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Abstract
This article is a unified treatment of the state-of-the-art on the fundamental chal-

lenge of exhibiting explicit functions that have small correlation with low-degree poly-
nomials over {0, 1}. It discusses long-standing results and recent developments, related
proof techniques, and connections with pseudorandom generators. It also suggests sev-
eral research directions.

1 Introduction

This article is about one of the most basic computational models: low-degree polynomials
over the field {0, 1} = GF(2). For example, the following is a polynomial of degree 2 in 3
variables

p(x1, x2, x3) := x1 · x2 + x2 + x3 + 1,

given by the sum of the 4 monomials x1x2, x2, x3, and 1, of degree 2, 1, 1, and 0, respectively.
This polynomial computes a function from {0, 1}3 to {0, 1}, which we also denote p, by
performing the arithmetic over {0, 1}. Thus the sum “+” is modulo 2 and is the same
as “xor,” while the product “·” is the same as “and.” For instance, p(1, 1, 0) = 1. Being
complexity theorists rather than algebraists, we are only interested in the function computed
by a polynomial, not in the polynomial itself; therefore we need not bother with variables
raised to powers bigger than 1, since for x ∈ {0, 1} one has x = x2 = x3 and so on. In
general, a polynomial p of degree d in n Boolean variables x1, . . . , xn ∈ {0, 1} is a sum of
monomials of degree at most d:

p(x1, . . . , xn) =
∑

M⊆{1,...,n},|M |≤d

cM

∏
i∈M

xi,

where cM ∈ {0, 1} and we let
∏

i∈∅ xi := 1; such a polynomial p computes a function
p : {0, 1}n → {0, 1}, interpreting again the sum modulo 2. We naturally measure the
complexity of a polynomial by its degree d: the maximum number of variables appearing in
any monomial. Since every function f : {0, 1}n → {0, 1} can be computed by a polynomial
of degree n, specifically f(x1, . . . , xn) =

∑
a1,...,a2

f(a1, . . . , an)
∏

1≤i≤n(1 + ai + xi), we are
interested in polynomials of low degree d ¿ n.

Low-degree polynomials constitute a fundamental model of computation that arises in a
variety of contexts, ranging from error-correcting codes to circuit lower bounds. As for any
computational model, a first natural challenge is to exhibit explicit functions that cannot be
computed in the model. This challenge is easily won: the monomial

∏d
i=1 xi requires degree

d. A second, natural challenge has baffled researchers, and is the central topic of this article.
One now asks for functions that not only cannot be computed by low-degree polynomials,
but do not even correlate with them.
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2 Correlation bounds

We start by defining the correlation between a function f and polynomials of degree d. This
quantity captures how well we can approximate f by polynomials of degree d, and is also
known as the average-case hardness of f against polynomials of degree d.

Definition 1 (Correlation). Let f : {0, 1}∗ → {0, 1} be a function, n an integer, and D a
distribution on {0, 1}n. We define the correlation between f and a polynomial p : {0, 1}n →
{0, 1} with respect to D as

CorD(f, p) :=
∣∣∣ Pr
x∼D

[f(x) = p(x)]− Pr
x∼D

[f(x) 6= p(x)]
∣∣∣ = 2

∣∣∣1/2− Pr
x∼D

[f(x) 6= p(x)]
∣∣∣ ∈ [0, 1].

We define the correlation between f and polynomials of degree d with respect to D as

CorD(f, d) := max
p

CorD(f, p) ∈ [0, 1],

where the maximum is over all polynomials p : {0, 1}n → {0, 1} of degree d.
Unless specified otherwise, D is the uniform distribution and we simply write Cor(f, d).

For more than two decades, researchers have sought to exhibit explicit functions that
have small correlation with high-degree polynomials, an enterprise we refer to as obtain-
ing, or proving, “correlation bounds.” A dream setting of parameters would be to exhibit
a function f ∈ P such that for every n, and for D the uniform distribution over {0, 1}n,
CorD(f, ε · n) ≤ exp(−ε · n), where ε > 0 is an absolute constant and exp(x) := 2x through-
out this article. The original motivation for seeking correlation bounds comes from circuit
complexity, because functions with small correlation with polynomials require large constant-
depth circuits with various gates, see e.g. [Raz2, Sm, HMP+, Be]. An additional motivation
comes from pseudorandomness: as we will see, sufficiently strong correlation bounds can be
used to construct pseudorandom generators [Ni, NW], which in turn have myriad applica-
tions. But as this article also aims to put forth, today the challenge of proving correlation
bounds is interesting per se, and its status is a fundamental benchmark for our understand-
ing of complexity theory: it is not known how to achieve the dream setting of parameters
mentioned above, and in fact nobody can even achieve the following strikingly weaker setting
of parameters.

Open question 1. Is there a function f ∈ NP such that for arbitrarily large n there is a
distribution D on {0, 1}n with respect to which CorD(f, log2 n) ≤ 1/n?

Before discussing known results in the next sections, we add to the above concise motiva-
tion for tackling correlation bounds the following discussion of their relationship with other
open problems.



Correlation bounds’ place in the hierarchy of open problems. We point out that
a negative answer to Question 1 implies that NP has circuits of quasipolynomial size s =
nO(log n). This relatively standard fact can be proved via boosting [F, Section 2.2] or min-
max/linear-programming duality [GHR, Section 5]. Thus, an affirmative answer to Question
1 is necessary to prove that NP does not have circuits of quasipolynomial size, a leading goal
of theoretical computer science. Of course, this connection can be strengthened in various
ways, for example noting that the circuits for NP given by a negative answer to Question 1
can be written on inputs of length n as a majority of nO(1) polynomials of degree log2 n; thus,
an affirmative answer to Question 1 is necessary even to prove that NP does not have circuits
of the latter type. On the other hand, Question 1 cannot easily be related to polynomial-
size lower bounds such as NP 6⊆ P/poly, because a polynomial of degree log n may have a
quasipolynomial number of monomials.

