 2. OVERVIEW OF THE PROBLEM SET FRAMEWORK

 In this section of the paper, we will discuss the origins of the Problem Set Framework

and its evolution. This will lead to a list of goals and specifications for the behavior of

the framework. In later sections of the paper, we will explain how to use the

framework and discuss some aspects of its implementation.

2.1 Classic Problem Sets

 In the past, when we taught the introductory courses in Pascal and later in C++, we

developed a large collection of simple exercises students could do to practice the rules

of arithmetic, loops, decision statements, working with arrays, and building and using

helper functions. Most of these exercises required fewer than 15 lines of code, needed

some input from the user, and usually printed some results along the way. In some

problems, there was simple graphics output. For example, we have a problem asking

students to paint ten circles across the graphics window.

 In this situation, it was relatively easy to add a new problem to a problem set. One

would create a new function that performed the problem task and any associated

helper functions. It was then necessary to call the function in the switch statement

used to select the next task to perform. In addition, some prompting code would also

have to be written. The user interface was entirely through the console although the

program had access to a graphics window for the display of simple vector graphics.

The student was constantly prompted for what to do next.

 2.2 Problem Sets in Java?

 Moving to Java has given us the opportunity to concentrate on objects from the

beginning and to use full graphical user interfaces in the large laboratory projects.

However, students, especially the weak ones, still need basic practice in writing the

small five to fifteen line functions that perform simple tasks and illustrate the use of

elementary programming patterns. Manually creating a graphical user interface for such

small problem sets seems like overkill. At the same time, using a fragile console driven

interface with no graphics support seems too restrictive. We want the best of both

worlds: ease of construction of the problem set combined with robust IO and graphics

output.

 The JPT toolkit already provides robust support for safe and user friendly I/O through

the console object constructed in the ConsoleAware interface. To access this console

in any class, the class must simply declare that it implements ConsoleAware. There are

no additional steps that need to be taken. The JPT toolkit also defines a BufferedPanel

class that provides graphics pane objects that will automatically refresh should the

panes be hidden and then become visible. Thus we have the ingredients to build a

problem set framework but there is still work to do to figure out how to make

everything automatic.

 We want the actual problem set part of the program to be as simple as possible so that

an instructor can easily add a new problem on the fly, in the live classroom, during the

lecture. Similarly, we want students to able to add their solutions to the problem set

and then test immediately without adding so much as a prompt string. We also want

students to feel so comfortable with the framework that they can use it as a testbed to

clear up any conceptual issues they may have by writing simple experimental code.

 2.3 Goals and Specifications for the Problem Set Framework

 As we struggled with the design of the Problem Set Framework and built early versions

of the framework, our goals became clear:

• each task in the problem set should be represented by one public function with no

arguments

• any additional helper functions should be private or protected

• the application should automatically generate an action button for each public

function in this set

• the label for the actions button should be related to the name of the task

• the actions should be synchronized, so that we cannot start a new task until the

previously selected task has completed its execution

• the functions should have full access to the console without needing to add

anything to the code of the class

• the functions should have full access to a graphics window again without needing

to add anything to the code of the class

• there must be an action button that allows the user to clear the graphics window at

any time

• there must be an action button that allows the user to terminate the program in case

some task gets caught in an infinite loop

• there should be little or no additional code one needs to write to run the problem

set

• it should be possible to give the problem window set an appropriate title

2.4 Initial Reaction to the Problem Set Framework

The framework we created was an instant success. Two other instructors teaching the

introductory course started using it immediately in the classroom. The collection of

C++ algorithmic exercises was adapted for use with Java within two weeks. The

students were enthusiastic about having access to sample solutions on-line and being

able to try a number of problems on their own.

3. USING THE PROBLEM SET FRAMEWORK

The Problem Set Framework comes with several sample methods that the student may

examine to understand how to use the framework. Here is a screen snapshot of the

GUI window after the method PaintCircles has been executed.

Before we examine how PaintCircles works, let us look at some of the simpler

methods. To create the button Print1To10 and its functionality, all that is required is

to define the following method in the ProblemSetClass.

 public synchronized void Print1to10() {
 for (int i = 1; i <= 10; i++)
 console.out.print(i + " ");

 console.out.println("\n");
 }

The framework automatically encapsulates this method into an action that will be

executed by a button named Print1To10 that is placed into the button area of the GUI

window. Similarly, to create the button SumTwoNumbers and its functionality, all

that is required is to define the following method in the ProblemSetClass.

 public synchronized void SumTwoNumbers() {
 int x = console.in.demandInt("Enter x:");
 int y = console.in.demandInt("Enter y:");

 console.out.println("Sum: " + (x + y) + "\n");
 }

In both examples, the simple definition of a method that is public, synchronized, void,

with no arguments, and not static is enough to cause the definition of a corresponding

button in the GUI window that will execute the method. These two examples use the

JPT console for input-output. The console will be discussed in detail below.

The method PaintCircles is more elaborate but that is primarily due to the necessity to

make some calls to Java2D graphics [3].

 public synchronized void PaintCircles() {
 // do graphics setup
 window.clearPanel();
 window.repaint();

 Graphics2D G = window.getBufferGraphics();

 Ellipse2D.Double E = new Ellipse2D.Double();

 // request the number of circles from dialog
 int n = demandIntFromDialog
 ("How Many Circles?", "PaintCircles", "100");

 // draw filled circles
 for (int i = 0; i < n; i++) {
 // define diameter with 10 <= diameter <= 50
 int diameter = 10 + (int)(40 * Math.random());
 int maxX = window.getBufferWidth() - diameter;
 int maxY = window.getBufferHeight() - diameter;

 // define top-left corner
 int x = (int)(maxX * Math.random());
 int y = (int)(maxY * Math.random());

 // define circle
 E.setFrame(x, y, diameter, diameter);

 // define r, g, b color
 int r = (int)(255 * Math.random());
 int g = (int)(255 * Math.random());
 int b = (int)(255 * Math.random());

 // fill the random circle with random color
 G.setPaint(new Color(r, g, b));
 G.fill(E);
 }

 // refresh
 window.repaint();
 }

The window object that corresponds to the graphics area in the screen snapshot is a

Java Power Tools BufferedPanel object that maintains its data in an internal

BufferedImage that is used to refresh the screen image when required. Since this

window object delivers a standard Graphics2D object for painting, all of Java2D

graphics is available. The only other tool in this example that is not pure Java is the

method demandIntFromDialog that is packaged with the Problem Set Framework.

The purpose of discussing the three examples Print1To10, SumTwoNumbers, and

PaintCircles in depth is to emphasize how easy it is to install new problems into the

Problem Set Framework. In classrooms situations, teachers build such examples on

the fly to provide simple demonstrations or to respond to student questions. Outside

of class, students use the framework to answer their own questions or to test code in

their projects. In addition, several of our laboratories use the Problem Set Framework

explicitly to test algorithms or class definitions.

3.1 Creation of a Problem Set

 In general, we define an application class ProblemSetApplication.java that for a given

problem set class ProblemSetClass.java automatically creates an entire graphical user

interface with an action button for each “problem”. The action buttons are labeled with

the names of the functions that implement the tasks. In addition, the programmer has

access to fully error-checked I/O through the JPT console class and has access to

creating graphical images in the attached buffered graphics panel window. The

ProblemSetClass class also has a title member variable that may be used to set the

main window title and an application member variable that may be used to access the

main application object if needed.

To define a member function of the ProblemSetClass class that will automatically

generate a button in the graphical user interface, the member function should be

declared as public, synchronized, void, with no arguments, and not static. All other

member functions in the ProblemSetClass class will be considered as hidden helper

functions. Thus, for example, to ensure that a function is considered as a helper

function it is enough to declare it as protected. It is also possible to define helper data

variables in the ProblemSetClass class if needed.

Let us explain the reason for the conditions specified for those member functions that

will automatically generate a button. If a simple button is clicked there is no obvious

mechanism to supply arguments or use return values so we specify that the function

must have zero arguments and be void. The function should be public to be visible in

the application class. The function should not be static since in that case it cannot

access the window variable. Finally, the function needs to be synchronized because

otherwise if multiple buttons are clicked at once then the output from one button can

become mixed into the output of another button in the console or graphics windows.

 Thus, to summarize, to define a member function of the ProblemSetClass class that

will automatically generate a button in the graphical user interface, it is enough to

define the function as public, synchronized, void, with no arguments, and not static.

Absolutely no additional effort is necessary.

3.2 Usage of the console

The console is an object in the JPT toolkit that controls three streams of data, the i n

stream, the out stream and the err stream, in a manner similar to the generic Java

facilities provided by the System class. However, the console has several advantages

over the system supplied console window. First, the program can elect to display the

three streams in different colors. This permits students to easily distinguish what part

of the display was generated by normal output (black), what part constitutes user

input (blue), and what part was generated through the error handlers (red).

Some operating systems create a fixed size console for a Java program. Another

advantage of our console window is that it scrolls automatically to allow the user to

see the entire transcript of the program-user interaction. Moreover, when the console

is closed, the user is offered the option of saving the entire transcript to a file, another

feature that supports good pedagogy.

The best feature of the console is the way it handles user input. The JPT provides

input functions that specify the type of input expected and subsequently perform

automatic error checking and error handling. These functions will deliver only valid

data as a result of a request for input.

Input functions from the console use the prefix console.in. followed by a particular

input function. Let us, for example, look at integer input. There are two forms:

 int x; // the variable that will get the value
 int d = ...; // some default value to be used in form 2

 // form 1 with no default
 x = console.in.demandInt(prompt);

 // form 2 with a default value d
 x = console.in.demandInt(prompt, d);

Here prompt represents a String argument that will be printed in the console to signal

to the user that input is being requested.

In the demand functions, the user must supply valid data. If the data has an error, the

demand functions will continue to prompt until the error is corrected. Thus, the

program can be guaranteed that it will receive valid data to work with. In the case of

form 2, if the user simply presses return, then the default value d will be returned.

There are demand functions for each of the primitive types and for the String type.

In the Java Power Tools, there is the general notion of a Stringable type that means a

type whose data state can be encapsulated into a String or conversely be set using a

String. There are Stringable types XByte, XShort, XInt, XLong, XFloat, XDouble,

XChar, XBoolean, and XString built into the JPT. For Stringable objects X, there are

demand functions that have the following method signatures:

 public void demand
 (String prompt, Stringable X);

 public void demand
 (String prompt, String default_data, Stringable X);

Thus, the methods calls on X would look like:

 // form 1 with no default
 console.in.demand(prompt, X);

 // form 2 with default data
 console.in.demand(prompt, default_data, X)

In many instances, you would like to prompt the user for data but if the user has no

more data to supply then the program should simply move onward. The way to

accomplish this in the JPT is with the reading function that returns true if the user did

supply data and false otherwise. The best way to understand this function is through

an example.

 XInt X = new XInt();

 while(console.in.reading(prompt, X)) {
 int x = X.getValue();

 // now do what you want with the int value x
 }

In this example, the loop continues precisely as long as the user supplies data for X.

Inside the loop, the ordinary int x is extracted from the object X. The loop stops when

the user simply presses return at the prompt.

The reading method is the basis for the SumWhileReading example in the framework.

 public synchronized void SumWhileReading() {

 int sum = 0;

 XInt x = new XInt();

 while (console.in.reading("Enter value to sum:", x))

 sum += x.getValue();

 console.out.println("\nSum: " + sum + "\n");

 }

Below is an extract of the console interaction when this method is used to sum four

numbers. Notice that the Problem Set Framework will automatically print a message

when the method begins and when it ends.

Run: SumWhileReading

Enter value to sum: 3
Enter value to sum: 1
Enter value to sum: 6
Enter value to sum: 5
Enter value to sum:

Sum: 15

End: SumWhileReading

The user terminates the input sequence by pressing return at the prompt. This is

similar to the use of end-of-file to terminate input in traditional applications but is

much more flexible since the computer-user dialog may actually continue later on.

