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ABSTRACT
We report on the experience of teaching an introductory sec-
ond semester computer science course on Fundamentals of
Computer Science that uses our curriculum How to Design
Class Hierarchies and the ProfessorJ programming lan-
guages implemented within the DrScheme programming
environment.

This comprehensive curriculum for an introductory course
focuses on principled design of class based programs in an
object-oriented language (Java) with a carefully structured
gradual increase in the complexity of the class structure and
the programming language.

The curriculum includes extensive lecture notes, program-
ming assignments, closed lab plans, exams, and the first
part of a textbook. The curriculum is supported by a pro-
gramming environment ProfessorJ with a series of gradu-
ally more complex teaching languages that support a novice
learner. The pedagogy focuses on teaching the students
problem solving and design skills that transcend the study
of programming. The organization of the topics draws its
strength from the theory of programming languages by fo-
cusing on the structure of data rather than on algorithms,
user interactions, or arcane details of the programming lan-
guage syntax.

Categories and Subject Descriptors: K.3 Computer
and Information Science Education; D.1.5 Programming Tech-
niques; D.3.3 Programming LanguagesLanguage Constructs
and Features[Classes and objects]

General Terms: Program Design, Pedagogy, Program-
ming Languages and Environments

Keywords: CS1/2, Design, Pedagogy, Programming Edu-
cation, Systematic Programming

1. INTRODUCTION
Typical introductory curricula overwhelm students with a

number of concepts and tricks that must be understood just
to write their first program. In an object-oriented language,
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specifically Java, this means defining a class, its methods,
and an instance of the class that is used to invoke the cor-
rect methods — all while learning to use the programming
environment, which uses an industrial strength language
and compiler with error messages incomprehensible to a
novice, as well as the environment’s mechanism for inter-
action. Some pedagogical programming environments (es-
pecially BlueJ [4] and DrJava [2, 14]) provide support for
novice-user interactions. Other approaches have been events-
first [7, 8], elementary patterns [5], graphics first [3], con-
crete to abstract [16], and test first [9].

Our curriculum, How to Design Class Hierarchies
(HtDCH) addresses this problem through the structure of
the programs students work on, the programming environ-
ment ProfessorJ [13] within DrScheme that provides sup-
port for the novice programmer through a series of Java-like
learning languages, and through a pedagogy that focuses on
disciplined program design from the first day. This curricu-
lum is a natural follow-up to the TeachScheme! [11] cur-
riculum supported by the DrScheme [12] series of languages
and the textbook How to Design Programs [10]. The peda-
gogy of this (and our) curriculum is based on the use of the
Design Recipe.

The curriculum has been used in our classrooms for the
past three years resulting in a noticeable improvement of
students’ abilities to write programs and to reason about
them [17]. It has also been successfully implemented by
several high school and college instructors who have partic-
ipated in our summer workshops.

1.1 HtDCH: The Structure and the Function
The key premise of object-oriented programming is that

interacting objects communicate with each other and per-
form tasks in response to method invocation. The emphasis
is on the class hierarchies that support these interactions,
while the methods are typically much simpler. This is also
the key premise of our curriculum. Students first focus on
understanding the structure of data, and design classes and
class hierarchies that represent different kinds of relation-
ships among them.

Once students can design quite complex class hierarchies
and understand how to represent information as instances
of the classes they designed, they proceed with the design
of methods.

Another original premise of object-oriented programming
was to write programs that favor immutability [6]. Indeed,
there has been a quest to eliminate the assignment statement
altogether [15]. To follow this quest, for the first several



weeks our students only write programs free of side effects.
This is enforced by the programming environment, Profes-
sorJ , which requires that every method produces a value
(not void), and which prohibits the use of assignment within
a method body. As a consequence of these restrictions our
students can very easily design tests for all methods.

1.2 HtDCH: The Pedagogy
The TeachScheme! Project [1] introduced the pedagogy of

teaching program design through the use of Design Recipes.
Design Recipe is a pedagogical tool that promotes self-
regulatory learning [18, 19] and provides the opportunity
for pedagogical interventions.

Self-regulatory learning research shows that students learn
better when the task is divided into small steps, where at
every step the learner has clear instructions on how to pro-
ceed, a goal to accomplish, and a way to determine if the
goal has been achieved.

The Design Recipe for functions in the TeachScheme!
curriculum describes such steps:

1. Analyze the problem, identify the available informa-
tion, represent it as data.

2. Write down a concise purpose statement, a contract
and a header for the function.

3. Make examples of the function use, with expected out-
comes.

4. Write down the template: a list of all data available for
your function. (For example, if an argument is a structure,
list all of its components.)

5. Design the function body.
6. Convert your examples into test cases and run the

tests.

Students proceed in a very structured, disciplined way,
providing documentation for each method as well as practic-
ing test-driven design. When a student encounters a prob-
lem the instructor can intervene by asking at which step
of the design recipe the student got stuck. Asking further
questions about that particular step in the Design Recipe
guides the student in finding the solution. The intervention
is focused, effective, and empowering.

Our curriculum builds on the TeachScheme! curriculum
by defining Design Recipes tailored to the design of classes
and class hierarchies as well as methods for these interacting
classes.

1.3 HtDCH: Abstractions
In order to take advantage of the vast libraries of programs

available in nearly every programming language one has to
understand how to design and use abstractions. The Design
Recipe for abstractions guides our students in moving from
simple concrete solutions for specific problems to produc-
ing general solutions for a class of problems. In the process
students learn the principles behind the design of abstrac-
tions, the language support for building abstractions, and
the techniques for implementing the abstractions in their
programs.

The specific techniques we present are interfaces, generics,
function objects, iterators, abstract data types, and combi-
nations of these. Illustrating these principles in the context
of Java libraries motivates mutation and a transition from
recursive style of programming to iterative programming.

Figure 1: DrScheme – ProfessorJ.

Students are well prepared for understanding the principles
and the use of the Java Collections Framework and other
Java libraries, and transition easily to working with the full
Java language.

2. THE CURRICULUM

2.1 Designing Class Hierarchies
Our curriculum first focuses on the design of classes that

represent information. There are no methods. The Design
Recipe for classes describes the questions to ask about the
available information that guide the student in designing the
appropriate class structure.

We begin with simple classes where all fields are either
primitive types or Strings. The class is represented both
as a UML-like class diagram and as Java code. We do not
introduce the visibility modifiers, and the only constructors
are full constructors that initialize every field. As a result,
once the student decides on the fields, their types and their
names, the remainder of the task of producing the Java code
can be automated. ProfessorJ provides a tool that generates
the class diagram and the corresponding Java code from
the information supplied in a GUI dialog. However, the
design Recipe requires that the class definition must be
followed immediately by defining examples of instances of
this class in the Client class. ProfessorJ ’s Interactions

window can then display the values of these instances in a
readable form.[Figure 1]

Next, we introduce classes that contain instances of other
classes (e.g. a Book class with a field of type Author), and
a union of classes that represent variants of a common core,
(e.g. a Shape that can be either a Circle or a Rectangle).

The Design Recipe for designing simple classes has three
steps:

1. Read the problem statement. Identify the fields needed to
represent the given information. Write down your findings



as a class diagram. It will serve as our data definitions when
designing classes.
2. Translate the class diagram into a class definition, adding
a purpose statement to each class. The purpose statement
explains to future readers what kind of information the class
represents and how.
3. Make up examples of the information and represent them
with instances of the class. Conversely, make up instances
of the class and interpret them as information.

Similar Design Recipes for classes with containment and
classes with unions help students understand how to choose
the right representation for the available information. The
class diagrams translate directly into Java syntax. Addi-
tionally, the words ’consists of fields’ or ’is one of’ are used
consistently to describe either a single class or a union of
classes.

The design of self-referential class hierarchies such as re-
cursively defined lists and trees follows in a straightforward
manner:

An ancestor tree ATree is one of:
- empty tree (of the type MTTree)
- a Node that contains the fields

ancestor (of the type Ancestor)
left (of the type ATree)
right (of the type ATree)

At this early point in the course, students can design
quite complex class hierarchies, such as representation of
files and directories that contain files and directories, web
pages with their components that can again be web pages,
student records with schedules, transcripts, and course infor-
mation, etc., as long as the data is not circularly referential.

Before writing the first method students are comfortable
with a key part of the Java syntax and have a large collection
of data examples that can be used to invoke and test the
methods they design.

2.2 Designing Methods
The Design Recipe for methods not only guides the stu-

dent through the design process, but also instills early on the
need for documenting a program and enforces the discipline
of test-driven design.

The Design Recipe for a method in a simple class is
almost the same as the Design Recipe for functions in
TeachScheme! . The contract and header are replaced by the
method signature and the object that invoked the method
is referred to as an implicit argument named this. Ini-
tially, students design only methods that return a value (not
void). It is easy to design tests for these methods. Students
program in a safe environment, learn good program design
skills, and can easily understand the meaning of the values
produced by the methods.

There are additional Design Recipes for class hierarchies
such as classes with containment, unions, or self-referential
data. They include an expanded guide on how to design the
template, specifically by including the methods for which at
least the stubs have been already defined.

One additional step that applies to the design of all meth-
ods is the use of a wish list. If a method seems to be too
complex, or it contains a task that is best performed by an-
other class, the Design Recipe instructs students to make
a wish list of the methods they may need. It is sufficient
to write down the purpose statement and the header for a

method in the wish list — the rest of the work can be de-
layed till later. The Chain of Responsibility design pattern
is introduced and practiced early on.