While there are many other open questions in complexity theory, arguably Question 1
is among those having remarkable yet not dramatic consequences, and therefore should be
attacked first. To illustrate, let us consider some of the major open problems in the area of
unbounded-fan-in constant-depth circuits AC0. One such problem is to exhibit an explicit
function that requires AC0 circuits of depth d and size s ≥ exp(nε) for some ε À 1/d (current
lower bounds give ε = O(1/d), see [H̊a]). However, via a guess-and-verify construction usually
credited to [Ne], one can show that any function f ∈ NL has AC0 circuits of depth d and
size exp

(
nc/d

)
where c depends only on f . This means that a strong enough progress on this

problem would separate NP from NL. Furthermore, techniques by Valiant (see [Va, Section
5], also pointing to an earlier related work by Erdős, Graham, and Szemerédi) entail that
improving the known lower bounds for AC0 circuits of depth 3 to size s = exp(Ω(n)) would
result in a super-linear size lower bound for (fan-in 2) circuits of logarithmic depth. On the
other hand, even an answer to Question 1 with strong parameters is not known to have such
daunting consequences, nor, if that is of concern, is known to require “radically new” ideas
[BGS, RR, AW].

Progress on Question 1 is also implied by a corresponding progress in number-on-forehead
communication complexity. Specifically, a long-standing open question in communication
complexity is to exhibit an explicit function f : ({0, 1}n)k → {0, 1} that cannot be computed
by number-on-forehead k-party protocols exchanging O(k) bits, for some k ≥ log2 n [KN,
Problem 6.21]. A lower bound on the communication required to compute some function f is
usually proved by establishing that f has low correlation with k-party protocols – a technique
also known as the discrepancy method, cf. [KN, VW]. The connection with polynomials is
given by a beautiful observation of H̊astad and Goldmann [HG, Proof of Lemma 4], which
implies that if f has low correlation with k-party protocols then f also has low correlation
with polynomials of degree d := k − 1. But the converse connection is not known.

Finally, we note that polynomials over {0, 1} constitute a simple model of algebraic com-
putation, and so Question 1 can also be considered a basic question in algebraic complexity.
In fact, an interesting special case – to which we will return in §2.2, §2.4 – is whether one
can take f in Question 1 to be an explicit low-degree polynomial over {0, 1}.

After this high-level discussion, we now move to presenting the known correlation bounds.



It is a remarkable state of affairs that, while we are currently unable to make the correlation
small and the degree large simultaneously, as required by Question 1, we can make the
correlation small and the degree large separately. And in fact we can even achieve this for
the same explicit function f = mod3. We examine these two types of results in turn.

2.1 Large degree d À log n but noticeable correlation ε À 1/n

Razborov [Raz2] (also in [CK, Section 2.7.1]) proves the existence of a symmetric function
f : {0, 1}n → {0, 1} that has correlation at most 1 − 1/nO(1) with polynomials of degree
Ω(
√

n) (a function is symmetric when its value only depends on the number of input bits
that are ‘1’).

Smolensky [Sm] obtains a refined bound for the explicit function mod3 : {0, 1}n → {0, 1}
which evaluates to 1 if and only if the number of input bits that are ‘1’ is of the form 3k + 1
for some integer k, i.e., it is congruent to 1 modulo 3:

mod3(x1, . . . , xn) = 1 ⇔
∑

i

xi = 1(mod 3).

For example, mod3(1, 0, 0) = mod3(0, 1, 0) = 1 6= mod3(1, 0, 1).

Theorem 2 ([Sm]). For any n that is divisible by 3, and for U the uniform distribution over
{0, 1}n, CorU(mod3, ε

√
n) ≤ 2/3, where ε > 0 is an absolute constant.

While the proof of Smolensky’s result has appeared several times, e.g. [Sm, BS, Be, AB2],
we are unaware of a source that directly proves Theorem 2, and thus we include next a proof
for completeness (the aforementioned sources either focus on polynomials over the field with
three elements, or prove the bound for one of the three functions modi,3(x1, . . . , xn) = 1 ⇔∑

i xi = i(mod 3) for i = 0, 1, 2).

Proof. The idea is to consider the set of inputs X ⊆ {0, 1}n where the polynomial computes
the mod3 function correctly, and use the polynomial to represent any function defined on
X by a polynomial of degree n/2 + d. This means that the number of functions defined on
X should be smaller than the number of polynomials of degree n/2 + d, which leads to the
desired tradeoff between |X| and d. To carry through this argument, one works over a field
F that extends {0, 1}.

We start by noting that, since n is divisible by 3, one has

∑
i

xi = 2(mod 3) ⇔
∑

i

1− xi = 1(mod 3) ⇔ mod3(1 + x1, . . . , 1 + xn) = 1, (1)

where the sums 1 + xi in the input to mod3 are modulo 2. Let F be the field of size 4 that
extends {0, 1}, which we can think of as F = {0, 1}[t]/(t2 + t + 1): the set of polynomials
over {0, 1} modulo the irreducible polynomial t2 + t + 1. Note that t ∈ F has order 3, since
t2 = t + 1 6= 1, while t3 = t2 + t = 1. Let h : {1, t} → {0, 1} be the “change of domain”
linear map h(α) := (α + 1)/(t + 1); this satisfies h(1) = 0 and h(t) = 1.



