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About this book

This is a book about computational complexity theory. However, it is perhaps sui generis
for various reasons:

1. The presentation is also geared towards an algorithmic audience. Our default model is
the RAM (Chapter 1), the standard model for algorithmic research. This is in contrast
with other texts which focus on tape machines. I reduce RAM computation directly to
quasi-linear 3SAT using sorting algorithms, and cover the relevant sorting algorithm.
Besides typical reductions from the theory of NP completeness, I also present a number
of other reductions, for example related to the 3SUM problem and the exponential-
time hypothesis (ETH). This is done not only to showcase the wealth of settings,
but because these reductions are central to algorithmic research. Also, I include a
chapter on data structures, which are typically studied in algorithms yet omitted from
complexity textbooks. I hope this book helps to reverse this trend; impossibility results
for data structures squarely belong to complexity theory. Finally, a recurrent theme
in the book is the power of restricted computational models. I expose surprising
algorithms which challenge our intuition in a number of such models, including space
bounded, boolean and algebraic circuits, and communication protocols.

2. The book contains a number of recent, exciting results which are not covered in avail-
able texts, including: space-e�cient simulations (Chapter 7), connections between var-
ious small-depth circuit classes (section �8.2.3), catalytic computation (section �9.6),
cryptography in NC0 (section �9.5), doubly-e�cient proof systems (which have formed
the basis of some deployed cryptographic systems) (section �10.5), simple construc-
tions of expanders avoiding iterated recursion (Chapter 12), recent number-on-forehead
communication protocols (section �13.4), succinct data structures (section 15.1.2), im-
possibility results for constant-depth algebraic circuits (Chapter 14), and natural-proof
barriers that are informed by deployed cryptosystems (Chapter 16).

3. I also present several little-known but important results. This includes several simu-
lations between models, the fact that RAMs with large registers can factor e�ciently
(Theorem 1.7), the result that time o(n log n) equals linear time on 1-tape machine
(section 3.3.1), cosmological bounds (Theorem 3.8), the complexity of computing in-
tegers and its connections to factoring (section �14.2), and several results on pointer
chasing section 13.4.1).
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4. A number of well-known results are presented in a di�erent way. Why? To demystify
them and expose illuminating connections. Some of this was discussed above in 1.
In addition, unlike other texts where they appear later, here I present circuits and
randomness right away, and weave them through the narrative henceforth. For exam-
ple, the exposition of alternation (Chapter 6) is through the lens of the circuit model.
That exposition also emphasizes pseudorandom generators and thus ties with the later
Chapter 11 on pseudorandomness. And in that chapter, the BIG-HIT generator is used
to give a streamlined construction of pseudorandom generators from hard functions,
avoiding some of the steps of previous constructions. Finally, reductions are presented
before completeness rather than later as in most texts. This, I believe, demysti�es their
role and leads to a transparent exposition as stand-alone results.

5. This book challenges traditional assumptions and viewpoints. For example, I discuss
my reasons for not believing P 6= NP. In particular, I catalog and contextualize for the
�rst time conjectures in complexity lower bounds which were later disproved (Chapter
17). Also, I emphasize that several available impossibility results may be �strong�
rather than �weak� as commonly believed because they fall just short of proving major
separations (e.g. section �7.3), and I expose the limitations of standard tools such as the
hard-core set lemma (section 11.2.2). Finally, I include a series of historical vignettes
which put key results in perspective.

I made several other choices to focus the exposition on the important points. For exam-
ple I work with partial (as opposed to total) functions by default, which streamlines the
presentation of several results, such as the time hierarchy (section �3.3), and eliminates NP-
intermediate problems (Exercise 5.3). To put results in context I routinely investigate what
happens under slightly di�erent assumptions. Finally, I present proofs in a �top down� fash-
ion rather than �bottom up,� starting with the main high-level ideas and then progressively
opening up details, and I try to �rst present the smallest amount of machinery that gives
most of the result.

This book is intended both as a textbook and as a reference book. The intended audience
includes students at all levels, and researchers, in both computer science and related areas
such as mathematics, physics, data science, and engineering. The text is interspersed with
exercises which serve as quick concept checks, for example right after a de�nition. More
advanced problems are collected at the end of each chapter. Solutions or hints for both
exercises and problems are provided as separate manuals. I assume no background in theory
of computation, only some �mathematical maturity� as can arise for example from typical
introductory courses in discrete mathematics. All other mathematical background is covered
in Appendix A.

The book can be used in several di�erent types of courses.

• For an introductory course in theory of computation, suitable for a beginner under-
graduate student, one can cover Chapters 1 to 5. At the same time the text can expose
the interested students to more advanced topics, and stimulate their critical thinking.
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• For a broader course in complexity, suitable for advanced undergraduate students or for
graduate students, one can add Chapters 6 to 10. Such a course can be supplemented
with isolated topics from Chapters 11 to 16. For example, in my o�erings of cross-
listed undergraduate/graduate PhD complexity theory, I typically cover Chapters 1 to
10 and then one or two select chapters from 11 to 16. The pace is about one chapter
a week, and I ask the students to attempt all exercises.

• For a special-topics course or seminar one can use Chapters 11 to 16. One possibility,
which I tested, is covering all these chapters.

Chapters 1 to 10 are best read in order. Chapters 11 to 16 have fewer dependencies and can
be read more or less in any order.

I hope this text will keep the reader engaged and serve as an invitation and guide to the
mysterious land of complexity, until the reader stands at its frontier, gazing into the vast
unknown.
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Chapter -1

Conventions, choices, and caveats

https://xkcd.com/163/

I write this section before the work is complete, so some of it may change.

To test your understanding of the material... this book is interspersed with mistakes,
some subtle, some blatant, some not even mistakes but worrying glimpses into the author's
mind. Please send all bug reports and comments toMathematicsOfTheImpossible@gmail.com
to pin your name to this book; but hurry! The next version will be out soon.

The c notation. The mathematical symbol c has a special meaning in this text. Every
occurrence of c denotes a real number > 0. There exist choices for these numbers such that
the claims in this book are (or are meant to be) correct. This replaces, is more compact
than, and is less prone to abuse than the big-Oh notation (sloppiness hides inside brackets).
Let us illustrate via few examples:

� �For all su�ciently large n� can be written as n ≥ c.
� �For every ε and all su�ciently large n� can be written as n ≥ cε.
The following are correct statements:
� �It is an open problem to show that some function in NP requires circuits of size cn.�

At the moment of this writing, one can replace this occurrence with 5. Note such a claim
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will remain true if someone proves a 6n lower bounds. One just needs to �recompile� the
constants in this book.

� �c > 1 + c�, e.g. assign 2 to the �rst occurrence, 1 to the second.
� �100n15 < nc�, for all large enough n. Assign c = 16.
The following are not true:
� �c < 1/n for every n�. No matter what we assign c to, we can pick a large enough n.

Note the assignment to c is absolute, independent of n.
More generally, when subscripted this notation indicates a function of the subscript.

There exist choices for these functions such that the claims in this book are (or are meant
to be) correct. Again, each occurrence can indicate a di�erent function. For the reader who
prefers the big-Oh notation a quick an dirty �x is to replace every occurrence of c in this
book with O(1).

Cardinality For a set A I also write A for its cardinality |A|.

The alphabet of TMs. I de�ne TMs with a �xed alphabet. This choice slightly simpli�es
the exposition (one parameter vs. two), while being more in line with common experience
(it is more common experience to increase the length of a program than its alphabet). This
choice a�ects the proof of Theorem 3.4; but the details don't seem any worse.

Partial vs. total functions (a.k.a. on promise problems).

Recall that promise problems o�er the most direct way of formulating natural
computational problems. [...] In spite of the foregoing opinions, we adopt the
convention of focusing on standard decision and search problems. [97]

I de�ne complexity w.r.t. partial functions whereas most texts consider total functions, i.e. we
consider computing functions with arbitrary domains rather than any possible string. This
is sometimes called �promise problems.� This a�ects many things, for example the hierarchy
for BPTime (Exercise 3.4).

References and names. I have also decided to not spell out names of authors, which is
increasingly awkward. Central results, such as the PCP theorem, are co-authored by �ve or
more people. But I don't mean to deprive the reader entirely of the thrill of name-splashing.
So names appear in select portions which bend to the historical. Names also appear in the
index, so one can for example look up �Markov's inequality� there. For who got what award
for what see [190].

Polynomial. It is customary in complexity theory to bound quantities by a polynomial,
as in polynomial time, when in fact only one monomial matters. It seems to me this makes
some statements cumbersome, and lends itself to confusion since polynomials with many
terms are useful for many other things. I use power instead of polynomial, as in power time.
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One issue is that �power� is not an adjective. However, terminology such as �power law� is
commonplace, and quite apt.

Random-access machines. �Random access� also leads to strange expressions like �ran-
domized random-access� [18]. I use �rapid access.�

Reductions. Are presented as an implication. Clashing with most texts, this a�ects sev-
eral things, for example the de�nition of NP-intermediate problems, see Exercise 5.3.

Exercises, problems, and questions. Exercises are interspersed within the narrative
and serve as �concept check.� They are not meant to be di�cult or new, though some are.
Problems are collected at the end and tend to be harder and more original, though some are
not. Questions are meant as research questions, or open problems, or challenges.

Summary of some terminological and not choices

Some other sources this book acronym

O(1), Ω(1) c
|A| for the size of a set A A

Turing machine tape machine TM
random-access machine rapid-access machine RAM

polynomial time power time P
superpolynomial superpower

mapping reduction (sometimes) A reduces to B in P means B ∈ P⇒ A ∈ P
Extended Church-Turing thesis Power-time computability thesis

pairwise independent pairwise uniform
FP, promise-P P

TM with any alphabet TM with �xed alphabet
classes have total functions classes have partial functions

AC0 AC
TC0 TC

P/poly PCkt
{0, 1} [2]

tree evaluation recursive function evaluation
The {0, 1} notation is cumbersome for people and compilers. What I really would like is

use 2 = {0, 1} as in f : 2n → 2, but I fear it's pushing it a little
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Unindexed mathematical notation and symbols

[i..j] {i, i+ 1, i+ 2, . . . , j}
[i] [0..i− 1] = {0, 1, 2, . . . , i− 1}

[2]n binary strings of length n
[2]∗ binary strings of any length
i|j i divides j
C complex numbers
E expectation
N natural numbers {0, 1, 2, . . .}
P probability
Q rational numbers (from quotient)
R real numbers
Z integer numbers {. . . ,−2,−1, 0, 1, 2, . . .} (from Zahlen)

� section

Abbreviations

a.k.a. also known as
e.g. as an example (exempli gratia)
i.e. that is (id est)
i� if and only if
lhs left-hand side
prob. probability
rhs right-hand side
r.v. random variable
s.t. such that

w.h.p. with high prob.
w.l.o.g. without loss of generality
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Chapter 0

A teaser

Consider a computer with three bits of memory. There's also a clock, beating 1, 2, 3, . . .
In one clock cycle the computer can read one bit of the input and update its memory, or
stop and return a value. These actions depend only on the clock, the three memory bits,
and the length of the input.

Let's give a few examples of what such computer can do.
First, it can compute the And function on n bits:

Computing And of (x1,x2,. . .,xn)

For i = 1, 2, . . . until n
Read xi
If xi = 0 return 0

Return 1

We didn't really use the memory. Let's consider a slightly more complicated example.
A word is palindrome if it reads the same both ways, like racecar, non, anna, and so on.
Similarly, example of palindrome bit strings are 11, 0110, and so on.

Let's show that the computer can decide if a given string is palindrome quickly, in n steps
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Deciding if (x1, x2, . . . , xn) is palindrome:

For i = 1, 2, . . . until i > n/2
Read xi and write it in memory bit m
If m 6= xn−i return 0

Return 1

That was easy. Now consider the Majority function on n bits, which is 1 i� the sum of
the input bits is > n/2 and 0 otherwise. Majority, like any other function on n bits, can be
computed on such a computer in time exponential in n.

Exercise 0.1. Prove that any function f : [2]n → [2] can be computed on such a computer
in time 2cn.

So this works for any function, but it's terribly ine�cient. Can we do better for Majority?
Can we compute it in time which is just a power of n?

Convince yourself that this is impossible. Hint: If you start counting bits, you'll
soon run out of memory.

If you managed to convince yourself, you are not alone.
And yet, we will see the following shocking result:

Theorem 0.1. Majority can be computed on such a computer in time nc.

And this is not a trick tailored to majority. Many other problems, apparently much more
complicated, can also be solved in the same time.

But, there's something possibly even more shocking.

Shocking situation:
It is consistent with our state of knowledge that every �textbook algorithm� can be solved
in time nc on such a computer! Nobody can disprove that. (Textbook algorithms include
sorting, max�ow, dynamic programming algorithms like longest common subsequence etc.,
graph problems, numerical problems, etc.)

The Shocking theorem gives some explanation for the Shocking situation. It will
be hard to rule out e�cient programs on this model, since they are so powerful and coun-
terintuitive. In fact, we will see later that this can be formalized. Basically, we will show
that the model is so strong that it can compute functions that provably escape the reach
of current mathematical proofs... if you believe certain things, like that it's hard to factor
numbers. This now enters some of the mysticism that surrounds complexity theory, where
di�erent beliefs and conjectures are pitted against each other in a battle for ground truth.
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Proofs Above is one way in which complexity theory has contributed to the ancient concept
of �proof.� But the impact is much more widespread, and also a�ects many computer systems
currently deployed.

Suppose I claim I do have a program as above that computes majority. The program is
fairly short, but it runs in time n10. Naturally, you want to check it on an input x. But
even if the input has length |x| =5 bits, this would take forever. Can I convince you that
the program does compute majority correctly quickly, much faster than it would take you to
run it? This sounds impossible, I could be cheating in any way, you could only be sure if you
checked each step of the computation. But in fact, it is possible, and your computation time
would be essentially linear in |x|. The proof will be interactive, you will ask me a question,
I will give a reply, and so on a few times, and all your computation time (but not mine) will
be very small.

OK, it works on one input, but how can you check if it works on every input of length
say n = 100? Now, this gotta be really impossible to do e�ciently, after all there are 2100

possible inputs. Turns out we will again see how you can verify this in time power, not
exponential, in n. And in fact this works not just for these simple programs, but for any
program.

This is just a glimpse of the fascinating world of complexity we are about to enter.
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Chapter 1

The alphabet of Time

https://xkcd.com/505/ (selection)

The details of the model of computation are not too important if you don't care about
power di�erences in running times, such as the di�erence between solving a problem on an
input of length n in time cn or cn2. But they matter if you do.

The fundamentals features of computation are two:

• Locality. Computation proceeds in small, local steps. Each step only depends on
and a�ects a small amount of �data.� For example, in the grade-school algorithm for
addition, each step only involves a constant number of digits.

• Generality. The computational process is general in that it applies to many di�erent
problems. At one extreme, we can think of a single algorithm which applies to an
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RAM

MTM

TM

Circuits

Uniform Non-uniform

Figure 1.1: Computational models for Time. An arrow from A to B means that B can
simulate A e�ciently (from time t to t logc t).

in�nite number of inputs. This is called uniform computation. Or we can design
algorithms that work on a �nite set of inputs. This makes sense if the description of
the algorithm is much smaller than the description of the inputs that can be processed
by it. This setting is usually referred to as non-uniform computation.

Keep in mind these two principles when reading the next models.

1.1 Tape machines (TMs)

Tape machines are equipped with an in�nite tape of cells with symbols from the tape alphabet
A, and a tape head lying on exactly one cell. The machine is in one of several states, which
you can think of as lines in a programming language. In one step the machine writes a
symbol where the head points, changes state, and moves the head one cell to the right or
left. Alternatively, it can stop. Such action depends only on the state of the machine and
the tape symbol under the head.

We are interested in studying the resources required for computing. Several resources
are of interest, like time and space. In this chapter we begin with time.

De�nition 1.1. A tape machine (TM) with s states is a map (known as transition or step)

σ : {1, 2, . . . , s} × A→ A× {Left,Right, Stop} × {1, 2, . . . , s},
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where A := {0, 1,#,−,_} is the tape alphabet. The alphabet symbol _ is known as blank.
A con�guration of a TM encodes its tape content, the position of the head on the tape,

and the current state. It can be written as a triple (M, i, j) where M maps the integers to
A and speci�es the tape contents, i is an integer indicating the position of the head on the
tape, and j is the state of the machine.

A con�guration (µ, i, j) yields (µ′, i + 1, j′) if σ(j, µ[i]) = (a,Right, j′) and µ′[i] = a and
µ′ = µ elsewhere, and similarly it yields (µ′, i− 1, j′) if σ(j, µ[i]) = (a,Left, j′) and µ′[i] = a
and µ′ = µ elsewhere, and �nally it yields itself if σ(j, µ[i]) = (a, Stop, j′).

We say that a TM computes y ∈ [2]∗ on input x ∈ [2]∗ in time t (or in t steps) if,
starting in con�guration (µ, 0, 1) where x = µ[0]µ[1] · · ·µ[|x| − 1] and µ is blank elsewhere,
it yields a sequence of t con�gurations where the last one is (µ, i, j) where σ(µ[i], j) has a
Stop instruction, and y = µ[i]µ[i+ 1] · · ·µ[i+ |y| − 1] and µ is blank elsewhere.

Describing TMs by giving the transition function quickly becomes complicated and un-
informative. Instead, we give a high-level description of how the TM works. The important
points to address are how the head moves, and how information is moved across the tape.

Example 1.1. On input x ∈ [2]∗ we wish to compute x+ 1 (i.e., we think of x as an integer
in binary, and increment by one). This can be accomplished by a TM with c states as follows.
Move the head to the least signi�cant bit of x. If you read a 0, write a 1, move the head to
the beginning, and stop. If instead you read a 1, write a 0, move the head by one symbol,
and repeat. If you reach the beginning of the input, shift the input by one symbol, append
a 1, move the head to the beginning and stop.

The TM only does a constant number of passes over the input, so the running time is
c|x|.

Example 1.2. On an input x ∈ [2]∗ we wish to decide if it has the the same number of zeros
and ones. This can be done as follows. Do a pass on the input, and cross o� one 0 and one
1 (by replacing them with tape symbol #). If you didn't �nd any 0 or or 1, accept (that is,
write 1 on the tape and stop). If only �nd a 0 but not a 1, or vice versa, reject.

Since every time we do a pass we cross at least two symbols, the running time is cn2.

Exercise 1.1. Describe a TM that decides if a string x ∈ [2]∗ is palindrome, and bound its
running time.

Exercise 1.2. Describe a TM that on input x ∈ [2]∗ computes n := |x| in binary in time
cn log n.

TMs can compute any function if they have su�ciently many states:

Exercise 1.3. Prove that every function f : [2]n → [2] can be computed by a TM in time n
using 2n+1 states.
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1.1.1 You don't need much to have it all

How powerful are tape machines? Perhaps surprisingly, they are all-powerful.

Power-time computability thesis. For any �realistic� computational model C there
is d > 0 such that: Anything that can be computed on C in time t can also be computed
on a TM in time td.

This is a thesis, not a theorem. The meaning of �realistic� is a matter of debate, and one
challenge to the thesis is discussed in Chapter 2.

However, the thesis can be proved for many standard computational models, which in-
clude all modern programming languages. The proofs aren't hard. One just tediously goes
through each instruction in the target model and gives a TM implementation. We prove a
representative case below (Theorem 1.8) for rapid-access machines (RAMs), which are close
to how computers operate, and from which the jump to a programming language is short.

Given the thesis, why bother with TMs? Why not just use RAMs or a programming
language as our model? In fact, we will basically do that. Our default for complexity will
be RAMs. However, some of the bene�ts of TMs remain

• TMs are easier to de�ne � just imagine how more complicated De�nition 1.1 would be
were we to use a di�erent model. Whereas for TMs we can give a short self-contained
de�nition, for other models we have to resort to skipping details. There is also some
arbitrariness in the de�nition of other models. What operations exactly are allowed?

• TMs make it easier to establish certain reductions among problems. For example
Theorem 5.2 is easier to prove for TMs, and the same is true for analogous statements
for many other problems. The proofs for RAMwould tend to proceed by �rst simulating
a RAM by a TM or a similar device.

• Finally, TMs allow us to better pinpoint the limits of our knowledge about computa-
tion; we will see several examples of this.

In short, RAMs and programming languages are useful to carry computation, TMs to analyze
it.

1.1.2 Time complexity, P, and EXP

We now de�ne our �rst complexity classes. We are interested in solving a variety of compu-
tational tasks on TMs. So we make some remarks before the de�nition.

• We often need to compute structured objects, like tuples, graphs, matrices, etc. One
can encode such objects in binary by using multiple bits. We will assume that such
encodings are �xed and allow ourselves to speak of such structures objects. For exam-
ple, we can encode a tuple (x1, x2, . . . , xt) where xi ∈ [2]∗ by repeating each bit in each
xi twice, and separate elements with 01.
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• We can view machines as computing functions, or solving problems, or deciding sets,
or deciding languages. These are all equivalent notions. For example, for a set A, the
problem of deciding if an input x belongs to A, written x ∈ A, is equivalent to comput-
ing the boolean characteristic function fA which outputs 1 if the input belongs to A,
and 0 otherwise. We will use this terminology interchangeably. In general, �computing
a function� is more appropriate terminology when the function is not boolean.

• We allow partial functions, i.e., functions with a domain X that is a strict subset of
[2]∗, as opposed to total functions which are de�ned over [2]∗ or [2]n. Partial functions
are a natural choice for many problems, cf. discussion in Chapter -1.

• We measure the running time of the machine in terms of the input length, usually
denoted n. Input length can be a coarse measure: it is often natural to express the
running time in terms of other parameters (for example, the time to factor a number
could be better expressed in terms of the number of factors of the input, rather than
its bit length). However for most of the discussion this coarse measure su�ces, and we
will discuss explicitly when it does not.

• We allow non-boolean outputs. However the running time is still only measured in
terms of the input. (Another option which sometimes makes sense, it to bound the
time in terms of the output length as well, which allows us to speak meaningfully of
computing functions with very large outputs, such as exponentiation.)

• More generally, we are interested in computing not just functions but relations . That
is, given an input x we wish to compute some y that belongs to a set f(x). For example,
the problem at hand might have more than one solution, and we just want to compute
any of them.

• We are only interested in su�ciently large n, because one can always hard-wire solutions
for inputs of �xed size, see Exercise 1.3. This allows us to speak of running times like
t(n) = n2/1000 without worrying that it is not suitable when n is small (for example,
t(10) = 100/1000 < 1, so the TM could not even get started). This is re�ected in the
n ≥ cM in the de�nition.

With this in mind, we now give the de�nition.

De�nition 1.2. [Time complexity classes � boolean] Let t : N → N be a function. TM-
Time(t) denotes the functions f that map bit strings x from a subset X ⊆ [2]∗ to a set f(x)
for which there exists a TM M such that, on any input x ∈ X of length ≥ cM , M computes
y within t(|x|) steps and y ∈ f(x).

P :=
⋃
d≥1

TM-Time(nd),

Exp :=
⋃
d≥1

TM-Time(2n
d

).
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We will not need to deal with relations and partial functions until later in this text.
Also, working with boolean functions, i.e., functions f with range [2] slightly simpli�es

the exposition of a number of results we will see later. To avoid an explosion of complexity
classes, we adopt the following convention.

Convention about complexity classes:
Unless speci�ed otherwise, inclusions and separations among complexity classes refer to

boolean functions. For example, an expression like P ⊆ NP means that every boolean
function in P is in NP.

As hinted before, the de�nition of P is robust. In the next few sections we discuss
this robustness in more detail, and also introduce a number of other central computational
models.

1.2 TMs with large alphabet

As our �rst example of robustness, we discuss TMs with arbitrary alphabet. This might
seem like a detail, but in fact we are going to shortly present a cute problem in the area
which will come up again and is, as far as I know, open. To set the stage, we �rst a relatively
straightforward power-time simulation.

We de�ne TMs with alphabet size a as in De�nition 1.1 but with |A| of size a; we will
only be interested in a ≥ |A| so we can think of adding symbols to A in De�nition 1.1. We
de�ne similarly TM-Time(t(n)) with alphabet size a.

Theorem 1.1. TM-Time(t(n)) with alphabet size a ⊆ TM-Time(cat(n) + can
2).

Proof. Given a machine Ma as in the LHS, we construct machine M as in the RHS as
follows. We use c log a ≤ ca tape symbols of M to encode one tape symbol of Ma. First we
need to re-encode the input x. This takes time can2 as follows. First we move the head to
the rightmost symbol of x in position |x|, and we shift it right of ca positions. Then we go
to the adjacent symbol in position |x| − 1, and shift all the contents to the right of this by
ca positions, to the right. We continue in this way.

Once this re-encoding is done, M can simulate Ma step-by-step, spending time ca for
each step of Ma. QED

This shows that the de�nition of P is robust w.r.t. di�erent alphabet sizes. Yet the
simulation is unsatisfactory due to the need of re-encode the input which gives a quadratic
time blow-up.

Question 1.1. Is the n2 term in Theorem 1.1 necessary?

1.2.1 The universal TM

Universal machines can simulate any other machine on any input. These machines play a
critical role in some results we will see later. They also have historical signi�cance: before
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them machines were tailored to speci�c tasks. One can think of such machines as epitomizing
the victory of software over hardware: A single machine (hardware) can be programmed
(software) to simulate any other machine.

Lemma 1.1. There is a TM U that on input (M, t, x) where M is a TM, t is an integer,
and x is a string:

-Stops in time |M |c · t · |t|,
-Outputs M(x) if the latter stops within t steps on input x.

Proof. We maintain the invariant thatM and t are always next to the tape head of U . After
the simulation of each step of M the tape of U will contain

(x,M, i, t′, y)

where M is in state i, the tape of M contains xy and the head is on the left-most symbol
of y. The integer t′ is the counter decreased at every step. Computing the transition of M
takes time |M |c. Decreasing the counter takes time c|t|. To move M and t next to the tape
head takes c|M ||t| time. QED

1.3 Multi-tape machines (MTMs)

De�nition 1.3. A k-TM is like a TM but with k tapes, where the heads on the tapes move
independently. The input is placed on the �rst tape, and all other tapes are initialized to _.
The output is on the �rst tape. k-TM-Time is de�ned analogously to TM-Time. We write
MTM for multi-tape machine for some number k of tapes.

Exercise 1.4. Prove that Palindromes is in 2-TM-Time(cn). Compare this to the run-time
from the the TM in Exercise 1.1.

The following result implies in particular that P is unchanged if we de�ne it in terms of
TMs or k-TMs.

Theorem 1.2. k-TM-Time(t(n)) ⊆ TM-Time(ckt2(n)) for any t(n) ≥ n and k.

Exercise 1.5. Prove this. Recall that we de�ned TMs with �xed alphabet, and cf. sec-
tion �1.2.

A much less obvious simulation is given by the following fundamental result about MTMs.
It shows how to reduce the number of tapes to two, at little cost in time. Moreover, the head
movements of the simulator are restricted in a sense that at �rst sight appears too strong.

Theorem 1.3. [131, 211]k-TM-Time(t(n)) ⊆ 2-TM-Time(ckt(n) log t(n)), for every function
t(n) ≥ n. Moreover, the 2-TM is oblivious: the movement of each tape head depends only
on the length of the input.
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Figure 1.2: A circuit computing the Xor of two bits.
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Figure 1.3: An alternating circuit.
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Using this results one can prove the existence of universal MTMs similar to the universal
TMs in Lemma 1.1. However, we won't need this result so we omit the proof.

1.4 Circuits

We now de�ne circuits. It may be helpful to refer to �gure 1.2 and �gure 1.3.

De�nition 1.4. A circuit, abbreviated Ckt, is a directed acyclic graph where each node
is one of the following types: an input variable (fan-in 0), an output variable (fan-in 1), a
negation gate ¬ (fan-in 1), an And gate ∧ (fan-in 2), or an Or gate ∨ (fan-in 2). The fan-in
of a gate is the number of edges pointing to the gate, the fan-out is the number of edges
pointing away from the gate.

An alternating circuit , abbreviated AC, is a circuit with unbounded fan-in Or and And
gates arranged in alternating layers (that is, the gates at a �xed distance from the input all
have the same type). For each input variable xi the circuit has both xi and ¬ xi as input.

A DNF (resp. CNF) is an AC whose output is Or (resp. And). The non-ouput gates are
called terms (resp. clauses) .

CktGates(g(n)) denotes the set of function f : [2]∗ → [2]∗ that, for all su�ciently large n,
on inputs of length n have circuits with g(n) gates; input and output gates are not counted.
The Size of a circuit is the number of gates. We also de�ne

PCkt :=
⋃
d

CktGates(nd).

We also denote by AC the class of functions computable by AC circuits of size nd and depth
d for a constant d.

Exercise 1.6. [Pushing negation gates at the input] Show that for any circuit C : [2]n →
[2] with g gates and depth d there is a monotone circuit C ′ (that is, a circuit without
Not gates) with 2g gates and depth d such that for any x ∈ [2]n : C(x1, x2, . . . , xn) =
C ′(x1,¬x1, x2,¬x2 . . . , xn,¬xn).

Often we will consider computing functions on small inputs. In such cases, we can often
forget about details and simply appeal to the following result, which gives exponential-size
circuits which are however good enough if the input is really small. In a way, the usefulness
of the result goes back to the locality of computation. The result, which is a circuit analogue
of Exercise 1.3, will be extensively used in this book.

Theorem 1.4. Every function f : [2]n → [2] can be computed by
(1) circuits of size ≤ c2n/n, and
(2) A DNF or CNF with ≤ 2n + 1 gates (in particular, circuits of size ≤ n2n).
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Often, and soon, we have to deal with functions which output many bits, but each output
bit is a function on small inputs.

De�nition 1.5. A function f : [2]n → [2]m is d-local if each output bit depends on ≤ d
input bits.

Exercise 1.7. Prove a d-local function f : [2]n → [2]m has circuits of size cm2d.

Exercise 1.8. Prove that the Or function on n bits has circuits of size cn. Prove Item (2)
in Theorem 1.4. Prove a weaker version of Item (1) in Theorem 1.4 with bound cn2n.

Exercise 1.9. Prove that the sum of two n-bit integers can be computed by circuits with
cn gates, and by ACs of depth c and size nc. (Hint: For ACs, you might want to �rst warm
up by solving the problem when one of the integers is a power of two, so that its binary
representation has weight 1.)

We now show that circuits can simulates MTMs. We begin with a simple but instructive
simulation of TMs which incurs a quadratic loss, then present a more interesting quasilinear
simulation.

Theorem 1.5. Suppose an s-state TM computes f : [2]∗ → [2] in time t ≥ n. Then
f ∈ CktGates(cst2(n)). In particular

P ⊆ PCkt.

For this proof and the next it is convenient to represent a con�guration of a TM in a
slightly di�erent way, as a string of symbols over the alphabet A× {0, 1, . . . , s}. String

(a1, 0)(a2, 0) . . . (ai−1, 0)(ai, j)(ai+1, 0) . . . (am, 0)

with j > 0 indicates that (1) the tape content is a1a2 . . . am with blanks on either side, (2)
the machine is in state j, and (3) the head of the machine is on the i tape symbol ai in the
string.

Locality of computation here means that one symbol in a string only depends on the
symbols corresponding to the same tape cell i in the previous step and its two neighbors �
three symbols total � because the head only moves in one step.

Proof of Theorem 1.5. Given a TM M with s states consider a (t+ 1)× (2t+ 1) matrix
T , a.k.a. the computation table, where row i is the con�guration at time i. The starting
con�guration (corresponding to time 0) is in the �rst row and has the head in the middle
cell. Note we don't need more than t cells to the right or left because the head moves only by
one cell in one step. By locality of computation, each symbol in Row i+ 1 can be computed
from 3 symbols in Row i, and hence by a cs-local function. Repeating this for every symbol
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Figure 1.4: Main circuit in the proof of Theorem 1.5, for t = 4. Squares indicate symbols,
circles indicate circuits.
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we obtain that Row i + 1 can be computed from Row i by a cs-local function. Hence by
Exercise 1.7 Row i+ 1 can be computed from Row i by a circuit of size cst.

Stacking t such circuits we obtain a circuit of size cst2 which computes the end con�gu-
ration of the TM. This circuit is illustrated in �gure 1.4.

There remains to output the value of the function. Had we assumed that the TM writes
the output in a speci�c cell, we could just read it o� by a circuit of size c. Without the
assumption, we can have a circuit C : A × {0, 1, . . . , s} → [2] which outputs 1 on (x, y) i�
y 6= 0 and x = 1 (i.e., if x is a 1 that is under the TM's head). Taking an Or such circuits
applied to every entry in the last row of T concludes the proof. QED

The simulation in Theorem 1.5. incurs a quadratic loss. However, a better simulation exists.
In fact, this applies even to k-TMs.

Theorem 1.6. Suppose an s-state k-TM computes f : [2]∗ → [2] in time t(n) ≥ n. Then
f ∈ CktGates(cs,kt(n) log t(n)).

Exercise 1.10. Prove Theorem 1.6 assuming Theorem 1.3.

Next we give a direct proof that doesn't need Theorem 1.3.

Proof. We prove this for k = 1, the extension to larger k does not need new ideas and is
omitted. Given a TM M , we construct a circuit Sm that on input a con�guration of M with
m tape symbols where the head position is within m/4 symbols from the center, it computes
the con�guration reached by M after m/4 steps of the computation.

We shall give an inductive construction of Sm satisfying

Size(Sm) ≤ 2 · Size(Sm/2) + cm

with base case Size(Sc) ≤ cM . This implies Size(St) ≤ cM t log t, as desired.
To construct Sm we think of the m symbols as divided into c blocks, and we rely on a

couple of auxiliary circuits. Circuit Hm given an m-symbol con�guration computes in which
block the head is; circuit Rm given an m-symbol con�guration and i ≤ c, rotates the blocks
by i positions. We can now program Sm as follows. First run Hm to get in which block i the
head is. Use Rm to rotate the blocks by i positions so that the head is in a block closest to
the middle. Run Sm/2. Now again run Hm to get j, and then Rm to move block j closest to
the middle. Run Sm/2. Finally, use Rm to restore the blocks by rotating them back by i+ j
positions.

This circuit simulates (m/2)/4 + (m/2)/4 = m/4 steps, as desired. The circuits R and
H can be implemented using cm gates. QED

In the other direction, TMs can simulate circuits if they have enough states. In general,
allowing for the number of states to grow with the input length gives models with �hybrid
uniformity.�

Exercise 1.11. Suppose that f : [2]n → [2] has circuits with s gates. Show that f can be
computed by a TM with sc states in time sc.
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1.5 Rapid-access machines (RAMs)

The main feature that's missing in all models considered so far is the ability to read and write
a memory cell in one time step given the address. This feature is called direct addressing ,
and is common place in programming languages (where for example we de�ne an array A
and then we can access cell i in the array via A[i]). One can augment MTMs with this
capability by equipping each tape with a companion addressing tape and a special �jump�
state which causes the head on a tape to move in one step to the address on the address
tape. This model is known as RAMTM (rapid-access multi-tape machines).

A RAMTM running in time ct can write down a t-bit address and jump to that location,
i.e., use an exponential amount of tape. This allows us to solve in linear time problems that
we don't know how to solve in linear time without this feature.

Exercise 1.12. The Element-Distinctness problem: Given m vectors of w bits, decide if two
vectors are equal.

Solve Element-Distinctness in linear time cn = ctw on a RAMTM.
Your solution likely needs the memory to be initialized to blank. What happens if the

memory is in an unknown state when computation starts?

One can use a data structure to simulate a RAMTM running in time t by a bounded-
address RAMTM that only uses addresses of c log t bits and runs in time t logc t (see the
notes). We will not be too concerned with logarithmic factors, so we could just use RAMTMs
as our model, at the price of making some later statements more complicated.