Students design methods to traverse binary trees, to sort
lists of objects, to analyze pollution in a river system, to
produce lists of only those objects that satisfy some con-
straint, and many others. We also provide a pedagogical
library for the design of interactive graphics such as an an-
imated game, where the program processes key events and
responds to timer ticks. The methods for drawing images
produce new images that become the new scene in the game
world. Similarly, the events are handled by methods on-
Key(String ke) and onTick() which produce new scenes in
the game world.

2.3 Designing Abstractions
At this point students realize that many of the methods

they write look similar. They also observe similarities be-
tween some class hierarchies, especially those that represent
lists of instances of various classes. These observations lead
naturally to designing abstractions. The Design Recipe for
abstractions over methods asks the student to compare two
methods, identify the differences, represent the difference
as an additional parameter — and when done, run the tests
for the original methods on the new abstracted method. Ab-
stracting over classes, i.e. implementing a common interface
for classes that are similar, follows a similar Design Recipe.
Abstract classes then carry the abstractions to another level.

By this time students have seen a number of lists of differ-
ent objects, such as list of Books, Persons, Shapes,
WeatherRecords. The similarity between the structure of
these classes is obvious. Introducing the abstraction that
replaces a list of specific objects with a list of Any (or a list
of Object) is just a natural thing to do. With Java 1.5 this
leads to using generics.

The next abstraction is over the hook methods needed
for algorithms such as sorting. When the class implements
the Comparable interface, the sorting algorithm becomes the
template part of the Template and Hook design pattern. If a
class implements an interface that represents a predicate to
select objects within a class, students can design methods to
find all items that satisfy the predicate (a filter), methods
that determine whether all items satisfy the predicate (an
andMap), etc.

When it becomes clear that a Book class cannot implement
the Comparator interface in two different ways (by title, by
year), students readily embrace the function object abstrac-
tion through a class that implements the desired compare

method. The sort method does not change, except for how
it invokes the hook that is now supplied as a function object
argument.

Abstracting the traversal of a list (or of other structures)
through a functional iterator introduces more complex in-
terfaces. (Note: The use of a functional iterator still avoids
mutation.) We then add an external implementation using
the Decorator design pattern. Exceptions are now needed
to handle the attempts to invoke current() or next() on
an empty iterator. An interface that represents an abstract
data type arises naturally from our examples.

Having defined an iterator and function objects that pro-
vide hooks for algorithms, we can define a class that rep-
resents a collection of algorithms such as filter, andMap,
orMap, sort, map, etc. It is possible to cover all these con-



cepts without introducing mutation. The focus is on the de-
sign: additional language features are added when needed.

3. PROFESSORJ

3.1 Interactions Window
The ProfessorJ Interactions window allows the user to

instantiate an object in any of the classes defined in the
Definitions window. It also allows the student to invoke
methods on the instances that have been defined in the In-
teractions window.

This provides support for experimentation and quick veri-
fication of student’s understanding of the expected program
behavior. So, for example, students define a Client class
that contains instances of other classes in their program.
The Client class also contains tests for the methods de-
fined in student’s program’s classes. The student can then
instantiate the Client class in the Interactions window, to
display the instances and run the tests. We show a sample
user’s interaction for the program shown in section 2.1:

> Client c = new Client();
> c
Client(

htdp = Book(
title = "How to Design Programs",
year = 2001),

gof = Book(
title = "Design Patterns",
year = 1995))

> c.htdp
Book(

title = "How to Design Programs",
year = 2001)

> (new Book("Effective Java", 2001)).before2000()
false
>

3.2 Beginner Language
When designing classes and methods, students work in a

very supportive environment. ProfessorJ at the Beginner
level does not allow methods that return void, does not al-
low mutation or local variables, does not allow overloading,
and does not allow (or require) access modifiers or static
members. Students can create fields that are initialized ei-
ther in the constructor or at their declaration site, but these
values cannot change. Finally, every field or method access
within the class definition must be qualified with this, which
helps students distinguish between method arguments and
the current object.

While the structure of the class hierarchies they work with
is nearly on par with the full language, the programs are
restricted to the safety of immutable world with minimum
of ambiguity or syntax overhead.

3.3 Intermediate Language
The Intermediate language of ProfessorJ provides sup-

port for the abstractions described in the previous section.
Abstract classes are added to complete the class hierarchy
infrastructure. The abstraction over lists of any kind is cur-
rently supported through casts and the instanceof opera-
tor.

There are still no visibility modifiers, or static fields or
methods. Though we use mathematical functions such as
Math.sqrt(x), even in the Beginner level, we postpone the
explanation of this syntax till later.