Observe that for every y ∈ {1, t}n we have, using Equation (1):

y1 · · · yn = 1+(t+1) ·mod3(h(y1), . . . , h(yn))+ (t2 +1) ·mod3(1+h(y1), . . . , 1+h(yn)). (2)

Now fix any polynomial p : {0, 1}n → {0, 1} and let

Pr
x∈{0,1}n

[p(x) 6= mod3(x)] =: δ,

which we aim to bound from below. Let p′ : {1, t}n → F be the polynomial

p′(y1, . . . , yn) := 1 + (t + 1) · p(h(y1), . . . , h(yn)) + (t2 + 1) · p(1 + h(y1), . . . , 1 + h(yn));

note p′ has the same degree d of p. By the definition of p′ and δ, a union bound, and Equation
(2) we see that

Pr
y∈{1,t}n

[y1 · · · yn = p′(y1, . . . , yn)] ≥ 1− 2δ. (3)

Now let S ⊆ {1, t}n be the set of y ∈ {1, t}n such that y1 · · · yn = p′(y1, . . . , yn); we
have just shown that |S| ≥ 2n(1 − 2δ). Any function f : S → F can be written as a
polynomial over F where no variable is raised to powers bigger than 1: f(y1, . . . , yn) =∑

a1,...,an
f(a1, . . . , an)

∏
1≤i≤n(1 + h(yi) + h(ai)). In any such polynomial we can replace any

monomial M of degree |M | > n/2 by a polynomial of degree at most n/2 + d as follows,
without affecting the value on any input y ∈ S:

∏
i∈M

yi = y1 · · · yn

∏

i6∈M

(yi(t + 1) + t) = p′(y1, . . . , yn)
∏

i6∈M

(yi(t + 1) + t),

where the first equality is not hard to verify. Doing this for every monomial we can write
f : S → F as a polynomial over F of degree bn/2 + dc.

The number of functions from S to F is |F ||S|, while the number of polynomials over F

of degree bn/2 + dc is |F |
∑bn/2+dc

i=0 (n
i). Thus

log|F | #functions = |S| = 2n(1− 2δ) ≤
bn/2+dc∑

i=0

(
n

i

)
= log|F | #polynomials.

Since d = ε
√

n, we have

bn/2+dc∑
i=0

(
n

i

)
≤ 2n/2 + d ·

(
n

bn/2c
)
≤ 2n/2 + ε

√
n ·Θ

(
2n

√
n

)
= (1/2 + Θ(ε))2n,

where the second inequality follows from standard estimates on binomial coefficients. The
standard estimate for even n is for example in [CT2, Lemma 17.5.1]; for odd n = 2k + 1
one can first note

(
n

bn/2c
)

=
(
2k+1

k

)
<

(
2k+2
k+1

)
=

(
n+1

(n+1)/2

)
and then again apply [CT2, Lemma

17.5.1]. Therefore 1− 2δ ≤ 1/2 + Θ(ε) and the theorem is proved.



The limitation of the argument. There are two reasons why we get a poor correlation
bound in the above proof of Theorem 2. The first is the union bound in (3), which imme-
diately puts us in a regime where we cannot obtain subconstant correlation. This regime is
unavoidable as the polynomial p = 0 of degree 0 has constant correlation with mod3 with
respect to the uniform distribution. (Later we will see a different distribution with respect
to which mod3 has vanishing, exponentially small correlation with polynomials of degree
¿ log n.) Nevertheless, let us pretend that the union bound in (3) is not there. This is
not pointless because this step is indeed not present in related correlation bounds, which do
however suffer from the second limitation we are about to discuss. The related correlation
bounds are those between the parity function

parity(x1, . . . , xn) := x1 + · · ·+ xn parity : {0, 1}n → {0, 1}
and polynomials over the field with three elements, see e.g. [BS, AB2], or between the parity
function and the sign of polynomials over the integers [ABFR]. If we assume that the union

bound in (3) is missing, then we get 2n(1 − δ) ≤ ∑bn/2+dc
i=0

(
n
i

)
. Even if d = 1, this only

gives 1− δ ≤ 1/2 + Θ(1/
√

n), which means that the correlation is Θ(1/
√

n): this argument
does not give a correlation bound of the form o(1/

√
n). More generally, to our knowledge

Question 1 is also open when replacing 1/n with 1/
√

n.

Xor lemma. A striking feature of the above results ([Raz2] and Theorem 2) is that they
prove non-trivial correlation bounds for polynomials of very high degree d = nΩ(1). In this
sense these results address the computational model which is the subject of Question 1,
they “just” fail to provide a strong enough bound on the correlation. For other important
computational models this would not be a problem: the extensive study of hardness am-
plification has developed many techniques to improve correlation bounds in the following
sense: given an explicit function f : {0, 1}n → {0, 1} that has correlation ε with some class
Cn of functions on n bits, construct another explicit function f ′ : {0, 1}n′ → {0, 1}, where
n′ ≈ n, that has correlation ε′ ¿ ε with a closely related class Cn′ of functions on n′ bits (see
[SV] for a comprehensive list of references to research in hardness amplification). While the
following discussion holds for any hardness amplification, for concreteness we focus on the
foremost: Yao’s xor lemma. Here f ′ : ({0, 1}n)k → {0, 1} is defined as the xor (or parity, or
sum modulo 2) of k independent outputs of f :

f ′(x1, . . . , xk) := f(x1) + · · ·+ f(xk) ∈ {0, 1}, xi ∈ {0, 1}n.

The compelling intuition is that, since functions from Cn have correlation at most ε with f ,
and f ′ is the xor of k independent evaluations of f , the correlation should decay exponentially
with k: ε′ ≈ εk. This is indeed the case if one tries to compute f ′(x1, . . . , xk) as g1(x

1) +
· · · + gk(x

k) where gi : {0, 1}n → {0, 1}, gi ∈ Cn, 1 ≤ i ≤ k, but in general a function
g : ({0, 1}n)k → {0, 1}, g ∈ Cn′ , needs not have this structure, making proofs of Yao’s xor
lemma more subtle. If we could prove this intuition true for low-degree polynomials, we
could combine this with Theorem 2 to answer affirmatively Question 1 via the function

f(x1, . . . , xk) := mod3(x
1) + · · ·+ mod3(x

k) (4)



for k = n. Of course the obstacle is that nobody knows whether Yao’s xor lemma holds
for polynomials.

Open question 2. Does Yao’s xor lemma hold for polynomials of degree d ≥ log2 n? For
example, let f : {0, 1}n → {0, 1} satisfy Cor(f, n1/3) ≤ 1/3, and for n′ := n2 define f ′ :
{0, 1}n′ → {0, 1} as f ′(x1, . . . , xn) := f(x1) + · · ·+ f(xn). Is Cor(f ′, log2 n′) ≤ 1/n′?

We now discuss why, despite the many alternative proofs of Yao’s xor lemma that are
available (e.g., [GNW]), we cannot apply any of them to the computational model of low-
degree polynomials. To prove that f ′ has correlation at most ε′ with some class of functions,
all known proofs of the lemma need (a slight modification of) the functions in the class
to compute the majority function on about 1/ε′ bits. However, the majority function on
1/ε′ bits requires polynomials of degree Ω(1/ε′). This means that known proofs can only
establish correlation bounds ε′ À 1/n, failing to answer Question 2. More generally, the
works [Vi1, SV] show that computing the majority function on 1/ε′ bits is necessary for a
central class of hardness amplification proofs.

An xor lemma is however known for polynomials of small degree d ¿ log n [VW] (this
and the other results on polynomials in [VW] appeared also in [Vi2]). In general, the picture
for polynomials of small degree is different, as we now describe.

2.2 Negligible correlation ε ¿ 1/n but small degree d ¿ log n

It is easy to prove exponentially small correlation bounds for polynomials of degree 1, for
example the inner product function IP : {0, 1}n → {0, 1}, defined for even n as

IP(x1, . . . , xn) := x1 · x2 + x3 · x4 + · · ·+ xn−1 · xn, (5)

satisfies Cor(IP, 1) = 2−n/2. Already obtaining exponentially small bounds for polynomials
of constant degree appears to be a challenge. The first such bounds come from the famed
work by Babai, Nisan, and Szegedy [BNS] proving exponentially small correlation bounds
between polynomials of degree d := ε log n and, for k := d + 1, the generalized inner product
function GIPk : {0, 1}n → {0, 1},

GIPk(x1, . . . , xn) :=
k∏

i=1

xi +
2k∏

i=k+1

xi + · · ·+
n∏

i=n−k+1

xi,

assuming for simplicity that n is a multiple of k. The intuition for this correlation bound
is precisely that behind Yao’s xor lemma (cf. §2.1): (i) any polynomial of degree d has
correlation that is bounded away from 1 with any monomial of degree k = d + 1 in the
definition of GIP, and (ii) since the monomials in the definition of GIP are on disjoint sets
of variables, the correlation decays exponentially. (i) is not hard to establish formally. With
some work, (ii) can also be established to obtain the following theorem.

Theorem 3 ([BNS]). For every n, d, Cor(GIPd+1, d) ≤ exp
(−Ω(n/4d · d)

)
.



When k À log n, GIP is almost always 0 on a uniform input, and thus GIP is not a can-
didate for having small correlation with respect to the uniform distribution with polynomials
of degree d À log n.

Our exposition of the results in [BNS] differs in multiple ways from the original. First,
[BNS] does not discuss polynomials but rather number-on-forehead multiparty protocols.
The results for polynomials are obtained via the observation of H̊astad and Goldmann [HG,
Proof of Lemma 4] mentioned in the subsection “Correlation bounds’ place in the hierar-
chy of open problems” of §2. Second, [BNS] presents the proof with a different language.
Alternative languages have been put forth in a series of papers [CT1, Raz1, VW], with the
last one stressing the above intuition and the connections between multiparty protocols and
polynomials.

Bourgain [Bo] later proves bounds similar to those in Theorem 3 but for the mod3 func-
tion. A minor mistake in his proof is corrected by F. Green, Roy, and Straubing [GRS].

Theorem 4 ([Bo, GRS]). For every n, d there is a distribution D on {0, 1}n such that
CorD(mod3, d) ≤ exp

(−n/cd
)
, where c is an absolute constant.

A random sample from the distribution D in Theorem 4 is obtained as follows: toss a
fair coin, if “heads” then output a uniform x ∈ {0, 1}n such that mod3(x) = 1, if “tails”
then output a uniform x ∈ {0, 1}n such that mod3(x) = 0. The value c = 8 in [Bo, GRS] is
later improved to c = 4 in [VW, C]. [VW] also presents the proof in a different language.

Theorem 4 appears more than a decade after Theorem 3. However, Noam Nisan (personal
communication) observes that in fact the first easily follows from the latter.