But the main issue with RAMTMs is that they do not operate like common hardware and
software. Processors have built-in capabilities to perform arithmetic and logical operations
on small registers, of say 64 or 128 bits, and to use them to address memory. Programming
languages provide similar abstractions. This allows us to separate, in algorithm design,
the size of the registers from their number, yielding more modular and useful algorithm
speci�cations. We want to think of the memory as an array µ of s cells of w bits and
allow for typical operations of them, including addressing arithmetic and direct addressing :
reading and writing the cell indexed by another cell. There is a variety of such models, some
arbitrariness in their de�nition, and several issues.

How much memory. One issue that arises is how much memory the machine should
have and consequently how big w should be. There are two main options here. For �typical
programming,� we have a �xed memory size s and time bound t in mind, for example s = n3

and t = n2. A good choice then is to set w := dlog2 se bits. This however makes it harder
to compare machines with di�erent memory bounds. Also in some scenarios the memory
size and the time bound are not �xed. This occurs for example when simulating another
machine. To handle such scenarios, unless speci�ed otherwise, we start with a memory of
s = n+c cells, and a cell size of w = dlog2 se bits, enough to access the input. We then equip
machines with the operation MAlloc which increases the memory (i.e., s) by one, and always
sets w := dlog2 se. Note the latter operation may increase w by 1. The MAlloc operation is
akin to the TM's tape head wandering into unknown cells.
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How the input is given. There are also two options for how the input is given to the
machine. The di�erence doesn't matter if you don't care about w factors in time, but it
matters if you do. For many problems, like sorting, 3Sum (cf. De�nition 4.5), etc., we think
of the input and the output as coming in n cells of w bits. (Typically, w = c log n, and one
can simulate such cells with c cells with log n bits.) In this case, the RAM is computing
a function f : ([2]w)n → ([2]w)m and the input to the RAM is given accordingly. This
is what one often has in mind when writing programs that involve numbers. For other
problems, it is natural to just give one bit of the input in each cell. That is, the RAM is
computing f : [2]n → [2]m and bit i of the input is placed in the i input cells. We will not
be concerned too much with small factors and so we pick the second choice as default for
simplicity. This choice will also make it easier later to write computation in certain useful
formats (cf. Exercise 6.2). But we will also explore the �rst choice, see 2.3.3.

De�nition 1.6. A w-bit `-line rapid-access machine (RAM) with s cells consists of a mem-
ory array µ[1..s] of s cells of w bits, c registers r1, r2, . . . of w bits, and a program of `
lines.

Each line of the program contains an instruction among the following:

• Standard arithmetical, logical, and control-�ow operations, such as r1 = r2 + r3, if
r1 = 0 then goto line 17, etc.

• ri := µ[rj], called a Read operation, which reads the rj memory cell and copies its
content into ri,

• µ[ri] := rj, called a Write operation, which writes rj into memory cells ri, memory cell
and copies its content into ri,

• MAlloc which increases s by 1 and, if s ≥ 2w also increases w by 1,

• Stop.

Read and write operations out of boundary indices have no e�ect.
On an input x ∈ [2]n, the RAM starts the computation with s := n+ 1 cells of memory

and w := dlog2 se. The input is written in cells 1..n, while µ[0] contains the length n of the
input.

The output is written starting in cell 1.

Why bounded registers? Having de�ned the model, we now turn back to another issue
related to its de�nition, perhaps the most interesting mathematically. One is tempted to
brush aside details and consider instead a cleaner model where we simply have unbounded
registers with unit-cost operations. Indeed, this abstraction is useful and commonplace when
writing algorithms. Such a machine can use an exponential amount of memory, but this is
not problematic for, as we remarked earlier, one can use a data structure to simulate such a
machine by one that uses memory close to the running time. Instead, the ability to perform
arithmetic over unbounded integers raises some di�culty. As we now show, this allows us
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to factor integers e�ciently. However factoring is not known to be in P, and many deployed
cryptographic systems, in fact, rely on it not being e�ciently solvable.

De�nition 1.7. The unbounded RAM, denoted uRAM, is a RAM with w =∞. (Or w = cn
su�ces.)

Theorem 1.7. A uRAM can factor n-bit integers in time logc n.

The main technical step is to compute factorials e�ciently.

Lemma 1.2. A uRAM can compute the factorial x! of an n-bit integer x in time logc n.

Note that x! can take ≥ 2n bits to write down, and that's precisely where unbounded
registers are useful.

Armed with this lemma, the proof of Theorem 1.7 is simple enough.

Exercise 1.13. Prove Theorem 1.7 assuming Lemma 1.2. Hint: The main idea is that
computing the greatest common divisor (gcd) of a and b! tells us whether a has a factor ≤ b
or not. Also, critically computing the gcd of a and b takes time linear in the bit length of
min{a, b}

There remains to compute the factorials.

Proof of Lemma 1.2. We give a recursive algorithm.
If x is odd we reduce to the case of x even using x! = x · (x− 1)!.
If x is even we use

x! =

(
x

x/2

)
(x/2)!2.

To compute the binomial we use the binomial theorem to write, for any `:

(2` + 1)x =
x∑
j=0

(
x

j

)
2`·j.

Hence by choosing ` suitably the binary representation of the lhs contains the binary rep-
resentation of the rhs in an interval of the bits. These bits can be extracted using division
and remainder. Also the lhs can be computed e�ciently by repeated squaring. QED

What is computation really about? The cell-probe RAM We didn't specify which
operations are allowed on registers, and indeed there is no consensus, and processors have
di�erent capabilities. The cell-probe RAM, is a useful, simple generalization of the RAM
model which abstracts away such details focusing solely on locality of computation and
information transfer.
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De�nition 1.8. A cell-probe RAM running in time t with m-bit state and a memory S of
s cells of w bits operates in t time steps. At each time step i ≤ t the machine:

(1) Selects an index j ≤ s to a memory cell, as a function of i and the state of the
machine.

(2) Updates its state, as a function of i, the current state, and S[j].
(3) Writes a value in S[j], as a function of i and the current state.
All functions involved are arbitrary.

A cell RAM can simulate any of the previous models with no overhead.

1.5.1 Time

We use RAMs as our main model for time inside P.

De�nition 1.9. Time(t(n)) is de�ned as TM-Time(t(n)) but for RAMs instead of TMs.

Theorem 1.8. Time(t(n)) ⊆ TM-Time(tc(n)), for any t(n) ≥ n.

Exercise 1.14. Prove it.

What is the relationship between circuits and RAMs? If a �description� of the circuit is
given, then a RAM can simulate the circuit e�ciently. The other way around is not clear.
It appears that circuits need a quadratic blow-up to simulate RAMs.

Exercise 1.15. Give a function f : [2]∗ → [2] in Time(c log n) but which requires circuits of
size ≥ cn.

There are universal RAMs that can simulate any other RAM with only a constant-factor
overhead, unlike the logarithmic-factor overhead for tape machines.

Lemma 1.3. There is a RAM U that on input (P, t, x) where P is a RAM, t is an integer,
and x is an input

-Stops in time ct,
-Outputs P (x) if the latter stops within t steps on input x.

Proof. Throughout the computation, U will keep track of the memory size sP and cell-size
wP of P . These are initialized as in the initial con�guration of P on input x, whereas U
starts with bigger values, since its input also contains P and t. Let h be the �rst cell where
the input x starts. Memory location i of P is mapped to i+h during the simulation. When P
performs an operations among registers, U simulates that with its own registers, but discards
the data that does not �t into wP bits.

After each step, U decreases the counter. The counter can be stored in t cells, one
bit per cell. The total number of operations to decrease such a counter from t to 0 is ≤ ct.
Alternatively, we can think of the counter as being stored in a single register at the beginning
of the simulation. Then decreasing the counter is a single operation. QED
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1.6 Padding

To develop intuition about complexity, we now discuss a general technique known as padding.
In short, the technique shows that if you can trade resource X for Y , then you can also trade
a lot of X for a lot of Y . For a metaphor, if you have a magical device that can turn
one pound of sill into gold, you can also use it to turn two pounds of sill into gold. The
contrapositive is that if you can't trade a lot of X for a lot of Y , then you also can't trade
a little of X for a little of Y . Hence inclusions among complexity classes imply inclusions
with more resources, separations imply separations with less resources.

We give an example using the classes that we have encountered so far.

Claim 1.1. Suppose that Time(cn) ⊆ TM-Time(n1.5). Then Time(cn2) ⊆ TM-Time(cn3).

Proof. Let f : [2]∗ → [2] be a function in Time(cn2). Consider the function f ′ that on input
x of length n equals f computed on the �rst

√
n bits of x. Thus, inputs to f ′ are padded

with n−
√
n useless symbols.

Note that f ′ ∈ Time(cn), since in linear time we can erase the last n−
√
n symbols and

then just run the algorithm for f which takes time quadratic in
√
n which is linear in n. (If

computing square roots is not an available instruction, one can show that computing
√
n

can be done in linear time, for example using binary search.)
By assumption, f ′ ∈ TM-Time(n1.5).
To compute f in TM-Time cn3 we can then do the following. Given input x of length n,

pad x to an input of length n2 in time cn2. Then run the algorithm for f ′. This will take
time ≤ (cn2)1.5 = cn4. Note this requires computing the length n of the input, squaring it,
and padding x accordingly. These operations are not trivial on a TM, but will take less time
o(n3), so do not a�ect the �nal bound. QED

To further illustrate padding, consider a simulation like the one in Theorem 1.2. If
we have such a simulation for say t(n) = cn, we can then infer via the generic padding
technique a simulation for other t. A caveat is that padding requires us to compute t. For
some pathological functions, this may not be possible, whereas Theorem 1.2 works for any t.

1.7 Problems

Problem 1.1. [Indexing] Describe a TM that on input (x, i) ∈ [2]n × {1, 2, . . . , n} outputs
bit i of x in time cn log n.

Problem 1.2. [Indexing] Describe a circuit with cn gates that on input (x, i) ∈ [2]n ×
{1, 2, . . . , n} outputs bit i of x.

Problem 1.3. A TM is b-block-respecting if on any input x it crosses cells boundaries that
are multiples of b only during computation steps that are multiple of b. In this problem you
will show that any MTM can be transformed into a b-block-respecting MTM, with only a
constant overhead in time. To isolate the essence of this problem, we shall consider TMs
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with an extra feature. A TM with a b-clock is a TM where in addition the transition function
can depend on whether or not the current computation step is divisible by b.

Let M be a k-TM running in time t(n), and let b(n) be a function. Give an equivalent
ck-TM with a b(n)-clock that is b(n)-block-respecting and runs in time ct(n).

Hint: Triplicate each tape, and for each block have both the preceding and following
block, reversed. Explain how the simulation is carried out and where the clock is used.

Problem 1.4. Let f : [2]n → [2] be computable by an s-state k-TM in time t. Think of the
input as m cells of w bits, so that n = mw. Consider circuits made or arbitrary functions
which take as input cs,k cells and output one cell. (Each wire in this circuit carries one cell
� the bits cannot be �broken up,� but the result would be non-trivial even if they could.)
Show that f can be computed by such circuits of size (t/w)c. For example, if t = 100n and
w = 0.01n we have circuits of a constant number of gates.

1.8 Notes

�It's all over.�

The fundamental work on complexity is [93]. That work formalized computation for the �rst
time, and discovered its self-referential ability, essentially inventing universal machines and
the diagonalization technique (cf. section �3.3). Of course, [93] did not come out of nowhere,
but was in fact a reaction to a program of automating mathematics, and it built on logical
formalizations of mathematics; and diagonalization has its roots in (and takes the name
from) the proof that the real numbers are uncountable. Also, there are several previous
works aimed at formalizing computation in various branches of science. See [190] for an
account of this compelling history. Still, if a fundamental work must be picked, [93] seems
appropriate, for it can be considered the �rst work on impossibility results about general
computation.

The formalization of computation in [93] is in terms of recursive functions, not unlike
modern functional programming languages. As we saw, many other equivalent formalizations
came about later. Tape machines were introduced in [261] and are closer to computer
hardware or imperative programming languages. They also make it a little more intuitive
to measure time and space in computation.

The power-time computability thesis is an e�cient version of the computability thesis.
For a proof of a formalization of the latter, and related discussion see [112].

The brute-force computation of functions via circuits, Theorem 1.4, goes back to [233],
see also [178].

For more on the circuit model in Problem 1.4 see [118].
RAMs appear in [18] with the comment: �In some sense we are therefore merely making

concrete intuitions that already pervade the literature. A related model has, indeed, been
treated explicitly [...].� For simulating RATMs by bounded-address RATMs, see [197].
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Theorem 1.7 is from [230]. The algorithm for the greatest common divisor is very old,
see [74], but there was no bound on its e�ciency until [164], which provides the bound we
need.

Theorem 1.6 is towards the end of [211].
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Chapter 2

Randomness

Today, there's a signi�cant challenge to the computability thesis. This challenge comes
from... I know what you are thinking: Quantum computing, superposition, factoring. Nope.
Randomness.

The last century or so has seen an explosion of randomness a�ecting much of science, and
computing has been a leader in the revolution. Today, randomness permeates computation.
Except for basic �core� tasks, using randomness in algorithms is standard. So let us augment
our model with randomness.

De�nition 2.1. A randomized (or probabilistic) RAM, written RRAM, is a RAM equipped
with the extra instruction
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• ri := Rand, which sets ri to a uniform value, independent of all previous random
choices.

For a RRAM and a sequence R = R1, R2, . . . we write M(x,R) for the execution of M on
input x where the j-th instruction ri := Rand is replaced with ri := Rj.

We refer to BPTime(t(n)) with error ε(n) as the set of functions f that map bit strings
x from a subset X ⊆ [2]∗ to a set f(x) for which there exists a RRAM M such that, on any
input x ∈ X of length ≥ cM ,M stops within t(|x|) steps and PR[M(x,R) ∈ f(x)] ≥ 1−ε(|x|)
.

If the error ε is not speci�ed then it is assumed to be 1/3. Finally, we de�ne

BPP :=
⋃
a

BPTime(na).

Exercise 2.1. Does the following algorithm show that deciding if a given integer x is prime
is in BPP? �Pick a uniform integer y ∈ [2..x − 1]. If y divides x return NOT PRIME, else
return PRIME.�

Today, one usually takes BPP, not P, for �feasible computation.� The introduction of
randomness in our model raises several fascinating questions. First, does randomness exists
�in nature?� Second, do we need �perfect� randomness for computation? And �nally, do we
need randomness at all? Is P = BPP? We will explore the latter two in this chapter.

We begin our journey by investigating how robust BPP is.

2.1 Error reduction for one-sided algorithm: Repeat and

you'll get luckier

TBD

2.2 Error reduction and deviation bounds for the sum of

random variables

The error in the de�nition of BPTime is somewhat arbitrary because it can be reduced. The
way you do this is natural. For boolean functions, you repeat the algorithm many times,
and take a majority vote. To analyze this you need probability bounds for the deviation
of the sum of random variables (corresponding to the outcomes of the algorithm) from the
mean. Such deviation bounds permeate theoretical computer science, and many other �elds
as well.

Theorem 2.1. Let X1, X2, . . . , Xt be i.i.d. boolean random variables with p := P[Xi = 1].
Then for any 0 < p ≤ q < 1 we have P[

∑t
i=1Xi ≥ qt] ≤ 2−D(q|p)t, where

D(q|p) := q log

(
q

p

)
+ (1− q) log

(
1− q
1− p

)
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is the divergence.

The proof uses the following basic facts.

Claim 2.1. Let X be a real-valued r.v. s.t. X ≥ 0 always. Then P[X ≥ t] ≤ E[X]/t for
every t > 0.

Exercise 2.2. Prove this. Hint: Use that for any event E, E[X] = E[X|E]P[E]+E[X|not E]P[not E].

Claim 2.2. If X and Y are independent, real-valued random variables then E[X · Y ] =
E[X] · E[Y ].

Proof of Theorem 2.1. For z ≥ 1, to be picked later, the function x → zx is increasing.
Using this and then Claim 2.1 and �nally the independence of the Xi, the LHS equals

P[z
∑t
i=1Xi ≥ zqt] ≤ E[z

∑t
i=1Xi ]

zqt
=

∏t
i=1 E[zXi ]

zqt
=

(
pz + 1− p

zq

)t
=: bt.

To minimize b we set

z :=
q(1− p)
(1− q)p

.

This value can be derived using calculus, see Problem 2.3, or one can just remember it.
Note z ≥ 1 because q ≥ p, and obtain

b =

1−p
1−q

zq
=

(
p

q

)q (
1− p
1− q

)1−q

.

QED

Now one can get a variety of bounds by bounding divergence for di�erent settings of
parameter. We state one such bound which we use shortly.

Fact 2.1. D(q|p) ≥ c(p− q)2, for any p, q ∈ [0, 1].

Exercise 2.3. For q = 1/2 and p = 1/2 − ε plot both sides of Fact 2.1 as a function of ε.
(Hint: I used https://www.desmos.com/calculator)

The proof of the tail-bound Theorem 2.1 is �exible and applies to a variety of useful
settings. The most interesting extensions concern dependent random variables, where in
general the bounds aren weaker. In the next exercise we instead several settings where the
bounds in Theorem 2.1 continue to hold; note independence is dropped in the last.

Exercise 2.4. Prove that the tail bound in Theorem 2.1 holds as stated more generally for
any independent random variables X1, X2, . . . , Xt distributed in [0, 1] with p :=

∑
i E[Xi]/t.
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Guideline: Repeat the same proof as before. Use that zx ≤ 1 + x(z− 1) and the arithmetic-
mean geometric mean inequality (AM-GM) inequality: for all ai ≥ 0: (

∑
i∈[t] ai)/t ≥

(
∏

i∈[t] ai)
1/t.

Now suppose the Xi are more generally distributed in [a, b]. For q = ε + p prove a
deviation bound of 2−cε

2t/(b−a)2 .
Go back to the the tail bound in Theorem 2.1. Prove it holds as stated even if the Xi

are not independent, but conditioned on any X1, X2, . . . , Xi−1, we have E[Xi] ≤ p.

Using the tail-bound Theorem 2.1 we can prove the error reduction stated earlier.

Theorem 2.2. [Error reduction for BPP] For boolean functions, the de�nition of BPP
(De�nition 2.1) remains the same if 1/3 is replaced with 1/2−1/na or 1/2n

a
, for any constant

a.

Proof. Suppose that f is in BPP with error p := 1/2−1/na and letM be the corresponding
RRAM. On an input x, let us run t := n2a · nb times M , each time with fresh randomness,
and take a majority vote. The new algorithm is thus

Maj(M(x,R1),M(x,R2), . . . ,M(x,Rt)).

This new algorithm makes a mistake i� at least t/2 runs of M make a mistake. To analyze
this error probability we invoke Theorem 2.1 where Xi := 1 i� run i of the algorithm makes
a mistake, i.e., M(x,Ri) 6= f(x), and ε := 1/na. By Fact 2.1 we obtain an error bound of

2−D(1/2|1/2−ε)t ≤ 2−ε
2t ≤ 2−n

b

,

as desired. The new algorithm still runs in power time, for �xed a and b. QED

Exercise 2.5. Consider an alternative de�nition of BPTime, denoted BPTime', which is
analogous to BPTime except that the requirement that the machine always stops within
t(|x|) steps is relaxed to �the expected running time of the machine is t(|x|).�

Show that de�ning BPP with respect to BPTime or BPTime' is equivalent.

Exercise 2.6. Consider biased RRAMs which are like RRAMs except that the operation
Rand returns one bit which, independently from all previous calls to Rand, is 1 with prob-
ability 1/3 and 0 with probability 2/3. Show that BPP does not change if we use biased
RRAMs.

A large body of research has been devoted to greatly generalize Exercise 2.6 to pinpoint
the imperfect sources of randomness that su�ce for simulating BPP.

2.3 The power of randomness

In this section we explore various computing paradigms that are enabled by randomness.
Along the way we will see extremely important concepts that will be used many times later.
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2.3.1 Parity of random subset, checking AB = C

A fact which is as simple as it is useful is this:

Fact 2.2. [Random subset or random parity principle] Suppose x ∈ [2]n is non-zero. Then
the parity of a uniformly-selected subset of x is a uniform bit. Equivalently, if A ∈ [2]n is
uniform,

∑
iAixi mod 2 is uniform in [2].

To illustrate, consider the problem of checking products of matrices over bits with addi-
tion mod 2. This is the �nite �eld F2; �nite �elds are discussed below.

De�nition 2.2. The AB = C problem: Given 3 matrices A,B,C over F2, is AB = C?

Theorem 2.3. The AB = C problem is in BPTime(cn).

Proof. Let d = c
√
n be the dimension of the matrices. Pick U uniformly in [2]d. Compute

A(BU) and CU in time cn, and check if they are equal. If AB = C the check always
passes. In case AB 6= C, one of the rows is di�erent, and by Fact 2.2 the check passes with
probability ≤ 1/2. We can reduce the error as in section �2.1. QED

By contrast, the fastest deterministic algorithm takes time n1+c.

2.3.2 Polynomial identity testing

We now discuss an important problem which is in BPP but not known to be in P. In fact,
in a sense to be made precise later, this is the problem in BPP which is not known to be in
P. To present this problem we introduce two key concepts which will be used many times:
�nite �elds, and arithmetic circuits.

Finite �elds A �nite �eld F is a �nite set with elements 0 and 1 that is equipped with
operations + and · that behave �in the same way� as the corresponding operations over the
reals R or the rationals Q, which are in�nite �elds. One example are the integers modulo a
prime p. For p = 2 this gives the �eld with two elements where + is Xor and · is And. For
larger p you add and multiply as over the integers but then you take the result modulo p.

The following summarizes key facts about �nite �elds. The case of prime �elds su�ces for
the main points of this section, but stating things for general �nite �elds actually simpli�es
the exposition overall (since otherwise we need to add quali�ers to the size of the �eld).

Fact 2.3. [Finite �elds] A unique �nite �eld of size q exists i� q = pt where p is a prime and
t ∈ N. This �eld is denoted Fq.

Elements in the �eld can be identi�ed with {0, 1, . . . , p− 1}t.
Given q, one can compute a representation of a �nite �eld of size q in time (tp)c. This

representation can be identi�ed with p plus an element of {0, 1, . . . , p− 1}t.
Given a representation r and �eld elements x, y computing x+y and x·y is in Time(n logc n).
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Fields of size 2t are of natural interest in computer science. It is often desirable to have
very explicit representations for such and other �elds. Such representations are known and
are given by simple formulas, and are in particular computable in linear time.

Example 2.1. We can represent the elements of Fpt as (the coe�cients of) polynomials of
degree < t over Fp. Addition is done component-wise, and multiplication occurs modulo an
irreducible polynomial of degree t over the base �eld Fp, i.e., a polynomial that cannot be
factored as the product of two non-constant polynomials. It is known zt+zt/2+1 is irreducible
over F2 for any t = 2 ·3` for any `, giving very explicit representations. For example, consider
the �eld elements z2 + 1 and zt−1 + 1 over such a representation of F2t . Their sum equals
zt−1 + z2, and their product equals zt+1 + z2 + zt−1 + 1 = zt−1 + zt/2+1 + z2 + z + 1.

Arithmetic circuits We now move to de�ning arithmetic circuits, which are a natural
generalization of the circuits we encountered in section �1.4.

De�nition 2.3. An arithmetic circuit over a �eld F is a circuit where the gates compute the
operations + and · over F, or are constants, or are input variables. Such a circuit computes
a polynomial mapping Fn → F.

The PIT (polynomial identity testing) problem over F: Given an arithmetic circuit C
over F with n input variables, does C(x) = 0 for every x ∈ Fn?

The PIT problem over large �elds is in BPP but it is not known to be in P. The
requirement that the �eld be large is critical, see Problem 4.2.

Theorem 2.4. [PIT over large �elds in BPP] Given an arithmetic circuit C and the repre-
sentation of a �nite �eld of size ≥ c2|C| we can solve PIT in BPP.

To prove this theorem we need the following fundamental fact.

Lemma 2.1. [Polynomial identity lemma] Let p be a polynomial over a �eld F with n
variables and degree ≤ d. Let S be a �nite subset of F, and suppose d < |S|. The following
are equivalent:

1. p is the zero polynomial.

2. p(x) = 0 for every x ∈ Fn.

3. Px1,x2,...,xn∈S[p(x) = 0] > d/|S|.

Proof of Lemma 2.1.. The implications 1. ⇒ 2. ⇒ 3. are trivial, but note that for the
latter we need d < |S|. The implication 3. ⇒ 1. is not trivial. We proceed by induction on
n.

The base case n = 1 is the fact that if p has more than d roots then it is the zero
polynomial. This fact in turn can be proved by induction on the degree. The base case
d = 0 is obvious. For larger d, suppose a is a root of p and use division for polynomials to
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write p = (x − a)q + r where q has degree ≤ d − 1 and r ∈ F. Because a is a root we have
r = 0, and so p = (x− a)q and q has d− 1 roots, and by induction q = 0 and so p = 0.

For larger n write

p(x1, x2, . . . , xn) =
d∑
i=0

xi1pi(x2, x3, . . . , xn).

If p is not the zero polynomial then there is at least one i such that pi is not the zero
polynomial. Let j be the largest such i. Note that pj has degree at most d− j. By induction
hypothesis

Px2,...,xn∈S[pj(x) = 0] ≤ (d− j)/|S|.

For every choice of x2, x3, . . . , xn s.t. pj(x) 6= 0, the polynomial p is a non-zero polynomial
qx2,x3,...,xn(x1) only in the variable x1. Moreover, its degree is at most j by our choice of j.
Hence by the n = 1 case the probability that q is 0 over the choice of x1 is ≤ j.

Overall,
Px1,x2,...,xn∈S[p(x) = 0] ≤ (d− j)/|S|+ j/|S| = d/|S|.

QED

Exercise 2.7. Show that the equivalence between 1. and 2. does not hold over small �elds
such as F2 and large d.

Proof of Theorem 2.4. A circuit C contains at most |C| multiplication gates. Each
multiplication gate at most squares the degree of its inputs. Hence C computes a polynomial
of degree ≤ 2|C|. Let S be a subset of size c · 2|C| of F. Assign uniform values from S
independently to each variables, and evaluate the circuit. If C evaluates to 0 everywhere
then obviously the output will be 0. Otherwise, by Lemma 2.1, the probability we get a 0 is
≤ 2|C|/c2|C| ≤ 1/3. QED

To show that the PIT problem over the integers is in BPP the following result is useful.

Theorem 2.5. [Prime number theorem] limn→∞(Number of primes ≤ n)/(n/ loge n) = 1.

As is often the case in computer science, we don't need the full strength of Theorem
2.5. An approximate version with loge n replaced by logc n su�ces, and it has a considerably
easier proof. (Moreover sometimes easier proofs are easier to adapt to other settings of
interest in computer science.) This weak version is stated next.

Theorem 2.6. [Weak prime number theorem] The number of primes in [t] is ≥ t/ logc t, for
every t ≥ c.

Exercise 2.8. Show that the PIT problem over the integers is in BPP. (Hint: Use Theorem
2.5 and that checking if a number is prime is in P.)
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2.3.3 Element distinctness, and hashing

Another fundamental paradigm that is allowed by randomization is hashing . One of the
most basic instantiations is given by pairwise uniformity .

De�nition 2.4. A distribution H on functions mapping S → T is called pairwise uniform
if for every x, x′ ∈ S and y, y′ ∈ T one has

PH [H(x) = y ∧H(x′) = y′] = 1/|T |2.

This is saying that on every pair of inputs H is behaving as a completely uniform func-
tion. Yet unlike completely uniform functions, the next lemma shows that pairwise uniform
functions can have a short description, which makes them suitable for use in algorithms.

Exercise 2.9. Let Fq be a �nite �eld. De�ne the random function H : Fq → Fq as H(x) :=
Ax+B where A,B are uniform in Fq.

Prove that H is pairwise uniform.
Explain how to use H to obtain a pairwise uniform function from [2]n to [2]t for any given

t ≤ n.

Exercise 2.10. De�ne the random function H1 : [2]n → [2] as H1(x) :=
∑

i≤nAixi + B
mod 2 where A is uniform in [2]n and B is uniform in [2].

Prove that H1 is pairwise uniform.
Explain how to use H1 to obtain a pairwise uniform function from [2]n to [2]t for any

given t ≤ n.

To illustrate hashing in action, we return to the element distinctness problem, cf. 1.12.

Exercise 2.11. Consider RAMs with registers of w bits and smemory cells, and the problem
of solving Element-Distinctness (ED) on m vectors of w bits, one vector per input cell.

1. Solve ED in time cm for any s ≥ 2w + cm, deterministically. (Assume memory is
initialized to blank.)

2. Solve ED in time cm for any s ≥ cm2, using randomness. (Hint: Hash to cm2 slots.
What is the chance of a collision.)

3. Solve ED in time cm for any s ≥ cm, using randomness. Guideline: Hash to cm
slots. Count-sort the input elements using their hash value as key. Now brute-force element
distinctness for elements with the same key. What is the expected running time of the last
step?

The last solution is the most satisfying (and non-trivial), as we only need a linear amount
of memory! It is not known how to achieve the same parameters without randomness, so
this is a very basic problem for which randomness seems to buy time.
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2.4 Does randomness really buy time? Is P=BPP?

We can always brute-force the random choices in exponential time. If a randomized machine
uses r random bits then we can simulate it deterministically by running it on each of the 2r

choices for the bits. A RRAM machine running in time t ≥ n has registers of ≤ c log t bits.
Each Rand operation gives a uniform register, so the machine uses ≤ ct log t bits. This gives
the following inclusions.

Theorem 2.7. Time(t) ⊆ BPTime(t) ⊆ Time(ct log t), for any function t = t(n). In partic-
ular, P ⊆ BPP ⊆ EXP.

Proof. The �rst inclusion is by de�nition. The idea for the second was discussed before,
but we need to address the detail that we don't know what t is. One way to carry through
the simulation is as follows. The deterministic machine initializes a counter r to 0. For each
value of r it enumerates over the 2r choices R for the random bits, and runs the RRAM on
each choice of R, keeping track of its output on each choice, and outputting the majority
vote. If it ever runs out of random bits, it increases r by 1 and restarts the process.

To analyze the running time, recall we only need r ≤ ct log t. So the simulation runs the
RRAM at most ct log t · 2ct log t ≤ 2ct log t times, and each run takes time ct, where this last
bound takes into account the overhead for incrementing the choice of r, and redirecting the
calls to Rand to R. QED

Now, two surprises. First, BPP ⊆ EXP is the fastest deterministic simulation we can
prove for RAMs, or even 2-TMs. On the other hand, what may come as a bigger surprise,
despite the examples in section �2.3 it appears that many people believe that in fact P =
BPP! Moreover, it appears commonly believed that the overhead to simulate randomized
computation deterministically is very small. Here the mismatch between our ability and
common belief is abysmal.

However, we can do better for TMs. A randomized TMs has two transition functions σ0

and σ1, where each is as in De�nition 1.1. At each step, the TM uses σ0 or σ1 with probability
1/2 each, corresponding to tossing a coin. We can de�ne TM-BPTime as BPTime but with
randomized TMs instead of RRAMS.

Theorem 2.8. TM-BPTime(t) ⊆ Time(2
√
t logc t), for any t = t(n) ≥ n.

One of the exciting developments of complexity theory has been the connection between
the P =? BPP question and the �shocking situation� from Chapter 0 and the �grand chal-
lenge� from Chapter 3. At a high level, it has been shown that explicit functions that are
hard for circuits can be used to de-randomize computation. In a nutshell, the idea is that
if a function is hard to compute then its output is �random,� so can be used instead of true
randomness. Quantitatively, the harder the function the less randomness we need. At one
extreme, we have the following striking connection:

Theorem 2.9. Suppose for some a > 0 there is a function in Time(2an) which on inputs
of length n cannot be computed by circuits with 2n/a gates, for all large enough n. Then
P = BPP.
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In other words, either randomness is useless for power-time computation, or else circuits
can speed up exponential-time uniform computation! We will prove this in Chapter 11,
Exercise 11.17.

While we don't know if P = BPP, we can prove that, like P, BPP has power-size circuits.

Theorem 2.10. BPP⊆ PCkt.

Proof. Let f : X ⊆ [2]∗ → [2] be in BPP. By Theorem 2.2 we can assume that the error is
ε < 2−n, and let M be the corresponding RRAM. Note

PR[∃x ∈ [2]n : M(x,R) 6= f(x)] ≤
∑
x∈[2]n

PR[M(x,R) 6= f(x)] ≤ 2n · ε < 1,

where the �rst inequality is a union bound.
Therefore, there is a �xed choice for R that gives the correct answer for every input

x ∈ [2]n. This choice can be hardwired in the circuit, and the rest of the computation can
be written as a circuit by Theorem 1.5. QED

Exercise 2.12. In this exercise you will practice the powerful technique of combining tail
bounds with union bounds, which was used in the proof of Theorem 2.10, and also see a
related application of Lemma 2.1 .

An error-correcting code with block length n, message length k, minimum distance d,
over the alphabet q, written (n, k, d)q is a subset C ⊆ [q]n of size qk s.t. for any distinct
x, y ∈ C, x and y di�er in at least d coordinates.

(1) Prove the existence of (n, an, an)2 codes, for a constant a > 0 and every n. Such
codes are called good or a-good.

(2) Given a prime power q, and k ≤ q construct an explicit (q, k, q − k)q code using
Lemma 2.1. For explicitness, show that given q and x ∈ [q]k computing the corresponding
codeword is in P.

2.5 Problems

Problem 2.1. Show that Palindromes can be solved in time n logc n on a randomized TM.
(Yes, only one tape.)

Hint: View the input as coe�cients of polynomials.

Problem 2.2. Give a function f : X ⊆ [2]∗ → [2] that is in BPTime(c) but not in Time(n/100).

Problem 2.3. Derive the minimizing value of z in the proof of Theorem 2.1.

Problem 2.4. For a circuit C on n bits denote by pC the probability Px[C(x) = 1].
(1) Show how to e�ciently approximate pC . Speci�cally: Give a power-time randomized

algorithm that on input a circuit C and ε > 0 written in unary (for example, as a string of
1/ε ones) outputs p s.t. |p− pC | ≤ ε w.p. ≥ 0.9.
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(2) Show that the following decision version of (1) is in BPP: Given a circuit C, a number
p (written in binary), and ε > 0 written in unary, such that |pC − p| ≥ ε, decide if pC ≥ p.

(3) What happens if in (2) you replace the assumption that |pC−p| ≥ ε with |pC−p| > 0
?

(4) Assume P = BPP (recall this only refers to boolean functions, see the convention on
page 26). Show how the approximation in (1) can be computed in P.

Problem 2.5. Assume Theorem 14.8 and its notation. Assume P = BPP. Show that given
a circuit C and ε written in unary s.t. pC ≥ ε we can compute x : C(x) = 1 in P. In particular,
given a non-zero arithmetic circuit we can �nd a non-zero assignment.

2.6 Notes

For a computer-science friendly exposition of deviation bounds see the book [72].
Theorem 2.10 is from [5].
Theorem 2.9 is from [142].
Theorem 2.8 is from [284].
Theorem 2.3 is from [85].
The reference for Fact 2.3 is [235]. For more on �nite �elds see [169], for the �elds F2t in

Example 2.1 see Theorem 1.1.28 in [267].
For a history of the Polynomial Identity Lemma 2.1 and related results, see [44]. One can

get a sharper bound taking into account the individual degrees of the variables, in addition
to the total degree.

Hashing originates from [55] and pervades the computer science literature. The analysis
of the best solution in Exercise 2.11 relies on Lemma 1 in [83].
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Chapter 3

The grand challenge

As mentioned in Chapter 0, our ability to prove impossibility results related to e�cient
computation appears very limited. We can now express this situation more precisely with
the models we've introduced since then.

It is consistent with our knowledge that any problem in a standard algorithm textbook
can be solved

1. in Time cn2 on a TM, and

2. in Time cn on a 2-TM, and

3. by circuits of size cn.

Note that 2. implies 1. by Theorem 1.2, and many other relationships have been explored
in Chapter 1.

In this chapter we begin to present several impossibility results, covering a variety of
techniques which will be used later as well. As hinted above, they appear somewhat weak.
However, jumping ahead, there is a �ip side to all of this:

1. At times, contrary to our intuition, stronger impossibility results are actually false.
One example appears in Chapter 0. A list will be given later.
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2. Many times, the impossibility results that we can prove turn out to be, surprisingly,
just �short� of proving major results. Here by �major result� I mean a result that would
be phenomenal and that was in focus long before the connection was established. We
will see several examples of this (section �7.3, section �8.2.3).

3. Yet other times, one can identify broad classes of proof techniques, and argue that
impossibility results can't be proved with them (Chapter 16).

Given this situation, I don't subscribe to the general belief that stronger impossibility results
are true and we just can't prove them.

3.1 Information bottleneck: Palindromes requires quadratic

time on TMs

Intuitively, the weakness of TMs is the bottleneck of passing information from one end of
the tape to the other. We now show how to formalize this and use it show that deciding if
a string is a palindrome requires quadratic time on TMs, which is tight and likely matches
the time in Exercise 1.1. The same bound can be shown for other functions; palindromes
just happen to be convenient to obtain matching bounds.

Theorem 3.1. Palindromes 6∈ TM-Time(t(n)) for any t(n) = o(n2).
More precisely, for every n and s, an s-state TM that decides if an n-bit input is a

palindrome requires time ≥ cn2/ log s.

The main concept that allows us to formalize the information bottleneck mentioned above
is the following.

De�nition 3.1. A crossing sequence of a TM M on input x and boundary i, abbreviated
i-CS, is the sequence of states that M is transitioning to when crossing cell boundary i (i.e.,
going from Cell i to i+ 1 or vice versa) during the computation on x.

Example 3.1. We think of a step of a TM as �rst changing state and then moving the head.

We write u
i
vw if the tape content is uvw and the TM is in state i with the head on v, where

u,w ∈ A∗ and v ∈ A, cf. De�nition 1.1. The computation
0

0 0 0 0

#
5

0 0 0

# 0
2

0 0

# 0 x
2

0

# 0
2
x 0

#
1

0 x 0

# 0
7
x 0

has the 2-cs (marked with double vertical line; �rst column is cell 1) equal to 2, 1, 7.
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The idea in the proof is very interesting. If M accepts inputs x and y and those two
inputs have the same i-CS for some i, then we can �stitch together� the computation of M
on x and y at boundary i to create a new input z that is still accepted by M . The input z is
formed by picking bits from x to the left of cell boundary i and bits from y to the right of i:

z := x1x2 · · ·xiyi+1yi+2 · · · yn.

The proof that z is still accepted is left as an exercise.

Example 3.2. The following computation has the same 2-cs as the previous example
0

0 1 1 0

0
4

1 1 0

0 0
2

1 0

0
1

0 0 0

0 0
7

0 0

.

If 7 is the accept state, then the TM would also accept the �stitched� input

0010

because on that input the TM has the following �stitched� computation:
0

0 0 1 0

#
5

0 1 0

# 0
2

1 0

#
1

0 0 0

# 0
7

0 0

.

Note that the number of steps of the stitched computations needs not be the same.

Now, for many problems, stitched input z should not be accepted by M , and this gives
a contradiction. In particular this will be be the case for palindromes. We are going to �nd
two palindromes x and y that have the same i-CS for some i, but the corresponding z is
not a palindrome, yet it is still accepted by M . We can �nd these two palindromes if M
takes too little time. The basic idea is that if M runs in time t, because i-CSs for di�erent
i correspond to di�erent steps of the computation, for every input there is a value of i such
that the i-CS is short, namely has length at most t(|x|)/n. If t(n) is much less than n2, the
length of this CS is much less than n, from which we can conclude that the number of CSs
is much less than the number of inputs, and so we can �nd two inputs with the same CS.

Proof of Theorem 3.1. Let n be divisible by four, without loss of generality, and consider
palindromes of the form

p(x) := x0n/2xR
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where x ∈ [2]n/4 and xR is the reverse of x.
Assume there are x 6= y in [2]n/4 and i in the middle part, i.e., n/4 ≤ i ≤ 3n/4 − 1, so

that the i-CS of M on p(x) and p(y) is the same. Then we can de�ne z := x0n/2yR which is
not a palindrome but is still accepted by M , concluding the proof.

There remains to prove that the assumption of Theorem 3.1 implies the assumption in
the previous paragraph. Suppose M runs in time t. Since crossing sequences at di�erent
boundaries correspond to di�erent steps of the computation, for every x ∈ [2]n/4 there is
a value of i in the middle part such that the i-CS of M on p(x) has length ≤ ct/n. This
implies that there is an i in the middle s.t. there are ≥ c2n/4/n inputs x for which the i-CS
of M on x has length ≤ ct/n.

For �xed i, the number of i-CS of length ≤ ` is ≤ (s+ 1)`.
Hence there are x 6= y for which p(x) and p(y) have the same i-CS whenever c2n/4/n ≥

(s+ 1)ct/n. Taking logs one gets ct log(s)/n ≤ cn. QED

Exercise 3.1. For every s and n describe an s-state TM deciding palindromes in time
cn2/ log s (matching Theorem 3.1).

Exercise 3.2. Let L := {xx : x ∈ [2]∗}. Show L ∈ TM-Time(cn2), and prove this is tight
up to constants.

One may be tempted to think that it is not hard to prove stronger bounds for similar
functions. In fact as mentioned above this has resisted all attempts!

3.2 Counting: impossibility results for non-explicit func-

tions

Proving the existence of hard functions is simple: Just count. If there are more functions
than e�cient machines, some function is not e�ciently computable. This is applicable to
any model; next we state it for TMs for concreteness. Later we will state it for circuits.

Theorem 3.2. There exists a function f : [2]n → [2] that cannot be computed by a TM
with s states unless cs log s ≥ 2n, regardless of time.

Proof. The number of TMs with s states is ≤ scs, and each TM computes at most one
function (it may compute none, if it does not stop). The number of functions on n bits is
22n . Hence if 2n > cs log s some function cannot be computed. QED

Note this bound is not far from that in Exercise 1.3.
It is instructive to present this basic result as an application of the probabilistic method:

Proof. Let us pick f uniformly at random. We want to show that

Pf [∃ an s-state TM M such that M(x) = f(x) for every x ∈ [2]n] < 1.
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Indeed, if the probability is less than 1 than some function exists that cannot be computed.
By a union bound we can say that this probability is

≤
∑
M

Pf [M(x) = f(x) for every x ∈ [2]n],

where the sum is over all s-state machines. Each probability in the sum is (1/2)2n , since M
is �xed. The number of s-state machines is ≤ scs. So the sum is ≤ scs(1/2)2n , and we can
conclude as before taking logs. QED

3.3 Diagonalization and time hierarchy

Can you compute more if you have more time? For example, can you write a program that
runs in time n2 and computes something that cannot be computed in time n1.5? The answer
is yes for trivial reasons if we allow for non-boolean functions.

Exercise 3.3. Give a function f : [2]∗ → [2]∗ in Time(n2) \ Time(n1.5).

The answer is more interesting if the functions are boolean. Such results are known as
time hierarchies, and a generic technique for proving them is diagonalization, applicable to
any model.

We �rst illustrate the result in the simpler case of partial functions, which contains the
main ideas. Later we discuss total functions.

Theorem 3.3. There is a partial function in TM-Time(t(n)) such that any TMM computing
it runs in time ≥ cM t(n), for any t(n) = ω(1).

In other words, Time(t(n)) ) Time(o(t(n)).

Proof. Consider a TM H that on input x = (M, 1n−|M |) of length n runs M on x until
it stops and then complements the answer. (We can use a simple encoding of these pairs,
for example every even-position bit of the description of M is a 0.) The TM is speci�cally
implemented as follows: H begins by making a copy of M in time |M |c ≤ t(n)/2. Then
every step of the computation of M can be simulated by H with |M |c steps, always keeping
the description of M to the left of the head.

Now de�ne X to be the subset of pairs s.t. M runs in time ≤ t(n)/|M |c on inputs of
length n, and |M |c ≤ t(n)/2. On these inputs, H runs in time |M |c+ |M |c ·t(n)/|M |c ≤ t(n),
as desired.

Now suppose N computes the same function as H in time t(n)/|N |c. Note that x :=
(N, 1n−|N |) falls in the domain X of the function, for n su�ciently large, using that t(n) =
ω(1). Now consider running N on x. We have N(x) = H(x) by supposition, but H(x) is the
complement of N(x), contradiction. QED

This proof is somewhat unsatisfactory; in particular we have no control on the running
time of H on inputs not in X. It is desirable to have a version of this fundamental result
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for total functions. Such a version is stated next. It requires additional assumptions on t
and a larger gap between the running times. Perhaps surprisingly, as we shall discuss, both
requirements are essential.

Theorem 3.4. Let t(n) ≥ n be a function s.t. f(x) := t(|x|) is in TM-Time(t(n)/ logc n).
There is a total function in TM-Time(ct(n) log t(n)) that cannot be computed by any

TM M in time cM t(n).

The assumption about t is satis�ed by all standard functions, including all those in this
book. (For example, take t(n) := n2. The corresponding f is then |x|2. To compute f on
input x of n bits we can �rst compute |x| = n in time cn log n (Exercise 1.2). This is a
number of b := log n bits. We can then square this number in time bc. Note that the time to
compute f(x) is dominated by the cn log n term coming from computing |x|, which does not
depend on t and is much less than the n2/ logc n in the assumption.) The assumption cannot
be removed altogether because there exist pathological functions t for which the result is
false.

The proof is similar to that of Theorem 3.3. However, to make the function total we
need to deal with arbitrary machines, which may not run in the desired time or even stop
at all. The solution is to clock H in a manner similar to the proof of the universal machine,
Lemma 1.1.

Also, we de�ne a slightly di�erent language to give a stronger result � a unary language
� and to avoid some minor technical details (the possibility that the computation of f erases
the input).

We de�ne a TM H that on input 1n obtains a description of a TM M , computes t(n),
and then simulates M on input 1n for t(n) steps in a way similar to Lemma 1.1, and if M
stops then H outputs the complement of the output of M ; and if M does not stop then
H stops and outputs anything. Now H computes a function in time about t(n). We argue
that this function cannot be computed in much less time as follows. Suppose some TM M
computes the function in time somewhat less than t(n). Then we can pick an 1n for which
H obtains the description of this M , and the simulation always stops. Hence, for that 1n we
would obtain M(1n) = H(1n) = 1−M(1n), which is a contradiction.

However, there are interesting di�erences with the simulation in Lemma 1.1. In that
lemma the universal machine U was clocking the steps of the machine M being simulated.
Now instead we need to clock the steps of U itself, even while U is parsing the description of
M to compute its transition function. This is necessary to guarantee that H does not waste
time on big TM descriptions.

Whereas in Lemma 1.1 the tape was arranged as

(x,M, i, t′, y),

it will now be arranged as
(x,M ′, i, t′,M ′′, y)

which is parsed as follows. The description of M is M ′M ′′, M is in state i, the tape of
M contains xy and the head is on the left-most symbol of y. The integer t′ is the counter
decreased at every step
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Proof. De�ne TM H that on input 1n:

1. Compute (n, t(n), 1n).

2. Compute (Mn, t(n), 1n). Here Mn is obtained from n by removing all left-most zeroes
until the �rst 1. I.e., if n = 0j1x then Mn = x. This is similar to the fact that a
program does not change if you add, say, empty lines at the bottom.

3. Simulate Mn on 1n, reducing the counter t(n) at every step, including those parsing
Mn, as explained before.

4. If Mn stops before the counter reaches 0, output the complement of its output. If the
counter reaches 0 stop and output anything.

Running time of H.

1. Computing n is similar to Exercise 1.2. By assumption t(n) is computable in time
t(n)/ logc n. Our de�nition of computation allows for erasing the input, but we can
keep n around spending at most another logc n factor. Thus we can compute (n, t(n))
in time t(n). Finally, in case it was erased, we can re-compute 1n in time cn log n by
keeping a counter (initialized to a copy of n).

2. This takes time c(n+ t(n)): simply scan the input and remove zeroes.

3. Decreasing the counter takes c|t(n)| steps. Hence this simulation will take ct(n) log t(n)
time.

Overall the running time is ct(n) log t(n).
Proof that the function computed by H requires much time. Suppose some TM M com-

putes the same function as H. Consider inputs 1n where n = 0j1M . Parsing the description
of M to compute its transition function takes time cM , a value that depends on M only and
not on j. Hence H will simulate bt(n)/cMc steps of M . If M stops within that time (which
requires t(n) to be larger than cM , and so n and j su�ciently large compared to M) then
the simulation terminates and we reach a contradiction as explained before. QED

The extra log t(n) factor cannot be reduced because of the surprising result presented
in Theorem 3.5 showing that, on TMs, time o(n log n) equals time n for computing total
functions.

However, tighter time hierarchies hold for more powerful models, like RAMs. Also, a
time hierarchy for total functions for BPTime is... an open problem! But a hierarchy is
known for partial functions.

Exercise 3.4. (1) State and prove a tighter time hierarchy for Time (which recall corre-
sponds to RAMs) for total functions. You don't need to address simulation details, but you
need to explain why a sharper separation is possible.

(2) Explain the di�culty in extending (1) to BPTime. You don't need to provide a
counterexample (unknown, in fact) just explain where your argument fails if you replace
Time with BPTime.

(3) State and prove a time hierarchy for BPTime for partial functions.
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3.3.1 TM-Time(o(n log n)) = TM-Time(n+ 1)

In this subsection we prove the result in the title, which we also mentioned earlier. First let
us state the result formally.

Theorem 3.5. Let f : [2]∗ → [2] be in TM-Time(t(n)) for a t(n) = o(n log n). Then
f ∈ TM-Time(n+ 1).

Note that time n + 1 is barely enough to scan the input. Indeed, the corresponding
machines in Theorem 3.5 will only move the head in one direction. The �+1� only re�ects
that we charge one time step to stop in 1.1. Moreover, such machines have no use of writing
to the tape (except to write down the output). These constrained machines are well-studied
and are known as regular or �nite-state-automata.

The rest of this section is devoted to proving the above theorem. LetM be a machine for
f witnessing the assumption of the theorem. We can assume that M stops on every input
(even though our de�nition of time only applies to large enough inputs), possibly by adding
≤ n to the time, which does not change the assumption on t(n). The theorem now follows
from the combination of the next two lemmas.

Lemma 3.1. Let M be a TM running in time t(n) ≤ o(n log n). Then on every input
x ∈ [2]∗ every i-CS with i ≤ |x| has length ≤ cM .

Proof. Assume towards a contradiction that for every b ∈ N there are inputs which have
crossing sequences of length ≥ b. Speci�cally let x(b) be a shortest input of length n(b) :=
|x(b)| such that there exists j ∈ {0, 1, . . . , n(b)} for which the j-CS in the computation of M
on x(b) has length ≥ b.

We have that n(b)→∞ for b→∞ (see exercise below).
There are n(b)+1 ≥ n(b) tape boundaries within or bordering x(b). If we pick a boundary

uniformly at random, the average length of a CS on x(b) is ≤ t(n(b))/n(b). Hence there are
≥ n(b)/2 choices for i s.t. the i-CS on x(b) has length ≤ 2t(n(b))/n(b).

The number of such crossing sequences is

≤ (s+ 1)2t(n(b))/n(b) = (s+ 1)o(n(b) log(n(b))/n(b) = n(b)o(log s).

Hence, the same crossing sequence occurs at ≥ (n(b)/2)/n(b)o(log s) ≥ 4 positions i, using
that n(b) is large enough.

Of these four, one could be the CS of length ≥ b from the de�nition of x(b). Of the other
three, two are on the same side of j. We can remove the corresponding interval of the input
without removing the CS of length ≥ b. Hence we obtained a shorter input with a CS of
length ≥ b, contradicting our de�nition of x(b) and so our initial assumption. QED

Exercise 3.5. Prove n(b)→∞ for b→∞.

Lemma 3.2. Suppose f : [2]∗ → [2] is computable by a TM such that on every input x,
every i-CS with i ≤ |x| has length ≤ b. Then f is computable in time n by a TM with cb
states that only moves the head in one direction.

Exercise 3.6. Prove this.
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f = 0 hard

Functions computable by circuits of size ≤ s

hh′

Figure 3.1: Illustration of the proof of Theorem 3.7.

3.4 Circuits

The situation for circuits is similar to that of 2-TMs, and by Theorem 1.6 we know that
proving ω(n log n) bounds on circuits is harder than for 2-TMs. Even a bound of cn is
unknown. The following is a circuit version of Theorem 3.2. Again, the bound is close to
what we saw in Theorem 1.4.

Theorem 3.6. There are functions f : [2]n → [2] that require circuits of size ≥ c2n/n, for
every n.

Proof. A circuit of size s can be described by cs log s bits, while a function can be described
by 2n bits. Since each circuit computes ≤ 1 function, if every function is computable by a
circuit of size s we have

cs log s ≥ 2n.

This is not possible if s ≤ c2n/n, as the lhs is ≤ c(2n/n) · n < 2n. QED

Exercise 3.7. Show that there are functions f : [2]n → [2] that require alternating circuits
of size ≥ 2cn, for every n. Give two proofs, one based on the statement of Theorem 3.6,
another one modifying the proof of Theorem 3.6. Explain why the bound is weaker than in
Theorem 3.6.

One can prove a hierarchy for circuit size, by combining Theorem 3.6 and Theorem 1.4.
As stated, the results give that circuits of size cs compute more functions than those of size
s. In fact, the �o(1)� in the theorems is small, so one can prove a sharper result. But a
stronger and more enjoyable argument exists.

Theorem 3.7. [Hierarchy for circuit size] For every n and s ≤ c2n/n there is a function
f : [2]n → [2] that can be computed by circuits of size s+ cn but not by circuits of size s.

Proof. Refer to �gure 3.1. Consider a path from the all-zero function f = 0 to a hard
function which requires circuits of size ≥ s, guaranteed to exist by Theorem 3.6, changing
the output of the function on one input at each step of the path. Let h be the �rst function
that requires size > s, and let h′ be the function right before that in the path. Note that h′
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has circuits of size ≤ s, and h can be computed from h′ by changing the value on a single
input. The latter can be implemented by circuits of size cn. QED

Exercise 3.8. Prove a stronger hierarchy result for alternating circuits, where the �cn� in
Theorem 3.7 is replaced with �c.� (But only prove this for s ≤ 2cn, using Theorem 3.7.)

In fact, this improvement is possible even for (non alternating) circuits, see Problem 3.2.

3.4.1 The circuit won't �t in the universe: Non-asymptotic impos-
sibility

Most of the results in this book are asymptotic, i.e., we do not explicitly work out the
constants because they become irrelevant for larger and larger input lengths. As stated,
these results don't say anything for inputs of a �xed length. For example, any function on
10100 bits is in Time(c).

However, it is important to note that all the proofs are constructive and one can work
out the constants, and produce non-asymptotic results. We state next one representative
example when this was done. It is about a problem in logic, an area which often produces
very hard problems.

On an alphabet of size 63, the language used to write formulas includes �rst-order vari-
ables that range over N, second-order variables that range over �nite subsets of N, the
predicates �y = x+ 1� and �x ∈ S� where x and y denote �rst-order variables and S denotes
a set variable, and standard quanti�ers, connectives, constants, binary relation symbols on
integers, and set equality. For example one can write things like �every �nite set has a
maximum:� ∀S∃x ∈ S∀y ∈ S, y ≤ x.

Theorem 3.8. To decide the truth of logical formulas of length at most 610 in this language
requires a circuit containing at least 10125 gates. So even if each gate were the size of a proton,
the circuit would not �t in the known universe.

Their result applies even to randomized circuits with error 1/3, if 610 is replaced with
614. (We can de�ne randomized circuits analogously to BPTime.)

3.5 Average-case hardness, and correlation

An impossibility result is just one of the negative things we can ask about a model. We
can ask stronger things. Perhaps the most natural strengthening is proving an average-case
impossibility result. One justi�cation for this quest is that an impossibility result may be
irrelevant to instances that occur �in nature,� if the latter follow a speci�c distribution.

So, for a distributionD on inputs we can ask how many mistakes are made by any function
in a class F to compute h over D. We call this the hardness of h. If h is boolean, either
the constant 0 or 1 compute it w.p. ≥ 1/2. So the maximum hardness of h is 1/2, if these
constants belong to F as is typically the case. When the hardness approaches 1/2, which
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is the important setting where functions in F can't compute h much better than random
guessing, it is more natural to consider the distance between the hardness parameter and 1/2,
which is called correlation. We now de�ne these quantities which will be used extensively in
several subsequent chapters.

De�nition 3.2. Let X be an input distributed according to a distribution D. Let h and f
be boolean functions, and let F be a set of boolean functions.

We say that h is δ-hard for f w.r.t. D (or over D) if P[f(X) 6= h(X)] ≥ δ, and that it is
δ-hard for F w.r.t. D if it is δ-hard for every f ∈ F .

The correlation between h and f w.r.t. D is

|E[(−1)f(X)+h(X)]| = |P[f(X) = h(X)]− P[f(X) 6= h(X)]| = |1− 2P[f(X) 6= h(X)]|.

We also introduce the notation Ee[y] for E[(−1)y] which allows us to write correlation as

|Ee[f(X) + g(X)]| .

We say h has correlation ≤ δ with F w.r.t. D if it has correlation ≤ δ w.r.t. D with any
f ∈ F .

If D is not speci�ed it is assume to be the uniform distribution.

Thus the correlation (or hardness) between two functions is a measure of how often the
functions agree on a uniform input. To illustrate parameters, if h = f or h = 1 − f then
the correlation is one. The hardness is no larger than 0 in the �rst case and 1 in the latter.
Typical complexity classes are closed under complement, in which case the fact that we take
absolute values in the correlation is immaterial and hardness and correlation are equivalent.
If h and f disagree on exactly one input in [2]n the correlation is 1− 1/2n− 1/2n = 1− 2/2n

and the hardness is 1/2n. If they disagree on exactly half the inputs the correlation is zero
and the hardness is 1/2. For any f , most functions h have correlation close to 0 with f . (As
can be proved via counting arguments as in Chapter 3.)

Exercise 3.9. [Average-case/correlation version of Theorem 3.6] Prove that there are func-
tions h : [2]n → [2] that have correlation 2−an with circuits of size 2an, for some constant
a > 0.

At �rst sight, average-case hardness and correlation bounds seem stronger than impossi-
bility. In fact, impossibility results are equivalent to strong correlation bounds!

Theorem 3.9. [Computing ⇐⇒ correlating over any distribution] Let F be a set of
functions mapping [2]n to [2]; and let h be a function.

[⇐] Suppose for every distribution D on [2]n there is f ∈ F s.t. Ex←De[f(x) + h(x)] ≥ ε.
Then there exist cn/ε2 functions fi ∈ F s.t.

h = Majority(f1, f2, . . . , fcn/ε2).

[⇒] Suppose h = Majority(f1, f2, . . . , ft) for some t. Then for any distribution D there
is i s.t. Ee[(fi + h)(D)] ≥ 1/t.
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Exercise 3.10. Prove the [⇒]. Feel free to assume t is odd for simplicity.

In particular, for models that are able to compute majority, such as PCkt, we get that
h 6∈ PCkt i� there is a distribution D for which any f ∈ PCkt has correlation ≤ 1/na for
any a. In other words, superpower correlation bounds for some distribution are necessary
and su�cient for superpower impossibility.

In the above theorem we need correlation under every distribution. By contrast, in
section 11.2.2 we will study a similar connection but under the uniform distribution. The
proofs are closely related.

We now develop machinery to understand and prove Theorem 3.9. A useful viewpoint,
here and elsewhere, is the equivalence between randomness in the input and having it in the
model :

Corollary 3.1. Let h be a function, and F a set of functions. There is a distribution over
F s.t. Ee[F (x) + h(x)] ≥ α for every input x i� for every distribution X over inputs there is
f ∈ F s.t. Ee[f(X) + h(X)] ≥ α.

Exercise 3.11. Prove the �only if� direction of Corollary 3.1.

The �if� direction of Corollary 3.1 is a special case of the min-max theorem from game
theory, a.k.a. linear-programming duality, theorem of the alternatives for linear systems, etc,
stated next.

Theorem 3.10 (Linear duality). Let X and Y be sets, p : X × Y → R, and α ∈ R. Then
either

there is a distribution DX on X s.t. EDXp(DX , y) ≤ α for every y ∈ Y , or
there is a distribution DY on Y s.t. EDY p(x,DY ) ≥ α for every x ∈ X.

Exercise 3.12. Prove the �if� direction of Corollary 3.1. Hint: Don't worry about ≤ vs. <;
I don't.

Theorem 3.9 follows from Corollary 3.1 and tail bounds (Theorem 2.1), similarly to the
proof of the error-reduction Theorem 2.2 for BPTime.

Proof of Theorem 3.9, ⇐. Use Corollary 3.1 to get a distribution on F . The majority
of cn/ε2 samples from F has error < 2−n by Theorem 2.1. By a union bound we can �x the
samples to the fi. QED

3.6 Problems

Problem 3.1. Hierarchy Theorem 3.4 only gives a function f that cannot be computed fast
on all large enough input lengths: it is consistent with the theorem that f can be computed
fast on in�nitely many input lengths.

Give a function f : [2]∗ → [2]∗ mapping x to [2]log log log |x| that is computable in time nc

but such that for any RAM M running in time n2 the following holds. For every n ≥ cM
and every x ∈ [2]n one has M(x) 6= f(x).

Hint: Note the range of f . Can this result hold as stated with range [2]?
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Problem 3.2. Replace �cn� in Theorem 3.7 with �c.�

Problem 3.3. Prove that {0i1i : i ≥ 0} ∈ TM-Time(cn log n) \ TM-Time(t(n)), for any t(n) = o(n log n).
For the negative result, don't use pumping lemmas or other characterization results not

covered in this book.

Problem 3.4. The following argument contradicts Theorem 3.4; what is wrong with it?
�By Theorem 3.5, TM-Time(n log0.9 n) = TM-Time(cn). By padding (section �1.6),

TM-Time(n log1.1 n) = TM-Time(n log0.9 n). Hence TM-Time(n log1.1 n) = TM-Time(n).�

3.7 Notes

Concluding, I view the mystery of the di�culty of proving (even the slightest
non-trivial) computational di�culty of natural problems to be one of the greatest
mysteries of contemporary mathematics. [287]

Crossing sequences and the tight quadratic bound for palindromes are from [128].
The time hierarchy originates in [130] and was later optimized [131].
The existence of hard functions via counting arguments, Theorem 3.6, goes back to [233],

Theorem 7, �Are most functions simple or complex?�
Theorem 3.5 follows by combining results in [129, 159].
Theorem 3.8 is from [246], see the reference for the history of the result.

A brief history of the impossible Historically, impossibility results have been some
of the most consequential. An early example is the proof that the diagonal of a square is
irrational, by the Pythagoreans about 2500 years ago. This can be seen as a statement about
computation, where the computational model are rational numbers, and the target object
is �natural� or occurs �in the wild.� Another famous example is that there is no closed-
form algebraic expression for polynomial equations of degree 5. In the �rst half of the 20th
century undecidability results in logic and mathematics began to appear. Complexity theory
takes a more quantitative angle on impossibility. It focuses on a resource such as time and
considers problems that can be solved with enough of the resource, and tries to bound from
below the amount of resource that's needed. Because of this, impossibility results are also
known as �lower bounds.� The �rst such results were proved in the second half of the 20th
century, and many have not been improved since then. As we have seen, the �rst results on
tape machines are from the 60s, and so are the �rst results on circuits such as [195, 188],
though circuit complexity started already from [233]. [258] provides a survey of research
on lower bounds in the Soviet Union. A fresh wave of results in circuit complexity came
in the 80's and 90's, including a proof that an explicit function requires circuits of size cn
[45] � a bound that has stood for a long time and has only seen minor improvements [76] �
and several other results on small-depth circuits discussed later in section �8.5, Chapter ??,
Chapter 13. This wave soon �hit the wall,� for example the �wall� of constant-depth circuits
with mod 6 gates, see section �8.3, and stalled. Two lines of works have moved more or
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less parallel to developments in boolean circuit complexity. The �rst is algebraic complexity,
see Chapter 14. The second is a line of works that has devised increasingly sophisticated
ways to leverage uniformity and diagonalization, producing results such as [210, 78, 80, 290]
(cf. section �7.9 and Theorem 8.11) that do not have a non-uniform counterpart. Since the
beginning of complexity a number of �barrier� results have been proposed to explain the lack
of progress, see Chapter 16. And that's pretty much where we stand now.
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Chapter 4

The art of reductions

One can relate the complexity of functions via reductions . This concept is so ingrained
in common reasoning that giving it a name may feel, at times, strange. For in some sense
pretty much everything proceeds by reductions. In any algorithms textbook, the majority of
algorithms can be cast as reductions to algorithms presented earlier in the book, and so on.
And it is worthwhile to emphasize now that, as we shall see below, reductions, even in the
context of computing, have been used for millennia. For about a century reductions have
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been used in the context of undecidability in a modern way, starting with the incompleteness
theorem in logic, whose proof reduces questions in logic to questions in arithmetic.

Perhaps one reason for the more recent interest in complexity reductions is that we can
use them to relate problems that are tantalizingly close to problems that today we solve
routinely on somewhat large scale inputs with computers, and that therefore appear to be
just out of reach. By contrast, reductions in the context of undecidability tend to apply
to problems that are completely out of reach, and in this sense remote from our immediate
worries.

4.1 Types of reductions

Informally, a reduction from a function f to a function g is a way to compute f given that
we can compute g. One can de�ne reductions in di�erent ways, depending on the overhead
required to compute f given that we can compute g. The most general type of reduction is
simply an implication.

General form of reduction from f to g:
If g can be computed with resources X then f can be computed with resources Y .

A common setting is when X = Y . In this case the reduction allows us to stay within
the same complexity class.

De�nition 4.1. We say that f reduces to g in X (or under X reductions) if

g ∈ X ⇒ f ∈ X.

A further special and noteworthy case is when X = P, or X = BPP; in these cases the
reduction can be interpreted as saying that if g is easy to compute than f is too. But in
general X may not be equal to Y . We will see examples of such implications for various X
and Y .

If g 6∈ X this de�nition trivializes, since then everything reduces to g. But the point of
this de�nition is that it allows us to draw connections between problems whose complexity
is not known. Still, it is sometimes useful to be more speci�c about how the implication is
proved. For example, this is useful when inferring various properties of f from properties of
g, something which can be obscured by a stark implication.

A more constrained type of reduction is subroutine or oracle or black-box reduction. In
this type, we augment our computational model with the ability to make queries to some
function f . For example, for TMs we can reserve one tape for the input y to f , and augment
the states with a special query state. Upon entering that state, in one time step the input
y to f is replaced with the output f(y). For some complexity classes, making this de�nition
useful is not immediate. For example, should the input y be erased? This matters if precise
time bounds are sought. But for a robust class like P the de�nition is clear:

De�nition 4.2. We denote by P f the functions computable in P with oracle access to f .
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An even more constrained type of reduction which is sometimes more suitable for a
�ne-grained analysis is the following:

De�nition 4.3. We say that f map reduces to g in X (or via a map in X) if there isM ∈ X
such that f(x) = g(M(x)) for every x.

Exercise 4.1. Suppose that f map reduces to g in X.
(1) Suppose X = P. Show f reduces to g in X.
(2) Suppose X =

⋃
dTime(d · n2). Can you still show that f reduces to g in X?

In general, the harder the problems we are reducing the more constrained the class X can
be. In several interesting cases, extremely constrained classes X su�ce for the reductions,
such as functions with constant locality, or even locality one, cf. Problem 4.7. But for many
other problems, the reductions we shall see are not even mapping reductions. In fact, our
�rst example is not a mapping reduction.

4.2 Reductions

4.2.1 Multiplication

Summing two n-bit integers is in CktGates(cn) (Exercise 1.9). But the smallest circuit known
for multiplication has ≥ cn log n gates. (The same situation holds for MTMs; over RAMs
and related models multiplication can be done in time cn.) It is a long-standing question
whether we can multiply two n-bit integers with a linear-size circuit.

What about squaring integers? Is that harder or easier than multiplication? Obviously,
if we can multiply two numbers we can also square a number: simply multiply it by itself.
This is a trivial example of a reduction. What about the other way around? We can use a
reduction established millennia ago by the Babylonians. They employed the equation

a · b =
(a+ b)2 − (a− b)2

4
(4.1)

to reduce multiplication to squaring, plus some easy operations like addition and division by
four. In our terminology we have the following.

De�nition 4.4. Multiplication is the problem of computing the product of two n-bit inte-
gers. Squaring is the problem of computing the square of an n-bit integer.

Theorem 4.1. If Squaring has linear-size circuits then Multiplication has linear-size circuits.

Proof. Suppose C computes Squaring. Then we can multiply using equation (4.1). Specif-
ically, given a and b we use Exercise 1.9 to compute a + b and a − b. (We haven't seen
subtraction or negative integers, but it's similar to addition.) Then we run C on both of
them. Finally, we again use Exercise 1.9 for computing their di�erence. It remains to divide
by four. In binary, this is accomplished by ignoring the last two bits � which costs nothing
on a circuit. QED
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4.2.2 3Sum

De�nition 4.5. The 3Sum problem: Given a set S of integers, are there three integers
x, y, z ∈ S that sum to 0?

In De�nition 4.5 we allow for repeated integers (e.g., x = y). Problem 4.1 considers the
variant where repetitions are not allowed. It is good to think of integers with c log n bits,
and some works show that these are the hardest instances.

It is easy to solve 3Sum in time n2 logc n on a RAM, at least if the numbers have logc n
bits: We can �rst sort the integers then for each pair (a, b) we can do a binary search to
check if −(a+ b) is also present. Let's convince ourselves that the bit length of the integers
does not a�ect this algorithm:

Exercise 4.2. Solve 3Sum in time n2 logc n when each input integer can have a di�erent
length. Hint: Recall that n refers to the total input length. As a warm-up, begin with the
case where each integer takes w bits.

3Sum has been conjectured to require quadratic time.

De�nition 4.6. SubquadraticTime :=
⋃
ε>0 Time(n2−ε).

Exercise 4.3. Show that 3Sum is subquadratic equivalent to the Tripartite-3Sum problem:
Given sets A1, A2, and A3 of numbers, are there ai ∈ Ai s.t. a1 + a2 + a3 = 0? Hint: Recall
in De�nition 4.5 we allow for duplicates.

Conjecture 4.1. 3Sum 6∈ SubquadraticTime.

One can reduce 3Sum to a number of other interesting problem to infer that, under
Conjecture 4.1, those problems require quadratic time too.

De�nition 4.7. The Collinearity problem: Given a list of points in the plane, are there
three points on a line?

Theorem 4.2. Collinearity ∈ SubquadraticTime⇒ 3Sum ∈ SubquadraticTime (i.e., Conjecture
4.1 is false).

Proof. We map instance a1, a2, . . . , at of 3Sum to the points

(a1, a
3
1), (a2, a

3
2), . . . , (at, a

3
t ),

and solve Collinearity on those points.
To verify correctness, notice that points (x, x3), (y, y3), and (z, z3) are on a line i�

y3 − x3

y − x
=
z3 − x3

z − x
.

Because y3 − x3 = (y − x)(y2 + yx+ x2), this condition is equivalent to

y2 + yx+ x2 = z2 + zx+ x2 ⇔ (x+ (y + z))(y − z) = 0.
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Assuming y 6= z, i.e., that the 3Sum instance consists of distinct numbers, this is equivalent
to x+ y + z = 0, as desired. (The case where there can be duplicates is left as an exercise.)

Note that the Collinearity instance has length linear in the 3Sum instance, and the result
follows. QED

We now give a reduction in the other direction: We reduce a problem to 3Sum.

De�nition 4.8. The 3Cycle-Detection problem: Given the adjacency list of a directed graph,
is there a cycle of length 3?

This problem can be solved in time n2ω/(ω+1)+o(1) where ω < 2.373 is the exponent
of matrix multiplication. If ω = 2 then the bound is n1.33̄+o(1). It is not known if any
subquadratic algorithm for 3Sum would improve these bounds. However, we can show that
an improvement follows if 3Sum ∈ Time(n1+ε) for a small enough ε.

Theorem 4.3. 3Sum ∈ Time(t(n))⇒ 3Cycle-Detection ∈ BPTime(ct(n)), for any t(n) ≥ n.

The reduction can be derandomized (that is, one can replace BPTime with Time in the
conclusion) but the randomized case contains the main ideas.

Proof. Given a list of t edges with c log t bits per node, we assign random numbers rx with
4 log t bits to each node x in the graph. The 3Sum instance consists of the integers rx − ry
for every edge x→ y in the graph. Its size is linear in n = ct log t.

To verify correctness, suppose that there is a cycle

x→ y → z → x

in the graph. Then we have rx − ry + ry − rz + rz − rx = 0, for any random choices.
Conversely, suppose there is no cycle, and consider any three numbers rx1 − ry1, rx2 −

ry2, rx3 − ry3 from the reduction and its corresponding edges. Some node xi has unequal
in-degree and out-degree in those edges. This means that when summing the three numbers,
the random variable rxi will not cancel out. When selecting uniform values for that variable,
the probability of getting 0 is at most 1/t4.

By a union bound, the probability there there are three numbers that sum to zero is
≤ t3/t4 < 1/3. QED

Exercise 4.4. Prove analogous results for:
3Sum vs. 3 Cycles on undirected graphs.
4Sum vs. 4 Cycles on undirected graphs. Hint: This might not be as easy as the �rst

part.
To be clear, in the input to the undirected graph problems we do not allow repeated

edges among nodes, and a cycle cannot use an edge more than once.

Many other clusters of problems exist, for example based on matrix multiplication or
all-pairs shortest path.
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4.3 Reductions from 3Sat

In this section we begin to explore an important cluster of problems not known to be in
BPP. What's special about these problems is that in Chapter 5 we will show that we can
reduce arbitrary computation to them, while this is unknown for the problems in the previous
section.

Perhaps the most basic problem in the cluster is the following.

De�nition 4.9. A 3CNF is a CNF where every clause has at most three literals. The 3Sat
problem: Given a 3CNF φ, is there an assignment x s.t. φ(x) = 1?

Conjecture 4.2. 3Sat6∈ P.

Stronger conjectures have been made.

Conjecture 4.3. [Exponential time hypothesis (ETH)] There is ε > 0 such that there is no
algorithm that on input a 3CNF φ with v variables and cv3 clauses decides if φ is satis�able
in time 2(ε+o(1))v.

Conjecture 4.4. [Strong exponential-time hypothesis (SETH)] For every ε > 0 there is k
such that there is no algorithm that on input a kCNF φ with v variables and cvk clauses
decides if φ is satis�able in time 2(1−ε+o(1))v.

It is known that SETH⇒ ETH, but the proof is not immediate.
We now give reductions from 3Sat to several other problems. The reductions are in fact

mapping reductions. Moreover, the reduction map can be extremely restricted, see Problem
4.7. In this sense, therefore, these reductions can be viewed as direct translations of the
problems, and maybe we shouldn't really be thinking of the problems as di�erent, even if
they at �rst sight refer to di�erent objects (formulas, graphs, numbers, etc.).

For videos covering these reductions you can watch videos 29, 30, 31, and 32 covering
reductions: 3SAT to CLIQUE, CLIQUE to VERTEX-COVER, 3SAT to SUBSET-SUM,
3SAT to 3COLOR from https://www.ccs.neu.edu/home/viola/classes/algm-generic.

html Note: The videos use the terminology �polynomial time� instead of �power time� here.

4.3.1 3Sat to Clique

De�nition 4.10. The Clique problem, given a graph G and an integer t, are there t nodes
in G that are all connected? The latter is called a clique of size t.

Example 4.1. The following graph has a clique of size 3 but not of size 4:
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Theorem 4.4. Clique ∈ P⇒ 3Sat ∈ P.

Proof. Given a 3CNF ϕ with k clauses, we construct a graph G with 3k nodes where we
have a node for each literal occurrence. We then connect all except

(A) Nodes in same clause, and
(B) Contradictory nodes, such as x and ¬x.
The construction is in P.
We claim that ϕ is satis�able i� G has a clique of size k.
Only if: Given a satisfying assignment, collect exactly one node which is satis�ed in

each clause. This makes t = k nodes. For any pair of such nodes, (A) does not hold by
construction, and (B) because they correspond to an assignment.

If : Given a clique of size t, pick any assignment that makes the corresponding literals
true. This is a valid de�nition by (B). Also, because of (A), there is at least one true literal
in each clause. QED

Example 4.2. Consider

ϕ = (x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ z) ∧ (x ∨ y ∨ ¬z).

The corresponding graph G is:

¬x ¬y z

x

y

z

x

y

¬z

We seek cliques of size t = k = 3, a.k.a. triangles.
A satisfying assignment to ϕ is x = 0; y = 1; z = 0. The corresponding clique is shown

next in green:
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¬x ¬y z

x

y

z

x

y

¬z

Another satisfying assignment is x = 1; y = 0; z = 1. The corresponding clique is shown
next in green:

¬x ¬y z

x

y

z

x

y

¬z

4.3.2 Clique to cover-by-vertexes

TBD

4.3.3 3Sat to Subset-Sum

De�nition 4.11. The Subset-sum problem: Given n integers ai and a target t, is there a
subset of the ai that sums to t?
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Example 4.3. There is a subset of 5, 2, 14, 3, 9 summing to t := 25 (2 + 14 + 9 = 25). But
there is no subset of 1, 3, 4, 9 summing to t := 15.

Subset-sum is also a very interesting problems. If the numbers are small it can be
solved in power time via dynamic programming. Hence the next reduction capitalizes on the
magnitude of the numbers.

Theorem 4.5. Subset-sum ∈ P⇒ 3Sat ∈ P.

Proof. On input ϕ with v variables and k clauses we produce a list of numbers with v + k
digits. The most signi�cant v correspond to variables; the other k to clauses. For each
variable x include number aTx which has 1 in the digit corresponding to x, and a 1 in every
digit of a clause where x appears without negation. Similarly, include number aFx which
also has a 1 in the digit corresponding to x, and now a 1 in every digit of a clause where x
appears negated.

Also, for each clause C, include twice the number aC which has a 1 in the digit corre-
sponding to C, 0 in others.

Set t to be 1 in �rst v digits, and 3 in rest k digits.
This construction is power time.
Now suppose ϕ has satisfying assignment. Pick aTx if x is true, aFx if x is false. The sum

of these numbers yield 1 in �rst v digits by construction. It also yields 1, 2, or 3 in each of
the last k digits because each clause has a true literal. By picking appropriate subset of the
numbers aC we can reach t.

Conversely, given a subset, note that there is no carry in sum, because there are only
3 literals per clause. So digits behave �independently.� For each pair aTx , a

F
x exactly one is

included, otherwise would not get 1 in that digit. De�ne x true if aTx included, false otherwise.
For any clause C, the aC contribute ≤ 2 in that digit. So each clause must have a true literal
otherwise sum would not get to 3 in that digit. QED

Example 4.4. Let ϕ := (x∨ y ∨ z)∧ (¬x∨¬y ∨ z)∧ (x∨ y ∨¬z). The subset-sum instance
is:

var x var y var z clause 1 clause 2 clause 3
aTx = 1 0 0 1 0 1
aFx = 1 0 0 0 1 0
aTy = 0 1 0 1 0 1
aFy = 0 1 0 0 1 0
aTz = 0 0 1 1 1 0
aFz = 0 0 1 0 0 1
ac1 = 0 0 0 1 0 0
ac2 = 0 0 0 0 1 0
ac3 = 0 0 0 0 0 1
t = 1 1 1 3 3 3

A satisfying assignment is x = 0, y = 1, z = 0. The corresponding subset is:
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var x var y var z clause 1 clause 2 clause 3
aTx = 1 0 0 1 0 1
aFx = 1 0 0 0 1 0
aTy = 0 1 0 1 0 1
aFy = 0 1 0 0 1 0
aTz = 0 0 1 1 1 0
aFz = 0 0 1 0 0 1

(2x) ac1 = 0 0 0 1 0 0 (choose twice)
(2x) ac2 = 0 0 0 0 1 0 (choose twice)
(2x) ac3 = 0 0 0 0 0 1

t = 1 1 1 3 3 3
Another satisfying assignment is x = y = z = 1 with corresponding subset

var x var y var z clause 1 clause 2 clause 3
aTx = 1 0 0 1 0 1
aFx = 1 0 0 0 1 0
aTy = 0 1 0 1 0 1
aFy = 0 1 0 0 1 0
aTz = 0 0 1 1 1 0
aFz = 0 0 1 0 0 1

(2x) ac1 = 0 0 0 1 0 0
(2x) ac2 = 0 0 0 0 1 0 (choose twice)
(2x) ac3 = 0 0 0 0 0 1

t = 1 1 1 3 3 3

4.3.4 3Sat to 3Color

De�nition 4.12. A 3-coloring of a graph is a coloring of each node, using at most 3 colors,
such that no adjacent nodes have the same color. The 3Color problem: Given a graph G,
does it have a 3 coloring?

Example 4.5. The following graphs have a 3-coloring, shown:
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An example of a graph that cannot be 3-colored is a clique of size 4.

Theorem 4.6. 3Color∈ P⇒ 3Sat ∈ P.

Proof. Given a 3CNF φ, we construct a graph G as follows.
Add 3 special nodes called the "palette" in a clique:

T = True
F = False
B = Base

T B

F

For each variable add 2 literal nodes with an edge between them

x ¬x

For each clause add the following gadget with 6 nodes
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Connect each literal node to node B in the palette

T B

F

x ¬x

For each clause (`1, `2, `3) connect the clause gadget to the palette and to the nodes `i as
follows:

T B

F

`1 `2 `3
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The construction of G is in P. We now prove that ϕ is satis�able i� G is 3 colorable.
We begin with some preliminary remarks. In the palette, T's color represents TRUE, and
F's color represents FALSE. Note in a 3-coloring, all variable nodes must be colored T or F
because they are connected to B. Also, x and ¬x must have di�erent colors because they are
connected. So we can �translate� a 3-coloring of G into a true/false assignment to variables
of ϕ.

The important claim is that a clause gadget can be 3-colored i� any of the literals
connected to it is colored True. This holds because each of the two triangles in a the clause
gadget is computing �Or:� In a triangle, the top node is colored according to the Or of the
two literals connected to the bottom two nodes in the triangle. For example, if the literals
are both F, then the bottom nodes in the triangle must be colored T and B, and so the top
is F.

The result follows. Given a satisfying assignment, we can pick the corresponding coloring
of the literal nodes and extend it to a 3 coloring of the entire graph. Vice versa, given a 3
coloring of the graph we can infer an assignment to the variables and note that each clause
has a true literal since each clause gadget is 3 colored. QED

Example 4.6. Let ϕ := (x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ z). Then G is

T B

F

x ¬x y ¬y z ¬z
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A satisfying assignment is x = y = 0 and z = 1. The corresponding coloring is

T B

F

x ¬x y ¬y z ¬z

Exercise 4.5. The problem System is de�ned as follows. A linear inequality is an inequality
involving sums of variables and constants, such as x+ y ≥ z, x ≤ −17, and so on. A system
of linear inequalities has an integer solution if it is possible to substitute integer values for
the variables so that every inequality in the system becomes true. The language System
consists of systems of linear inequalities that have an integer solution. For example,

(x+ y ≥ z, x ≤ 5, y ≤ 1, z ≥ 5) ∈ System

(x+ y ≥ 2z, x ≤ 5, y ≤ 1, z ≥ 5) 6∈ System

Reduce 3Sat to System in P.

Exercise 4.6. For an integer k, k-Color is the problem of deciding if the nodes of a given
undirected graph G can be colored using k colors in such a way that no two adjacent vertices
have the same color.

Reduce 3-Color to 4-Color in P.
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Reductions in the opposite directions are possible, and so in fact the problems in this
section are power-time equivalent in the sense that any of the problems is in P i� all the
others are. We will see a generic reduction in the next chapter. For now, we illustrate this
equivalence in a particular case.

Exercise 4.7. Reduce 3Color to 3Sat in P, following these steps:
1. Given a graph G, introduce variables xi,d representing that node i has color d, where

d ranges in the set of colors C = {g, r, b}. Describe a set of clauses that is satis�able if and
only if for every i there is exactly one d ∈ C such that xi,d is true.

2. Introduce clauses representing that adjacent nodes do not have the same color.
3. Brie�y conclude the proof.

Thus, we are identifying a cluster of problems which are all power-time equivalent.

4.4 Power hardness from SETH

In this section we show that a conjecture similar to Conjecture 4.1 can be proved assuming
SETH. This is an interesting example of how we can connect di�erent parameter regimes,
since SETH is stated in terms of exponential running times. In general, �scaling� parameters
is a powerful technique in the complexity toolkit.

De�nition 4.13. The Or-Vector problem: Given two sets A and B of strings of the same
length, determine if there is a ∈ A and b ∈ B such that the bit-wise Or a ∨ b equals the
all-one vector.

Similarly to 3Sum, the Or-Vector problem is in Time(n2), in fact the setting is slightly
easier as it's more natural to assume that the bit vectors have the same length here, cf. Ex-
ercise 4.2. We can show that a substantial improvement would disprove SETH.

Theorem 4.7. Or-Vector ∈ SubquadraticTime⇒ SETH is false.

Proof. Divide the v variables in two blocks of v/2 each. For each assignment to the variables
in the �rst block construct the vector in [2]d where bit i is 1 i� clause i is satis�ed by the
variables in the �rst block. Call A the resulting set of vectors. Let N := 2v/2 and note
|A| = N . Do the same for the other block and call the resulting set B.

Note that φ is satis�able i� ∃a ∈ A, b ∈ B such that a ∨ b = 1d.
Constructing these sets takes time Ndc. If Or-Vector ∈ Time(n2−ε) for some ε > 0, we

can take k = cε and rule out SETH. QED

4.5 Search problems

Most of the problems in the previous sections ask about the existence of solutions. For
example 3Sat asks about the existence of a satisfying assignment. It is natural to ask about
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computing such a solution, if it exists. Such non-boolean problems are known as search
problems .

Next we show that in some cases we can reduce a search problem to the corresponding
boolean problem.

De�nition 4.14. Search-3Sat is the problem: Given a satis�able 3CNF formula, output a
satisfying assignment.

Theorem 4.8. Search-3Sat reduces to 3Sat in P. That is: 3Sat ∈ P⇒ Search-3Sat ∈ P.

Proof. We construct a satisfying assignment one variable at the time. Given a satis�able
3CNF, set the �rst variable to 0 and check if it is still satis�able with the assumed algorithm
for 3Sat. If it is, go to the next variable. If it is not, set the �rst variable to 1 and go to the
next variable. QED

Exercise 4.8. Show Clique ∈ P⇒ Search-Clique ∈ P.

4.5.1 Fastest algorithm for Search-3Sat

A curious fact about many search problems is that we know of an algorithm which is, in
an asymptotic sense to be discussed now, essentially the fastest possible algorithm. This
algorithm proceeds by simulating every possible program. When a program stops and out-
puts the answer, we can check it e�ciently. Naturally, we can't just take any program and
simulate it until it ends, since it may never end. So we will clock programs, and stop them if
they take too long. There is a particular simulation schedule which leads to e�cient running
times.

Theorem 4.9. There is a RAM U (for �universal�) such that on input any satis�able formula
x:

(1) U outputs a satisfying assignment, and
(2) If there is a RAM M that on input x outputs a satisfying assignment for x in t steps

then U stops in cM t+ |x|c steps.

We are taking advantage of the RAM model. On other models it is not known if the
dependence on t can be linear.

Proof. For i = 1, 2, . . . the RAM U simulates RAM i for 2i steps. Lemma 1.3 guarantees
that for each i the simulation takes time c2i. If RAM i stops and outputs y, then U checks
in time |x|c if y is a satisfying assignment. If it is, then U outputs y and stops. Otherwise
it continues.

Now letM be as in (2). As before, we work with an enumeration of programs where each
program appears in�nitely often. Hence we can assume that M has a description of length
` := cM + log t. Thus the simulation will terminate when i = `.
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The time spent by U for a �xed i is ≤ c · 2i + |x|c. Hence he total running time of U is

≤ c
∑̀
j=1

(
c2j + |x|c

)
≤ cM2` + cM |x|c ≤ cM(t+ |x|c).

QED

This result nicely illustrates how �constant factors� can lead to impractical results be-
cause, of course, the problem is that the constant in front of t is enormous. Speci�cally, it is
exponential in the size of the program, see Problem 4.8.

4.6 Gap-SAT: The PCP theorem

�Furthermore, most problem reductions do not create or preserve such gaps.
There would appear to be a last resort, namely to create such a gap in the
generic reduction [C]. Unfortunately, this also seems doubtful. The intuitive
reason is that computation is an inherently unstable, non-robust mathematical
object, in the sense that it can be turned from non-accepting by changes that
would be insigni�cant in any reasonable metric � say, by �ipping a single state
to accepting.�

One of the most exciting, consequential, and technical developments in complexity theory of
the last few decades has been the development of reductions that create gaps.

De�nition 4.15. γ-Gap-3Sat is the 3Sat problem restricted to input formulas f that are
either satis�able or such that any assignment satis�es at most a γ fraction of clauses.

Note that 3Sat is equivalent to γ-Gap-3Sat for γ = 1− 1/n, since a formula of size n has
at most n clauses. At �rst sight it is unclear how to connect the problems when γ is much
smaller. But in fact it is possible to obtain a constant γ. This result is known as the PCP
theorem, where PCP stands for probabilistically-checkable-proofs. The connection to proof
systems will be discussed in Chapter 10.

Theorem 4.10. [PCP] There is γ < 1 such that γ-Gap-3Sat ∈ P⇒ 3Sat ∈ P.

Similar results can be established for other problems such as 3Color, but the reductions
in the previous section don't preserve gaps and can't be immediately applied.

A major application of the PCP theorem is in inapproximability results. A typical opti-
mization problem is Max-3Sat.

De�nition 4.16. The Max-3Sat problem: given a 3CNF formula, �nd a satisfying assign-
ment that satis�es the maximum number of clauses.
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Solving 3Sat reduces to Max-3Sat (in Chapter 5 we will give a reverse reduction as
well). But we can ask for β-approximating Max-3Sat, that is, computing an assignment that
satis�es a number of clauses that is at least a β fraction of the maximum possible clauses
that can be satis�ed.

The PCP Theorem 4.10 implies that 3Sat reduces to β−approximating Max-3Sat, for
some constant β < 1.

It has been a major line of research to obtain tight approximation factors β for a variety
of problems. For example, 3Sat reduces to β-approximating Max-3Sat for any β > 7/8. This
constant is tight because a random uniform assignment to the variables satis�es each clause
with probability 7/8 and hence expects to satisfy a 7/8 fraction of the clauses.

Exercise 4.9. Turn this latter observation in an e�cient randomized algorithm with an
approximation factor 7/8− o(1).

4.7 Problems

Problem 4.1. Show that 3Sum (which recall we de�ned allowing for repeated elements) is
SubquadraticBPTime equivalent to 3Sum where repeated elements are not allowed.

Hint: Feel free to assume that the input consists of distinct elements (indeed, it's called
a �set�). Prune the input using randomness.

Problem 4.2. Reduce 3Sat in P to the PIT problem (De�nition 2.3) over the �eld with two
elements.

Problem 4.3. Prove that 3Sat is not TM-Time(n1.99). (Hint: Consider a variant of the
palindromes problem where the input bits are suitably spaced out with zeroes. Prove a time
lower bound for this variant by explaining what modi�cations are needed to the proof of
Theorem 3.1. Conclude by giving a suitable reduction.)

Problem 4.4. Consider the problem H: The input is a directed graph with a special source
node s, m destination nodes t1, t2, . . . , tm, and a subset B of bad nodes. The question is
whether there are m paths from s to each of the destination nodes. The paths can share
edges, but any two paths entering a bad node must leave through the same outgoing edge.

Reduce 3SAT to H in P.

Problem 4.5. The Quad-Sys problem: Given a system of quadratic equations over F2,
decide if it has a solution. Reduce 3Sat to Quad-Sys in P.

Problem 4.6. Show that 3Color ∈ P⇒ Search-3Color ∈ P.

Problem 4.7. Give an encoding of 3Sat so that the reduction to 3Color in section �4.3 can
be computed, for any input length, by a 1-local map (in particular, a circuit of constant
depth) (cf. De�nition 1.5).
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Problem 4.8. Suppose there exists a such that Theorem 4.9 holds with the running time
of U replaced with (|M | · t · |x|)a. (That is, the dependence on the program description
improved to power, and we allow even weaker dependence on t.) Prove that 3Sat ∈ P.

Problem 4.9. Use Problem 2.4 and its notation. Assume P = BPP (recall this only refers
to boolean functions, see the convention on page 26). Show that given a circuit C and ε
written in unary s.t. pC ≥ ε we can compute x : C(x) = 1 in P. In particular, given a
non-zero arithmetic circuit we can �nd a non-zero assignment.

4.8 Notes

Circuits of size cn log n for multiplication were obtained in [120]. For the result about RAMs
see [229].

Following [63] (discussed in the next chapter), [151] established reductions from satis�abil-
ity of (general) boolean formulas to 21 problems, including 3Sat, Clique, Cover-by-vertexes,
3Color, and Subset Sum. This opened the �oodgates: The web of reductions from 3Sat is im-
mense, see [91] for a starter, or the list on wikipedia: https://en.wikipedia.org/wiki/List_of_NP-
complete_problems. Amusingly, among these problems are (generalized versions of) several
popular games including: Tetris, Lemmings, Sudoku, etc. For an excellent exposition of this
type of results see the video https://www.youtube.com/watch?v=oS8m9fSk-Wk.

The ETH and the SETH are from [139] and [141]. Again, a large number of reductions
involving these hypotheses exists. In particular, tight hardness results based on SETH have
been established for several well-studied problems, including longest-common subsequence
[3] and edit distance [29].

The web of reductions of 3Sum, including Theorem 4.2, was �rst spun in [87] and has
grown ever since. Theorem 4.3 is from [278].

Theorem 4.9 is from [168].
The quote at the beginning of section �4.6 is from [206]. The PCP theorem as stated in

Theorem 4.10 is from [21]. A sequence of exciting works preceded and followed it. For an
account, as well as a proof of the PCP theorem, see [20].

Problem 4.9 is from [98].
Problem 4.8 is from [259].

83

https://en.wikipedia.org/wiki/List_of_NP-complete_problems
https://en.wikipedia.org/wiki/List_of_NP-complete_problems
https://www.youtube.com/watch?v=oS8m9fSk-Wk


Chapter 5

Completeness: Reducing arbitrary

computation

https://xkcd.com/505/ (selection)

In this chapter we show how to reduce arbitrary computation to 3Sat (and hence to the
other problems in section �4.3). What powers everything is the following landmark and, in
hindsight, simple result which reduces circuit computation to 3Sat.

Theorem 5.1. Given a circuit C : [2]n → [2] with s gates we can compute in P a 3CNF
formula fC in n+ s variables such that for every x ∈ [2]n:

C(x) = 1⇔ ∃y ∈ [2]s : fC(x, y) = 1.

The key idea to guess computation and check it e�ciently, using that computation is
local. The additional s variables one introduces contain the values of the gates during
the computation of C on x. We simply have to check that they all correspond to a valid
computation, and this can be written as 3CNF because each gate depends on at most two
other gates.
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Proof. Introduce a variable yi for each non-input gate gi in C. The value of yi is intended
to be the value of gate gi during the computation. Whether the value of a gate gi is correct
is a function of 3 variables: yi and the ≤ 2 gates that input gi, some of which could be input
variables. This can be written as a 3CNF by Theorem 1.4. Take an And of all these 3CNFs.
Finally, add clause yo for the output gate go. QED

Exercise 5.1. Write down the 3CNF for the circuit in �gure 1.2, as given by the proof of
Theorem 5.1.

Theorem 5.1 is a depth-reduction result. Indeed, note that a 3CNF can be written as a
circuit of depth c log s, whereas the original circuit may have any depth. This is helpful for
example if you don't have the depth to run the circuit yourself. You can let someone else
produce the computation, and you can check it in small depth.

We can combine Theorem 5.1 with the simulations in Chapter 1 to reduce computation
in other models to 3SAT. In particular, we can reduce MTMs running in time t to 3Sat
of size t logc t. To obtain such parameters we need the quasilinear simulation of MTMs by
circuits, Theorem 1.6.

However, recall that a quasilinear simulation of RAMs by circuits is not known. Only
a power simulation is (which is obtained by combining the power simulation of RAMs by
MTMs, Theorem 1.8, with a simulation of MTMs by circuits). This would reduce RAM
computation running in time t to 3CNFs of size tc. We content ourselves with this power
loss for the beginning of this chapter. Later in section �5.3 we will obtain a quasi-linear
simulation using an enjoyable argument which also bypasses Theorem 1.6.

In fact, these simulations apply to a more general, non-deterministic, model of com-
putation. We de�ne this model next, and then present the simulation with power loss in
5.2.

5.1 Nondeterministic computation

In the concluding equation in Theorem 5.1 there is an ∃ quanti�er on the right-hand side,
but there isn't one on the left, next to the circuit. However, because the simulation works for
every input, we can �stick� a quanti�er on the left and have the same result. The resulting
circuit computation C(x, y) has two inputs, x and y. We can think of it as a non-deterministic
circuit, which on input x outputs 1 i� ∃y : C(x, y). Following the discussion before, we could
do the same for other models like TMs, MTMs, and RAMs. The message here is that �
if we allow for an ∃ quanti�er, or in other words consider nondeterministic computation �
e�cient computation is equivalent to 3CNF! This is one motivation for formally introducing
a nondeterministic computational model.

De�nition 5.1. NTime(t(n)) is the set of functions f : X ⊆ [2]∗ → [2] for which there is a
RAM M such that:

- f(x) = 1 i� ∃y ∈ [2]t(|x|) such that M(x, y) = 1, and
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- M(x, y) stops within t(|x|) steps on every input (x, y).
We also de�ne

NP :=
⋃
d≥1

NTime(nd),

NExp :=
⋃
d≥1

NTime(2n
d

).

Note that the running time of M is a function of |x|, not |(x, y)|. This di�erence is
inconsequential for NP, since the composition of two powers is another power. But it is
important for a more �ne-grained analysis. We refer to a RAM machine as in De�nition 5.1
as a nondeterministic machine, and to the y in M(x, y) as the nondeterministic choices, or
guesses, of the machine on input x.

We can also de�ne NTime in a way that is similar to BPTime, De�nition 2.1. The two
de�nitions are essentially equivalent. Our choice for BPTime is motivated by the identi�-
cation of BPTime with computation that is actually run. For example, in a programming
language one uses an instruction like Rand to obtain random values; one does not think of
the randomness as being part of the input. By contrast, NTime is a more abstract model,
and the de�nition with the nondeterministic guesses explicitly laid out is closer in spirit to
a 3CNF.

All the problems we studied in section �4.3 are in NP.

Fact 5.1. 3Sat, Clique, Cover-by-vertexes, SubsetSum, and 3Color are in NP.

Proof. For a 3Sat instance f , the variables y correspond to an assignment. Checking if the
assignment satis�es f is in P. This shows that 3Sat is in NP. QED

Exercise 5.2. Finish the proof by addressing the other problems in Fact 5.1

5.1.1 How to think of NP

We can think of NP as the problems which admit a solution that can be veri�ed e�ciently,
namely in P. For example for 3Sat it is easy to verify if an assignment satis�es the clauses,
for 3Color it is easy to verify if a coloring is such that any edge has endpoints of di�erent
colors, for SubsetSum it is easy to verify if a subset has a sum equal to a target, and so on.
However, as we saw above this veri�cation step can be cast in a restricted model, namely
a 3CNF. So we don't have to think of the veri�cation step as using the full power of P
computation.

Here's a vivid illustration of NP. Suppose I claim that the following matrix contains a 9:

56788565634705634705637480563476

70156137805167840132838202386421

85720582340570372307580234576423

80275880237505788075075802346518

78502378564067807582348057285428

05723748754543650350562378804337

52305723485008160234723884077764

86543234567865435674567836738063

45463788486754345743457483460040

73273873486574375464584895741832

85075783485634856237847287422112

83748874883753485745788788223201
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How can you tell, without tediously examining the whole matrix? However, if I tell you
that it's in row 10, 8 digits from the right, you can quickly check that I am right. I won't
be able to cheat, since you can check my claims. On the other hand I can provide a proof
that's easy to verify.

P vs. NP

The �agship question of complexity theory is whether P = NP or not. This is a young,
prominent special case of the grand challenge we introduced in Chapter 3. Contrary to
the analogous question for BPP, cf. section 2.4, the general belief seems to be that P 6=
NP. Similarly to BPP, cf. Theorem 2.7, the best deterministic simulation of NP runs in
exponential time by trying all nondeterministic guesses. This gives the middle inclusion in
the following fact; the other two are by de�nition.

Fact 5.2. P ⊆ NP ⊆ Exp ⊆ NExp.

A consequence of the Time Hierarchy Theorem 3.4 is that P 6= Exp. From the inclusions
above it follows that

P 6= NP or NP 6= Exp, possibly both.

Thus, we are not completely clueless, and we know that at least one important separation
is lurking somewhere. Most people appear to think that both separations hold, but we are
unable to prove either.

For multi-tape machines, a separation between deterministic and non-deterministic linear
time is in [210, 226].

5.2 NP-completeness

We now go back to the question at the beginning of this chapter about reducing arbitrary
computation to 3Sat. We shall reduce all of NP to 3Sat in Theorem 5.2. Problems like 3Sat
admitting such reductions deserve a de�nition.

De�nition 5.2. We call a problem L:
NP-hard if every problem in NP reduces to L in P;
NP-complete if it is NP-hard and in NP. To spell it out, this means that L ∈ NP and

moreover for any M ∈ NP we have L ∈ P⇒M ∈ P.

One can de�ne NP-hard (and hence NP-complete) w.r.t. di�erent reductions, cf. Chapter
4, and we will do so later. But the simple choice above su�ces for now.

Complete problems are the �hardest problems� in the class, as formalized in the following
fact.

Fact 5.3. Suppose L is NP-complete. Then L ∈ P⇔ P = NP.
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Proof. (⇐) This is because L ∈ NP.
(⇒) Let L′ ∈ NP. Because L is NP-hard we know that L ∈ P⇒ L′ ∈ P. QED

Exercise 5.3. Suppose P = NP. Prove that any problem in NP is NP-complete.
Suppose instead P 6= NP. Let L ∈ NP. Prove L is NP-complete i� L 6∈ P.

Fact 5.3 points to an important interplay between problems and complexity classes. We
can study complexity classes by studying their complete problems, and vice versa.

The central result in the theory of NP completeness is the following.

Theorem 5.2. 3Sat is NP-complete.

Proof. 3Sat is in NP by Fact 5.1. Next we prove NP-hardness. The main idea is Theorem
5.1, while the rest of the proof mostly amounts to opening up de�nitions and using some
previous simulations. Let L ∈ NP and let M be the corresponding TM which runs in time
nd on inputs (x, y) where |x| = n and |y| = nd, for some constant d. We can work with
TMs instead of RAMs since they are equivalent up to a power loss, as we saw in Theorem
1.8. We can construct in P a circuit C(x, y) of size cMncd such that for any x, y we have
M(x, y) = 1⇔ C(x, y) = 1 by Theorem 1.5.

Now, suppose we are given an input w for which we are trying to decide membership
in L. This is equivalent to deciding if ∃y : C(w, y) = 1 by what we just said. We can
�hard-wire� w into C to obtain the circuit Cw(y) := C(w, y) only on the variables y, with
no loss in size. Here by �hard-wire� se mean replacing the input gates x with the bits of w.
Now we can apply Theorem 5.1 to this new circuit to produce a 3CNF fw on variables y and
new variables z such that Cw(y) = 1 ⇔ ∃z : f(y, z) = 1, for any y. The size of fw and the
number of variables z is power in the size of the circuit.

We have obtained:

w ∈ L⇔ ∃y : M(w, y) = 1⇔ ∃y : Cw(y) = 1⇔ ∃y, z : fw(y, z) = 1⇔ fw ∈ 3Sat,

as desired. QED

In section �4.3 we reduced 3Sat to other problems which are also in NP by Fact 5.1. This
implies that all these problems are NP-complete. Here we use that if problem A reduces to
B in P, and B reduces to C, then also A reduces to C. This is because if C ∈ P then B ∈ P,
and so A ∈ P.

Corollary 5.1. Clique, Cover-by-vertexes, Subset-sum, and 3Color are NP-complete.

It is important to note that there is nothing special about the existence of NP-complete
problems. The following is a simple such problem that does not require any of the machinery
in this section.

Exercise 5.4. Consider the problem, given a RAM M , an input x, and t ∈ N, where t is
written in unary, decide if there is y ∈ [2]t such that M(x, y) = 1 in t steps. Prove that this
is NP-complete.

What if t is written in binary?
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The interesting aspect of NP-complete problems such as 3Sat and those in Corollary 5.1
is that they are very simple and structured, and don't refer to computational models. This
makes them suitable for reductions, and for inferring properties of the complexity class which
are not evident from a machine-based de�nition.

5.3 From RAM to 3SAT in quasi-linear time

The framework in the previous section is useful to relate membership in P of di�erent prob-
lems in NP, but it is not suitable for a more �ne-grained analysis. For example, under the
assumption that 3Sat is in Time(cn) we cannot immediately conclude that other problems in
NP are solvable in this time or in about this time. We can only conclude that they are in P.
In particular, the complexity of 3Sat cannot be related to that of other central conjectures,
such as whether 3Sum is in subquadratic time, Conjecture 4.1.

The culprit is the power loss in reducing RAM computation to circuits, mentioned at the
beginning of the chapter. We now remedy this situation and present a quasi-linear reduction.
As we did before, cf. Theorem 5.1 and Theorem 5.2, we �rst state a version of the simulation
for (deterministic) computation which contains all the main ideas, and then we note that a
completeness result follows.

Theorem 5.3. Given an input length n ∈ N, a time bound t ∈ N, and a RAM M that runs
in time t on inputs of n bits, we can compute in time t′ := cM t(log t)c a 3CNF f on variables
(x, y) where |y| ≤ t′ such that for every x ∈ [2]n:

M(x) = 1 ⇐⇒ ∃y : f(x, y) = 1.

We now present the proof of this amazing result. You may also want to refer back to the
De�nition 1.6 of a RAM. A key concept in the proof is the following �snapshot� of the RAM
computation.

De�nition 5.3. The internal con�guration, abbreviated IC, of a RAM speci�es:

• its registers,

• the program counter,

• the word length w, and

• if the current instruction is a Read ri := µ[rj] or Write µ[rj] := ri then the IC includes
the content µ[rj] of the memory cell indexed by rj.

Note that at most one memory cell is included in one IC. By contrast, the con�guration of
a TM (De�nition 1.1) includes all its tape cells. Also note that an IC has length ≤ cM+c log t
bits, where the cM is for the program counter, and the c log t is for the rest, using that the
maximum word length of a machine running in time t ≥ n is c log t.
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s1 s2 s3 s4

Check 1 Check 1 Check 1

Sorting

Check 2 Check 2 Check 2

And

s′1 s′2 s′3 s′4

Output

Figure 5.1: Circuit in the proof of Theorem 5.3.
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The key idea in the proof. At the high level, the approach is, like in Theorem 5.1, to
guess computation and check it e�ciently. We are going to guess the sequence of ICs, and
we need additional ideas to check them e�ciently by a circuit. This is not immediate, since,
again, the RAM can use direct access to read and write in memory at arbitrary locations,
something which is not easy to do with a circuit.

The key idea is to check operations involving memory independently from the operations
involving registers but not memory. If both checks pass, then the computation is correct.
More precisely, a sequence of internal con�gurations s1, s2, . . . , st corresponds to the compu-
tation of the RAM on input x i� for every i < t:

1. If si does not access memory, then si+1 has its registers, program counter, and word
length updated according to the instruction executed in si,

2. If si is computing a read operation ri := µ[rj] then in si+1 register rj contains the
most recent value written in memory cell rj. In case this cell was never written, then
rj should contain xj if j ∈ {1, 2, . . . , n}, n if j = 0, and 0 otherwise. The program
counter in si+1 also points to the next instruction.

Rather than directly constructing a 3CNF that implements these checks, we construct a
circuit and then appeal to Theorem 5.1. The circuit is illustrated in �gure 5.1. It is easy to
construct a circuit of quasi-linear size implementing Check 1, since the circuit only has to
check adjacent pairs of ICs. As remarked before, these ICs have length ≤ cM + c log t. For
�xed i, Check 1 can be implemented by a circuit which depends on the RAM and has size
power in the length of an IC. Taking an And of these circuits over the choices of i gives a
circuit of the desired size for Check 1.

The di�culty lies in Check 2, because the circuit needs to �nd �the most recent value
written.� The solution is to sort the ICs by memory addresses. After sorting, we can
implement Check (2) as easily as Check (1), since we just need to check adjacent pairs of
ICs.

The emergence of sorting in the theory of NP-completeness cements the pivotal role this
operation plays in computer science.

To implement this idea we need to be able to sort with a quasi-linear size circuit. Standard
sorting algorithms like Mergesort, Heapsort, or Radixsort run in quasi-linear time on a
RAM, but rely on direct addressing (cf. section �1.5) and for this reason cannot be easily
implemented by a circuit of quasi-linear size. However other algorithms have been developed
that do have such an implementation. This gives the following lemma.

Lemma 5.1. Given t and m we can compute in time t′ := t · (m log t)c a circuit (of size ≤ t′)
that sorts t integers of m bits.

Because this reduction is so fundamental, for completeness we give a proof of Lemma 5.1
in section �5.3.1.

We summarize the key steps in the proof.

Proof of Theorem 5.3. We construct a circuit CM as in �gure 5.1 (for t = 4) and then
appeal to Theorem 5.1. The extra variables y correspond to t ICs s1, s2, . . . , st. An IC takes
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cM + c log t bits to specify, so we need ≤ cM t log t variables y. The circuit CM �rst performs
Check (1) above for each adjacent pair (si, si+1) of ICs. This takes size cM logc t for each
pair, and so size cM t logc t overall.

Then CM sorts the ICs by memory addresses, producing sorted ICs s′1, s
′
2, . . . , s

′
t. This

takes size t · logc t by Lemma 5.1, using that the memory addresses have ≤ c log t bits.
Then the circuit performs Check (2) for each adjacent pair (s′i, s

′
i+1) of ICs. The circuit size

required for this is no more than for Check (1).
Finally, the circuit takes an And of the results of the two checks, and also checks that st

is accepting. QED

We can now prove completeness in a manner similar to Theorem 5.2, with a relatively
simple extension of Theorem 5.3.

Theorem 5.4. Every problem L in NTime(t) map reduces to 3Sat in Time(cL,tt logc t), for
every function t ≥ n such that t(x) is computable in time t(x) given x.

The assumption on t is similar to that in the hierarchy Theorem 3.4, and is satis�ed by
all standard functions including all those in this book � cf. discussion after Theorem 3.4.

Proof. Let M be a RAM computing L in the assumed time. Given an input w of length n
we have to e�ciently compute a 3CNF f such that

∃y ∈ [2]t(n) : M(w, y) = 1 ⇐⇒ ∃y ∈ [2]cL,tt(n) logc t(n) : f(y) = 1.

First we compute t(n), using the assumption. We now apply Theorem 5.3, but on a new
input length n′ := c(n+t) ≤ ct, to accommodate for inputs of the form (x, y). This produces
a formula f of size cL,tt(log t)c in variables (x, y) and new variables z. We can now set x to
w and conclude the proof. QED

With these sharper results we can now study hardness and completeness within time
bounds such as n2, n log3 n etc. We work out an example in the next section.

5.3.1 E�cient sorting circuits: Proof of Lemma 5.1

We present an e�cient sorting algorithm for an array A[n] which enjoys the following prop-
erty: the only way in which the input is accessed is via Compare-Exchange operations.
Compare-Exchange takes two indexes i and j and swaps A[i] and A[j] if they are in the
wrong order. It has the following code:

Compare-Exchange(Array A[0..(n− 1)] and indexes i and j with i < j):
if A[i] > A[j]
swap A[i] and A[j]

Why care about this property? It makes the comparisons independent from the data, and
this allows us to implement the algorithm with a network � a sorting network � of �xed
Compare-Exchange operations. In particular, we will get a circuit.
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Figure 5.2: Odd-Even-Mergesort

We call an algorithm with this property oblivious . Familiar mergesort is not oblivious,
because the merge operations performs comparisons which depend on the outcome of previous
ones. However a variant of Mergesort [32], called Odd-Even-Mergesort, is oblivious.

Algorithm Odd-Even-Merge(A) merges the two already sorted halves [a0, a1, . . . , an/2−1]
and [an/2, an/2+1, . . . , an−1] of the sequence A = [a0, a1, . . . , an−1], resulting in a sorted out-
put sequence. It works in a remarkable and mysterious way. First it merges the odd subse-
quence of the entire array A, then the even, and �nally it makes O(n) Compare-Exchange-
Operations. Throughout, we assume that n is a power of 2.

Odd-Even-Merge(A = [a0, . . . , a(n−1)]):
if n = 2
Compare-Exchange(A, 0, 1)
else {

Odd-Even-Merge([a0, a2, . . . , a(n−2)], n/2) //the even subsequence

Odd-Even-Merge([a1, a3, . . . , a(n−1)], n/2) //the odd subsequence

for i ∈ {1, 3, 5, 7, . . . , n− 3}
Compare-Exchange(A, i, i+ 1)

}

We shall now argue that this algorithm is correct.

Lemma 5.2. If [a0, a1, . . . , an/2−1] and [an/2, an/2+1, . . . , an−1] are sorted, then Odd-Even-
Mergesort([a0, a1, . . . , an−1]) outputs a sorted array.

Proof. To prove this lemma we invoke the so-called �0-1 principle.� This principle says that
it su�ces to prove the lemma when each ai is either 0 or 1, assuming that the algorithm
only accesses the input via Compare-Exchange operations. For completeness we sketch a
proof of this principle in this paragraph. Let A = [a0, . . . , an−1] be an input to Odd-Even-
Merge, and let B = [b0, . . . , bn−1] be the output sequence produced by the algorithm. If the
algorithm fails to correctly sort A, then consider the smallest index k such that bk > bk+1.
De�ne a function f such that f(c) = 1 if c ≥ bk and f(c) = 0 otherwise. For an array
X = [X0, X1, . . . , Xn−1] let f(X) be the sequence [f(X0), f(X1), . . . , f(Xn−1)] obtained by
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applying f to each element of X. Observe that f(B) is not sorted. However it is easy to
verify that f commutes with any Compare-Exchange operation applied to any sequence X,
i.e.,

f(Compare-Exchange(X, i, j)) = Compare-Exchange(f(X), i, j).

Because Odd-Even-Merge is just a sequence of Compare-Exchange, we have that

f(B) = f(Odd-Even-Merge(A)) = Odd-Even-Merge(f(A))

and so the algorithm fails to correctly merge the 0-1 sequence f(A). It only remains to
notice that f(A) is a valid input for Odd-Even-Merge. This is indeed the case because if a
sequence X is sorted then f(X) is also sorted.

We now prove the lemma by induction on n, based on the recursive de�nition of Odd-
Even-Merge. Refer to �gure 5.2.

The base case n = 2 is clear. Assume that Odd-Even-Merge correctly merges any two
sorted 0-1 sequences of size n/2. We view an input sequence of n elements as an n/2 ×
2 matrix, with the left column corresponding to elements at the even-indexed positions
0, 2, . . . , n− 2 and the right column corresponding to elements at the odd-indexed positions
1, 3, . . . , n − 1 (�gure 5.2(a)). �gure 5.2(b) shows a corresponding 0-1 input, which we can
assume w.l.o.g. because of the zero-one principle. �gure 5.2(c) shows the matrix after the
recursive calls to the sorting. Since the upper half of the matrix is sorted by assumption,
the right column in the upper half has the same number or exactly one more 1 than the left
column in the upper half. The same is true for the lower half. Because each (length-(n/4))
column in each half of the matrix is also individually sorted by assumption, the induction
hypothesis guarantees that after the two calls to Odd-Even-Merge both the left and right
(length-(n/2)) columns are sorted (�gure 5.2(d)).

At this point only one of 3 cases arises:

1) The odd and even subsequences have the same number of 1s.
2) The odd subsequence has a single 1 more than the even subsequence.
3) The odd subsequence has two 1s more than the even subsequence.

In the �rst two cases, the sequence is already sorted. In the third case, the Compare-
Exchange operations (�gure 5.2(e)) yield a sorted sequence (�gure 5.2(f)). QED

Given Odd-Even-Merge, we can sort by the following algorithm which has the same
structure as Mergesort

Oblivious-Mergesort(A = [a0, . . . , a(n−1)]):
if n ≥ 2 {

Oblivious-Mergesort([a0, a1, . . . , an/2−1])
Oblivious-Mergesort([an/2, an/2+1, . . . , an−1])
Odd-Even-Merge([a0, a1, . . . , an−1])
}
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It only remains to argue e�ciency. Let SM(n) denote the number of Compare-Exchange
operations for Odd-Even-Merge for an input sequence of length n. We have the recurrence

SM(n) = 2 · SM(n/2) + n/2− 1,

which yields SM(n) = O(n · log n).
Finally, let S(n) denote the number of calls to Compare-Exchange for Oblivious-Mergesort

with an input sequence of length n. Then we have the recurrence S(n) = 2 · S(n/2) +
(n · log n), which yields S(n) = O(n · log2 n).

To conclude the proof, note that Compare-Exchange for inputs with m bits can be im-
plemented by a circuit of size mc. QED

5.3.2 Quasilinear-time completeness

In this section we use the machinery we just developed to study completeness in quasi-linear
time, instead of power time.

De�nition 5.4. We de�ne the quasi-linear time complexity classes

QLin-Time :=
⋃
d∈N

Time(n logd n) and

QLin-NTime :=
⋃
d∈N

NTime(n logd n).

Theorem 5.5. 3Sat is complete for QLin-NTime with respect to mapping reductions in
QLin-Time. That is:

- 3Sat is in QLin-NTime, and
- every problem in QLin-NTime map reduces to 3Sat in QLin-Time.

Proof. To show that 3Sat is in QLin-NTime, consider a 3CNF instance f of length n. This
instance has at most n variables, and we can guess an assignment y to them within our
budget of non-deterministic guesses. There remains to verify that y satis�es f . For this, we
can do one pass over the clauses. For each clause, we access the bits in y corresponding to
the 3 variables in the clause, and check if the clause is satis�ed. This takes constant time
per clause, and so time cn overall.

The second part follows from Theorem 5.4, using the fact that the composition of two
quasilinear functions is also quasilinear (similarly to the fact that the composition of two
power functions is also a power). QED

Note that the proof that 3Sat is in QLin-NTime relies on our computational model being
a RAM, because we use direct access to fetch the values for the variables in a clause.

We can now give the following quasi-linear version of Fact 5.3. The only extra observation
for the proof is again that the composition of two quasi-linear functions is quasi-linear.

Corollary 5.2. 3Sat ∈ QLin-Time⇔ QLin-NTime = QLin-Time.
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Exercise 5.5. Prove that Theorem 5.5 holds with 3Color instead of 3Sat. What about
Clique and Subset-sum?

Exercise 5.6. Prove that 3Sum reduces to 3Sat in Subquadratic time. That is: 3Sat ∈
SubquadraticTime⇒ 3Sum ∈ SubquadraticTime (i.e., Conjecture 4.1 is false).

5.4 Completeness in other classes

The completeness phenomenon is not special to NP but enjoyed by many other classes.
In this section we begin to explore completeness for NExp and Exp. One needs to be
careful how hardness (and hence completeness) is de�ned, since these classes are known to
be di�erent from P by the hierarchy Theorem 3.4. So de�ning a problem L to be NExp-hard
if L ∈ P⇒ NExp = P would mean simply that L 6∈ P. To avoid this in this section hardness
(hence completeness) is de�ned w.r.t. mapping reductions, cf. Chapter 4. (Another option
would be to replace P with say BPP, since it is not known if BPP = NExp.)

5.4.1 NExp completeness

Complete problems for NExp include succinct versions of problems complete for NP. Here
succinct means that rather than giving the input x to the problem in standard format, the
input consists instead of a circuit C : [2]m → [2] encoding x, for example C(i) equals bit i of
x, for every i.

De�nition 5.5. The Succinct-3Sat problem: Given a circuit C encoding a 3CNF fC , does
fC have a satisfying assignment?

Theorem 5.6. Succinct-3Sat is NExp complete with respect to power-time mapping reduc-
tions.

Proof sketch.. Let us �rst show that Succinct-3Sat is in NExp. Given a circuit C of
length n, we can run it on every possible input (of length ≤ n) and write down the formula
fC encoded by C. This formula has size ≤ 2n. We can then use the fact that 3Sat is in
NP to decide satis�ability of this formula in non-deterministic power time in 2n, that is
NTime(2cn) ⊆ NExp.

To prove NExp hardness it is convenient to work with TMs rather than RAMs. The main
observation is that in the simulation of a TM M on an input x by a circuit CM , Theorem
1.5, the circuit is very regular, in the sense that we can construct another circuit SM which
is a succinct encoding of CM . The circuit SM is given as input indexes to gates in CM and
outputs the type of the gate and its wires. The size of SM is power in the index length and
M . Thus, if CM has size tc, SM only needs size logc t. If t = 2n

d
, SM has size power in n,

as desired. The transformation from circuit to 3CNF in Theorem 5.1 is also regular and can
be done succinctly. QED

As a consequence, we obtain the following �concrete� problem not in P.

Corollary 5.3. Succinct-3Sat 6∈ P.
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5.4.2 Exp-completeness

Exp-complete problems include several two-player games. The important feature for com-
pleteness is that the game may last for an exponential number of steps (otherwise it would
belong to a class believed to be stricter which we will investigate in Chapter 7). These games
include (generalized versions of) Chess and Checkers.

5.5 Power from completeness

The realization that arbitrary computation can be reduced to 3Sat and other problems is
powerful and liberating. In particular it allows us to signi�cantly widen the net of reductions.

5.5.1 Optimization problems

As observed in section �4.6, 3Sat trivially reduces to Max-3Sat. The converse will be shown
next.

Theorem 5.7. Max-3Sat reduces to 3Sat in P.

Proof. Consider the problem Atleast-3Sat: Given a 3CNF formula and an integer t, is there
an assignment that satis�es at least t clauses? This is in NP and so can be reduced to 3Sat
in P. This is the step that's not easy without �thinking completeness:� given an algorithm
for 3Sat it isn't clear how to use it directly to solve Atleast-3Sat.

Hence, if 3Sat is in P so is Atleast-3Sat. On input a 3CNF f , using binary search and
the fact that Atleast-3Sat is in P, we can �nd in P the largest t s.t. (f, t) ∈ Atleast-3Sat.
Having found this t, there remains to construct an assignment satisfying the clauses. This
can be done �xing one variable at the time as in Theorem 4.8. QED

5.5.2 NP is as easy as detecting unique solutions

A satis�able 3CNF can have multiple satisfying assignments. On the other hand some
problems and puzzles have unique solutions. In this section we relate these two scenarios.

De�nition 5.6. Unique-CktSat is the problem: Given a circuit C s.t. there is at most one
input x for which C(x) = 1, decide if such an input exists.

Unique-3Sat is the Unique-CktSat problem restricted to 3CNF circuits.

Theorem 5.8. 3Sat reduces to Unique-3Sat in BPP.

We in fact reduce 3Sat to Unique-CktSat. Then Unique-CktSat can be reduced to Unique-
3Sat observing that the reduction in Theorem 5.1 preserves uniqueness.

The beautiful proof shows how to use hash functions (cf. 2.4) to �isolate� assignments.
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Lemma 5.3. Let H be a pairwise uniform function mapping S → T , and let 1 ∈ T . The
probability that there is a unique element s ∈ S such that H(s) = 1 is

≥ |S|
|T |
− |S|

2

|T |2
.

In particular, if |T |/8 ≤ |S| ≤ |T |/4 this prob. is ≥ 1
8
− 1

16
≥ 1/8.

Proof. For �xed s ∈ S, the probability s is the unique element mapped to 1 is at least the
prob. that s is mapped to 1 minus the prob. that both s and some other s′ 6= s are mapped
to 1. This is

≥ 1

|T |
− |S| − 1

|T |2
.

These events for di�erent s ∈ S are disjoint; so the target probability is at least the sum
of the above over s ∈ S. QED

Proof of Theorem 5.8. Given a 3Sat instance φ with ≤ n variables x, we pick a random i
from 0 to n+ c. We then pick a pairwise uniform function mapping [2]n to [2]i, and consider
the circuit

C := φ(x) ∧H(x) = 0i.

This circuit has size nc.
If φ is not satis�able, C is not satis�able, for any random choices.
Now suppose that φ has s ≥ 1 satisfying assignment. With prob. ≥ 1/n we will have

2i−3 ≤ s ≤ 2i−2, in which case Lemma 5.3 guarantees that C has a unique satisfying
assignment with prob. ≥ c.

Overall, C has a unique satisfying assignment with prob. ≥ c/n. Hence the Unique-
3Sat algorithm on C outputs 1 with prob. ≥ c/n. If we repeat this process cn times,
with independent random choices, the Or of the outcomes gives the correct answer with
prob. ≥ 2/3. QED

5.6 Problems

Problem 5.1. In this problem you will explore an alternative proof of the results in sec-
tion �5.3.

(1) Show Time(t) ⊆ ∃· c-TM-Time(t logc t). Note the lhs is for RAMs, the rhs is for TMs
with c tapes. Hint: Follow the proof structure in section �5.3. Work with plain MergeSort.
(In case you are unfamiliar with MergeSort, you might want to review it.)

(2) Prove Theorem 5.3 from (1) using a simulation from Chapter 1.

Problem 5.2. In Theorem 4.8 we reduced Search-3Sat to 3Sat.
(1) Suppose 3Sat is computable by circuits of depth c log n. What would be the depth of

the circuits for Search-3Sat given by the reduction?
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(2) Reduce Search-3Sat to 3Sat in
⋃
a>0Depth(a log n). Hint: First work with randomized

circuits. Use ideas in the proof of 5.8. Then explain how to get deterministic circuits.
Note: Depending on how you feel about log-depth circuits, this problem belongs to either

Chapter 5 or Chapter 8.

5.7 Notes

NP-completeness and Theorem 5.2 originates in the fundamental works [63, 168]. The �rst
paper proves a version of Theorem 5.1 for TMs, for a more recent and similar exposition
see [240]. Theorem 5.3 is from [113, 223]. The �rst work focuses on an equivalence between
computational models, while the second explicitly constructs a 3CNF formula. We presented
the proof in a slightly di�erent way, using the sorting circuits from [32] and following the
exposition in [197].

For the Exp-completeness of Chess see [82]; for Checkers [222].
The reduction to unique-3Sat, Theorem 5.8, is from [266] from which we borrowed the

section title which, interestingly, emphasizes how easy NP could be, cf. Chapter 17.
Pairwise uniformity was studied as least since [213] and [55]. For background see [262,

125].
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Chapter 6

Alternation

We placed one quanti�er �in front� of computation and got something interesting: NP.
So let's push the envelope and place more. As we will see the corresponding classes turn out
to be extremely useful, with deep ties to impossibility results, the P vs. BPP question, space
computation, and ACs. In particular, the proofs of several results that do not prima facie
involve multiple quanti�ers will require an excursion to multiple quanti�ers (for example,
the result that P = NP ⇒ P = BPP, Exercise 6.11, or the impossibility results for Sat in
section �7.9).

De�nition 6.1. ΣiTime(t(n)) is the set of functions f : X ⊆ [2]∗ → [2] for which there is a
RAM M such that on input (x, y1, y2, . . . , yi) stops within t(|x|) steps and

f(x) = 1⇔ ∃y1∀y2∃y3∀y4 . . . Qiyi ∈ [2]t(|x|) : M(x, y1, y2, . . . , yi) = 1.
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ΠiTime(t(n)) is de�ned similarly except that we start with a ∀ quanti�er. We also de�ne

ΣiP :=
⋃
d

ΣiTime(nd),

ΠiP :=
⋃
d

ΠiTime(nd), and

the power hiearchy PH :=
⋃
i

ΣiP =
⋃
i

ΠiP.

We refer to such computation and the corresponding machines as alternating, since they
involve alternation of quanti�ers and we will soon see a connection with alternating circuits.

The PH is the analog of the older arithmetical hierarchy from computability theory or
logic in which nondeterministic time plays the role of listable (a.k.a. computably enumerable,
etc.).

As was the case for NP, De�nition 5.1, note that the running time of M is a function
of |x| only. Again, this di�erence is inconsequential for ΣiP, since the composition of two
powers is another power. But it is important for a more �ne-grained analysis.

Exercise 6.1. Min-Ckt is the problem of deciding if an input circuit has an equivalent circuit
which is smaller. It is not known to be in NP. In which of the above classes can you place
it?

Exercise 6.2. Show that we can restrict the machine M in De�nition 6.1 to read only one
bit of the input x. The price for this is an extra quanti�er, however only over log t bits.
Speci�cally, show that for every L ∈ ΣiP there exists a RAM M s.t.:

x ∈ L⇔∃y1 ∈ [2]t(|x|)∀y2 ∈ [2]t(|x|) . . . Qi−1yi−1 ∈ [2]t(|x|)

Qi(yi, z) ∈ [2]2t(|x|)Qi+1yi+1 ∈ [2]log t(|x|) : M(x, y1, y2, . . . , yi+1) = 1,

and M on input (x, y1, y2, . . . , yi+1) stops within ct(|x|) steps and only reads one bit of x.
Note the �rst i − 1 quanti�ers are over t bits and unchanged from De�nition 6.1, the next
one is over 2t bits, written as a pair (yi, z), and the last is over log t. Hint: The idea is...
you guessed it !

Exercise 6.3. Prove PPH = PH.

6.1 Does the PH collapse?

We refer to the event that ∃i : ΣiP = PH as �the PH collapses.� It is unknown if the PH
collapses. Most people appear to believe that it does not, and to consider statements of the
type

X ⇒ PH collapses

as evidence that X is false. Examples of such statements are discussed next.
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Theorem 6.1. P = NP⇒ P = PH.

The idea in the proof is simply that if you can remove a quanti�er then you can remove
more.

Proof. We prove by induction on i that ΣiP
⋃

ΠiP = P.
The base case i = 1 follows by assumption and the fact that P is closed under complement.
Next we do the induction step. We assume the conclusion is true for i and prove it for

i+ 1. We will show Σi+1P = P. The result about Πi+1P follows again by complementing.
Let L ∈

∑
i+1 P, so ∃a and a power-time TM M such that for any x ∈ [2]n,

x ∈ L⇔ ∃y1∀y2∃y3∀y4 . . . Qi+1yi+1 ∈ [2]n
a

: M(x, y1, y2, . . . , yi+1) = 1.

(As discussed after De�nition 6.1 we don't need to distinguish between time as a function of
|x| or of |(x, y1, y2, . . . , yi+1)| when considering power times as we are doing now.)

Now the creative step of the proof is to consider

L′ :=
{

(x, y1) : ∀y2 ∈ [2]n
a

. . . Qi+1yi+1 ∈ [2]n
a

: M(x, y1, y2, . . . , yi+1) = 1
}
.

Note L′ ∈ ΠiP. By induction hypothesis L′ ∈ P. So let TM M ′ solve L′ in power time. So
x ∈ L ⇐⇒ ∃y1 ∈ [2]n

a
: M ′(x, y1) = 1. And so L ∈ NP= P, again using the hypothesis.

QED

Exercise 6.4. Prove the following strengthening of Theorem 6.1:⋃
d

NTime(dn) ⊆ Time(n1+ε)⇒
⋃
d

ΣiTime(dn) ⊆ Time(n1+εci ).

Exercise 6.5. Show that if ΣiP = ΠiP for some i then the PH collapses to ΣiP, that is,
PH = ΣiP.

Theorem 6.2. NP ⊆ PCkt⇒ PH = Σ2P.

Proof. We'll show Π2P ⊆ Σ2P and then appeal to Exercise 6.5. Let f ∈ Π2Time(nd) and
M be a corresponding machine s.t.

f(x) = 1⇔ ∀y1 ∈ [2]n
d∃y2 ∈ [2]n

d

: M(x, y1, y2) = 1.

We claim the following equivalent expression for the right-hand side above:

∀y1 ∈ [2]n
d∃y2 ∈ [2]n

d

: M(x, y1, y2) = 1⇔ ∃C∀y1 ∈ [2]n
d

: M(x, y1, C(x, y1)) = 1,

where C ranges over circuits of size |x|d′ for some d′. If the equivalence is established the
result follows, since evaluating a circuit can be done in power time.

To prove the equivalence, �rst note that the the ⇐ direction is obvious, by setting
y2 := C(x, y1). The interesting direction is the ⇒. We claim that under the assumption,
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there is a circuit that given x, y1 outputs a string y2 that makes M(x, y1, y2) accept, if there
is such a string.

To verify this, consider the problems CktSat and Search-CktSat which are analogous
to the 3Sat and Search-3Sat problems but for general circuits rather than 3CNF. CktSat
is in NP, and so by assumption has power-size circuits. By the reduction in Theorem 4.8,
Search-CktSat has power-size circuits S as well. Hence, the desired circuit C may, on input
x and y1 produce a new circuit W mapping an input y2 to M(x, y1, y2), and run S on W .
QED

Exercise 6.6. Prove that PH 6⊆ CktGates(nk), for any k ∈ N. (Hint: Existentially guess
the truth table of a hard function.)

Improve this to Σ2P 6⊆ CktGates(nk).

Exercise 6.7. Prove Exp ⊆ PCkt⇒ Exp = Σ2P.

In the next sections we will prove a number of quintessential simulations involving the
PH and other classes. A general theme is viewing the simulations as simulations between
corresponding circuit classes. For example, as suggested by the word alternation in De�nition
6.1, the PH and its subclasses correspond to ACs. These circuits have exponential size in
the length of the input x. But in fact x plays a limited role and should not be the focus of
our attention. Instead, it is natural consider an exponentially longer input (corresponding
to the choices for the quanti�ed variables yi). With respect to this input, the circuits are
e�cient. The viewpoint of circuits allows us to isolate the core of the proof, and is a necessary
condition for a uniform simulation. To obtain the latter, we need the circuit to be su�ciently
explicit. There are a few variants of this connection between uniform and circuit classes,
depending on what parameters are at premium. The best way to illustrate it all is to dive
right into one such simulation.

6.2 BPP in PH

It is not known if BPP is contained in NP. However, we can show that BPP is in PH.
More precisely, the following two simulations are known. The �rst optimizes the number of
quanti�ers, the second the time. This should be contrasted with various conditional results
(such as Theorem 2.9) suggesting that in fact a quasilinear deterministic simulation (with
no quanti�ers) is possible.

Theorem 6.3. For every function t we have:
(1) BPTime(t) ⊆ Σ2Time(t2 logc t), and
(2) BPTime(t) ⊆ Σ3Time(t logc t).

A good way to think of these results is as follows. Fix a BPTime(t) machine M and an
input x ∈ [2]n, and write y for its random bits. The simulating alternating machine is trying
to decide if for most choices of the random bits y we have M(x, y) = 1, or if for most choices
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we have M(x, y) = 0. This is a version of the Majority problem, on the exponentially long
input

(M(x, 0),M(x, 1),M(x, 2), . . . ,M(x, 2t − 1)).

The alternating machine does not have access to the exponentially-long majority instance,
but rather has access to a small circuit M(x, ·) s.t. M(x, y) is bit y of the majority instance.
The critical aspect is that instances have a gap. We de�ne this gap-majority problem next.
For convenience we use the letter n to indicate input length. But recall that for proving
Theorem 6.3 the input length will be exponential in the running time of the alternating
machine.

De�nition 6.2. Gap-Majα,β is the problem of deciding if an input x ∈ [2]n has weight
|x| ≤ αn or |x| ≥ βn.

As mentioned earlier, it is useful to think of alternating computation as alternating
circuits. Indeed, the circuit result that is the starting point of all these simulations is the
following somewhat surprising construction of small-depth alternating circuits for Gap-Maj.
By contrast, (non-gap) Maj does not have small constant-depth alternating circuits, as we
will prove in section �8.5.

Lemma 6.1. Gap-Maj1/3,2/3(x) has alternating circuits of depth 3 and size nc. Moreover,
the gates at distance 1 from the input have fan-in ≤ c log n.

Proof. This is a striking application of the probabilistic method. For a �xed pair of inputs
(x, y) we say that a distribution C on circuits gives (≤ p,≥ q) if PC [C(x) = 1] ≤ p and
PC [C(y) = 1] ≥ q; and we similarly de�ne gives with reverse inequalities. Our goal is to
have a distribution that gives

(≤ 2−n,≥ 1− 2−n) (6.1)

for every pair (x, y) ∈ [2]n× [2]n where |x| ≤ n/3 and |y| ≥ 2n/3. Indeed, if we have that we
can apply a union bound over the < 2n inputs to obtain a �xed circuit that solves Gap-Maj.

We construct the distribution C incrementally. Fix any pair (x, y) as above. Begin with
the distribution C∧ obtained by picking 2 log n bits uniformly from the input and computing
their And. This gives (

(1/3)2 logn, (2/3)2 logn
)
.

Let p := (1/3)2 logn and note (2/3)2 logn = p · n2. So we can say that C∧ gives(
≤ p,≥ p · n2

)
.

Now consider the distribution C∨ obtained by complementing the circuits in C∧. This gives(
≥ 1− p,≤ 1− p · n2

)
.

Next consider the distribution C∧∨ obtained by taking the And of m := p−1/n independent
samples of C∨. This gives (

≥ (1− p)m,≤ (1− p · n2)m
)
.
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Approximations for the exponential function, Fact A.4, yield (1−p)m ≥ e−2pm = e−2/n ≥ 0.9
and (1− p · n2)m ≤ e−n:

(≥ 0.9,≤ e−n).

Next consider the distribution C∨∧ obtained by complementing the circuits in C∧∨. This
gives

(≤ 0.1,≥ 1− e−n).

Finally, consider the distribution C∧∨∧ obtained by taking the And of n independent samples
of C∨∧. This gives (

≤ 0.1n,≥
(
1− e−n

)n)
.

For the rightmost quantity we can use Fact A.5; this gives(
≤ 0.1n,≥ 1− ne−n

)
.

We have ne−n < 2−n. Thus this distribution in particular gives equation (6.1). The bounds
on the number of gates and the fan-in holds by inspection. QED

Exercise 6.8. Prove Gap-Maj1/2−1/
√

logn,1/2+1/
√

logn has alternating circuits of depth c and
size nc. Hint: First prove it for Gap-Maj1/10,9/10. Think of the input string as the outcomes
of a BPP algorithm with error 1/10 for various choices of the randomness. How do we reduce
the error probability?

To prove Theorem 6.3 we �only� need the circuits for Gap-Maj in Lemma 6.1 to be su�-
ciently explicit. Perhaps the simplest notion of explicitness is that the circuit is constructible
in power-time in its description. This does not work here because the circuit has exponential
size in the input length. Instead, we need a re�ne notion of explicitness, arguably even more
natural. We require that the child of a gate can be computed e�ciently given the description
of the gate.

Lemma 6.2. Assume the circuit in Lemma 6.1 is explicit in the following sense: Given an
index to a gate g of fan-in h and a number i ≤ h we can compute the index of child i of g
in linear time. Prove Theorem 6.3.

Proof. In time t the machine uses t′ ≤ ct log t random bit. Consider the circuit on T := 2t
′

inputs. To prove (1), use two quanti�ers to index an And gate next to the input. This gate
has fan-in h ≤ ct′. For each i ≤ h, compute child i of the gate, which is just an index to an
input bit, which in turn is a choice for the random bits for the machine, and evaluate the
machine on that choice. Each evaluation takes time ct, for a total of time ctt′. QED

Exercise 6.9. Prove (2).

There remains to construct explicit circuits for Gap-Maj. We give a construction which
has worse parameters than Lemma 6.1 but is simple and su�ces for (1) in Theorem 6.3.
The idea is that if the input weight of x is large, then we can �nd a few shifts of the ones
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in x that cover each of the n bits. But if the weight of x is small we can't. By �shift� by s
we mean the string xi⊕s, obtained from x by permuting the indices by xoring them with s.
(Other permutations would work just as well.)

Lemma 6.3. Let r := log n. The following circuit solves GapMaj1/r2,1−1/r2 on every x ∈ [2]n:∨
s1, s2, . . . , sr ∈ [2]r :

∧
i ∈ [2]r :

∨
j ∈ {1, 2, . . . , r} : xi⊕sj .

Note that the subformula rooted at
∧

means that every bit i in [n] = [2]r is covered by some
shift sj of the input x.

Proof. Assume |x| ≤ n/r2. Each shift si contributes at most n/r2 ones. Hence all the r
shifts contribute ≤ n/r ones, and we do not cover every bit i.

Now assume |x| ≥ n(1− 1/r2). We show the existence of shifts si that cover every bit by
the probabilistic method. Speci�cally, for a �xed x we pick the shifts uniformly at random
and aim to show that the probability that we do not cover every bit is < 1. Indeed:

Ps1,s2,...,sr [∃i ∈ [2]r : ∀j ∈ {1, 2, . . . , r} : xi⊕sj = 0]

≤
∑
i∈[2]r

Ps1,s2,...,sr [∀j ∈ {1, 2, . . . , r} : xi⊕sj = 0] (union bound)

=
∑
i∈[2]r

Ps[xi⊕s = 0]r (independence of the si)

≤
∑
i∈[2]r

(1/r2)r (by assumption on |x|)

≤(2/r2)r

<1,

as desired. QED

Exercise 6.10. Prove (1) in Theorem 6.3.

Lemma 6.3 is not su�cient for (2) in Theorem 6.3. One can prove (2) by derandomizing
the shifts in Lemma 6.3. This means generating their r2 bits using a seed of only r logc r
bits (instead of the trivial r2 in Lemma 6.3.). This is done in section 11.1.4.

Exercise 6.11. Prove:
(1) P = NP⇒ P = BPP.
(2) Σ2P ⊆ BPP⇒ PH collapses.

6.3 The quanti�er calculus

We have extended P with ∃ and ∀ quanti�ers. We have also extended it with randomness to
obtain BPP. As alluded to before, we can also think of BPP as a quanti�er BP applied to
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P. The Unique-3Sat problem (Theorem 5.8) also points to a new quanti�er, �exists unique.�
We now develop a general calculus of quanti�ers, and examine fundamental relationships
between then. For simplicity, we only consider power-time, total computation.

De�nition 6.3. Let C be a class of functions mapping [2]∗ → [2]. We de�ne L ∈ Op · C if
there is L′ ∈ C and d ∈ N such that

• Op = Maj

x ∈ L⇔ P
y∈[2]|x|d

[(x, y) ∈ L′] ≥ 1/2.

• Op = BP

x ∈ L⇒ P
y∈[2]|x|d

[(x, y) ∈ L′] ≥ 2/3,

x 6∈ L⇒ P
y∈[2]|x|d

[(x, y) ∈ L′] ≤ 1/3.

• Op = ⊕ (read: parity)

x ∈ L⇔ there is an odd number of y ∈ [2]|x|
d

: (x, y) ∈ L′.

• Op = ∃
x ∈ L⇔ ∃y ∈ [2]|x|

d

: (x, y) ∈ L′.

• Op = ∀
x ∈ L⇔ ∀y ∈ [2]|x|

d

: (x, y) ∈ L′.

With this notation we have: NP = ∃ · P, BPP = BP · P, Σ2P = ∃ · ∀ · P.
More generally, we might be interested in computing the number of y s.t. (x, y) ∈ L′.

De�nition 6.4. Let C be a class of functions mapping [2]∗ → [2]. We say that f ∈ # · C
(pronounced sharp C or number C) if there is L′ ∈ C and d ∈ N such that f(x) is the
number of y ∈ [2]|x|

d
for which (x, y) ∈ L′.

6.4 PH is a random low-degree polynomial

In this section we prove the following result.

Theorem 6.4. PH ⊆ BP · ⊕ · P.

This is saying that any constant number of ∃ and ∀ quanti�er can be replaced by a BP
quanti�er followed by a ⊕ quanti�er. Let's see what this has to do with the title of this
section. Where is the polynomial? Consider polynomials over F2 = [2]. Recall that such a
polynomial over n bits is an object like

p(x1, x2, . . . , xn) = x1 · x2 + x3 + x7 · x2 · x1 + x2 + 1.

Because we are only interested in inputs in [2] we have xi = x for any i ≥ 1 and any variable
x, so we don't need to raise variables to powers bigger than one.

107



Example 6.1. The And function on n bits can be written as the polynomial

And(x1, x2, . . . , xn) =
n∏
i=1

xi.

The Or function on n bits can be written as the polynomial

Or(x1, x2, . . . , xn) = 1 + And(1 + x1, 1 + x2, . . . , 1 + xn) = 1 +
n∏
i=1

(1 + xi).

For n = 2 we have
Or(x1, x2) = x1 + x2 + x1 · x2.

The polynomial corresponding to a PH computation will have an exponential number of
terms, so we can't write it down. The big sum over all its monomials corresponds to the
⊕ in Theorem 6.4. The polynomial will be su�ciently explicit: we will be able to compute
each of its monomials in P. Finally, there won't be just one polynomial, but we will have a
distribution on polynomials, and that's the BP part.

Confusing? Like before, a good way to look at this result is in terms of circuits. We
state the circuit result behind Theorem 6.4 after a de�nition. The result is of independent
interest and will be useful later in section �8.5.

De�nition 6.5. A distribution P on polynomials computes a function f : [2]n → [2] with
error ε if for every x we have

PP [P (x) = f(x)] ≥ 1− ε.

Theorem 6.5. Let C : [2]n → [2] be an alternating circuit of depth d and size s. Then there
is a distribution P on polynomials over F2 of degree logd−1 s/ε that computes C with error
ε.

Ultimately we only need constant error, but the construction requires small error. Jump-
ing ahead, this is because we construct distributions for each gate separately, and we need
the error to be small enough for a union bound over all gates in the circuit.

The important point in Theorem 6.5 is that if the depth d is small (e.g., constant) (and
the size is not enormous and the error is not too small) then the degree is small as well. For
example, for power-size alternating circuits of constant depth the degree is power logarithmic
for constant error.

Let us slowly illustrate the ideas behind Theorem 6.5 starting with the simplest case: C
is just a single Or gate on n bits.

Lemma 6.4. For every ε and n there is a distribution P on polynomials of degree log 1/ε
in n variables over F2 that computes Or with error ε.
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Proof. For starters, pick the following distribution on linear polynomials: For a uniform
A = (A1, A2, . . . , An) ∈ [2]n output the polynomial

pA(x1, x2, . . . , xn) :=
∑
i

Ai · xi.

Let us analyze how pA behaves on a �xed input x ∈ [2]n:

• If Or(x) = 0 then pA(x) = 0;

• If Or(x) = 1 then PA[pA(x) = 1] ≥ 1/2.

While the error is large in some cases, a useful feature of pA is that it never makes mistakes
if Or(x) = 0. This allows us to easily reduce the error by taking t := log 1/ε polynomials pA
and combining them with an Or.

pA1,A2,...,At(x) := pA1(x) ∨ pA2(x) ∨ · · · ∨ pAt(x).

The analysis is like before:

• If Or(x) = 0 then pA1,A2,...,At(x) = 0;

• If Or(x) = 1 then PA1,A2,...,At [pA1,A2,...,At(x) = 1] ≥ 1− (1/2)t ≥ 1− ε.

It remains to bound the degree. Each pAi has degree 1. The Or on t bits has degree t by
Example 6.1. Hence the �nal degree is t = log 1/ε. QED

Exercise 6.12. Obtain the same result for C = And.

Now we would like to handle general circuits which have any number of And and Or
gates. As mentioned earlier, we apply the construction above to every gate, and compose
the polynomials. We pick the error at each gate small enough so that we can do a union
bound over all gates.

Proof of Theorem 6.5. We apply Lemma 6.4 to every gate in the circuit with error ε/s.
By a union bound, the probability that any gate makes a mistake is ε, as desired.

The �nal polynomial is obtained by composing the polynomials of each gate. The com-
position of a polynomial of degree d1 with another of degree d2 results in a polynomial of
degree d1 · d2. Since each polynomial has degree log s/ε, and we compose d − 1 times, the
�nal degree is logd−1 s/ε. QED

6.4.1 Back to PH

We have proved Theorem 6.5 which is a circuit analogue of Theorem 6.4. We now go back
to the PH. As in Lemma 6.2, let us �rst identify how explicit the polynomial needs to be to
yield Theorem 6.4. We need to be able to compute monomials e�ciently given its index.

109



Lemma 6.5. Suppose that for every d ∈ N we have:
Let C be the AC of depth d where each gate has fan-in 2n

d
and the circuit is a tree.

Suppose there is a distribution P on polynomials as in Theorem 6.5 but that moreover:
(1) Can be sampled from ncd random bits r, we write Pr for the (�xed) polynomial given

by r, and
(2) Given r and an index i of ncd we can compute the (coe�cient of) monomial i of Pr

in time ncd .
Then Theorem 6.4 follows.

Proof. Let L ∈ ΣdP. Consider the corresponding alternating circuit C. Similarly to sec-
tion �6.2, the input consists of the bits

M(x, y1, y2, . . . , yd)

over all values of the quanti�ed variables yi. We use the BP quanti�er to select r, and then
the ⊕ quanti�er to pick a monomial. This monomial will correspond to ncd bits as above.
We evaluate each of them and return the result. QED

There remains to construct explicit polynomials. Again, this is similar to the way we
proceeded in section �6.2: After a non-explicit construction (Lemma 6.1) we then obtained
an explicit construction (Lemma 6.3). Though note here we still aim for a distribution.

Let us go back to the simplest case of Or. Recall that the basic building block in the
proof of Lemma 6.4 was the construction of a distribution pA on linear polynomials which
are zero on the all-zero input (which just means that they do not have constant terms), and
are often non-zero on any non-zero input. We introduce a de�nition, since now we will have
several constructions with di�erent parameters.

De�nition 6.6. A distribution pA on linear polynomials with no constant term has the
Or property if PA[pA(x) = 1] ≥ 1/3 for any x 6= 0. We identify pA with the n bits A
corresponding to its coe�cients.

The next lemma shows that we can compute distributions on linear polynomials with
the Or property from a seed of just log n + c bits, as opposed to the n bits that were used
for A in the proof of Lemma 6.4. This important fact is generalized and put in context in
section 11.1.3 (the Or property is a special case of fooling degree-1 polynomials, and the
constructions actually establish the latter). Recall that for our application to Lemma 6.4
the polynomials have an exponential number of monomials and so we cannot a�ord to write
them down. Instead we shall guarantee that given a seed r and an index to a monomial we
can compute the monomial via a function f in P. In this linear case, for a polynomial in n
variables we have ≤ n monomials xi. So the function f takes as input r and a number i ≤ n
and outputs the coe�cient to xi.

Lemma 6.6. Given n, i ≤ n, and r ∈ [2]2 logn+c we can compute in P a function f(r, i) such
that for uniform R ∈ [2]2 logn+c the distribution

(f(R, 1), f(R, 2), . . . , f(R, n))
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has the Or property.

Proof. Let q := 2logn+c and identify the �eld Fq with bit strings of length log q. We view r
as a pair (s, t) ∈ (Fq)2. Then we de�ne

f((s, t), i) := 〈si, t〉

where si is exponentiation in Fq and 〈., .〉 : (Fq)2 → [2] is de�ned as 〈u, v〉 :=
∑
ui · vi over

F2.
To show that this has the Or property, pick any non-zero x ∈ [2]n. We have to show that

p := PS,T [
∑
i

〈Si, T 〉xi = 1] ≥ 1/3.

The critical step is to note that∑
i

〈Si, T 〉xi =
∑
i

〈xi · Si, T 〉 = 〈
∑
i

xi · Si, T 〉.

Now, if x 6= 0, then the probability over S that
∑

i xi ·Si = 0 is ≤ n/q ≤ 1/6. This is because
any S that gives a zero is a root of the non-zero, univariate polynomial q(y) :=

∑
i xi · yi of

degree ≤ n over Fq, and so the bound follows by Lemma 2.1.
Whenever

∑
i xi · Si 6= 0, the probability over T that 〈

∑
i xi · Si, T 〉 = 0 is 1/2. Hence

our target probability p above satis�es

p ≥ 1/2− 1/6

as desired. QED

Exercise 6.13. Give an alternative construction of a distribution with the Or property
following this guideline.

(1) Satisfy the Or property for every input x with weight 1. Note: This can be done with
a seed of length 0 (i.e., deterministically), but when solving the next items you might want
to get back to this and use a seed of length c to achieve a stronger property.)

(2) For any j, satisfy the Or property for every input x with weight between 2j and 2j+1,
with a seed of length c log n. Use Lemma 5.3.

(3) Combine (2) with various j to satisfy the Or property for every input.
(4) State the seed length for your distribution and compare it to that of Lemma 6.6.

With this in hand, we can now reduce the error in the same way we reduced it in the
proof of Lemma 6.4.

Lemma 6.7. Given n, a seed r ∈ [2]c log(1/ε) logn, and m ≤ nc log 1/ε we can compute in P a
monomial Xr,m of degree c log 1/ε such that the distribution∑

m

XR,m

for uniform R computes Or on n variables with error ε.
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Proof. We use the construction

pA1,A2,...,At(x) := pA1(x) ∨ pA2(x) ∨ · · · ∨ pAt(x)

from the proof of Lemma 6.4, except that each Ai is now generated via Lemma 6.4, and that
t = c log 1/ε (as opposed to t = log 1/ε before). The bound on the degree is the same as
before, as is the proof that it computes Or: The error will be (1/3)c log 1/ε ≤ ε.

There remains to show that the monomials can be computed in P. For this we can go
back to the polynomial for Or in Example 6.1. Plugging that gives

pA1,A2,...,At(x) =
∑

a∈[2]t:a6=0

∏
i≤t

(pAi(x) + ai + 1).

We can use m to index a choice of a and then a choice for a monomial in each of the
t linear factors pAi(x) + ai + 1. For each factor we can use Lemma 6.6 to compute the
monomials. QED

We can now compose these polynomials at each gate to obtain an explicit version of
Theorem 6.5 which su�ces to prove Lemma 6.5 and hence Theorem 6.4.

Claim 6.1. The assumption of Lemma 6.5 is true.

Proof. Replace each gate with the distribution on polynomials given by Lemma 6.7. (Lemma
6.7 only covers Or gates, but And gates are similar, cf. Exercise 6.12.) The desired polynomial
is obtained by composing all these polynomials.

Note each of these polynomials is on 2n
cdvariables and we can set the parameter so that

it has degree ncd and error 2−n
cd , less than c times the total number of gates in the circuit.

The seed length necessary to sample it will also be ≤ ncd .
The seed used to sample the polynomials is re-used across all gates. We can a�ord this

because we use a union bound in the analysis. Hence the seed length for the �nal composed
polynomial is again just ncd , giving (1). Degrees multiply as in Theorem 6.5; so the �nal
degree is also ncd .

It remains to show (2), that is, that we can evaluate the polynomial. We are going to
show how we can compute the monomials of the composed polynomial in the same way as
we computed monomials in Lemma 6.7. It amounts to parsing the index to the monomial in
the natrual way. Some details: Start at the output gate. We use ncd bits in the given index
to choose a monomial in the corresponding polynomial. We write down this monomial, using
Lemma 6.7. This monomial is over the 2n

cd variables z1, z2, . . . corresponding to the children
of the output gate, and as remarked has degree ≤ ncd . To each zi there corresponds another
polynomial pi. Choose a monomial from pi and replace zi with that monomial; do this for
every i. The choice of the monomials is done again using bits from the index. Because each
monomial is over ncd variables, and the depth is constant, the total number of bits which
are needed to choose monomials is ncd .

We continue in this way until we have monomials just in the bits M(x, y1, y2, . . . , yd).
Those bits can then be computed from x in P running M . QED

112



6.5 Counting

In this section we prove:

Theorem 6.6. BP · ⊕ · P ⊆ P#·P.

Here the right-hand side can be de�ned as the union of P f for f ∈ # ·P. But in fact, the
function will have a simple form, making only one oracle query. Combined with Theorem
6.4 we obtain:

Corollary 6.1. PH ⊆ P#·P.

Again, a good way to think of Theorem 6.6 is in terms of circuits, and polynomials. The
key is the construction of modulus-amplifying polynomials, which allow us to treat the parity
as an integer sum and merge it with the BP operator.

Lemma 6.8. [Modulus-amplifying polynomials] For every integer ` there is a univariate
polynomial F` of degree 2`− 1 over the integers such that for every input integer y:

- y ≡ 0 mod 2⇒ F`(y) ≡ 0 mod 2`, and
- y ≡ 1 mod 2⇒ F`(y) ≡ 1 mod 2`.
Given an index to a monomial its coe�cient in [2`] can be computed in time `c.

Proof of Theorem 6.6. Let L be a language in the LHS. We set ` = ncL . Fix an input x,
it su�ces to compute a sum ∑

i∈[2`]

(pi mod 2) (6.2)

where the pi are linear polynomials over the integers, over N = 2n
cL input bits.

Lemma 6.8 allows us to write that sum as∑
i∈[2`]

F`(pi)

 mod 2`.

Indeed, in the last expression we can move the mod inside, and then apply Lemma 6.8.
Now write F` as a sum of monomials: F` =

∑
j rj. The latter sum can be merged with the

one over i, sum over all qi, and so we obtain∑
i∈[2`]

∑
j∈[2`]

rj(pi)

 mod 2`.

Now rj has degree ≤ ncL . We can expand rj(pi) into a sum of ≤ 2n
cL monomials of power

degree, and the result follows. QED
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Exercise 6.14. Prove Lemma 6.8 with the weaker degree bound `c, which su�ces for all
applications in this book. Guideline:

(1) Let a(m) := m2(3−2m). Prove that for both b ∈ [2], if m = b mod 2j then a(m) = b
mod 22j, for any j.

(2) Conclude the proof.

Exercise 6.15. Prove:

1. BPP · P ⊆ Maj · P.

2. {(M,x, t) : the number of y ∈ [2]|t| such that M(x, y) = 1 is ≥ t} ∈ Maj · P. Note
that the binary representation of t is allowed to have leading zeroes, so t = 1 and
|t| = 2100 is possible. This is just a convenience to avoid throwing in another pa-
rameter. If it confuses you, consider the language {(M,x, s, t) : the number of y ∈
[2]|s| such that M(x, y) = 1 is ≥ t} instead.

3. The same as 2. but with ≥ replaced by ≤.

4. NP ⊆ Maj · P.

5. PMaj·P = P#·P

It is not known if NP has linear-size circuits. We saw in Exercise 6.6 that PH does not
have circuits of size nk, for any k. By Exercise 6.15 this holds for Maj · Maj · P as well.
The following result improves this Maj · P. It is particularly interesting because it cannot be
established using a well-studied class of techniques which includes all the results about PH
we have encountered so far, speci�cally black-box techniques discussed in section �16.1.

Theorem 6.7. Maj · P 6⊆ CktGates(nk), for any k ∈ N.

The proof is in section �10.4.

6.6 Problems

Problem 6.1. Prove ΣiTime(nα) 6⊆ ΠiTime(nβ), for any constants i and any α > β.
Feel free to work with partial functions and assume β > 1 if you prefer, because these

details are not the main point of the problem.

Problem 6.2. Prove that QLin-NTime = QLin-Time ⇒ QLin-BPTime = QLin-Time.
(Cf. De�nition 5.4, the de�nition of QLin-BPTime is analogous.)

Problem 6.3. [Arithmetic on truth tables] Let f : [2]∗ → [2] be a function. Denote by af (n)
the 2n-bit integer whose binary representation are the evaluations of f on every input of n
bits. For example,

af (2) = f(11)f(10)f(01)f(00).

De�ne f ′ to be the function s.t. af ′(n) = af (n) + 1 mod 22n , for every n.
Show that if f ∈ PH then f ′ ∈ PH.
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Problem 6.4. Prove Theorem 6.5 with the bound on the degree replaced by (logd−1 cs)c log 1/ε
(which is better when ε is small).

Problem 6.5. (1) Show that for any constants α < β, Gap-Majα,β has alternating circuits
of depth cα,β and size ncα,β .

(2) Show that Gap-Maj1/2−1/ logn,1/2+1/ logn has alternating circuits of depth c and size nc.
(This can be generalized by replacing the log with loga and the c with ca, but you are not
asked to prove this.)

Problem 6.6. Prove ∃ · BP · P ⊆ Maj · P.

Problem 6.7. Maj · ⊕ ·P ⊆ Maj ·Maj · P. (In particular, PH ⊆ Maj ·Maj · P by Theorem
6.4.)

(Hint: Suppose you have an integer w in some range and you want to know if w is odd
by just asking questions of the type w ≥ t and w ≤ t′, for various t, t′. You want that the
number of questions with answer �yes� only depends on whether w is odd or even.)

Problem 6.8. [Or property vs. error-correcting codes] Actually, explicit constructions of
distributions with the Or property (De�nition 6.6), or fooling degree-1 polynomials (sec-
tion 11.1.3), are equivalent to error-correcting codes. (The main novelty in theoretical com-
puter science seems the level of explicitness that's typically required in applications.) In this
problem you will explore this connection.

A set C ⊆ [2]n of size 2k is called linear if there exists an n× k matrix M over F2 such
that C = {Mx : x ∈ [2]k}. Recall error-correcting codes from Exercise 2.12.

1. Prove that a linear set C is an error-correcting code i� the weight of any non-zero
string in C is at least n/3.

2. Prove the existence of linear error-correcting codes matching the parameters in Exer-
cise 2.12.

3. Let S be a subset of [2]k s.t. the uniform distribution over S has the Or property.
De�ne |S|×k matrix MS where the rows are the elements of S. Prove that {MSx : x ∈ [2]k}
is an error-correcting code.

4. Give explicit error-correcting codes over ck2 bits of size 2k.
5. This motivates improving the parameters of distributions with the Or property. Im-

prove the seed length in Lemma 6.6 to log n + c log log n. Hint: What property you need
from T?

6. Give explicit error-correcting codes over k logc k bits of size 2k.

6.7 Notes

Two lines of research appear intertwined around few main ideas. The �rst line is the study
of complexity classes de�ned in terms of operators. The second is that of circuits with
various gates. One basic idea is that And (hence, AC) can be approximated by low-degree
polynomials. This idea appears in [266] and [216]. Another basic idea is that of modulus
amplifying polynomials. They originate from [257] and were studied further in [297, 42],
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the latter proving Lemma 6.8. A similar proof gives a simulation of ACC (Lemma 8.2). A
third basic idea is that there are ACs for gap majority. This is from [7] (where Lemma 6.1
is proved) and [239]. For more constructions, see [275] and [8].

Several proofs of Theorem 6.4 have appeared [149, 79]. Our presentation based on The-
orem 6.5 seems a little di�erent ([149, 79] don't cite [216]).

The PH was identi�ed in [247], where Theorem 6.1 is also proved. Theorem 6.2 is from
[152]. The study of ACs got a boost from the connection with oracle separations for PH,
which was pointed out in [86].

Theorem 6.4 and Theorem 6.6 are from [257].
The �rst item in the simulation of BPP Theorem 6.3 is from [239]; the second is from

[275].
Maj P was de�ned in [136].
Parity P was de�ned in [207].
Theorem 6.5 is from [216].
Lemma 6.6 is from [192], where they actually prove stronger results, see Theorem 11.5.

The proof we presented is a particularly nice one from the three presented in the follow-up
[16].

Theorem 6.7 is from [270].
For a compendium of problems complete for various levels of the PH, in the style of [91],

see [228].
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Chapter 7

Space

117



As mentioned in Chapter 1, Time is only one of several resources we with to study.
Another important one is space, which is another name for the memory of the machine.
Computing under space constraints may be less familiar to us than computing under time
constraints, and many surprises lay ahead in this chapter that challenge our intuition of
e�cient computation.

If only space is under consideration, and one is OK with a constant-factor slackness, then
TMs and RAMs are equivalent; much like P is invariant under power changes in time. In
a sense, changing the space by a constant factor is like changing the time by a power; from
this point of view the equivalence is not surprising.

We shall consider both space bounds bigger than the input length and smaller. For the
latter, we have to consider the input separately. The machine should be able to read the
input, but not write on its cells. One way to formalize this is to consider 2TMs, where one
tape holds the input and is read-only. The other is a standard read-write tape.

We also want to compute functions f whose output is more than 1 bit. One option is
to equip the machine with yet another tape, which is write-only. We prefer to stick to two
tapes and instead require that given x, i the i output bit of f(x) is computable e�ciently.

De�nition 7.1. A function f : X ⊆ [2]∗ → [2]∗ is computable in Space(s(n)) if there is a
2TM which on input (x, i) on the �rst tape, where x ∈ X and i ≤ |f(x)|, outputs the i bit
of f(x), and the machine never writes on the �rst tape and never uses more than s(|x|) cells
on the second.

We de�ne:

L :=
⋃
d

Space(d log n),

PSpace :=
⋃
d

Space(nd).

We investigate next the relationship between space and time. We begin with some basic
simulations, the �rst two of which will be improved right after.

Theorem 7.1. For every functions t and s:

1. kTM-Time(t) ⊆ Space(ckt),

2. Time(t) ⊆ Space(ct log(nt)),

3. Space(s) ⊆ 2TM-Time(cs(n) · nc).

Proof. 1. A TM running in time t can only move its heads at most t tape cells. We can
write all these contents in one tape. To simulate one step of the kTM we do a pass on all
the contents and update them accordingly.

2. A RAM running in time t can only access ≤ t memory cells, each containing at most
c log nt bits; the factor n is to take into account that the machine starts with word length
≥ log n. We simulate this machine and for each Write operation we add a record on the
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tape with the memory cell index and the content, similar to Theorem 1.8. When the RAM
reads from memory, we scan the records and read o� the memory values from one of them.
If the record isn't found, then the simulation returns the value corresponding to the initial
con�guration.

We also allocate c log nt bits for the registers of the RAM. It can be shown that the
operations among them can be performed in the desired space, since they only involve a
logarithmic number of bits. A stronger result is proved later in Theorem 7.4.

3. On an input x with |x| = n, a Space(s) machine can be in at most nc · cs(n) con�gu-
rations. The �rst nc factor is for the head position on the input. The second factor is for
the contents of the second tape. Since the machine ultimately stops, con�gurations cannot
repeat, hence the same machine (with no modi�cation) will stop in the desired time. QED

For simulating time by space we actually have the following stronger results.

Theorem 7.2. For every functions t and s:
(1) kTM-Time(t) ⊆ Space(ck

√
t log t),

(2) Time(t) ⊆ Space(ct/ log t).

Exercise 7.1. Prove (1) for 1TM (i.e., k = 1). In fact, obtain the stronger space bound
c
√
t.

Proof ideas of the other claims in Theorem 7.2. We only give a sketch of the beautiful
proofs which use several results, including some we will prove later. The proof of (1) for
kTM is more involved than the proof for 1TMs (cf Exercise 7.1). Under the assumption that
t ≥ n2, one can prove it by combining Theorem 1.3 and Theorem 9.3 in a relatively simple
way.

We sketch a di�erent argument that gives the more modest log t saving in (2), but avoids
Theorem 9.3 and can be extended to RAMs. Let b := tc. Divide each tape into consecutive
blocks of b = tc symbols, and assume that the machine is block-respecting, cf. 1.3.

We also divide time into t/b epochs of length b. We construct a graph with t/b nodes
corresponding to epochs. We are going to place pebbles on this graph, where placing a
pebble on node v means that we can simulate the machine up to until the end of epoch v,
which in turn means computing the state of the machine, which blocks it is working on, and
their contents. The rules for pebbling are that we can place a pebble on any node whose
predecessors are all pebbled (in particular, nodes with no predecessors), and remove a pebble
from any node. We now have to place edges on this graph ensuring our simulation is indeed
possible. We have edges i − 1 → i for every i, because we need to know the state of the
machine and the block positions to continue. In addition, we place an edge i → j if the
machine in time block j is working on the same block the machine was working in time block
i, and i is the largest index less than j with this property. Note this graph depends on the
input x.

It is known that any graph with m nodes can be pebbled using ≤ cm/ logm pebbles
(which means that every node v that's reachable from a node u can be pebbled starting with
a pebble on node u with that many pebbles). Problem 7.1 asks to prove a slightly weaker
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Figure 7.1: Illustration of branching program (De�nition 7.2).

bound which su�ces to prove the theorem up to a c log log t factor, and has a signi�cantly
simpler proof. Here m = t/b. Moreover, each pebble costs cb bits of space during the
simulation. So the total space of the simulation is m · cb = ct/ log t.

There remains to compute the pebbling. This is a non-trivial task, since the pebbling
can involve an exponential number of moves, but we can use a recursive strategy to solve
the following problem (similar to Theorem 7.19): Given a current pebbling of the graph,
compute the next move in an optimal pebbling. This can be done in space roughly square
the size of the pebbling, which will be within our budget by our choice of b. QED

From Theorem 7.1 and the next exercise we have

L ⊆ P ⊆ NP ⊆ PH ⊆ PSpace ⊆ Exp.

Exercise 7.2. Prove PH ⊆ PSpace.

Just like for Time, for space one has universal machines and a hierarchy theorem. The
latter implies L 6= PSpace. Hence, analogously to the situation for Time and NTime (sec-
tion �5.1), we know that at least one of the inclusions above between L and PSpace is strict.
Most people seem to think that all are, but nobody can prove that any speci�c one is.

7.1 Branching programs

Branching programs are the non-uniform counterpart of Space, just like circuits are the
non-uniform counterpart of Time.

De�nition 7.2. A (branching) program is a directed acyclic graph. A node can be labeled
with an input variable, in which case it has two outgoing edges labeled 0 and 1. Alternatively
a node can be labeled with 0 or 1, in which case it has no outgoing edges. One special node
is the start node.

The space of the program with S nodes is logS. A program computes a function f :
[2]n → [2] by following the path from the starting node, following edge labels corresponding
to the input, and outputting b ∈ [2] as soon as it reaches a node labeled b.
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See �gure 7.1 for an illustration.

Theorem 7.3. Suppose a 2TMM computes f : [2]n → [2] in space s. Then f has branching
programs of space cM(s + log n). In particular, any f ∈ L has branching programs of size
ncf .

Proof. Each node in the program corresponds to a con�guration. QED

De�nition 7.3. The branching program given by Theorem 7.3 is called the con�guration
graph of M .

7.2 The power of L

Computing with severe space bounds, as in L, seems quite di�cult. Also, it might be
somewhat less familiar than, say, computing within a time bound. It turns out that L is a
powerful class capable of amazing computational feats that challenge our intuition of e�cient
computation. Moreover, these computational feats hinge on deep mathematical techniques
of wide applicability. We hinted at this in Chapter 0. We now give further examples. At the
same time we develop our intuition of what is computable with little space.

To set the stage, we begin with a composition result. In the previous sections we used
several times the simple result that the composition of two maps in P is also in P. This
is useful as it allows us to break a complicated algorithm in small steps to be analyzed
separately � which is a version of the divide et impera paradigm. A similar composition
result holds and is useful for space, but the argument is somewhat less obvious. The proof
is our �rst example of a general philosophy which can be cast as follows:

Unlike time, space can be reused.

Lemma 7.1. Let f1 : [2]∗ → [2]∗ be in Space(s1) and satisfy |f1(x)| ≤ m(|x|) for a function
m. Suppose f2 : [2]∗ → [2] is in Space(s2).

Then the composed function g de�ned as g(x) = f2(f1(x)) is computable in space
c(s2(m(n)) + s1(n) + log nm(n)).

In particular, if f1 and f2 are in L then g is in L, as long as m ≤ nd for a constant d.

Exercise 7.3. Prove this.

7.2.1 Arithmetic

A �rst example of the power of L is given by its ability to perform basic arithmetic. Grade
school algorithms use a lot of space, for example they employ space ≥ n to multiply two
n-bit integers.

Theorem 7.4. The following problems are in L:

121



1. Addition of two input integers.

2. Iterated addition: Addition of any number of input integers.

3. Multiplication of two input integers.

4. Iterated multiplication: Multiplication of any number of input integers.

5. Division of two integers.

Iterated multiplication is of particular interest because it can be used to compute �pseu-
dorandom functions.� Such objects shed light on our ability to prove impossibility results
via the �Natural Proofs� connection which we will see in Chapter 16.

Proof of 1. in Theorem 7.4. We are given as input x, y ∈ N and an index i and need to
compute bit i of x + y. Starting from the least signi�cant bits, we add the bits of x and y,
storing the carry of 1 bit in memory. Output bits are discarded until we reach bit i, which
is output. QED

Exercise 7.4. Prove 2. and 3. in Theorem 7.4.

Proving 4. and 5. is more involved and requires some of those deep mathematical tools
of wide applicability we alluded to before. Division can be computed once we can compute
iterated multiplication. In a nutshell, the idea is to use the expansion

1

x
=
∑
i≥0

(−1)i(x− 1)i.

We omit details about bounding the error. Instead, we point out that this requires
computing powers (x− 1)i which is an example of iterated multiplication (and in fact is no
easier).

So for the rest of this section we focus on iterated multiplication. Our main tool for this
is the Chinese-remaindering representation of integers, abbreviated CRR.

De�nition 7.4. We denote by Zm the integers modulo m equipped with addition and
multiplication (modulo m).

Theorem 7.5. Let p1, ..., p` be distinct primes and m :=
∏

i pi. Then Zm is isomorphic to
Zp1 × . . .× Zp` .

The forward direction of the isomorphism is given by the map

x ∈ Zm → (x mod p1, x mod p2, ..., x mod p`) ∈ Zp1 × ...× Zp` .

For the converse direction, there exist integers e1, ..., e` ≤ (p′)c, depending only on the pi
such that the converse direction is given by the map

(x mod p1, x mod p2, ..., x mod p`) ∈ Zp1 × ...× Zp` → x :=
∑̀
i=1

ei · (x mod pi).
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Each integer ei is 0 mod pj for j 6= i and is 1 mod pi.

Example 7.1. Z6 is isomorphic to Z2 ×Z3. The equation 2 + 3 = 5 corresponds to (0, 2) +
(1, 0) = (1, 2). The equation 2·3 = 6 corresponds to (0, 2)+(1, 0) = (0, 0). Note how addition
and multiplication in CRR are performed in each coordinate separately; how convenient.

To compute iterated multiplication the idea is to move to CRR, perform the multiplica-
tions there, and then move back to standard representation. A critical point is that each
coordinate in the CRR has a representation of only c log n bits, which makes it easy to
perform iterated multiplication one multiplication at the time, since we can a�ord to write
down intermediate products.

The algorithm is as follows:

Computing the product of input integers x1, . . . , xt.

1. Let ` := nc and compute the �rst ` prime numbers p1, p2, . . . , p`.

2. Convert the input into CRR: Compute (x1 mod p1, . . . , x1 mod p`), . . . , (xt
mod p1, . . . , xt mod p`).

3. Compute the multiplications in CRR: (Πt
i=1xi mod p1), . . . , (Πt

i=1xi mod p`).

4. Convert back to standard representation.

Exercise 7.5. Prove the correctness of this algorithm.

Now we explain how steps 1, 2, and 3 can be implemented in L. Step 4 can be implemented
in L too, but showing this is somewhat technical due to the computation of the numbers ei
in Theorem 7.5. However these numbers only depend on the input length, and so we will
be able to give a self-contained proof that iterated multiplication has branching programs of
size nc.

Step 1

By Theorem 2.6, the primes pi have magnitude ≤ nc and so can be represented with c log n
bits. We can enumerate over integers with ≤ c log n bits in L. For each integer x we can test
if it's prime by again enumerating over all integers y and z with ≤ c log n bits and checking
if x = yz, say using the space-e�cient algorithm for multiplication in Theorem 7.4. (The
space required for this step would in fact be c log log n.)
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Step 2

We explain how given y ∈ [2]n we can compute (y mod p1, . . . , y mod p`) in L. If yj is bit
j of y we have that

y mod pi =

[
n−1∑
j=0

(2jyj)

]
mod pi

=

[
n−1∑
j=0

(2j mod pi)yj

]
mod pi.

Note that the values ai,j := 2j mod pi can be computed in L and only take c log n bits.
Multiplying by yj is also in L. Hence the problem reduces to iterated addition of n numbers
which is in L by Theorem 7.4.

Step 3

This is a smaller version of the original problem: for each j ≤ `, we want to compute (Πt
i=1xi

mod pj) from x1 mod pj, . . . , xt mod pj. However, as mentioned earlier, each (xi mod pj)
is at most nc in magnitude and thus has a representation of c log n bits. Hence we can just
perform one multiplication at the time in L.

Step 4

By Theorem 7.5, to convert back to standard representation from CRR we have to compute
the map

(y mod p1, . . . , y mod p`)→
∑̀
i=1

ei · (y mod pi).

Assuming we can compute the ei, this is just multiplication and iterated addition, which are
in L by Theorem 7.4.

Putting the steps together

Combining the steps together we can compute iterated multiplication in L as long as we are
given the integers ei in Theorem 7.5.

Theorem 7.6. Given integers x1, x2, . . . , xt, and given the integers e1, e2, . . . , e` as in The-
orem 7.5, where ` = nc, we can compute

∏
i xi in L.

In particular, because the ei only depend on the input length, but not on the xi they can
be hardwired in a branching program.

Corollary 7.1. Iterated multiplication has branching programs of size nc.
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Exercise 7.6. Show that given integers x1, x2, . . . , xt and y1, y2, . . . , yt one can decide if

t∏
i=1

xi =
t∏
i=1

yi

in L. You cannot use the fact that iterated multiplication is in L, a result which we stated
but not completely proved.

Exercise 7.7. Show that the iterated multiplication of d× d matrices over the integers has
branching programs of size ncd .

7.2.2 Graphs

We now give another example of the power of L.

De�nition 7.5. The undirected reachability UConnd problem: Given an undirected graph
G and two nodes s and t in G determine if there is a path from s to t.

Standard time-e�cient algorithms to solve this problem mark nodes in the graph. In
logarithmic space we can keep track of a constant number of nodes, but it is not clear how
we can avoid repeating old steps forever.

Theorem 7.7. Undirected reachability is in L.

The idea behind this result is that a random walk on the graph will visit every node,
and can be computed using small space, since we just need to keep track of the current
node. Then, one can derandomize the random walk and obtain a deterministic walk, again
computable in L.

7.2.3 Linear algebra

Our �nal example comes from linear algebra. Familiar methods for solving a linear system

Ax = b

can be done requires a lot of space. For example using elimination we need to rewrite the
matrix A. Similarly, we cannot easily compute determinants using small space. However, a
di�erent method exists.

Theorem 7.8. Solving a linear system is computable in Space(c log2 n).

125



7.3 Checkpoints

The checkpoint technique is a fundamental tool in the study of space-bounded computation.
Let us illustrate it at a high level. Let us consider a graph G, and let us write u ;t v if
there is a path of length ≤ t from u to v. The technique allows us to trade the length of
the path with quanti�ers. Speci�cally, for any parameter b, we can break down paths from u
to v in b smaller paths that go through b − 1 checkpoints. The length of the smaller paths
needs be only t/b (assuming that b divides t). We can guess the breakpoints and verify each
smaller path separately, at the price of introducing quanti�ers but with the gain that the
path length got reduced from t to t/b. The checkpoint technique is thus an instantiation of
the general paradigm of guessing computation and verifying it locally, introduced in Chapter
5. One di�erence is that now we are only going to guess parts of the computation.

The checkpoint technique

u ;t v ⇔ ∃p1, p2, . . . , pb−1 : ∀i ∈ {0, 1, b− 1} : pi ;t/b pi+1,

where we denote p0 := u and pb := v.

An important aspect of this technique is that it can be applied recursively: We can apply
it again to the problems pi ;t/b pi+1. We need to introduce more quanti�ers, but we can
reduce the path length to t/b2, and so on. We will see several instantiations of this technique,
for various settings of parameters, ranging from b = 2 to b = nc.

We now utilize the checkpoint technique to show a simulation of small-space computation
by small-depth alternating circuits.

Theorem 7.9. A function computable by a branching program with S nodes is also com-
putable by an alternating circuit of depth c logb S and size Sb logb S+c, for any b ≤ S.

To illustrate the parameters, suppose S = na, and let us pick b := nε where n ≥ ca,ε.
Then we have ACs of depth d := ca/ε and size ≤ Sn

εd+c = 2n
cε
. In other words, we can

have depth d and size 2n
ca/d , for every d. Another way of saying this is that the circuit has

constant depth and power size on inputs of power-logarithmic length. This is quite useful to
design ACs

Exercise 7.8. Prove that for any t and d the Majority function on logd t bits can be computed
by ACs of size tcd and depth cd.

The parameters in the above discussion before the exercise in particular hold for every
function in L. We will later give explicit functions (also in P) which cannot be computed
by ACs of depth d and size 2n

c/d
, �just short� of ruling out L. This state of a�airs is worth

emphasis:
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(1) Every f in L has alternating circuits of depth d and size 2n
cf /d .

(2) We can prove that there are explicit functions (also in L) which
cannot be computed by circuits of depth d and size 2n

c/d
.

(3) Improving the constant in the double exponent for a function in P
would yield L 6= P. In this sense, the result in (2) is the best possible
short of proving a major separation.

Proof. We apply the checkpoint technique to the branching program, recursively, with pa-
rameter b. For simplicity we �rst assume that S is a power of b. Each application of the
technique reduces the path length by a factor b. Hence with logb S applications we can reduce
the path length to 1.

In one application, we have an ∃ quanti�er over b−1 nodes, corresponding to an Or gate
with fan-in Sb−1, and then a ∀ quanti�er over b smaller paths, corresponding to an And gate
with fan-in b. This gives a tree with Sb−1 · b ≤ Sb leaves. Iterating, the number of leaves will
be

(Sb)logb S.

Each leaf can be connected to the input bit on which it depends. The size of the circuit
is at most c times the number of leaves.

If S is not a power of b we can view the branching program as having S ′ ≤ bS nodes
where S ′ is a power of b . QED

The following is a uniform version of Theorem 7.9, and the proof is similar. It shows that
we can speed up space-bounded computation with alternations.

Theorem 7.10. Any f ∈ L is also in Σcf/εTime(nε), for any ε > 0.

Proof. Let G be the con�guration graph of f . Note this graph has ncf nodes. We need to
decide if the start con�guration reaches the accept con�guration in this graph within t := ncf

steps.
We apply to this graph the checkpoint technique recursively, with parameter b := nε/2.

Each application of the technique reduces the path length by a factor b. Hence with cf/ε
applications we can reduce the path length to

t

bcf/ε
=

ncf

ncf/2
≤ 1.

Each quanti�er ranges over b log ncf = cfn
ε/2 log n ≤ nε bits for large enough n.

There remains to check a path of length 1, i.e., an edge. The endpoints of this edge are
two con�gurations u and v which depend on the quanti�ed bits. The machine can compute
the two endpoints in time logcm where m is the total number of quanti�ed bits, using rapid
access. Once it has u and v it can check if u leads to v in one step by reading one bit from
the input. Note m ≤ nε · cf/ε, so logcm ≤ cfn

ε. QED
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7.4 The grand challenge for space

We now present impossibility results for space paralleling Chapter 3. Combinatorially, we
have a nearly quadratic bound for branching programs.

Theorem 7.11. Branching programs require size ≥ n2/ logc n to solve the element distinct-
ness problem on n bits arranged as n/c log n vectors of length w := c log n.

Proof. Given a branching program with S nodes, partition its variable nodes in n/c log n sets
depending on which (bit in a) vector they query. One of the sets has size S ′ ≤ S/(n/c log n).
For every �xing of the other vectors, the branching program encodes those vectors, up to
permutation. (One can reconstruct the vectors by running the branching program on every
possible input.) In particular, it encodes any set subset of [2]c logn of size n/c log n − 1. On
the other hand, the number of branching programs of size S ′ is ≤ 2cS

′ logS′ ≤ 2(S/n)·logc n (for
each node we encode the neighbors among S ′+2 possible nodes). Combining these two facts
and taking logs you get

(S/n) · logc n ≥ log2

(
nc

n/c log n− 1

)
.

The binomial in the right-hand side is ≥
(

n2

n/c logn

)
≥ 2cn (cf Fact A.3) and the result

follows. QED

No quadratic bound is known for NP.
Again, we can use diagonalization to prove a space hierarchy. Following section �3.3 we

show this for partial functions. The corresponding extension to total functions is routine but
tedious, and we will skip it.

Theorem 7.12. There is a partial function in Space(s(n)) such that any TM M computing
it uses space ≥ s(n)− c|M |, for any s(n).

In other words, Space(s(n)) ) Space(s(n)− ω(1)).

Proof. Consider a TM H that on input x = (M, 1n−|M |) of length n runs M on x until it
stops and then complements the answer. (We can use a simple encoding of these pairs, for
example every even-position bit of the description of M is a 0.) The TM H is speci�cally
implemented as follows: it begins by making a copy of M . This takes space c|M |. Then
every step of the computation of M can be simulated by H reading the description of M .
(Unlike for time, cf Theorem 3.3, the description ofM does not have to accompany the head,
but can be left at the beginning of the tape. The head may travel back-and-forth to simulate
each step of M , but the space does not increase further.)

Now de�ne X to be the subset of inputs x of length n where the M encoded by x runs
in space ≤ s(n) − c|M | on x. On these inputs, H runs in space ≤ s(n), as desired. This is
because the space overhead is c|M |, but M uses space c|M | less than our target of s(n).

Now suppose N computes the same function as H in space s(n) − c|N |. Note that
x := (N, 1n−|N |) falls in the domain X of the function. Now consider running N on x. We
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have N(x) = H(x) by supposition, but H(x) is the complement of N(x), contradiction.
QED

Paralleling again the discussion in section 5.1.1, from the space hierarchy it follows that
L 6= PSpace. Hence in particular either P 6= L or P 6= PSpace. Thus, we know that at least
one important separation between time and space holds. Most people appear to think that
both hold, but we are unable to prove either.

7.5 Reductions

Again, we can use reductions to relate the space complexity of problems.

7.5.1 P vs. PSpace

De�nition 7.6. A problem f is PSpace-complete if f ∈ PSpace and f ∈ P⇒ PSpace = P.

De�nition 7.7. A quanti�ed boolean formula (QBF) is a boolean formula where we allow
both ∃ and ∀ quanti�ers. The QBF problem: Given a QBF, is it true?

Example 7.2. ∃x∀y∃z : (x ∨ y) ∧ (¬x ∨ z) is a true QBF.

Theorem 7.13. QBF is PSpace-complete.

Proof. To prove that QBF is in PSpace we use a natural recursive algorithm. Given a QBF,
we consider one quanti�er Qx and we recursively determine the truth of the formula with
x = 0 and x = 1, reusing the space among recursive calls. If Q = ∃ we return true if at least
one assignment resulted in a true formula, if Q = ∀ if both. The space S(n) satis�es

S(n) ≤ nc + S(n− 1)

with solution S(n) ≤ nc.
To prove hardness, let M be a TM using space na. And let x be an input. As remarked

in Theorem 7.1, the running time of the machine is ≤ cn
a
. We use the checkpoint technique.

That is, to know if M goes from con�guration C1 to C2 in t steps, we guess a middle
con�guration Cm and check if it goes from C1 to Cm in t/2 steps, and from Cm to C2 in t/2
steps.

This introduces an ∃ quanti�er over cna bits, and a ∀ quanti�er on 1 bits. Repeating
log(cn

a
) ≤ cna times, we have reduced the time to 1. The �nal check to do is to check if a

con�guration C goes to a con�guration C ′ in 1 step. This (including computing C and C ′)
can be computed in power time from the quanti�ed bits and the input x. By Theorem 5.1
we can introduce another ∃ quantifer on nca bits and write this computation as a 3CNF.
QED
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7.5.2 L vs. P

De�nition 7.8. A problem f is P-complete if f ∈ P and f ∈ L⇒ L = P.

De�nition 7.9. The circuit value problem: Given a circuit C and an input x, compute
C(x).

Theorem 7.14. Circuit value is P-complete.

Proof. Circuit value is in P since we can evaluate one gate at the time. Now let g ∈ P.
We can reduce computing g on input x to a circuit value instance, as in the simulation of
TMs by circuits in Theorem 1.5. The important point is that this reduction is computable
in L. Indeed, given an index to a gate in the circuit, we can compute the type of the gate
and index to its children via simple arithmetic, which is in L by Theorem 7.4, and some
computation which only depends on the description of the P-time machine for g.n QED

De�nition 7.10. The monotone circuit value problem: Given a circuit C with no negations
and an input x, compute C(x).

Exercise 7.9. Prove that monotone circuit value is P-complete.

Recall from section 7.2.3 that �nding solutions to linear systems

Ax = b

has space-e�cient algorithms. Interestingly, if we generalize equalities to inequalities the
problem becomes P complete. This set of results illustrates a sense in which �linear algebra�
is easier than �optimization.�

De�nition 7.11. The linear inequalities problem: Given a d × d matrix A of integers and
a d-dimensional vector, determine if the system Ax ≤ b has a solution over the reals.

Theorem 7.15. Linear inequalities is P-complete.

Proof. The ellipsoid algorithm shows that Linear inequalities is in P, but we will not discuss
this classic result.

Instead, we focus on showing how given a circuit C and an input x we can construct a
set of inequalities that are satis�able i� C(x) = 1.

We shall have as many variables vi as gates in the circuit, counting input gates as well.
For an input gate gi = xi add equation vi = xi.
For a Not gate gi = Not(gj) add equation vi = 1− vj.
For an And gate gi = And(gj, gk) add equations 0 ≤ vi ≤ 1, vi ≤ vj, vi ≤ vk, vj + vk− 1 ≤

vi.
The case of Or is similar, or can be dispensed by writing an Or using Not and And.
Finally, if gi is the output gate add equation vi = 1.

130



We claim that in every solution to Av ≤ b the value of vi is the value in [2] of gate gi on
input x. This can be proved by induction. For input and Not gates this is immediate. For
an And gate, note that if vj = 0 then vi = 0 as well because of the equations vi ≥ 0 and
vi ≤ vj. The same holds if vk = 0. If both vj and vk are 1 then vi is 1 as well because of the
equations vi ≤ 1 and vj + vk − 1 ≤ vi. QED

Exercise 7.10. Prove that any f ∈ L can be map reduced in quasi-linear time to a QBF
with logcf n variables. Note: Remember that one computation step also depends on an input
bit; you need to address the complexity of that.

7.6 Nondeterministic space

Because of the insight we gained from considering non-deterministic time-bounded com-
putation in section �5.1, we are naturally interested in non-deterministic space-bounded
computation. In fact, perhaps we will gain even more insight, because this notion will really
challenge our understanding of computation.

For starters, let us de�ne non-deterministic space-bounded computation. A naive ap-
proach is to de�ne it using the quanti�ers from section �6.3, leading to the class ∃ · L. This
is an ill-fated choice:

Exercise 7.11. Prove ∃ · L = ∃ · P.

Instead, non-deterministic space is de�ned in terms of non-deterministic TMs.

De�nition 7.12. A function f : [2]∗ → [2] is computable in NSpace(s(n)) if there is a
two-tape TM which on input x never writes on the �rst tape and never uses more than s(n)
cells on the second, and moreover:

1. The machine is equipped with a special �Guess� state. Upon entering this state, a
guess bit is written on the work tape under the head.

2. f(x) = 1 i� there exists a choice for the guess bits that causes the machine to output
1.

We de�ne

NL :=
⋃
d

NSpace(d log n),

NPSpace :=
⋃
d

NSpace(nd).

How can we exploit this non-determinism? Recall from section 7.2.2 that reachability in
undirected graphs is in L. It is unknown if the same holds for directed graphs. However, we
can solve it in NL.

De�nition 7.13. The directed reachability problem: Given a directed graph G and two
nodes s and t, decide if there is a path from s to t.
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Theorem 7.16. Directed reachability is in NL.

Proof. The proof simply amounts to guessing a path in the graph. The algorithm is as
follows:

�On input G, s, t, let v := s.
For i = 0 to |G|:

If v = t, accept.
Guess a neighbor w of v. Let v := w.

If you haven't accepted, reject.�
The space needed is |v|+ |i| = c log |G|. QED

We can de�ne NL completeness similarly to NP and P completeness, and have the fol-
lowing result.

Theorem 7.17. Directed reachability is NL-complete. That is, it is in NL and it is in L i�
L = NL.

Exercise 7.12. Prove this.

Recall by de�nition Space(s(n)) ⊆ NSpace(s(n)). We showed Space(s(n)) ⊆ Time(nccs(n))
in Theorem 7.1. We can strengthen the inclusion to show that it holds even for non-
deterministic space.

Theorem 7.18. NSpace(s(n)) ⊆ Time(nccs(n)).

Proof. On input x, we compute the con�guration graph G of M on input x. The nodes are
the con�gurations, and there is an edge from u to v if the machine can go from u to v in one
step. Then we solve reachability on this graph in power time, using say breadth-�rst-search.
QED

The next theorem shows that non-deterministic space is not much more powerful than
deterministic space: it buys at most a square. Contrast this with the P vs. NP question!
The best deterministic simulation of NP that we know is the trivial NP ⊆ Exp. Thus the
situation for space is entirely di�erent.

Theorem 7.19. NSpace(s) ⊆ Space(cs2), for every function s = s(n) ≥ log n. In particular,
NPSpace = PSpace.

Proof. We use the checkpoint technique with parameter b = 2, and re-use the space to verify
the smaller paths. Let N be a non-deterministic TM computing a function in NSpace(s(n)).
We aim to construct a deterministic TM M that on input x returns

Reach(Cstart, Caccept, c
s(n)),

where Reach(u, v, t) decides if v is reachable from u in ≤ t steps in the con�guration graph
of N on input x, and Cstart is the start con�guration, Caccept is the accept con�guration, and
cs(n) is the number of con�gurations of N .

132



The key point is how to implement Reach.
Computing Reach(u, v, t)
For all �middle� con�gurations m
If both Reach(u,m, t/2) = 1 and Reach(m, v, t/2) = 1 then Accept.

Reject
Let S(t) denote the space needed for computing Reach(u, v, t). We have

S(t) ≤ cs(n) + S(t/2).

This is because we can re-use the space for two calls to Reach. Therefore, the space for
Reach(Cstart, Caccept, c

s(n)) is

≤ cs(n) + cs(n) + . . .+ cs(n) ≤ cs2(n).

QED

To set the stage for the next result, recall that we do not know if Ntime(t) is closed
under complement. It is generally believed not to be, and we showed that if it is then the
PH collapses Exercise 6.5.

What about space? Theorem 7.19 shows NSpace(s) ⊆ Space(cs2). Because the latter is
closed under complement, up to a quadratic loss in space, non-deterministic space is closed
under complement.

Can we avoid squaring the space?
Yes! This is weird!

Theorem 7.20. The complement of Path is in NL. In particular, NL is closed under com-
plement.

Proof. We want a non-deterministic 2TM that given G, s, and t accepts if there is no path
from s to t in G.

For starters, suppose the machine has computed the number C of nodes reachable from
s. The key idea is that there is no path from s to t i� there are C nodes di�erent from t
reachable from s. Thus, knowing C we can solve the problem as follows

Algorithm for deciding if there is no path from s to t, given C:

Initialize Count=0; Enumerate over all nodes v 6= t
Guess a path from s of length |G|. If path reaches v, increase Count by 1

If Count = C Accept, else Reject.

There remains to compute C.
Let Ai be the nodes at distance ≤ i from s, and let Ci := |Ai|. Note A0 = {s}, c0 = 1.

We seek to compute C = Cn.
To compute Ci+1 from Ci, enumerate nodes v (candidate in Ai+1). For each v, enumerate

over all nodes w in Ai, and check if w → v is an edge. If so, increase Ci+1 by 1.
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The enumeration over Ai is done guessing Ci nodes and paths from s. If we don't �nd
Ci nodes, we reject. QED

Exercise 7.13. Given a graph G and nodes s, t, explain how to compute in L a graph G′

and nodes s′, t′ s.t. there is no path from s to t in G i� there is a path from s′ to t′ in G′,
and |G′| ≤ |G|c. Hint: Use Theorem 7.20 as a black-box.

Now give a direct �algorithmic� proof based on the algorithm in Theorem 7.20 but without
using the result as a black-box, or mentioning con�guration graphs or completeness. For
simplicity, we will assume that we are given the count C: Given a graph G and nodes s, t,
and the count C of the number of nodes reachable from s, explain how to compute in L a
graph G′ and nodes s′, t′ s.t. there is no path from s to t in G i� there is a path from s′ to
t′ in G′, and |G′| ≤ |G|c.

7.7 Parity space

De�nition 7.14. ⊕ · L is de�ned as NL (cf 7.12) except �a choice� is replaced with �an odd
number of choices�.

Theorem 7.21. The following problems are complete for ⊕ · L. All matrices are over F2:
- Computing the product of matrices,
- Computing the determinant of a matrix,
- Inverting a matrix.

Corresponding classes for matrices over the integers are known as DET (for boolean
problems) and GapL (for function problems).

Similarly to section 5.5.2 and Theorem 6.4 one can prove that NL is in the non-uniform
analogue of ⊕ · L.

7.8 TiSp

So far in this chapter we have focused on bounding the space usage. For this, the TM
model was su�cient, as remarked at the beginning. It is natural to consider algorithms that
operate in little time and space. For this, of course, whether we use TMs or RAMs makes a
di�erence.

De�nition 7.15. Let TiSp(t, s) be the functions computable on a RAM that on every input
x ∈ [2]n runs in time t(n) and does not write on cells with addresses outside of the range
n+ 1..n+ s(n).

In particular, cells 0..n, which recall from De�nition 1.6 contain the input and its length,
are read-only (as in De�nition 7.1).

Exercise 7.14. Prove L =
⋃
dTiSp(nd, d).
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An alternative de�nition of TiSp would allow the RAM to access s(n) cells anywhere
in memory. One can maintain a data structure to show that this alternative de�nition is
equivalent to De�nition 7.15.

To illustrate the relationship between TiSp, Time, and Space, consider undirected reach-
ability. It is solvable in Time(n logc n) by breadth-�rst search, and in logarithmic space by
Theorem 7.7. But it isn't known if it is in TiSp(n loga n, a log n) for some constant a.

Exercise 7.15. Prove the following version of Theorem 7.10: TiSp(na, n1−α) ⊆ Σca/αTime(n)
for any a ≥ 1 and α > 0.

The following is a non-uniform version of TiSp.

De�nition 7.16. A branching program of length t and width W is a branching program
where the nodes are partitioned in t layers L1, L2, . . . , Lt where nodes in Li only lead to
nodes in Li+1, and |Li| ≤ W for every i.

Thus t represents the time of the computation, and logW the space.
Recall that Theorem 7.9 gives bounds of the form ≥ cn2/ log n on the size of branching

program (without distinguishing between length and width). For branching programs of
length t and width W this bound gives t ≥ cn2/W log n. Note this gives nothing for power
width like W = n2. The state-of-the-art for power width is t ≥ Ω(n

√
log n/ log log n) (in

fact the bound holds even for subexponential width).
With these de�nitions in hand we can re�ne the connection between branching programs

and small-depth circuits in Theorem 7.9 for circuits of depth 3.

Theorem 7.22. Let f : [2]n → [2] be computable by a branching program with width W
and time t. Then f is computable by an alternating depth-3 circuit with ≤ 2c

√
t logW wires.

We will later show explicit functions that require depth-3 circuits of size 2c
√
n. Theo-

rem 7.22 shows that improving this would also improve results for small-width branching
programs, a re�nement of the message emphasized after Theorem 7.9.

A more general version of Theorem 7.22. states that for any parameter b one can have a
depth-3 circuit with

2b logW+t/b+log t

wires, output fan-in W b, and input fan-in t/b. Interestingly, this tradeo� essentially matches
known impossibility results for depth-3 circuits!

Exercise 7.16. Prove Theorem 7.22.

7.9 Three impossibility results for 3Sat

We should turn back to a traditional separation technique � diagonalization.

135



In this chapter we put together many of the techniques we have seen to obtain several
impossibility results for 3Sat. The template of all these results (and others, like those
mentioned in section �5.1) is similar. All these results prove time bounds of the form t ≥ n1+α

where α ∈ (0, 1). One can optimize the methods to push α close to 1, but even establishing
α = 1 seems out of reach, and there are known barriers for current techniques.

7.9.1 Impossibility I

We begin with the following remarkable result.

Theorem 7.23. Either 3Sat 6∈ L or 3Sat 6∈ Time(n1+ε) for some constant ε.

Note that we don't know if 3Sat ∈ L or if 3Sat ∈ Time(n log10 n). In particular, Theorem
7.23 implies that any algorithm for 3Sat either must use super-logarithmic space or time
n1+c.

Proof. We assume that what we want to prove is not true and derive the following striking
contradiction with the hierarchy Theorem 3.4:

Time(n2) ⊆ L

⊆
⋃
d

ΣdTime(n)

⊆ Time(n1.9).

The �rst inclusion holds by the assumption that 3Sat ∈ L and the fact that any function
in Time(n2) can be reduced to 3Sat in log-space, by Theorem 5.1 and the discussion after
that.

The second inclusion is Theorem 7.10.
For the third inclusion, the assumption that 3Sat ∈ Time(n1+ε) for every ε implies that

NTime(dn) ⊆ Time(n1+ε) for every d and ε, by the quasi-linear-time completeness of 3Sat,
Theorem 5.4. Now apply Exercise 6.4. QED

7.9.2 Impossibility II

We now state and prove a closely related result for TiSp. We seek to rule out algorithms for
3Sat that simultaneously use little space and time, whereas in Theorem 7.23 we even ruled
out the possibility that there are two distinct algorithms, one optimizing space and the other
time. The main gain is that we will be able to handle much larger space: power rather than
log.

Theorem 7.24. 3Sat 6∈ TiSp(n1+cε , n1−ε), for any ε > 0.

The important aspect of Theorem 7.23 is that it applies to the RAM model; stronger
results can be shown for space-bounded TMs.
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Exercise 7.17. Prove that Palindromes 6∈ TM-TiSp(n1+cε , n1−ε), for any ε > 0. (TM-
TiSp(t, s) is de�ned as Space(s), cf. De�nition 7.1, but moreover the machine runs in at
most t steps.) Hint: This problem has a simple solution. Give a suitable simulation of
TM-Tisp by 1TM, then apply Theorem 3.1.

Proof. We assume that what we want to prove is not true and derive the following contra-
diction with the hierarchy Theorem 3.4:

Time(n1+ε) ⊆ TiSp(cn(1+ε)(1+cε),cn(1+ε)(1−ε))

⊆ TiSp(n1+cε ,cn1−ε2)

⊆ ΣcεTime(n)

⊆ Time(n1+ε/2).

The �rst inclusion holds by the assumption, padding, and the fact that 3Sat is complete
under reductions s.t. each bit is computable in time (and hence space) no(1), a fact we do
not prove here. QED

Exercise 7.18. Finish the proof by justifying the remaining inclusions.

7.9.3 Impossibility III

So far our impossibility results required bounds on space. We now state and prove a result
that applies to time. Of course, as discussed in Chapter 3, we don't know how to prove that,
say, 3Sat cannot be computed in linear time on a 2TM. For single-tape machines, we can
prove quadratic bounds, for palindromes (Theorem 3.1) and 3Sat (Problem 4.3). Next we
consider an interesting model which is between 1TM and 2TM and is a good indication of
the state of our knowledge.

De�nition 7.17. A 1.5TM is like a 2TM except that the input tape is read-only.

Theorem 7.25. 3Sat requires time n1+c on a 1.5TM.

Exercise 7.19. Prove Theorem 7.25 following this guideline:

1. Let M be a 1.5TM running in time t(n). Divide the read-write tape of M into consec-
utive blocks of b cells, shifted by an o�set i < b. (So the the �rst cells of the blocks
include i, i + b, i + 2b, . . ..) Prove that for every input x ∈ [2]n there is i such that
the sum of the lengths of the crossing sequences between any adjacent blocks of the
computation M on x is at most t(n)/b. Here a crossing sequence also encodes the
position of the head on the input tape, and the time at which each crossing occurs.

2. Prove that 1.5TM-Time(n1.1) ⊆ ∃y ∈ [2]n
1−c

TiSp(nc, n1−c). (The right-hand side is
the class of functions f : [2]∗ → [2] for which there is a RAM M that on input (x, y),
where |x| = n, runs in time nc and uses memory cells 0..n1−c and s.t. f(x) = 1⇔ ∃y ∈
[2]n

1−c
M(x, y) = 1.)

3. Conclude the proof.
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7.10 Problems

Problem 7.1. Prove that any graph with m edges and in-degree c can be pebbled with
cm(log logm)/ logm pebbles.

Hint: Prove that any graph of depth d and in-degree c can be pebbled using cd pebbles.
Complete the proof using Lemma 8.1.

Problem 7.2. Consider the class Σa(n)Time(t(n)) where the number of alternations is a(n)
on inputs of length n (as opposed to being �xed to i for every input as in ΣiTime(t(n)).

Prove L 6= Σa(n)Time(nδ) for any growing a(n) and any constant δ. (Hint: Use a slight
extension of Problem 6.1.)

Problem 7.3. In this problem we will explore a beautiful illustration of the power of L. The
Simplify problem is de�ned as follows. The input is a string over the alphabet {u, v, u−1, v−1}.
Such a string can be simpli�ed by removing adjacent pairs of the type uu−1, u−1u, vv−1, v−1v.
The problem asks whether a given input string becomes the empty string after simpli�cation.

For example, uv−1vu−1 simpli�es to uu−1 and then to the empty string. On the other
hand, the string uv−1u−1 cannot be simpli�ed to the empty string.

We will show that Simplify is in L.
In this problem |x| denotes absolute value.
(1) For integers i consider the matrices

Ui :=

[
1 2i
0 1

]
, Vi :=

[
1 0
2i 1

]
.

Show that UiUj = Ui+j and so in particular U−1
i = U−i; and show the same for the Vi.

(2) Let

[
x
y

]
be a vector and let i 6= 0. Show that if |x| < |y| then

[
x′

y′

]
:= Ui

[
x
y

]
has

|x′| > |y′|. Conversely, show that if |x| > |y| then
[
x′

y′

]
:= Vi

[
x
y

]
has |x′| < |y′|. (This is the

so-called ping-pong lemma.)
(3) Show that an alternating product of matrices Ui1Vi2Ui3Vi4 · · ·Uik where the ij are not

zero is not equal to the identity matrix. Note that we begin and end with a U matrix, and
we alternate between U and V .

(4) Show that a product of matrices Ui1Vi2Ui3 · · ·Vik where the ij are not zero is not equal
to the identity matrix. Note that we begin with U but end with a V matrix, and as before
we alternate U and V matrices. (Hint: Reduce to (3) by multiplying on the left by M−1 and
on the right by M .)

(5) Show that Simplify is in L.

Problem 7.4. A family of circuits Ci : [2]i → [2] is log-space uniform if computing Cn from
1n is in L.

Prove that any log-space uniform family of circuits has an equivalent family of power-size
circuits with the following stronger uniformity condition: There is a linear-time TM with
c tapes that on input gates u and v decides if v is an input to u. (Note that log-space
uniformity is similar except that the TM runs in linear space.)

138



Problem 7.5. Given a graph G, nodes s and t, and the number C of nodes reachable from
s in G, show how to compute in L a graph G′ and nodes s′, t′ s.t. there is a path from s to t
in G i� there is no path from s′ to t′ in G′, and |G′| ≤ |G|c.

Problem 7.6. Show Space(n) is not contained in 1.5TM-Time(n1.99). You can use the Space
Hierarchy Theorem that, say, Space(n0.9) 6= Space(n).

7.11 Notes

Theorem 7.2 is from [133, 116, 292]. The �rst paper gets a logarithmic saving for MTMs.
The second paper extends this to RAMs (and other models). The third paper returns to
MTMs and gives the square-root saving. It uses [62] (Theorem 9.3) which appeared right
before.

Theorem 7.7 is from [220]. The time must have been �ripe:� a concurrent, di�erent proof
[260] gives the only slightly weaker space bound c log n log log n. The results came quite as
a shock during my own PhD, because the proof in [220] is simple. Later a simpler yet proof
appeared [225].

Theorem 7.8 follows from [66] which in fact establishes a stronger result, speci�cally it
shows that the problem is in NC2, a class we encounter in Chapter 8.

The use of CRR for arithmetic is from [37], which also contains several reductions among
arithmetical problems. Some of the steps are from the earlier work [184]. For a discussion
of the complexity of division, see [12].

Theorem 7.11 is from [195]. Theorem 7.12 is from [245].
For a compendium of P-complete problems see [108].
Theorem 7.10 goes back to [196].
As for NP, a compendium of problems complete for P is available [108].
Theorem 7.19: [227].
Theorem 7.20 was obtained independently in [137, 254]. Naturally, not even this central

result came from nowhere: an earlier surprising collapse paved the way, at least for one of
the proofs [165]. The proof in [137] uses a logical formalism, the proof we presented is closer
to the one in [254]. This question is a.k.a. the second LBA problem, from [162]. As usual,
had the answer been di�erent, it would have had applications to the �rst LBA problem,
which is the basically question whether Theorem 7.19 is tight.

See [9, 39] for the state-of-the-art bounds for power-width branching programs.
Complete problems for DET and ⊕ · L (including Theorem 7.21) are from [64, 68]. For

the relationship with NL see [90].
Problem 7.4 is from [145], where in fact constant-locality uniformity is achieved.
The introductory quote to section �7.9 is from [78], where Theorem 7.23 is proved. This

in�uential work ignited a whole research area. For a survey (not up to date) see [268] or
[289]. For the limitations of this type of results, see [54]. Theorem 7.25 is proved in [179] for
NTime instead of 3Sat. The result for 3Sat appeared in [269].
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Chapter 8

Circuits of small depth

Once upon a time two daughter sciences were born to the new science of cy-
bernetics. One sister was natural, with features inherited from the study of
the brain, from the way nature does things. The other was arti�cial, related
from the beginning to the use of computers. Each of the sister sciences tried
to build models of intelligence, but from very di�erent materials. The natu-
ral sister built models (called neural networks) out of mathematically puri�ed
neurones. The arti�cial sister built her models out of computer programs.

In their �rst bloom of youth the two were equally successful and equally pursued
by suitors from other �elds of knowledge. They got on very well together. Their
relationship changed in the early sixties when a new monarch appeared, one
with the largest co�ers ever seen in the kingdom of the sciences: Lord DARPA,
the Defense Department's Advanced Research Projects Agency. The arti�cial
sister grew jealous and was determined to keep for herself the access to Lord
DARPA's research funds. The natural sister would have to be slain.

The bloody work was attempted by two staunch followers of the arti�cial sister,
Marvin Minsky and Seymour Papert, cast in the role of the huntsman sent to
slay Snow White and bring back her heart as proof of the deed. Their weapon
was not the dagger but the mightier pen, from which came a book � Perceptrons
� purporting to prove that neural nets could never �ll their promise of building
models of mind: only computer programs could do this. Victory seemed assured
for the arti�cial sister. And indeed, for the next decade all the rewards of the
kingdom came to her progeny, of which the family of expert systems did best
in fame and fortune.

But Snow White was not dead. What Minsky and Papert had shown the world
as proof was not the heart of the princess; it was the heart of a pig.

Can you kill Snow White?
After an AI winter, and the PRAM, recent spectacular progress in arti�cial intelligence

has made it even more apparent that small-depth circuits can have amazing capabilities
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ranging from playing chess, recognizing images, and so on. (Arti�cial) neural networks are
a computing paradigm that is inspired by the human brain and gives rise to small-depth
circuits. Much of the research focus in arti�cial intelligence is on training such networks,
but here we will focus only on their performance after training � a non-uniform model of
computation.

In this chapter we investigate circuits of small depth, starting with logarithmic depth.
Later we move to constant-depth threshold circuits and we link them to neural networks.

We'll introduce several complexity classes, arranged as follows:

NC0 ( AC ( AC[2] ( ACC ⊆ TC ⊆ NC1 ⊆L ⊆ NL ⊆ NC2 ⊆ NC3 ⊆ · · · ⊆ P

8.1 NC

Let us begin slowly with some basic properties of small-depth circuits so as to get familiar
with them. The next exercise shows that circuits of depth d log n for a constant d also have
power size, so we don't need to bound the size separately.

Exercise 8.1. A circuit of depth d has size ≤ cd without loss of generality.

The next exercises shows how to compute several simple functions by log-depth circuits.

Exercise 8.2. Prove that the Or, And, and Parity functions on n bits have circuits of depth
c log n.

Prove that any f : [2]n → [2] computable by an AC of depth d and size s ≥ n is also
computable by a circuit of depth cd log s and size sc.

Next, let us relate these circuits to branching programs. The upshot is that circuits of
logarithmic depth are a special case of power-size branching programs, and the latter are a
special case of circuits of log-square depth.

Theorem 8.1. Directed reachability has circuits of depth c log2 n and size nc. In particular,
the same holds for any function in NL, and any function with power-size branching programs.

Proof. On input a graph G on u nodes and two nodes s and t, let M be the u×u transition
matrix corresponding to G, where Mi,j = 1 i� edge j → i is in G.

Transition matrices are multiplied as normal matrices, except that �+� is replaced with
�∨,� which su�ces to know connectivity. To answer directed reachability we compute entry
t of Muv, where v has a 1 corresponding to s and 0 everywhere else. (We can modify the
graph to add a self-loop on node t so that we can reach t in exactly u steps i� we reach t in
any number of steps.)

Computing Mu can be done by squaring c log u times M . Each squaring can be done in
depth c log u, by Exercise 8.2. This establishes the �rst claim, since u ≤ n.

The �in particular� follows because those functions can be reduced to directed reachability
e�ciently. QED

Conversely, we have the following.
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Theorem 8.2. Any function f : [2]n → [2] computed by a circuit of depth d can be computed
by a branching program of size 2d.

In particular, functions computed by circuits of logarithmic depth can be computed by
branching programs of power size.

Later in Theorem 9.2 we will prove the stronger and much less obvious result that the
equivalence holds even for branching programs of width 5.

Proof. We proceed by induction on the depth of the circuit C. If the depth is 1 then C is
either a constant or an input bit, and a branching program of size 1 is available by de�nition.

Suppose the circuit C has the form C1 ∧ C2. By induction, C1 and C2 have branching
programs B1and B2 each of size 2d−1. A branching program B for C of size 2d is obtained
by rewiring the edges leading to states labelled 1 in B1 to the start state of B2. The start
state of B is the start state of B1. QED

Exercise 8.3. Finish the proof by analyzing the case C = C1 ∨ C2.

