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Theorem [Cook, Levin]: 3SAT is NP-complete



  

Theorem [Cook, Levin]: 3SAT is NP-complete

 ∀M  NTIME(t)  reduction R :  x∈ ∃ ∀

 R(x) = φ  3SAT ↔ M(x) = 1∈
 R runs in time poly(t)        (t = poly(n), t = 2n etc.)

Applications require to optimize (by themselves or both)

- | φ |

- “Complexity” of R



  

● Optimizing | φ | (70s - 80s)
[…, Pippenger Fischer, Gurevich Shelah,...]

| φ | = t logO(1) t

● Optimizing complexity of R.

If reduction has resources polynomial in t,
it is almost trivial

Our focus: resources << t



  

Clause-explicit R

R(i,x) = i-th clause of φ , e.g.  ( y15 V  ¬ y7  V ¬ y8 )

|i| = log | φ |

We will ignore x and focus on the map as a function of i,
though dealing with x is not easy.

Why care about explicitness?



  

Explicit R

● Succint-sat NEXP complete     
  t = 2n   , | φ | = poly(t),  R(i) run in time poly(|i|)

● Lower bounds for SAT
[Van Melkebeek, Fortnow, Lipton, Vigas]
t = poly(n),  | φ | = t logO(1) t,  R(i) in time poly(|i|), space O|i|

● Williams lower bounds from SAT/derandomization
Lower bound against C (e.g., C = ACC0 ), can use
  t = 2n ,  | φ | = t logO(1) t,  R(i) computable by C



  

Explicit R

| φ | = poly(t),  R  AC∈ 0

[Arora Steurer Wigderson] (or folklore)

| φ | = t logO(1) t,  R  ∈NC1 
[Ben-Sasson, Goldreich, Harsha, Sudan, Vadhan] (2005)

Note: Williams ACC0 lower bound uses workaround due to 
         absence of more efficient reductions.

         More efficient reductions “hard (perhaps impossible)”

Consequent drawbacks to be discussed shortly



  

Theorem [Jahanjou Miles V.]
Reduce NTIME(t) to 3SAT via reduction R :

● | φ | = t logO(1) t

●  Each output bit of R(i) depends on O(1) bits of i.
    (A.k.a. local, NC0 , junta).

   
Note: R(i) = ( y15 V  ¬ y7  V ¬ y8 )

         |y15 | = log t = |i| bits; each bit depends on O(1) bits of i.

Note: Local R cannot even compute i → i+1
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Warm-up consequence:

SUCCINCT-3SAT, SUCCINCT-3COLOR, etc. remain
NEXP complete even on instances represented by NC0 
circuits

Slightly better ACC0 lower bound



  

Consequence: Tighther connection between
SAT algorithms and lower bounds

NOTE: “lower bound” throughout means for f  NEXP or E∈ NP

[W] gives lower bounds against size s, depth d from SAT 
algorithm for size sc , depth c d

We only require SAT algorithm for size c s, depth d + c.

This (and refinements) gives several new connections for 
classes of interest:



  

For each, new lower bound from SAT algorithm.

● Linear-size circuits

● Linear-size log-depth circuits [Valiant 1977]

● Linear-size series-parallel circuits [Valiant 1977]

● Quasi-polynomial SYM-AND circuits

                These can be related to assumptions about kSAT



  

● [W] Exponential-time hypothesis [Impagliazzo Paturi] false 

       => linear-size circuits lower bound

Our proof from previous result:   Apply Cook-Levin.   

● [JMV] Strong Exponential-time hypothesis false 

       => linear-size series-parallel circuits lower bound

● [JMV] nc - SAT in time 2n - ω n/log log n 
       => linear-size log-depth circuits lower bound



  

Some tighther results  [Ben-Sasson V., JMV]

● Unbounded-depth circuits:
   Lower bound for depth d <= SAT for depth d+1.

● Recall for general circuits a 3n lower bound is unknown.

                        3n lower bound from 3SAT in TIME(1.07)n 

   non-boolean 3n lower bound from 3SAT in TIME(1.10)n 

                                                          Record: TIME(1.34)n



  

Do we simplify the proof [W] that NEXP is not in ACC0 ?

● Recall that [W] uses as black-box previous reductions

● If instead use as black-box ours, the proof is more direct.

● In fact, for this application it suffices R  AC∈ 0 
   Much easier to establish.

Independently, Kowalski and Van Melkebeek proved R  AC∈ 0 



  

Outline

Intro

Consequences of local reductions

Proof of local reductions

PCP reductions



  

Background

We reduce NTIME(t) to CIRCUIT-SAT C : 
  (1)  | C | = t logO(1) t

  (2)  Given index i to gate, R(i) outputs type, and children 
with constant locality
  

Pippenger Fischer oblivious simulation gives (1), but (2) hard

Use alternative [Van Melkebeek], based on sorting networks
(The idea of sorting is from Gurevich Shelah)

Strangely little known!?

Rediscovered by “mini-poly-math” class project at NEU



  

AND



  

AND

That's why
sorting matters!



  

Sorting network.

This can be done quite efficiently, but O(1) locality unknown
[Separate write-up, all that you need for AC0 reduction]

For constant locality, we instead use routing networks,
as in PCP literature since Polischuck and Spielman

With De Buijin graphs, computation very simple:
children of i are

  i XOR CONSTANT

  (i rotated) XOR constant



  

Check circuits:

Easy to obtain R running in linear space (= log |C| space).

Theorem [JMV]  For every C with linear-space R
there is equivalent C',  | C' | = poly |C|, with local R

Technique [Ruzzo]
New gates of C' are configurations of linear-space R.

But Ruzzo does not aim or prove constant locality.

Obtaining that is not trivial, as you can't check if a 
configuration is valid.



  

Problem: Given index to i-th configuration, need to compute 
index to (i+1) configuration

Recall you cannot even compute i → i+1



  

Problem: Given index to i-th configuration, need to compute 
index to (i+1) configuration

Solution: Use routing networks in a different way.
Instead of output of network being sorted order, it will be 
“successor” function.

Config2 Config3 Config1 

Routing

Config1 Config2 ConfigT

Check
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> 10-year old problem:

     MAX-3SAT in time 2n / n ω(1) ?

Equivalently, SAT of MAJ-AND3  circuits

Bottleneck for Williams' approach based on SAT algorithms.
Needed for TC0 , threshold of threshold, etc.

Note: This is for size n3 , much of what we saw earlier was 
for size O(n).



  

Derandomization comes to rescue.

MAJ-AND3 and some other classes, can be derandomized.

This suffices for lower bounds [W], using PCP reductions.

Same considerations made earlier about Cook-Levin: 

  1) more efficient reduction => tighter connection

  2) [W, Santhanam W] need workaround due to
      INefficiency of reductions.



  

● [Ben-Sasson, Goldreich, Harsha, Sudan, Vadhan]
Explicit PCP with t logO(1) t constraints, many queries

● [Mie] Improves queries to O(1).

Theorem: [Ben-Sasson V.]
  Variant of [BGHSV] PCP:
  given index to constraint, variables (a.k.a. queries) are 
projections.
  Postprocess is a CNF [easy]

Note: Projection queries were used in concurrent [W] lower 
bound for AC0 SYM from #SAT.  By above enough to 
derandomize (or SAT)



  

Consequence:

Derandomizing (unbounded fan-in) depth d+2 circuits

                      lower bound for depth d

Example: depth-2 threshold lower bound still open.



  

Question:

Improve number of queries to O(1), matching [Mie]

How efficient PCP reductions?  Constant locality?