Sketch of Nisan’s proof of Theorem 4. Grolmusz’s [Gro] extends the results in [BNS] and
shows that there is a distribution D′ on {0, 1}n such that for k := d + 1 the function

mod3 ∧k (x1, . . . , xn) := mod3

(
k∏

i=1

xi,

2k∏

i=k+1

xi, . . . ,

n∏

i=n−k+1

xi

)

has correlation exp(−n/cd) with polynomials of degree d, for an absolute constant c. A proof
of this can also be found in [VW, §3.3]. An inspection of the proof reveals that, with respect
to another distribution D′′ on {0, 1}n, the same bound applies to the function

mod3mod2(x1, . . . , xn) := mod3(x1 + · · ·+ xk, xk+1 + · · ·+ x2k, . . . , xn−k+1 + · · ·+ xn)

where we replace “and” with “parity;” the sums in the input to mod3 are modulo 2.
Now consider the distribution D on {0, 1}n/k that D′′ induces on the input to mod3 of

length n/k. (To sample from D one can sample from D′′, perform the n/k sums modulo 2,
and return the string of length n/k.) Suppose that a polynomial p(y1, . . . , yn/k) of degree d
has correlation ε with the mod3 function with respect to D. Then the polynomial

p′(x1, . . . , xn) := p(x1 + · · ·+ xk, xk+1 + · · ·+ x2k, . . . , xn−k+1 + · · ·+ xn)

has degree d and correlation ε with the mod3mod2 function with respect to the distribution
D′′ on {0, 1}n. Therefore ε ≤ exp(−n/cd).



The modm functions have recently got even more attention because as shown in [GT2,
LMS] they constitute a counterexample to a conjecture independently made in [GT3] and
[Sa]. The main technical step in the counterarguments in [GT2, LMS] is to show an upper
bound on the correlation between polynomials of degree 3 and the function

mod{4,5,6,7},8(x1, . . . , xn) := 1 ⇔
∑

i

xi ∈ {4, 5, 6, 7}(mod 8).

The strongest bound is given by Lovett, Meshulam, and Samorodnitsky [LMS] who prove
the following theorem.

Theorem 5 ([LMS]). For every n, Cor(mod{4,5,6,7},8, 3) ≤ exp(−ε · n), where ε > 0 is an
absolute constant.

In fact, to disprove the conjecture in [GT3, Sa] any bound of the form
Cor(mod{4,5,6,7},8, 3) ≤ o(1) is sufficient. Such a bound was implicit in the clever 2001
work by Alon and Beigel [AB1]. With an unexpected use of Ramsey’s theorem for hyper-
graphs, they were the first to establish that the parity function has vanishing correlation
with constant-degree polynomials over {0, 1, 2}. A slight modification of their proof gives
Cor(mod{4,5,6,7},8, 3) ≤ o(1), and can be found in the paper by B. Green and Tao [GT2].

It is interesting to note that the function mod{4,5,6,7},8 is in fact a polynomial of degree 4
over {0, 1}, the so-called elementary symmetric polynomial of degree 4

s4(x1, . . . , xn) :=
∑

1≤i1<i2<i3<i4≤n

xi1 · xi2 · xi3 · xi4 .

For suitable input lengths, elementary symmetric polynomials of higher degree d are
candidates for having small correlation with polynomials of degree less than d. To our
knowledge, even d = nΩ(1) is a possibility.

The “squaring trick.” Many of the results in this section, and all those that apply to
degree d ≈ log n (Theorems 3 and 4) use a common technique which we now discuss also to
highlight its limitation. The idea is to reduce the challenge of proving a correlation bound
for a polynomial of degree d to that of proving related correlation bounds for polynomials
of degree d − 1, by squaring. To illustrate, let f : {0, 1}n → {0, 1} be any function and p :
{0, 1}n → {0, 1} a polynomial of degree d. Using the extremely convenient notation e[z] :=
(−1)z, we write the correlation between f and p with respect to the uniform distribution as

Cor(f, p) =

∣∣∣∣ Pr
x∈{0,1}n

[f(x) = p(x)]− Pr
x∈{0,1}n

[f(x) 6= p(x)]

∣∣∣∣ =
∣∣Ex∈{0,1}ne[f(x) + p(x)]

∣∣ .

If we square this quantity, and use that EZ [g(Z)]2 = EZ,Z′ [g(Z) · g(Z ′)], we obtain

Cor(f, p)2 = Ex,y∈{0,1}ne[f(x) + f(y) + p(x) + p(y)].



Letting now y = x + h we can rewrite this as

Cor(f, p)2 = Ex,h∈{0,1}ne[f(x) + f(x + h) + p(x) + p(x + h)].

The crucial observation is now that, for every fixed h, the polynomial p(x) + p(x + h) has
degree d−1 in x, even though p(x) has degree d. For example, if d = 2 and p(x) = x1x2 +x3,
we have p(x)+p(x+h) = x1x2 +x3 +(x1 +h1)(x2 +h2)+(x3 +h3) = x1h2 +h1x2 +h1h2 +h3,
which indeed has degree d − 1 = 1 in x. Thus we managed to reduce our task of bounding
from above Cor(f, p) to that of bounding from above a related quantity which involves
polynomials of degree d − 1, specifically the average over h of the correlation between the
function f(x) + f(x + h) and polynomials of degree d − 1. To iterate, we apply the same
trick, this time coupled with the Cauchy-Schwarz inequality E[Z]2 ≤ E[Z2]:

Cor(f, p)4 = Ex,he[f(x)+f(x+h)+p(x)+p(x+h)]2 ≤ Eh

[
Exe[f(x) + f(x + h) + p(x) + p(x + h)]2

]
.

We can now repeat the argument in the inner expectation, further reducing the degree of
the polynomial. After d repetitions, the polynomial p becomes a constant. After one more,
a total of d + 1 repetitions, the polynomial p “disappears” and we are left with a certain
expectation involving f , known as the “Gowers norm” of f and introduced independently in
[Go1, Go2] and in [AKK+]:

Cor(f, p)2d+1 ≤ Ex,h1,h2,...,hd+1
e


 ∑

S⊆[d+1]

f

(
x +

∑
i∈S

hi

)
 . (6)

For interesting functions f , the expectation in the right-hand side of (6) can be easily
shown to be small, sometimes exponentially in n, yielding correlation bounds. For example,
applying this method to the generalized inner product function gives Theorem 3, while a
complex-valued generalization of the method can be applied to the mod3 function to obtain
Theorem 4. This concludes the exposition of this technique; see, e.g., [VW] for more details.

This “squaring trick” for reducing the analysis of a polynomial of degree d to that of an
expression involving polynomials of lower degree d − 1 dates back at least to the work by
Weyl at the beginning of the 20th century; for an exposition of the relevant proof by Weyl,
as well as pointers to his work, the reader may consult [GR1]. This method was introduced
in computer science by Babai, Nisan, and Szegedy [BNS], and employed later by various
researchers [Go1, Go2, Bo, GT3, VW] in different contexts.

The obvious limitation of this technique is that, to bound the correlation with polynomials
of degree d, it squares the correlation d times; this means that the bound on the correlation
will be exp(−n/2d) at best: nothing for degree d = log2 n. This bound is almost achieved by
[BNS] which gives an explicit function f such that Cor(f, d) ≤ exp(−Ω(n/2d ·d)). The extra
factor of d in the exponent arises because of the different context of multiparty protocols in
[BNS], but a similar argument, given in [VW], establishes the following stronger bound.

Theorem 6 ([BNS, VW]). There is an explicit f ∈ P such that for every n and d, and U
the uniform distribution over {0, 1}n, CorU(f, d) ≤ exp(−Ω(n/2d)).



The function f : {0, 1}n → {0, 1} in Theorem 6 takes as input an index i ∈ {0, 1}εn and
a seed s ∈ {0, 1}(1−ε)n, and outputs the i-th output bit of a certain pseudorandom gener-
ator on seed s [NN] (Theorem 10 in §3). The natural question of whether these functions
have small correlation with polynomials of degree d À log2 n has been answered negatively
in [VW] building on the results in [Raz2, GV, HV, He]: it can be shown that, for a spe-
cific implementation of the generator, the associated function f : {0, 1}n → {0, 1} satisfies
Cor(f, logc n) ≥ 1 − o(1) for an absolute constant c. Determining how small c can be is an
open problem whose solution might be informative, given that such functions are of great
importance, as we will also see in §3.

2.3 Symmetric functions correlate well with degree O(
√

n)

Many of the correlation bounds discussed in §2.1 and §2.2 are given by functions that are
symmetric: their value depends only on the number of input bits that are ‘1.’ In this
section we show that any symmetric function f : {0, 1}n → {0, 1} correlates well with
polynomials of degree O(

√
n), matching the degree obtained in Theorem 2 up to constant

factors, and excluding symmetric functions from the candidates to the dream setting of
parameters Cor(f, ε ·n) ≤ exp(−ε ·n). While there is a shortage of such candidates, we point
out that techniques in hardness amplification such as [IW] may be relevant. It also seems
worthwhile to investigate whether the result in this section extends to other distributions.

Theorem 7. For every n, every symmetric function f : {0, 1}n → {0, 1} satisfies
Cor(f, c

√
n) ≥ 99/100, where c is an absolute constant.

We present below a proof of Theorem 7 that was communicated to us by Avi Wigderson
and simplifies an independent argument of ours. It relies on a result by Bhatnagar, Gopalan,
and Lipton, stated next, which in turn follows from well-known facts about the divisibility
of binomial coefficients by 2, such as Lucas’ theorem.

Lemma 8 (Corollary 2.7 in [BGL]). Let f : {0, 1}n → {0, 1} be a function such that f(x)
depends only on the Hamming weight of x modulo 2`. Then f is computable by a polynomial
of degree d < 2`

In §2.2 we saw an example of Lemma 8 when we noticed that the function mod{4,5,6,7},8
is computable by a polynomial of degree 4 < 23 = 8. This polynomial was symmetric, and
more generally the polynomials in Lemma 8 and Theorem 7 can be taken to be symmetric.

Proof of Theorem 7. The idea is to exhibit a polynomial of degree O(
√

n) that computes
f on every input of Hamming weight between n/2 − a

√
n and n/2 + a

√
n; for a suitable

constant a this gives correlation 99/100 by a Chernoff bound.
Let a be a sufficiently large universal constant to be determined later, and let 2` be the

smallest power of 2 bigger than 2a
√

n + 1, thus 2` ≤ c
√

n for a constant c that depends
only on a. Now take any function f ′ : {0, 1}n → {0, 1} such that (i) f ′ agrees with f on
every input of Hamming weight between n/2 − a

√
n and n/2 + a

√
n, and (ii) the value of



f ′(x) depends only on the Hamming weight of x modulo 2`. Such an f ′ exists because f is
symmetric and we ensured that 2` > 2a

√
n + 1.

Applying first Lemma 8 and then a Chernoff bound (e.g., [DP, Theorem 1.1]) for a
sufficiently large constant a, we have for d < 2` ≤ c

√
n

Cor(f, d) ≥ Cor(f, f ′) ≥ 99/100,

which concludes the proof of the theorem.

2.4 Other works

There are many papers on correlation bounds we have not discussed. F. Green [Gre, Theorem
3.10] manages to compute exactly the correlation between the parity function and quadratic

(d = 2) polynomials over {0, 1, 2}, which is (3/4)dn/4e−1. [Gre] further discusses the difficulties
currently preventing an extension of the result to degree d > 2 or polynomials over fields
different from {0, 1, 2}, while [GR2] studies the structure of quadratic polynomials over
{0, 1, 2} that correlate with the parity function best.

The work [Vi3] gives an explicit function that, with respect to the uniform distribution
over {0, 1}n, has correlation 1/nω(1) with polynomials of arbitrary degree but with at most
nα·log n monomials, for a small absolute constant α > 0. This is obtained by combining
a switching lemma with Theorem 3, a technique from [RW]. The result does not answer
Question 1 because a polynomial of degree log2 n can have

(
n

log2 n

) À nα·log n monomials,

and in fact the function in [Vi3] is a polynomial of degree (0.3) log2 n. For polynomials over
{0, 1, 2}, the same correlation bounds hold for the parity function [Ha].

Other special classes of polynomials, for example symmetric polynomials, are studied
in [CGT, GT1, BEHL]. We finally mention that many of the works we discussed, such as
Theorems 2, 4, and 7 can be suitably extended to polynomials modulo m 6= 2. We chose to
focus on m = 2 because it is clean.

3 Pseudorandom generators vs. correlation bounds

In this section we discuss pseudorandom generators for polynomials and their connections to
correlation bounds. Pseudorandom generators are fascinating algorithms that stretch short
input seeds into much longer sequences that “look random;” naturally, here we interpret
“look random” as “look random to polynomials,” made formal in the next definition.

Definition 9 (Generator). We say that a map G : {0, 1}∗ → {0, 1}∗ is a generator G :
{0, 1}s → {0, 1}n that fools polynomials of degree d = d(n) with error ε = ε(n) and seed
length s = s(n) if x ∈ {0, 1}s implies G(x) ∈ {0, 1}n and (i) for any n and polynomial
p : {0, 1}n → {0, 1} of degree d we have

∣∣∣∣ Pr
S∈{0,1}s

[p(G(S)) = 1]− Pr
U∈{0,1}n

[p(U) = 1]

∣∣∣∣ ≤ ε, (7)

and (ii) G is computable in time polynomial in its output length.



Ideally, we would like generators that fool polynomials of large degree d with small error
ε and small seed length s. We discuss below various connections between obtaining such
generators and correlation bounds, but first we point out a notable difference: while for
correlation bounds we do have results for large degree d À log n (e.g., Theorem 2), we know
of no generator that fools polynomials of degree d ≥ log2 n, even with constant error ε.

Open question 3. Is there a generator G : {0, 1}n/2 → {0, 1}n that fools polynomials of
degree log2 n with error 1/3?

While the smaller the error ε the better, generators for constant error are already of
great interest; for example, a constant-error generator that fools small circuits is enough to
derandomize BPP. However, we currently seem to be no better at constructing generators
that fool polynomials with constant error than generators with shrinking error, such as 1/n.

We now discuss the relationship between generators and correlation bounds, and then
present the known generators.

From pseudorandomness to correlation. It is easy to see and well-known [NW] that
a generator implies a worst-case lower bound, i.e., an explicit function that cannot be com-
puted by (essentially) the class of functions fooled by the generator. The following simple
observation, which does not seem to have appeared before [Vi4, §3], shows that in fact a
generator implies even a correlation bound. We will use it later to obtain new candidates
for answering Question 1.

Observation 1. Suppose that there is a generator G : {0, 1}n−log n−1 → {0, 1}n that fools
polynomials of degree log2 n with error 0.5/n. Then the answer to Question 1 is affirmative.

Proof sketch. Let D be the distribution on {0, 1}n where a random x ∈ D is obtained as
follows: toss a fair coin, if “heads” then let x be uniformly distributed over {0, 1}n, if
“tails” then let x := G(S) for a uniformly chosen S ∈ {0, 1}n−log n−1. Define the function
f : {0, 1}n → {0, 1} as f(x) = 1 if and only if there is s ∈ {0, 1}n−log n−1 such that G(s) = x;
f is easily seen to be in NP. It is now a routine calculation to verify that any function t :
{0, 1}n → {0, 1} that satisfies CorD(f, t) ≥ 1/n has advantage at least 0.5/n in distinguishing
the output of the generator from random. Letting t range over polynomials of degree log2 n
concludes the proof.

From correlation to pseudorandomness. The celebrated construction by Nisan and
Wigderson [Ni, NW] shows that a sufficiently strong correlation bound with respect to the
uniform distribution can be used to obtain a generator that fools polynomials. However, to
obtain a generator G : {0, 1}s → {0, 1}n against polynomials of degree d, [NW] in particular
needs a function f on m ≤ n input bits that has correlation at most 1/n with polynomials of
degree d. Thus, the current correlation bounds are not strong enough to obtain generators
for polynomials of degree d ≥ log2 n. It is a pressing open problem to determine whether
alternative constructions of generators are possible, ideally based on constant correlation



bounds such as Theorem 2. Here, an uncharted direction is to understand which distributions
D enable one to construct generators starting from correlation bounds with respect to D.