To conclude this discussion of the console, there are three functions that control input-

output flow rather than specifically supply data. These functions look like:

 // ask a yes-no question and return true-false as a result
 // use confirm in an if-statement or a while-statement

 if (console.confirm(question, default_response)) else
or
 while (console.confirm(question, default_response))

 // print standard prompt and wait until the user presses return
 console.pressReturn();

 // print supplied prompt and wait until the user presses return
 console.pressReturn(prompt);

3.3 Usage of the graphics window

The graphics is displayed in a JPT BufferedPanel named window. For introductory

exercises, we mostly care about the fact that any Java2D Graphics methods may be

used to modify the screen image. There is a wealth of interesting exercises students

can do with the use of graphics such as painting scalable drawings; painting a series of

geometric objects in a given pattern; illustrating array data as bar charts; simulating

Brownian motion; etc. The key point is that the window object can deliver its

graphics context so that further graphics work may be done:

 Graphics2D G = window.getBufferGraphics();

With this object G, all of the functionality of Java 2D Graphics is available.

4. DESIGN OF THE PROBLEM SET FRAMEWORK

We describe the evolution and the design of the Problem Set Framework. This will

show how we arrived at the functionality by gradually addressing new concerns at each

stage. This section of the paper may be used in an object-oriented design course as a

simple case study that illustrates the uses of some important features of Java in a

compelling yet ultimately simple example.

4.1 Persistence of the console and the window

The GUI panel with the buttons and graphics window is created in one Java frame and

the console in another Java frame. It would be possible to create a new console for

each exercise and close it on completion, but that seems like a very cumbersome way

of doing things. If a student wants to run the same task several times in a row, this

approach would erase the previous results and start with a clean slate for each

repetition of the same task. We believe that it is important that the console remain

active and visible while the application is running so that the student can look at the

accumulated feedback. Therefore, the console is activated by the main application and

all tasks share in its use.

4.2 Evolution of the GUI and the Problem Set Application

The basic goal is to create a new action button for each task in the Problem Set Class in

such a way that when the action button is pressed the appropriate task function will

be performed. In the initial version of the framework, the communication between the

console and the GUI regarding the focus of control went haywire. The GUI froze while

the actions were performed. To solve this problem, each action had to be given its

own thread. This was accomplished using a general wrapper class ThreadedAction that

causes any Java Action to be executed each time in a new separate Thread.

Now the situation was better. Each task executed as it should with the GUI remaining

active while the task ran. However, we soon realized that while one task was running,

another could commence and that they would compete for control of the console. This

meant that output and interactions in the console would occur in some random order.

We solved this problem by making each task into a synchronized method in the

ProblemSetClass. This meant that even if several buttons were pressed in quick

succession, only one task thread could execute at a time and all other task threads

would be blocked while waiting for the executing task to complete.

At this point we had the structure of the interactions as we wanted it, however, all

action buttons were labeled task1, task2, etc. and all function performing tasks had

names "task1", "task2", etc. listed in a separate table of strings. We wanted to use

meaningful names for the tasks and we wanted to eliminate the separate table of strings

since we knew that requiring a student to both construct a method and put a string into

a table was a bug waiting to happen.

4.3 Automating the Creation of Actions and Buttons: Java Reflection

The Java reflection package provides mechanisms for examining classes and objects in

detail. In particular, one can extract the declared methods for an object, determine both

the names and the properties of these methods, and execute these methods by indirect

means. We decided to use Java reflection to automate the process of making actions

and their buttons from the tasks in the ProblemSetClass object problemSet.

The first issue to be faced is how to determine if a Method object method extracted via

Java reflection is in fact public, synchronized, void, with no arguments, and not static.