The Intermediate language adds mutation. The assign-
ment statement can now be used within method bodies and
methods may have the return type void. Though mutation
is not needed for the abstractions described in the previous
section it is added to support circularly referential data.

3.4 Advanced and Beyond
Currently, the Advanced language level is undergoing test-

ing, and so at this point our students transition to a com-
mercial Java compiler and IDE. By now the students have
an appropriate context for the discussion of visibility modi-
fiers, the need for classes to be responsible for the integrity
of its data, as well as the need for separating the API from
the implementation. After having worked with class hierar-
chies with more than a dozen classes and interfaces students
can confidently navigate and work with an IDE project.

4. THE TRANSITION TO FULL JAVA
To transition to the full Java language, students need

to understand mutation, iterative (as opposed to recursion
based) loops, and the use of static fields and methods.
We also aim to guide students to become effective users of
existing libraries.

The first step in this transition introduces mutation. The
motivation for the mutation is presented in two different con-
texts. The first one is the need to define circularly referential
data. If a book has several authors, our representation needs
a field that contains a list of authors; at the same time, our
representation of an author needs a field that represents all
books written by this author. We can no longer define con-
structors that initialize both books and authors. The list of
books written by an author must be initialized to an empty
list, and as each new book is defined, the list is modified
to give the author the credit for the newly published book.
The effects of adding a book to an author’s list of books can
still be easily tested.

The second motivation for mutation comes from using a
direct access data structure (either a Vector, or the ArrayList,
or the Array). We start with ArrayList because it is sim-
ilar to the lists we have used. We define an iterator for
ArrayList that implements our interface for an immutable
functional iterator. This allows us to define all of our earlier
algorithms without modifications.

We then present the direct access methods for ArrayList
and how to transform the recursively defined methods to it-
eration using either a while loop or a for loop. The Design
Recipe for this transformation is a simplified version of the
CPS (Continuation Passing Style) transformation.

Students are then ready to learn about the Java Collec-
tions Framework . It is easy to explain the need for the
Collection interface and the AbstractCollection imple-
mentation of most of the methods. Students read the doc-
umentation with confident understanding of the description
of the class hierarchies.

The introduction of the Java mutating Iterator interface
and the iterator() method in the Collection interface
provides the context for introducing inner classes and static
fields and methods. We also design an adapter that imple-
ments our functional iterator using the methods provided
by the Java Iterator interface — a beautiful and useful
illustration of the Adapter design pattern.

To introduce other classes in the Java Collections Frame-
work we discuss the algorithm complexity. We present prob-



lems that highlight the need for specialized data structures
such as hash tables, sets, trees, and algorithms such a heap-
sort/priority queue, or the union/find algorithm. Our algo-
rithm framework that allows us to select independently the
specific sorting algorithm with its data representation, the
source and the size of the data, and the Comparator used to
sort the data, provides the infrastructure for stress tests of
sorting algorithms. Students experience on concrete exam-
ples the differences between the algorithms, not only based
on the structure of the algorithm, but also the structure of
the data and the limitation of the language (such as the lack
of support for tail recursion in Java).

5. CONCLUSION

5.1 Our Experiences
This curriculum has been tested in the classroom for three

years, in incrementally more complete and comprehensive
states. During the first year, we introduced the key design
ideas and some abstractions, using the full Java language
with a commercial IDE (Metrowerks). In the second year we
first used ProfessorJ and a draft of the textbook covering the
first four weeks of the course (up to abstractions). In 2005
we complemented the textbook with online lecture notes.
Over the three years we have experimented with a different
structure for student’s test suites. Every year the course has
been team taught by two or more instructors, only one of
them (Viera Proulx) from the HtDCH group.

The instructors in all sections of the subsequent courses
(Object-Oriented Design and Computer Organization and
Programming) uniformly comment on better preparation of
students who completed this curriculum. This claim is sup-
ported by data that indicate a higher success rate and a
lower attrition than in similar classes prior to our change in
curriculum. The most telling comment came from a student
as a posting on the course newsgroup in response to some
complaints about the wording of an exam question:

Now that is completely unfair. [reply to an earlier
unhappy posting] I transfered into Northeastern at
the beginning of this past year. I went to a commu-
nity college for a year, took 3 different programming
classes there as well as an AP Computer Science class
in Highschool. Now I can honestly say that in this
ONE semester, I have learned more from Clement’s
class than all of my previous classes combined. I wish
that I had no programming experiance before coming
here because some old habits are hard to change.

One question on one test shouldn’t cause you to com-
pletely look down at an amazing course.

We additionally presented the curriculum in one-week in-
tensive summer workshops during the summers 2003 and
2004. The participants were uniformly excited and several
of the instructors proceeded to implement the curriculum
in their classes - using the part of the textbook, the lecture
notes, and the support of our team.

URL: http://www.ccs.neu.edu/home/vkp/HtDCH
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