The Nisan-Wigderson construction is however sharp enough to give non-trivial generators
based on the current correlation bounds such as Theorem 3. Specifically, Luby, Veličković,
and Wigderson [LVW, Theorem 2] obtain generators for polynomials that have arbitrary
degree but at most nα·log n terms for a small absolute constant α > 0; a different proof of this
result appears in the paper [Vi3] which we already mentioned in §2.4. Albeit falling short
of answering Question 3 (cf. §2.4), this generator [LVW, Theorem 2] does fool polynomials
of constant degree. However, its seed length, satisfying n = sO(log s), has been superseded in
this case by recent developments, which we now discuss.

Generators for degree d ¿ log n. Naor and Naor [NN] construct a generator that fools
polynomials of degree 1 (i.e., linear) with a seed length that is optimal up to constant factors
– a result with a surprising range of applications (cf. references in [BSSVW]).

Theorem 10 ([NN]). There is a generator G : {0, 1}O(log n) → {0, 1}n that fools polynomials
of degree 1 with error 1/n.

Later, Alon et al. [AGHP] give three alternative constructions. A nice one is G(a, b)i :=
〈ai, b〉 where 〈·, ·〉 denotes inner product modulo 2, a, b ∈ {0, 1}` for ` = O(log n), and ai

denotes the result of considering a as an element of the field with 2` elements, and raising it
to the power i.

Recent progress by Bogdanov, Lovett, and the author [BV, L, Vi4] has given generators
for higher degree. The high-level idea in these works is simple: to fool polynomials of degree
d, just sum together d generators for polynomials of degree 1.

Theorem 11 ([Vi4]). Let G : {0, 1}s → {0, 1}n be a generator that fools polynomials of
degree 1 with error ε. Then Gd : ({0, 1}s)d → {0, 1}n defined as

Gd(x
1, x2, . . . , xd) := G(x1) + G(x2) + · · ·+ G(xd)

fools polynomials of degree d with error εd := 16 · ε1/2d−1
, where ‘+’ denotes bit-wise xor.

In particular, the combination of Theorems 10 and 11 yields generators G : {0, 1}s →
{0, 1}n that fool polynomials of degree d with error εd = 1/n and seed length s = O(d · 2d ·
log(n)).

Proof sketch of Theorem 11. This proof uses the notation e[z] := (−1)z and some of the
techniques presented at the end of §2.2. First, let us rewrite Inequality (7) in the Definition
9 of a generator as

∣∣ES∈{0,1}se[p(Gd(S))]− EU∈{0,1}ne[p(U)]
∣∣ ≤ εd/2. (8)

To prove Inequality (8), we proceed by induction on the degree d of the polynomial p :
{0, 1}n → {0, 1} to be fooled. The inductive step is structured as a case analysis based on
the value τ := CorU(p, 0) = |EU∈{0,1}ne[p(U)]|.



If τ is large then p correlates with a constant, which is a polynomial of degree lower than
d, and one can prove the intuitive fact that by induction Gd−1 fools p. This concludes the
overview of the proof in this case.

If τ is small we reason as follows. Let us denote by W the output of Gd−1 and by Y an
independent output of G, so that the output of Gd is W + Y . We start by an application of
the Cauchy-Schwarz inequality:

EW,Y e [p(W + Y )]2 ≤ EW

[
EY e [p(W + Y )]2

]
= EW,Y,Y ′ e [p(W + Y ) + p(W + Y ′)] , (9)

where Y ′ is independent from and identically distributed to Y . Now we observe that for
every fixed Y and Y ’, the polynomial p(U + Y ) + p(U + Y ′) has degree d− 1 in U , though
p has degree d. Since by induction W fools polynomials of degree d− 1 with error εd−1, we
can replace W with the uniform distribution U ∈ {0, 1}n:

EW,Y,Y ′ e [p(W + Y ) + p(W + Y ′)] ≤ EU,Y,Y ′ e [p(U + Y ) + p(U + Y ′)] + εd−1. (10)

At this point, a standard argument shows that

EU,Y,Y ′ e [p(U + Y ) + p(U + Y ′)] ≤ EU,U ′ e [p(U) + p(U ′)] + ε2 = τ 2 + ε2. (11)

Therefore, chaining Equations (9), (10), and (11), we have that

|EW,Y e [p(W + Y )]− EU e [p(U)]| ≤ |EW,Y e [p(W + Y )]|+ τ ≤
√

τ 2 + ε2 + εd−1 + τ.

This proves Inequality (8) for a suitable choice of εd, concluding the proof in this remaining
case.

Observe that Theorem 11 gives nothing for polynomials of degree d = log2 n. The reason
is that its proof again relies on the “squaring trick” discussed in §2.2. But it is still not
known whether the construction in Theorem 11 fools polynomials of degree d ≥ log2 n.

Open question 4. Does the sum of d À log n copies of a generator G : {0, 1}s → {0, 1}n

that fools polynomials of degree 1 with error 1/n fools polynomials of degree d with error 1/3?

Finally, note that Observation 1 combined with the construction in Theorem 11 gives
a new candidate function for an affirmative answer to Question 1: the function that on
input x ∈ {0, 1}n evaluates to 1 if and only if x is the bit-wise xor of d À log n outputs of
generators that fool polynomials of degree 1.

4 Conclusion

We have discussed the challenge of proving correlation bounds for polynomials. We have
seen that winning this challenge is necessary for proving lower bounds such as “NP does
not have quasipolynomial-size circuits,” that a great deal is known for various settings of
parameters, and that there are many interesting research directions. The clock is ticking...
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