De�nition 8.1. NCi is the class of functions f : [2]∗ → [2]∗ computable by circuits that
have depth a logi n and size na, for some constant a. The circuits are uniform if they can be
computed in L.

The class NC0 is also of great interest. It can be more simply de�ned as the class of
functions where each output bit depends on a constant number of input bits. We will see
many surprising useful things that can be computed in this class, see for example Theorem
11.4.

Exercise 8.4. Prove that NC0 6= NC1 (mostly to practice de�nitions.)

We can equivalently think of NC1 as power-size formulae.

De�nition 8.2. A formula is a circuit that you can actually write down on a line, such as
(x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (x1 ∧ x3). By contrast, a circuit can reuse gates, so in general it is
more complicated to write down. Alternatively, we can think of a formula as a circuit with
fan-out 1.

Formulae can have large depth, as in x1 ∧ (x2 ∧ (x3 ∧ . . .) . . .)). Yet we have:

Theorem 8.3. NC1 is the same as the class of functions that have power-size formulae.

Proof. Given a circuit of depth d, we build the formula where there is a gate for every
path from the output to a gate. The number of such paths is ≤ cd. You connect (the gate
corresponding to) path p to path p′ if p′ extends p by one edge. The fan-out is 1 by de�nition.

Conversely, we prove by induction on s that any formula f of size s has circuits of depth
c log s. Find a subformula g of size ∈ [cs, cs]. Let g0 be f with g replaced by 0, and same
for g1. Then we have

f = (g ∧ g1) ∨ (¬g ∧ g0).
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Note that g, g0, g1 all have size ≤ cs, and the depth of the RHS is at most c plus the maximum
depth of g, g0, g1. Applying the induction hypothesis completes the proof. QED

Exercise 8.5. Prove that g exists.

8.1.1 The power of NC1: Arithmetic

In this section we illustrate the power of NC1 by showing that the same basic arithmetic
which we saw is doable in L (Theorem 7.4) can in fact be done in NC1 as well.

Theorem 8.4. The following problems are in NC1:

1. Addition of two input integers.

2. Iterated addition: Addition of any number of input integers.

3. Multiplication of two input integers.

4. Iterated multiplication: Multiplication of any number of input integers.

5. Division of two integers.

Exercise 8.6. Prove Item 1. in Theorem 8.4.

Iterated addition is surprisingly non-trivial. We can't use the methods from the proof of
Theorem 7.4. Instead, we rely on a new and very clever technique.

Proof of Item 2. in Theorem 8.4.. We use �2-out-of-3:� Given 3 integers X, Y, Z, we
compute 2 integers A,B such that

X + Y + Z = A+B,

where each bit of A and B only depends on three bits, one from X, one from Y , and one
from Z. Thus A and B can be computed in NC0.

If we can do this, then to compute iterated addition we construct a tree of logarithmic
depth to reduce the original sum to a sum 2 terms, which we add as in Item 1.

Here's how it works. Note Xi + Yi +Zi ≤ 3. We let Ai be the least signi�cant bit of this
sum, and Bi+1 the most signi�cant one. Note that Ai is the XOR Xi + Yi + Zi, while Bi+1

is the majority of Xi, Yi, Zi. QED

The following corollary will also be used to solve the teaser in Chapter 0.

Corollary 8.1. Majority is in NC1.

Exercise 8.7. Prove it.

Exercise 8.8. Prove Item 3. in Theorem 8.4.
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Next we turn to iterated multiplication. The idea is to follow the proof for L in sec-
tion 7.2.1. We shall use CRR again. The problem is that we still had to perform iterated
multiplication, albeit only in Zp for p ≤ nc. One more mathematical result is useful now:

Theorem 8.5. If p is a prime then (Zp − {0}) is a cyclic group, meaning that there exists
a generator g ∈ (Zp − {0}) : ∀x ∈ (Zp − {0}), x = gi, for some i ∈ Z.

Example 8.1. For p = 5 we can take g = 2: 20 = 1, 21 = 2, 22 = 4, 23 = 8 = 3.

Proof of Item 4. in Theorem 8.4. We follow the proof for L in section 7.2.1. To compute
iterated product of integers r1, r2, . . . , rt modulo p, use Theorem 8.5 to compute exponents
e1, e2, . . . , et s.t.

ri = gei .

Then
∏

i ri mod p = g
∑
i ei . We can use Item 2. to compute the iterated addition of the

exponents. Note that computing the exponent of a number mod p, and vice versa, can be
done in log-depth since the numbers have c log n bits (as follows for example by combining
Theorem 1.4 and Exercise 8.2). QED

One can also compute division, and make all these circuits uniform, but we won't prove
this now.

8.1.2 Linear-size NC1

It is unknown whether NP has linear-size circuits of logarithmic depth! But there is a
non-trivial simulation of such circuits by ACs of depth 3 of sub-exponential size.

Theorem 8.6. Any circuit C : [2]n → [2] of size an and depth a log n has an equivalent AC
of depth 3 and size 2can/ log logn.

The idea is... yes! Once again, we are going to guess computation. The idea of the
simulation is to identify o(n) wires to remove from C so that the resulting circuit becomes
very disconnected in the sense that each of its connected components has depth ≤ 0.1 log n.
Since the circuit has fan-in 2, the output of each component can depend on at most n0.1

input bits, and so, given the assignment to the removed edges, the output can be computed
in brute-force by a depth-2 circuit of sub-exponential size. Trying all 2o(n) assignments to
the removed edges and collapsing some gates completes the simulation. We now proceed
with a formal proof and we refer to �gure 8.1.

A circuit can be viewed as an acyclic directed graph with nodes representing gates and
directed edges representing the �ow of computed values from the output of one gate to the
input of the next. The graph corresponding to C in Theorem 8.6 is connected, but we also
work with disconnected graphs.

For the depth reduction in the proof, it is convenient to think of depth as a function from
nodes to integers. The next de�nition and simple claim formalize this.
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Figure 8.1: The removal of edges a, b, c, and d reduces the depth. The circuit evaluates to 1
if and only if there are a, b, c, d ∈ [2] satisfying the corresponding equations.

De�nition 8.3. Let G = (V,E) be a directed acyclic graph. The depth of a node in G is
the number of nodes in a longest directed path terminating at that node. The depth of G is
the depth of a deepest node in G.

A depth function D for G is a map D : V → {1, 2, . . . , 2k} such that if (a, b) ∈ E then
D(a) < D(b).

Exercise 8.9. Prove that a directed acyclic graph G = (V,E) has depth at most 2k if and
only if there is a depth function D : V → {1, 2, . . . , 2k} for G.

The following is the key lemma which allows us to reduce the depth of a graph by
removing few edges.

Lemma 8.1. Let G = (V,E) be a directed acyclic graph with w edges and depth 2k. It is
possible to remove ≤ w/k edges so that the depth of the resulting graph is ≤ 2k−1.

Proof. Let D : V → {1, 2, . . . , 2k} be a depth function for G. Consider the set of edges Ei
for 1 ≤ i ≤ k:

Ei := {(a, b) ∈ E| the most signi�cant bit position where D(a) and D(b) di�er is the i-th}.

Note that E1, E2, . . . , Ek is a partition of E. And since |E| = w, there exists an index
i, 1 ≤ i ≤ k, such that |Ei| ≤ w/k. Fix this i and remove Ei. We need to show that
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the depth of the resulting graph is at most 2k−1. To do so we exhibit a depth function
D′ : V → [2]k−1. Speci�cally, let D′ be D without the i-th output bit. We claim that D′

is a valid depth function for the graph G′ := (V,E \ Ei). For this, we need to show that if
(a, b) ∈ E \ Ei then D′(a) < D′(b). Indeed, let (a, b) ∈ E \ Ei. Since (a, b) ∈ E, we have
D(a) < D(b). Now, consider the most signi�cant bit position j where D(a) and D(b) di�er.
There are three cases to consider:

j is more signi�cant than i: In this case, since the j-th bit is retained, the relationship is
also maintained, i.e., D′(a) < D′(b);

j = i: This case cannot occur because it would mean that the edge (a, b) ∈ Ei;
j is less signi�cant than i: In this case, the i-th bit of D(a) and D(b) is the same and so

removing it maintains the relationship, i.e., D′(a) < D′(b). QED

Now we prove the main theorem.

Proof of Theorem 8.6. For simplicity, we assume that both a and log n are powers of
two. Let 2` := a · log n.

Applying the above lemma we can reduce the depth by a factor 1/2, i.e. from 2` to 2`−1,
by removing ≤ a · n/` edges. Applying the lemma again we reduce the depth to 2`−2 by
removing ≤ a · n/(` − 1) edges. If we repeatedly apply the lemma log(2a) times the depth
reduces to

a log n

2log(2a)
=

log n

2
,

and the total number of edges removed is at most

a · n
(

1

`
+

1

`− 1
+ . . .+

1

`− log(2a) + 1

)
≤ a · n · log(2a)

`− log(2a) + 1
= a · n · log(2a)

log log n
.

For slight convenience we also remove the output edge eoutput of the circuit; this way
we can represent the output of the circuit in terms of the value of eoutput. We remove at
most

r := ca · n/ log log n

edges.
We de�ne the depth of an edge e = g → g′ as the depth of g, and the value of e on an

input x as the value of the gate g on x.

For every input x ∈ [2]n there exists a unique assignment h to the removed edges that
corresponds to the computation of C(x). Given an arbitrary assignment h and an input x
we can check if h is the correct assignment by verifying if the value of every removed edge
e = g → g′ is correctly computed from (1) the values of the removed edges whose depth is
less than that of e, and (2) the values of the input bits g is connected to. Since the depth
of the component is ≤ (log n)/2 and the circuit has fan-in 2, at most

√
n input bits are

connected to g; we denote them by x|e. Thus, for a �xed assignment h to the removed edges,
the check for e can be implemented by a function f eh : [2]

√
n → [2] (when fed the ≤

√
n values

of the input bits connected to g, i.e. x|e).
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Induction on depth shows:

C(x) = 1⇔∃ assignment h to removed edges such that h(eoutput) = 1

and ∀ removed edge e we have f eh(x|e) = 1.

We now claim that the above expression for the computation C(x) can be implemented
with the desired resources. Since we removed r = ca · n/ log log n edges, the existential
quanti�cation over all assignments to these edges can be implemented with an ∨ (OR) gate
with fan-in 2r. Each function f eh(x|e) can be implemented via brute-force by a CNF, i.e. a
depth-2 ∧∨ circuit, of size

√
n · 2

√
n. For any �xed assignment h, we can combine the output

∧ gates of these CNF to implement the check

∀ removed edge e : f eh(x|e) = 1

by a CNF of size at most
r ·
√
n · 2

√
n.

Finally, accounting for the existential quanti�cation over the values of the r removed
edges, we get a circuit of depth 3 and size

2r · r ·
√
n · 2

√
n = 2can/ log logn.

QED

8.2 TC

De�nition 8.4. A threshold circuit, abbreviated TC, is a circuit made of Majority gates
(of unbounded fan-in). We also allow gates computing constants 0 and 1 (since they aren't
immediate to implement using Majority only, unlike for AC). We denote by TC the class of
functions f computable by a TC of depth d and size nd for some constant d.

Exercise 8.10. Prove that AC ⊆ TC ⊆ NC1.

TCs are one of the frontiers of our knowledge. It isn't known how to prove impossibility
results even for TCs of depth 3 and size, say, n2. As usual, a good explanation for this
ignorance is the power of TCs, of which we give several examples next.

Exercise 8.11. A function f : [2]∗ → [2] is symmetric if it only depends on the weight of
the input. Prove that any symmetric function is in TC. Hint: Similar to a part of Exercise
6.15. You may want to start by proving that deciding if the input weight is equal to a �xed
value is in TC.

The result PH⊆ Maj ·Maj · P obtained in 6.15 in particular yields the following.

Theorem 8.7. Any function f in AC has TCs of depth 3 and size 2log
cf n.

Exercise 8.12. Prove Theorem 8.7 but for depth 4 instead of 3, using only Theorem 6.5
from Chapter 6. Hint: Use Exercise 8.11.
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8.2.1 The power of TC: Arithmetic

Theorem 8.8. The following problems are in TC:

1. Addition of two input integers.

2. Iterated addition: Addition of any number of input integers.

3. Multiplication of two input integers.

4. Iterated multiplication: Multiplication of any number of input integers.

5. Division of two integers.

The proof follows closely that for NC1 in section �8.1.1 (which in turn was based on that for
L). Only iterated addition requires a new idea.

Exercise 8.13. Prove the claim about iterated addition. (Hint: Write input as n×n matrix,
one number per row. Divide columns into blocks of t = c log n.)

8.2.2 Neural networks and impossibility results for TC

Neural networks are made of a �small� number of layers, each consisting of a large number
of (arti�cial) neurons. Each neuron computes a function from Rm → R as follows. On input
(x1, . . . , xm) ∈ Rm, the neuron computes the weighted sum s :=

∑
iwixi where wi ∈ R are

weights which de�ne the neuron, and then outputs σ(s) where σ is an activation function.
Several activation functions are considered. In �rst approximation, we can think of σ as
being simply a threshold, i.e., it outputs 1 if s ≥ θ and 0 otherwise, for some threshold
θ. Such neurons are also called weighted thresholds. In practice, it works better to use an
activation function like ReLU (recti�ed linear unit) which is σ(s) := max{0, s}.

Terminology recap A threshold is similar to a majority gate (one can include constants
to the input to majority to shift the threshold). A weighted threshold is like majority but
the inputs are weighted. Note that multiple edges from a majority gate to another gate
aren't allowed � since we de�ned size as the number of gates, that would make a majority
gate equal to a weighted thresholds. (An equivalent choice would be to allow such edges but
de�ne size as the number of edges.)

A neuron is a further generalization where the output is obtained via an activation
function like a ReLU.

Exercise 8.14. Prove that neurons with a ReLU activation function are in TC. Feel free to
assume that the weights wi are integers with na bits for a constant a.

By applying this exercise to every neuron in a neural network, we see that neural networks
can be simulated by threshold circuits of comparable size and depth. In fact, stronger results
can be obtained for weighted thresholds, where the depth increases only by one:
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Theorem 8.9. A depth-d size-na circuit of weighted thresholds has an equivalent threshold
circuit of size nca,d and depth d+ 1.

We do not have impossibility results for depth-3 TC, and in fact we have the following
striking version of the grand challenge:

Prove impossibility results for weighted thresholds of depth 2.

By Theorem 8.9 this would follow from impossibility results for threshold circuits of depth
3.

Question 8.1. Can inner product be computed by a power-size weighted threshold of weighted
thresholds?

For depth-2 TC (i.e., unweighted thresholds) we can prove impossibility results. Here's
how. By Theorem 3.9 it su�ces to prove correlation bounds (cf section �3.5) against majority.
For example, inner product does not correlate with majority. One way to show this is using
communication complexity, cf Chapter 13. That is, majority can be computed with low
communication, whereas inner product requires large communication (section 13.2.2).

8.2.3 TC vs. NC1

Another great question is whether TC = NC1. For any d, we can show that functions
in NC1, such as Parity, require depth-d TCs of size ≥ n1+c log d, and this is tight up to
constants. A natural question is whether we can prove stronger bounds for harder functions,
in NC1 or elsewhere. A natural candidate is iterated multiplication of elements from a group,
cf section �9.2. The following result shows that, in fact, stronger bounds would already prove
�the whole thing,� that is, TC 6= NC1. The proof is not using anything speci�c about the
gates of TCs, but works for other circuit classes such as ACC (cf. section �8.3).

Theorem 8.10. Let G be a group. Suppose that the product of n elements in G can be
computed by TCs of size nk and depth d. Then for any ε the product can also be computed
by TCs of size d′n1+ε and depth d′ := cdk log 1/ε.

For concreteness one can think G = S5, as in section �9.2.

Proof. Exploiting the associativity of the problem, we compute the product recursively
according to a regular tree. The root is de�ned to have level 0. At Level i we compute ni
products of (n1+ε/ni)

1/k matrices. At the root (i = 0) we have n0 = 1.
By the assumption, each product at Level i has TCs of size n1+ε/ni and depth d. Hence

Level i can be computed by TCs of size n1+ε and depth d.
We have the recursion

ni+1 = ni · (n1+ε/ni)
1/k.

The solution to this recursion is ni = n(1+ε)(1−(1−1/k)i), see below.
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For i = ck log(1/ε) we have ni = n(1+ε)(1−ε2) > n; this means that we can compute a
product of ≥ n matrices, as required.

Hence the total depth of the circuit is d · ck log(1/ε), and the total size is the depth times
n1+ε.

It remains to solve the recurrence. Letting ai := logn ni we have the following recurrence
for the exponents of ni.

a0 = 0

ai+1 = ai(1− 1/k) + (1 + ε)/k = aiβ + γ

where β := (1− 1/k) and γ := (1 + ε)/k.
This gives

ai = γ
∑
j≤i

βj = γ
1− βi+1

1− β
= (1 + ε)(1− βi+1).

QED

Were the recursion of the form a′i+1 = a′i + (1 + ε)/k then obviously a′ck would already be
≥ 1 + ε. Instead for ai we need to get to ck log(1/ε).

8.3 ACC

We denote AC augmented with gates computing mod m by AC[m] . ACC (alternating
circuits with counters) refers to any m. We also denote by AC[m] the class of functions
computable by AC[m] circuits of size nd and depth d for some constant d, and similarly for
ACC.

Techniques based on polynomials, are e�ective to prove impossibility results against
AC[m] if m is prime or a prime power. These techniques are illustrated in section 8.4
in the fundamental case m = 2. They can be extended to any prime power m, but they
break down when m is composite. It is consistent with our knowledge that any function in
Exp has AC[6] of depth c and size nc. It is open if Majority has such circuits!

For any m, AC[m] can be simulated by polynomials. The simulation is incomparable to
the one for m = 2 that we saw previously (Theorem 6.5) and we see again in section 8.4. In
the new simulation we work with polynomials over the integers and then map the output to
a boolean value. Equivalently, we can think of the polynomial as a depth-2 circuit. On the
other hand, this new simulation works for every input as opposed to most inputs.

Lemma 8.2. Any AC[d] of size nd and depth d has an equivalent depth-2 circuit of size
2logcd n where the output is a symmetric function (i.e., only depends on the number of bits
that are 1 in the input to that gate) and the other gates are And with fan-in ≤ logcd n.

As far as we know, general circuits are equivalent to ACC! Yet there is one thing that
we can say about functions computable in ACC that we don't know for PCkt. We can solve
ACC-Sat better than brute-force search. Using this, and Lemma 8.2, and diagonalization,
one can prove the following result, which we don't know how to prove in other ways.
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Theorem 8.11. NExp 6= ACC.

The technique involve guessing circuits so it does not seem applicable to functions in NP.

8.4 AC[2]

AC[2] is a very interesting class because it lies at the frontier of our knowledge. We can
prove impossibility results, but not correlation bounds. The following impossibility result is
essentially the state-of-the-art. It will give a correlation bound no better than 1/

√
n.

Theorem 8.12. Let C be an AC[2] of depth d and size s computing Majority on n bits.
Then logd s ≥ c

√
n.

Recall from section �7.3 that a stronger bound (even for AC) for an explicit function
would have major consequences; in particular the function cannot be in L. The proof of
Theorem 8.12uses the polynomial method (a.k.a. low-degree approximation), i.e., the simula-
tion of AC[2] by low-degree polynomials (cf Theorem 6.5). Speci�cally, we use the following
corollary:

Corollary 8.2. Let C : [2]n → [2] be an AC[2] of depth d and size s. Then there is a
polynomial p over F2 of degree logd s/ε such that Px[C(x) 6= p(x)] ≤ ε.

Proof. Theorem 6.5 gave a distribution P on polynomials s.t. for every x we have

PP [C(x) 6= P (x)] ≤ ε.

Averaging over x we also have

Px,P [C(x) 6= P (x)] ≤ ε.

Hence we can �x a particular polynomial p s.t. the probability over x is ≤ ε, yielding the
result. QED

Exercise 8.15. Theorem 6.5 was stated for AC, not AC[2]. Go back to the proof and explain
why it works for AC[2] as well.

We then show that Majority cannot be approximated by such low-degree polynomials.
For this the key result is the following:

Lemma 8.3. Every function f : [2]n → [2] can be written as f(x) = p0(x) + p1(x) ·Maj(x),
for some polynomials p0 and p1 of degree ≤ n/2. This holds for every odd n.

Proof. Let M0 be the set of strings with weight ≤ n/2. We claim that for every function
f : M0 → [2] there is a polynomial p0 of degree ≤ n/2 s.t. p0 and f agree on M0.

To verify this, consider the monomials of degree ≤ n/2. We claim that (the vectors
corresponding to) their truth tables over M0 are linearly independent. This means that any
polynomial gives a di�erent function over M0, and because the number of polynomials is the
same as the number of functions, the result follows. QED
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Exercise 8.16. Prove the claim in the proof.

Proof of Theorem 8.12. Apply Corollary 8.2 with ε = 1/10 to obtain p. Let S be the set
of inputs on which p(x) = C(x). By Lemma 8.3, any function f : S → [2] ca be written as

f(x) = p0(x) + p1(x) · p(x).

The right-hand size is a polynomial of degree ≤ d′ := n/2 + logd(cs). The number of
such polynomials is the number of possible choices for each monomial of degree i, for any i
up to the degree. This number is

d′∏
i=0

2(ni) = 2
∑d′
i (ni).

On the other hand, the number of possible functions f : S → [2] is

2|S|.

Since a polynomial computes at most one function, taking logs we have

|S| ≤
d′∑
i

(
n

i

)
.

The right-hand side is at most 2n(1/2 + c logd(s)/
√
n), since each binomial coe�cient is

≤ c2n/
√
n, cf Fact A.2.

On the other hand, |S| ≥ 0.9 · 2n.
Combining this we get

0.9 · 2n ≤ 2n(1/2 + c logd(s)/
√
n).

This implies
0.4 ≤ c logd(s)/

√
n,

proving the theorem. QED

Stronger bounds are only known for functions computable in classes related to exponential
time.

8.5 AC

In this section we present di�erent techniques to prove impossibility results for AC, also
slightly improving the parameters of the bounds established via the polynomial method,
Theorem 8.12. To set the stage, let's prove strong results for depth 2, that is, DNFs.
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Exercise 8.17. Prove that Majority requires DNFs of size ≥ 2cn. Hint: What if you have a
term with < n/2 variables?

As discussed (cf section �8.1.2), 2cn bounds even for depth 3 ACs are unknown, and would
imply super-linear lower bounds for log-depth circuits. However, for AC a sharper technique
is known that allows us to replace the

√
n in Theorem 8.12 with n for several functions such

as parity.

8.5.1 Restrictions and switching lemmas

A restriction ρ is an assignment of the variables to {0, 1, ?}, i.e., some variables are replaced
with constants, while those assigned to star ? are left �alive.� In a random restriction, the
stars are selected uniformly at random, and also each unrestricted variable is set to a uniform
bit. We denote by Ns the number of restrictions with exactly s stars.

Exercise 8.18. Ns = 2n−s
(
n
s

)
.

For a restriction ρ with s stars and f : [2]n → [2] we denote by fρ : [2]s → [2] the
restricted function. The switching lemma shows that important classes of functions simplify
dramatically when �hit� by a random restriction.

De�nition 8.5. A decision tree of depth d is a branching program where every path has
length ≤ d.

In particular, depth-d decision trees compute 2d-local functions, cf. De�nition 1.5.

Lemma 8.4. Let C : [2]n → [2] equal the Or of functions fi : [2]n → [2] where each fi is
w-local. (The number of such functions is immaterial.) Let ρ be a random restriction with
s stars. The probability that Cρ is not a decision tree of depth d is ≤ (cws/n)d.

To illustrate, f can be a DNF or a CNF with terms of size w = c log n. The lemma says
that if we pick a uniform restriction with s :=

√
n stars, and set d = 10, then the restricted

function on s bits is a decision tree of depth d except with probability ((c log n)/n)10 ≤ 1/nc.
Note in particular the restricted function depends only on 2d = 1024 bits, even though the
original function may depend on all the bits. If we take larger d, the error probability gets
even smaller, so small in fact that we can take a union bound and simultaneously simplify
many DNFs. Doing this several times allows us to collapse an AC to a low-depth decision
tree. We state and prove this consequence next, trading simplicity of exposition for parameter
optimization.

Corollary 8.3. Let C : [2]n → [2] be an AC of depth d size s. Let ρ be a random restriction
with ncd stars. The probability that Cρ is not a decision tree of depth log s is ≤ s2−n

cd .

Proof. Set w := log s. We view ρ as successive applications of restrictions whose number of
stars is square root of the number of variables. View the circuit as having depth d+1 and the
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input gates have fan-in 1 ≤ w. The �rst application of Lemma 8.4 gives error ≤ (cw/
√
n)w.

In the good case, the input gates now are decision trees of depth ≤ w. We can write this
as a CNF or DNF with terms of size ≤ w, and merge the output gate with the gates in the
next level in the circuit, which are now computing Ors (or Ands) of functions on ≤ w bits.
The next application of Lemma 8.4 gives error ≤ (cw/n1/4)w, and so on. QED

Exercise 8.19. Let C : [2]n → [2] be an AC of depth d size s < 2n
cd (note the constant is

the same as Corollary 8.3). Show that there is a restriction with ncd stars s.t. Cρ is constant.

One can use the switching lemma to prove exponential lower bounds to compute explicit
functions by small-depth ACs. The simplest example is parity, given next. In this case, we
also prove an exponentially strong correlation bound, cf 3.5. The polynomial method gives
weaker correlation bounds. This is a qualitative di�erence explored more in Chapter 11.

Corollary 8.4. The correlation between parity and an AC of depth d and size s is ≤ s2−n
cd .

Proof. The correlation between parity on m bits and decision trees of depth < m is zero.
View a uniform input as �rst picking a restriction, and then �lling the stars. By Corollary
8.3, after picking the restriction the circuit is a decision tree of depth log s, which is strictly
less than the number of remaining starts, except with probability s2−n

cd . QED

Exercise 8.20. State and prove via a reduction from Corollary 8.4 an impossibility result
for Majority. Does a strong correlation bound hold as well?

8.5.2 Proof of Lemma 8.4

The simplest case: Or of n bits Here f is simply the Or of n bits x1, x2, . . . , xn. In
the restriction some of the bits may become 0, others 1, and others yet may remain un�xed,
i.e., assigned to stars. Those that become 0 you can ignore, while if some become 1 then the
whole circuit C becomes 1.

We will show that the number of restrictions for which the restricted circuit C|ρ requires
decision trees of depth ≥ d is small.

For this simple case, a straightforward proof of a stronger bound exists.

Exercise 8.21. Give it. For concreteness, think d = 10 and s =
√
n.

We give an alternative argument which we can then extend to the general case. We are
going to encode (or map) such restrictions using (or: to a restriction)... with no stars (that
is, just a 0/1 assignment to the variables). The gain is clear: just think of a restriction with
zero stars versus a restriction with one star. Recall Exercise 8.18. We have N0 = 2n, while
N1 = 2n−1 · n, so N0/N1 ≤ c/n. Note that this an upper bound on the error probability.

A critical observation is that we only want to encode restrictions for which C|ρ requires
large depth. So ρ does not map any variable to 1, for else the Or is 1 which has decision
trees of depth 0.
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The way we are going to encode ρ is this: Simply replace the stars with ones. To go back,
replace the ones with stars. We are using the ones in the encoding to �signal� where the
stars are.

Hence, the number of bad restrictions is at most N0 = 2n, which is tiny compared to the
number Ns =

(
n
s

)
2n−s of restrictions with s stars (cf. Exercise 8.18). The error probability

is then
2n(

n
s

)
2n−s

=
2s(
n
s

) ≤ (2s/n)s.

Here we used
(
n
s

)
≥ (n/s)s. This is stronger than Lemma 8.4. (We can assume d ≤ s, since

every function on s bits has decision trees of depth s, and so for d ≥ s the error probability
is 0.)

The medium case: Or of functions on disjoint inputs So, again, let's take a random
restriction ρ with exactly s stars. Some of the functions may become 0, others 1, and others
yet may remain un�xed. Those that become 0 you can ignore, while if some become 1 then
the whole circuit becomes 1.

As before, we will show that the number of restrictions for which the restricted circuit C|ρ
requires decision trees of depth ≥ d is small. To accomplish this, we are going to encode/map
such restrictions using/to a restriction with just s− d stars, plus a little more information.
As we saw already, the gain in reducing the number of stars is clear. In particular, standard
calculations show that saving d stars reduces the number of restrictions by a factor (cs/n)d.

Exercise 8.22. Prove Ns−d/Ns ≤ (cs/n)d. Guideline: Recall Exercise 8.18. To make the
calculations as simple as possible, set s :=

√
n and consider the following way of selecting

s stars among n variables: First pick s − d stars. Then divide the remaining n − (s − d)
variables into d blocks of (n − (s − d))/d ≥ cn/d variables. Pick exactly one star in each
block. Conclude the proof.

The auxiliary information will give us a factor of wd, leading to the claimed bound.
Speci�cally, as before, recall that we only want to encode restrictions for which C|ρ requires
large depth. So no function in C|ρ is 1, for else the circuit is 1 and has decision trees of
depth 0. Also, you have d stars among inputs to functions that are un�xed (i.e., not even
�xed to 0), for else again you can compute the function reading less than d bits. Because
the functions are un�xed, there is a setting for those d stars (and possibly a few more stars �
that would only help the argument) that make the corresponding functions 1. We are going
to pick precisely that setting in our restriction ρ′ with s− d stars. This allows us to �signal�
which functions had inputs with the stars we are saving (namely, those that are the constant
1). To completely recover ρ, we add extra information to indicate where the stars were. The
saving here is that we only have to say where the stars are among w symbols, not n.

Speci�cally, we can encode the positions of the stars with an element a ∈ [cw]d, indicating
which of the w symbols is a star, and also whether the star is the last in this function. To
recover the restriction, we look for the �rst function that's set to 1. We then read a to �nd
out how may stars were there and their positions. Then we move to the second function
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that's �xed to 1. Again we look at a to know how many stars were there and what their
positions were, and so on.

The general case: Or of functions on any subset of w bits ...isn't really di�erent.
First, the number of functions does not play a role, so you can think you have functions
on any possible subset of w bits, where some functions may be constant. The idea is the
same, except we have to be slightly more careful because when we set values for the stars in
one function we may also a�ect other functions. The idea is to �x one function at the time.
Speci�cally, starting with ρ, consider the �rst function f that's not made constant by ρ. So
the inputs to f have some stars. As before, let us replace the stars with constants that make
the function f equal to the constant 1, and append the extra information that allows us to
recover where these stars were in ρ.

We'd like to repeat the argument. Note however we only have guarantees about C|ρ,
not C|ρ with some stars replaced with constants that make f equal to 1. We also can't just
jump to the 2nd function that's not constant in C|ρ, since the �signal� �xing for that might
clash with the �xing for the �rst � this is where the overlap in inputs makes things slightly
more involved. Instead, because C|ρ required decision tree depth at least d, we note there
have to be some assignments to the m stars in the input to f so that the resulting, further
restricted circuit still requires decision tree depth ≥ d − m (else C|ρ has decision trees of
depth < d). We append this assignment to the auxiliary information and we continue the
argument using the further restricted circuit.

8.5.3 The original switching lemma

We now state and prove an earlier, weaker switching lemma, whose proof is however simpler
and more intuitive.

Lemma 8.5. Let f : [2]n → [2] be a k-CNF. Let ρ be a random restriction with P[∗] = 1/nc.
The probability that fρ is not ck-local is ≤ 1/nk.

Proof. Induction on k. For k = 1, f is an And. If the And is on ≥ ck log n bits then fρ will
be constant with the desired probability. If the And is on ≤ ck log n bits then the prob. that
fρ depends on ≥ ck bits is

≤
(
ck log n

ck

)
n−c·ck ≤ 1/nck . (8.1)

For the induction step, suppose there are ≥ ck log n Or gates with disjoint inputs. Since
each Or gate is 0 after the restriction w.p. ≥ 1/ck, the result follows.

Otherwise, there is a set C of ≤ ck log n variables that touches every Or gate. For every
assignment to these variables, we can apply the induction hypothesis, and do a union bound.
Also, like in equation (8.1), the prob. that ≥ ck variables in C are set to ∗ by ρ is ≤ 1/nck .
QED
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8.5.4 The power of AC: sampling

We showed in the earlier section that ACs cannot compute parity and majority. However,
ACs can sample input-output pairs of these functions. In other words, this is a problem that
ACs can't solve, but for which nevertheless they can create instances together with their
solutions. These results have applications and again point to the unsuspected power of these
circuits. Throughout we assume that the inputs to the circuits are uniform bits.

Exercise 8.23. Give a 2-local map C : [2]n → [2]n+1 whose output distribution is (X, parity(X))
for uniform X ∈ [2]n.

Sampling (X,majority(X)) by ACs is more involved and beautiful, and is only known to
be possible up to a small error.

Exercise 8.24. Try to sample (X,majority(X)) by ACs for a few minutes. Write down
what you tried.

The �rst step is sampling a uniform permutation.

Lemma 8.6. There is an AC whose output distribution is 2−n
c
close to a uniform permu-

tation π over [n], represented as n blocks of c log n bits where block i has π(i) in binary.

Exercise 8.25. Assume Lemma 8.6. For any i ≤ n give an AC whose output distribution
is 2−n

c
-close to a uniform n-bit strings of weight i. Give an AC whose output distribution is

2−n
c
-close to (X,majority(X)) for uniform X ∈ [2]n.

Proof of Lemma 8.6. The main technique is known as �dart throwing:� we view the
input random bits as random pointers p1, p2, . . . , pn into m � n cells. We then write i in
the pi-th cell (empty cells get �∗�). If there are no collisions, the ordering of [n] in the cells
gives a random permutation of [n]. However, it is not clear how to explicitly write out this
permutation using small depth, because to determine the image of i one needs to count how
many cells before pi are occupied, which cannot be done in small depth.

The key insight is to view the cells as representing the permutation in a di�erent format,
one from which we can explicitly write out the permutation in small depth. The format is
known as the canonical form for the cyclic notation. We now brie�y review it. Just like
the standard format, the alternative format represents a permutation via an array A[1..n]
whose entries contain all the elements [n]. However, rather than thinking of A[i] as the
image of i, we think of the entries of A as listing the cycles of the permutation in order.
Each cycle is listed starting with its smallest element, and cycles are listed in decreasing
order of the �rst element in the cycle. This format allows for computing the permutation
e�ciently: the image of i is the element to the right of i in A, unless the latter element is
the beginning of a new cycle, in which case the image of i is the �rst element in the cycle
containing i. Identifying the �rst element of a cycle is easy, because it is smaller than any
element preceding it in A. The bene�t of this format is that it works even if the array A has
m� n cells, of which m− n are empty and marked by �∗.�
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One can now verify that computing the image of i can be done in AC. Here in particular
we use the fact that such circuits can, given an array A and an index i, compute the least
j > i such that A[j] is not �∗�. This can be accomplished by trying all j in parallel, noting
that one can determine if a �xed j is the least j > i such that A[j] is not �∗� using one
unbounded fan-in And.

To conclude the proof of the lemma, generate ` uniform and independent sets of pointers
pi1, . . . , p

i
n, i = 1, . . . , `, where each pointer has range [m] for m the smallest power of 2 larger

than 2n2 (thus each pointer can be speci�ed by logm bits).
If there exists i such that the pointers pi1, . . . , p

i
` are all distinct (i.e., there are no colli-

sions), then run the above algorithm on the output corresponding to the �rst such i. This
results in a random permutation.

Since the pointers are chosen independently, the probability that there is no such i is

Pr[∀i∃j, k ≤ n : pij = pik] = Pr[∃j, k ≤ n : p1
j = p1

k]
` ≤ (1/2)`.

Choosing ` := n proves the lemma. QED

8.6 Problems

Problem 8.1. Prove that the iterated multiplication of t 3 × 3 matrices with t-bit integer
entries can be computed by power-size circuits of depth c log t log∗ t. