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Abstract

We prove that for every distribution D on n bits with Shannon entropy ≥ n− a at
most O(2da logd+1 g)/γ5 of the bits Di can be predicted with advantage γ by an AC0

circuit of size g and depth d that is a function of all the bits of D except Di. This
answers a question by Meir and Wigderson (2017) who proved a corresponding result
for decision trees.

We also show that there are distributions D with entropy ≥ n − O(1) such that
any subset of O(n/ log n) bits of D on can be distinguished from uniform by a circuit
of depth 2 and size poly(n). This separates the notions of predictability and distin-
guishability in this context.

A line of papers in the literature [EIRS01, Raz98, Unr07, SV10, DGK17, CDGS18, MW17,
ST17, GSV18] proves that if a distribution D on n bits has Shannon entropy H close to n
then D possesses several properties of the uniform distribution on n bits. For a discussion
and comparison of these results we refer the reader to [GSV18]. In this paper we consider
two such properties.

Predictability. Meir and Wigderson prove [MW17] that most coordinates cannot be pre-
dicted by shallow decision trees. We state their result next with a slightly optimized bound
given soon after by Smal and Talebanfard [ST17].

Theorem 1. [MW17, ST17] Let D = (D1, D2, . . . , Dn) be a distribution on n bits with
H(D) ≥ n − a. Let t1, t2, . . . , tn be n decision trees of depth q, where ti does not query Di.
Let B := {i ∈ [n] : PD[Di = ti(D)] ≥ 1/2 + γ}. Then |B| ≤ 2aq/γ2.

The bound in [MW17] is |B| ≤ O(aq/γ3). Throughout this paper O(.) and Ω(.) stand for
absolute constants. The result in [MW17, ST17] applies to a stronger model that we think
of as roughly the intersection of DNF and CNF. But it does not apply to DNF. Meir and
Wigderson raised the question of proving a similar result for AC0. We answer their question
affirmatively in this paper.
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Theorem 2. Let D = (D1, D2, . . . , Dn) be a distribution on n bits with H(D) ≥ n− a. Let
C1, C2, . . . , Cn be n circuits on n bits, each of size g and depth d, where Ci does not depend
on Di. Let B := {i ∈ [n] : PD[Di = Ci(D)] ≥ 1/2 + γ}. Then |B| ≤ O(2da logd+1 g)/γ5.

It is noted in [ST17] that Theorem 1 is tight. In a tight example, the decision trees
simply compute parities on q + 1 bits. Such parities can be computed by circuits of depth
exp(q1/(d−1)). Hence the bound on |B| in Theorem 2 is tight up to a factor of log2(g)/γ3.

The proof of Theorem 2 is in Section 1.

Distinguishability. A result in [GSV18], stated next, shows that if we forbid to query a
few bits, the distribution D is indistinguishable from uniform by small-depth decision trees.
(This is called the forbidden-set lemma in [GSV18].)

Theorem 3. [GSV18] Let D be a distribution on n bits with H(D) ≥ n− a. For every γ, q
there exists a set B ⊆ [n] of size O(aq3/γ3) such that for every decision tree t of depth q that
does not make queries in B,

|P[t(U) = 1]− P[t(D) = 1]| ≤ γ.

Theorem 1 can be used to give an alternative proof of Theorem 3, see the discussion in
[GSV18]. The other way around is not clear.

In the spirit of the previous result, we ask if Theorem 3 can be extended to constant-depth
circuits. We give a negative answer.

Theorem 4. For infinitely many n:
There is a distribution D on n bits with H(D) ≥ n − O(1) such that for any set B of

size O(n/ log n) there is a read-once O(log n)-DNF C with no variable in B such that

|P[C(U) = 1]− P[C(D) = 1]| ≥ Ω(1).

The proof of this theorem is in Section 2.
Whereas for the model of decision trees theorems 1 and 3 give similar bounds for pre-

dictability and distinguishability, theorems 2 and 4 give a strong separation between these
notions for AC0.

Given the negative result in Theorem 4 it is natural to ask if Theorem 3 can be extended
in other ways. We note that it is possible to extend it to q-DNF, that is DNF with terms of
size q. However the size of B now depends exponentially on q.

Theorem 5. Let D be a distribution on n bits with H(D) ≥ n − a. For every γ, q there
exists a set B ⊆ [n] of size a2O(q)/γO(1) such that for every q-DNF C that does not contain
variables in B,

|P[C(U) = 1]− P[C(D) = 1]| ≤ γ.

The proof of this theorem is in Section 3.
One can use Theorem 4 to show that the exponential dependence on q in Theorem 5 is

necessary. Given n and q, use Theorem 4 to obtain a distribution D′ on n′ = 2Θ(q) bits with
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entropy ≥ n′ − O(1) so that for any set B of size O(n′/ log n′) there is a q-DNF C with no
variable in B such that

|P[C(U) = 1]− P[C(D′) = 1]| ≥ Ω(1).

Let D be the distribution that equals D′ on the first n′ bits and is uniform on the other
n − n′. The entropy of D is n′ − O(1) + n − n′ ≥ n − O(1), but for indistinguishability we
have to exclude a set B of size ≥ Ω(n′/ log n′) = 2Ω(q).

The proofs use standard facts about entropy which can be found online or in the book
[CT06]. In particular we use extensively the chain rule H(X, Y ) = H(X) + H(Y |X) for
any random variables X and Y . We find it convenient to use the notation X for either the
random variable or a fixed sample. The meaning is given by the context. If X is fixed the
expression H(Y |X) denotes the entropy of Y conditioned on the fixed outcome X. If X is
not fixed it denotes the average over X of the entropy of Y conditioned on the fixed outcome
X.

1 Proof of Theorem 2

The high-level idea is to perform some kind of restriction so that the circuits collapse to
shallow decision trees and also a lot of entropy is preserved. If that happens we can use
Theorem 1 to get a bound. However executing this plan is not straightforward.

High-entropy switching lemma. First we recall the switching lemma. It will be impor-
tant for our results to use the latest analysis [H̊as14].

Definition 6. A function f : {0, 1}m → {0, 1}n is computable by a q′-partial common
decision tree of depth q if there is a (standard) decision tree of depth q such that on every
input, the function f restricted along a path of this tree has the property that every output
bit of f is computable by a decision tree of depth q′.

In other words, we can compute f with a decision tree of depth q that has at its leaves
decision forests of depth q′.

A restriction on n bits is a subset of {0, 1, ?}n where the symbol ? is called star. For an
integer s the distribution Rs is obtained by picking uniformly a subset of size s for the stars
and setting the other bits uniformly.

Lemma 7. [Switching lemma] Let C : {0, 1}n → {0, 1}n be a circuit of size g and depth
d with g ≥ n ≥ d. Let R = Rs be a random restriction with s = Θ(n/ logd−1 g) stars.
Except with error probability α over R, the circuit restricted to R can be computed by an
O(log g)-partial common decision tree of depth-O(2d log(g/α)).

Now we are ready for our switching-lemma for high-entropy distributions.

Definition 8. A D-restriction with s stars is obtained by picking the locations for the stars
uniformly at random, and setting the other bits according to D.
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Lemma 9. In the same setting of Theorem 7, let R be a D-restriction, where H(D) ≥ n−a.
Then the error bound is (1 + a)/ log(1/α).

For σ a subset of [n] we write Dσ for the |σ| bits of D corresponding to D, and Dσ̄ for
the others.

Proof. Let A be the set of all possible restrictions with s ?. We have |A| =
(
n
s

)
2n−s. Let H

be the set of restrictions that don’t collapse the circuits in the sense of Lemma 7. By the
same lemma, |H|/|A| ≤ α.

R is a distribution over A. We shall show that it lands in H with small probability. Write
R as (S,DS̄), where S is the subset of the ?, and DS̄ is the projection of D outside of S. We
have

H(R) = H(S,DS̄) = H(S) +H(DS̄|S) ≥ log2

(
n

s

)
+ n− a− s.

In the inequality we use that for every fixed S, the distribution DS̄ is over n− s variables
and we have H(D) = H(DS, DS̄) = H(DS̄) +H(DS|DS̄). The latter term is at most s. And
so we have H(DS̄) ≥ H(D)− s ≥ n− a− s.

Thus the entropy of R is only a away from the maximum entropy m := log2

(
n
s

)
+ n− s

of any distribution over A.
Let p be the probability that R ∈ H. Let E be the indicator random variable of the

event R ∈ H. We have

m− a ≤ H(R) = H(R,E) = H(R|E) +H(E) ≤ H(R|E) + 1

= pH(R|E = 1) + (1− p)H(R|E = 0) + 1 ≤ p log2 |H|+ (1− p)m+ 1.

≤ p logα + pm+ (1− p)m+ 1.

Hence p log(1/α) ≤ 1 + a, and the result follows.

We apply Lemma 9 with α := 2−200a/γ. This gives an O(log g)-partial common tree of
depth q = O(2d(log g + a/γ)) and an error bound of 0.01γ.

High-entropy after restrictions. We need to show that after the restriction the entropy
is still large. First note H(D|R) ≥ s − a, indeed this holds for any fixed choice for the
positions S for the stars. To verify this note that, for any fixed S,

n− a ≤ H(D) = H(DS, DS̄) ≤ H(DS̄) +H(DS|DS̄) = H(R) +H(D|R) ≤ n− s+H(D|R).

Applying Markov’s inequality to ER[s − H(D|R)] = s − H(D|R) ≤ a, where note the
argument inside the expectation is non-negative, we obtain PR[s − H(D|R) ≥ a/ε] ≤ ε for
any ε. Setting ε = 0.01γ we obtain that with probability ≥ 1 − 0.01γ over R, H(D|R) ≥
s−O(a/γ).
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Intersecting B. We argue that |S
⋂
B| ≥ 0.5(s|B|/n) = Ω(|B|/ logd−1 g) with high

probability. This quantity is the hypergeometric distribution of the number of red balls
sampled without replacement from a set of n balls |B| of which are red. The expected
number of red balls is sp where p := |B|/n. The probability of sampling less than half of
that is at most (see Section 4 in [Hoe63])

2−D(0.5p|p)s ≤ 2−Ω(ps) ≤ 2Ω(|B|/ logd−1 g)

where D is divergence. The upper bound is at most 1/1000 (else the theorem is vacuously
true).

Fixing restrictions. Call a fixed restriction R good if both H(D|R) ≥ s − O(a/γ) and
every circuit collapses to an O(log g)-partial common depth-q tree. By above and a union
bound, the probability that R is not good is ≤ 0.01γ + 0.01γ ≤ γ/10. Writing R as (S,DS̄)
we conclude that

PS[PDS̄
[R bad] ≥ γ/2] ≤ 1/5,

because otherwise the probability of being bad is > (1/5)(γ/2) = γ/10, contradicting the
previous fact.

Combining this with the bound on intersecting B we obtain that there exists a fixed S
such that

(1) PDS̄
[R bad] ≤ γ/2,

(2) |S
⋂
B| ≥ Ω(|B|/ logd−1 g).

Now, for this fixed S, let L := S
⋂
B. Because L ⊆ B, we have by assumption

1/2 + γ ≤ Pi∈L[Di = Ci(D)] ≤ Pi∈L[Di = Ci(D)|R good] + P[R bad].

So Pi∈L[Di = Ci(D)|R good] ≥ 1/2 + γ − γ/2 ≥ 1/2 + γ/2. Fix a good restriction R
for which this holds. (Note S was fixed already, so we are just fixing DS̄.) Project the
resulting distribution onto S and call it X. We have H(X) ≥ s − O(a/γ), the circuit is
computable by a O(log g)-partial common depth-q tree, and moreover there is a set L of size
≥ Ω(|B|/ logd−1 g) such that Pi∈L[Xi = Ci(X)] ≥ 1/2 + γ/2.

Handling the common part. Now we need to handle the common part of the decision
tree. We need to fix the variables along a path so that both the entropy and the prediction
is preserved. Let t be the common decision tree. We think of sampling X by first sampling
the q bits Y along a path, and then sampling the other s − q bits Z, in a fixed order. We
want to show that H(Z|Y ) is large. Indeed,

s−O(a/γ) = H(X) = H(Y, Z) = H(Z|Y ) +H(Y ) ≤ H(Z|Y ) + q.

The second equality can be verified by noting that X is a function of (Y, Z) and (Y, Z) is
a function of X. Rearranging and using our bound on q we get s−H(Z|Y ) ≤ q+O(a/γ) =
O(q). By a Markov argument, the probability over Y that s−H(Z|Y ) ≥ O(q/γ) is at most
γ/4. Call such a Y bad. Like before, we have

1/2 + γ/2 ≤ Pi∈L[Xi = Ci(X)] ≤ Pi∈L[Xi = Ci(X)|Y good] + P[Y bad].
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Hence Pi∈L[Xi = Ci(X)|Y good] ≥ 1/2 + γ/4. Fix a good Y such that this holds, and
call the resulting distribution V . We have H(V ) ≥ s−O(q/γ),

Pi∈L[Vi = Ci(V )] ≥ 1/2 + γ/4, (1)

and now each Ci is a decision tree of depth O(log g).

Finishing up. By Theorem 1 the number of the s coordinates of V that can be (1/2+γ/8)-
predicted is at most twice the entropy deficiency O(q/γ) times the depth of the tree O(log g),
divided by O(1/γ)2. This equals

O(q/γ3) log g. (2)

Hence we have

Pi∈L[Vi = Ci(V )] ≤ O(q/γ3) log(g)/|L|+ 1/2 + γ/8.

Combining equations 1 and 2 we obtain

O(q/γ3) log g/|L| ≥ γ/8.

Now recall q = O(2d(log g + a/γ)). Hence we can crudely bound O(q/γ3) log g above by
O(2d log2(g)a/γ4). Also recall |L| ≥ Ω(|B|/ logd−1 g). Hence we get

O(2d logd+1(g)a/|B|γ4) ≥ γ/8.

This concludes the proof.

1.1 Proof of Lemma 7

We denote by Rp the standard distribution on restrictions where the bits are independent
and each comes up 1, 0, ? with probabilities (1− p)/2, (1− p)/2, p .

Lemma 10. [Lemma 3.8 in [H̊as14] with s := 1 + logS] Let f : {0, 1}n → {0, 1}S be a
function computable by a depth-2 circuit with input fan-in r. Then the probability over Rp

that f restricted to Rp cannot be computed by a (1 + logS)-partial common depth-q decision
tree is at most S(24pr)q.

The straightforward corollary we need is not stated anywhere.

Corollary 11. Let C : {0, 1}n → {0, 1}n be a circuit of size g and depth d with g ≥ n ≥ d.
Let p = Θ(1/ logd−1 g). With probability 1 − α over Rp the circuit restricted to Rp can be
computed by a (1 + log n)-partial common depth-O(2d log(g/α)) decision tree.

Proof. First we take a restriction with p = Ω(1), and apply Lemma 10 to the g1 gates at
level 1 (viewed as a DNF or CNF with input fan-in 1). For a parameter q0, with probability
1− g12−q0 we can compute f by a common decision tree of depth q0 at the leaves of which
we have circuits of depth d whose number of gates at levels ≥ 2 hasn’t changed, and whose
input fan-in is O(log g).

6



Then we take a restriction with p = Ω(1/ log g), and apply Lemma 10 to the g2 gates at
level 2. We take a union bound over all 2q0 paths of the common decision tree just discussed.
For a parameter q1, with probability 1 − 2q0g22−q1we can compute f by a decision tree of
depth q0 + q1 at the leaves of which we have circuits of depth d− 2 whose inputs are decision
trees of depth O(log g). We can write the latter trees as CNF or DNF as appropriate and
merge them with the next layer of gates. Hence we can compute f by a decision tree of depth
q0 + q1 at the leaves of which we have circuits of depth d− 1 with input fan-in O(log g). The
number of gates at the higher levels hasn’t changed.

We continue in this fashion. In the end, we can compute f by a tree of depth q0 +
q1 + · · · + qd−1 whose leaves are forests of depth O(log g). The error probability is g12−q0 +
2q0g22−q1 + 2q0+q1g32−q2 + · · · . Picking qi = t · 2i this is at most g · d · 2−t.

So for error α we should take t = log(1/α) + log(g) + log(d) ≤ O(log g/α). This gives a
common tree of depth O(log g/α)2d whose leaves are forests of depth O(log g).

To conclude the proof of Lemma 7 we only need to verify that the same result holds if
we take a restriction with exactly s = np ?. Indeed, the probability that Rp has exactly s
stars is ≥ Ω(1/

√
s) ≥ Ω(1/g). So if we set the error probability to O(α/g) in Corollary 11

we obtain an error probability of α for restrictions with exactly s stars, and the depth of the
tree hasn’t changed asymptotically.

2 Proof of Theorem 4

Let n = m(log2m + 1) and think of the n bits as divided in m blocks of (log2m + 1) bits
each. The distribution D is sampled as follows. First select I ∈ {1, 2, . . . ,m} uniformly. Set
the I block to all zero. Then for every other block independently, set the block to a uniform
value excluding all zero. We can write D as (I,X) where X are non-zero values for m − 1
blocks.

We have

H(D) =H(I,X) = H(I) +H(X) = log2m+ (m− 1) log2(2m− 1)

= log2m+ (m− 1) log2(2m) + (m− 1) log2(1− 1/2m)

≥m log2(2m)−O(1).

The set B intersects ≤ |B| of the blocks. Let G be the other blocks. Consider the
function C that outputs 1 if any of the blocks in G is all zero. This function can be written
as a read-once DNF with terms of size log2m+ 1.

Under the uniform distribution, the probability that C equals 1 is at most m/2log2m+1 =
1/2.

Under D it is at least the probability that I ∈ G, which is ≥ (m−|B|)/m. So if |B| ≤ m/3
the DNF C distinguishes. The result follows because m ≥ Ω(n/ log n).

3 Proof of Theorem 5

We rely on a simulation of DNF by decision trees, showing that a q-DNF can be written as
a tree of depth about 2q, which may output “?” with small probability. A weaker version of
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the result was proved by Ajtai and Wigderson [AW89]. The stronger version, stated next, is
due to Trevisan [Tre04].

Lemma 12. For every q-DNF C there exists a decision tree tC of depth ≤ 2q2q log(1/ε) with
range {0, 1, ?} such that

(1) for every input x, tC(x) 6=?⇒ tC(x) = C(x), and
(2) P[tC(U) =?] ≤ ε.

Proof. A covering of the terms is a set of variables such that any term contains a variable
from the set, possibly negated. We define tC : {0, 1}n → {0, 1, ?} recursively as follows. If
C is a constant then tC is the same constant. If C has ≥ 2q log(1/ε) disjoint terms, then
tC queries the first 2q log(1/ε) of them. If any term is True, tC outputs 1, else it outputs
?. Otherwise, there exists a covering of the terms of size ≤ q2q log(1/ε). The tree tC first
queries this covering, and then recursively queries the resulting (q − 1)-DNF.

The tree tC has depth ≤ q2q log(1/ε) + (q − 1)2q−1 log(1/ε) + . . . ≤ 2q2q log(1/ε).
Item (1) follows by definition.
To verify Item (2), note that the only case in which tC outputs ? is that none of ≥

2q log(1/ε) disjoint terms is True. This happens with probability at most

(1− 1/2q)2q log(1/ε) ≤ (1/e)log(1/ε) ≤ ε.

As a corollary, any distribution which fools decision trees of depth about 2q also fools
q-DNF. We say that a distribution D ε-fools a class of functions F if for every f ∈ F we
have |P[f(D) = 1]− P[f(U) = 1]| ≤ ε, where U is the uniform distribution.

Corollary 13. Let D be a distribution that ε-fools decision trees of depth 2q2q log(1/ε). Then
D O(ε)-fools q-DNF.

Proof. For a q-DNF C let tC be the tree from Lemma 12. By its properties we have, for
every distribution X:

P[tC(X) = 1] ≤ P[C(X) = 1] ≤ P[tC(X) = 1] + P[tC(X) =?].

Writing down this fact for both X = D and X = U we have

P[tC(U) = 1] ≤ P[C(U) = 1] ≤ P[tC(U) = 1] + P[tC(U) =?],

P[tC(D) = 1] ≤ P[C(D) = 1] ≤ P[tC(D) = 1] + P[tC(D) =?].

By assumption, the left-hand sides are within ε, and so are the rightmost terms. Moreover,
P[tC(U) =?] ≤ ε. Hence P[C(X) = 1] for both X = D and X = U lies in the interval
[P[tC(U) = 1]− ε,P[tC(U) = 1] + 3ε] and so they are within O(ε).

Combining Corollary 13 with Theorem 3 we immediately obtain Theorem 5.

Acknowledgment. We thank Chin Ho Lee for pointing out that Lemma 12 appears in
[Tre04]. We also thank Or Meir and Li-Yang Tan for helpful discussions.
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