This is solved by the following static test function isProperMethod.

 protected static boolean isProperMethod(Method method) {
 if (method == null)
 return false;

 if (method.getReturnType() != void.class)
 return false;

 if (method.getParameterTypes().length > 0)
 return false;

 int modifiers = method.getModifiers();

 boolean OK =
 ((modifiers & Modifier.PUBLIC) != 0)
 &&
 ((modifiers & Modifier.SYNCHRONIZED) != 0)
 &&
 ((modifiers & Modifier.STATIC) == 0);

 return OK;
 }

The next issue is how to turn a Method into an Action object that ultimately may be

installed in the GUI. Here we need to use the Java reflection technique of indirect

method invocation and we need to trap all possible exceptions. The code to

accomplish the method-to-action task is:

 protected Action makeActionFromMethod(final Method method) {
 if (method == null)
 return null;

 final String name = method.getName();

 return new ThreadedAction(
 new SimpleAction(name) {
 public void perform () {
 console.out.println("Run: " + name + "\n");

 try{
 method.invoke(problemSet, null);
 }
 catch (IllegalAccessException illAccEx){
 // should never happen
 // method is public
 console.err.print ("IllegalAccessException: ");

 console.err.println("" + illAccEx);
 console.err.println("In: " + name + "\n");
 }
 catch (IllegalArgumentException illArgEx){
 // should never happen
 // method has zero arguments
 console.err.print ("IllegalArgumentException: ");
 console.err.println("" + illArgEx);
 console.err.println("In: " + name + "\n");
 }
 catch (InvocationTargetException invTarEx){
 // may happen if exception thrown inside method
 console.err.print ("InvocationTargetException: ");
 console.err.println("" + invTarEx);
 console.err.println("In: " + name + "\n");

 Throwable target = invTarEx.getTargetException();

 console.err.println("Target Stack Trace:");
 target.printStackTrace(console.err);
 console.err.println();
 }

 console.out.println("End: " + name + "\n\n");
 }
 });
 }

The biggest complication in this call is that the indirect method invocation call

method.invoke(ps) can in principle throw three kinds of exceptions and these must be

caught here and dealt with. In our situation, the first two exceptions cannot happen

since we know that the method passed is public with zero arguments. The final

exception will be thrown if the method itself throws an exception. In this case, we

print the stack trace for the exception as supplied by standard Java calls. Because we

trap all exceptions that arise from method calls initiated in the ProblemSetClass, the

program continues to run and the student may examine the error messages and then

continue to test before exiting to make corrections.

The method call method.invoke(ps) is the heart of the perform() method of the object

of the class SimpleAction that is created on the fly to encapsulate the method behavior

as an action. This SimpleAction object is immediately passed to the ThreadedAction

constructor to create a wrapper action that will always execute in a new separate

Thread. It is this ThreadAction that is installed as a button in the GUI.

With the foundation of isProperMethod and makeActionFromMethod, it is now

possible to use Java reflection to extract all methods in the problemSet object and

create a list of Action’s that can then be used to create the buttons in the GUI. This

work is accomplished by the method getActionList. The crucial Java reflection code

in this method is:

 Method[] methodList

 = problemSet.getClass().getDeclaredMethods();

The rest of getActionList is straightforward. We loop over the methods and create an

action for each method that is proper. We then return the actions in an array that will

be used to construct a JPT ActionsPanel that automatically creates the desired

buttons.

4.4 Collaboration of ProblemSetClass and ProblemSetApplication

The ProblemSetClass and ProblemSetApplication are mutually referential. The

constructor for ProblemSetClass reads:

 public ProblemSetClass(ProblemSetApplication application) {
 this.application = application;

 if (application != null)
 window = application.getGraphicsWindow();
 }

Notice that the ProblemSetClass object records the application object and extracts

from the application object a reference to the graphics window in the GUI. The

constructor for the ProblemSetApplication object begins by constructing an object

problemSet of class ProblemSetClass:

 public ProblemSetApplication() {

 // define the problem set object
 problemSet = new ProblemSetClass(this);

 // the rest of the constructor builds the GUI ...

Thus the application and the problemSet are able to mutually communicate. In

particular, this is how the application object can extract the proper methods from the

problemSet object to make the actions and then the buttons.

5. CONCLUSION

5.1 Our Experiences

We created this framework out of frustration with other techniques for creating simple

problem sets. As soon as it became available it was enthusiastically adopted by

faculty, students, and undergraduate tutors working with students. All felt that this

framework provided a very simple yet robust environment for trying out the behavior

of Java functions, control structures, arithmetic, and the class reference model. No Java

features are hidden.

While we are firm believers in the power of graphical user interfaces for more complex

programs in which the user needs to see the entire state of several objects while the

actions are being performed, it is a great benefit to have a tool for examining the

functionality of one simple action, one change in the object state, or one control

structure (loop, decision statement) at a time. The framework can be used in any Java

setting, even if the adopter is not interested in using the JPT for other projects. All one

needs is to do is to compile together the jpt.jar and the ProblemSetApplication with

the specific version of the ProblemSetClass.

5.2 Additional Pedagogical Applications: Testing and Demo Programs

Because the full power of Java is available in the Problem Set Framework, the proper

methods in the ProblemSetClass class can in fact do anything including instantiating

arbitrary objects and calling arbitrary methods on these objects. Thus, the Problem Set

Framework is also a tool for the creation of test suites for arbitrary classes. One can

instantiate a test object and then run any desired set of methods that needs to be tested

and create any desired feedback either as text in the console or as graphics in the

window.

In addition, all stand-alone Java applications have at least one class with a main

method. Although this main method takes an array of String arguments, in most cases

the array that is actually passed is null. Thus, it is possible to launch an arbitrary

application Foo in the Problem Set Framework using code of the form:

 public synchronized void RunFoo() {
 Foo.main(null);
 }

Thus, the Problem Set Framework can easily be used to create launch pad for a suite

of demo programs. It has not escaped our attention that it is possible to use Java

reflection to scan a family of classes looking for a main method and then to create for

all such classes the equivalent of the RunFoo() method. However, we choose not to

pursue this further here.

On a different note, much of the power of the BlueJ environment [4] comes from the

fact that BlueJ can instantiate an object of any class and then make methods calls on

that object. Those familiar with BlueJ will realize that a significant subset of what is

done in BlueJ can now also be done with a small effort in the Problem Set Framework

in whatever Java development environment you choose to work in. We have always

felt that the Java Power Tools and BlueJ are synergistic and this is one more instance

of the potential relationships.

5.3 Acknowledgements

 Partial support for this work has been provided by the NSF grant DUE-9950829.

5.4 Dissemination

The Java Power Tools, Problem Set Framework, and related files may be found at:

http://www.ccs.neu.edu/teaching/EdGroup/JPT/

6. REFERENCES

[1] Bruce, K. B., Danyluk, A., and Murtagh, T. P., A Library to Support a Graphics-

Based Object-First Approach to CS1, SIGCSE Bulletin, 33(1), 2001, 6-10.

[2] Cornell, G., and Horstman, C., Core Java 1.2 Volume 1, SunSoft Pres, Mountain

View, CA, 1999.

[3] Knudsen, J., Java 2D Graphics, O’Reilly, Sebastopol, CA, 1999.

[4] Koelling, M., and Rosenberg, J., Object First with Java and BlueJ, SIGCSE

Bulletin, 32(1), 2001, 429.

[5] Koffman, E., and Wolz, U., A Simple Java Package for GUI-like Interactivity,

SIGCSE Bulletin, 33(1), 2001, 11 - 15.

[6] Lambert, K. A., and Osborne, M., JAVA Complete Course in Programming &

Problem Solving, South-Western Educational Publishing, Cincinnati, OH, 2000.

[7] Raab, J., Rasala, R., and Proulx, V. K., Pedagogical Power Tools for Teaching

Java, SIGCSE Bulletin, 32(3), 2000, 156-159.

[8] Rasala, R., Raab, J., and Proulx, V. K., Java Power Tools: Model Software for

Teaching Object-Oriented Design, SIGCSE Bulletin, 33(1), 2001, 297-301.

[9] Roberts, E., An Overview of MiniJava, SIGCSE Bulletin, 33(1), 2001, 1-5.

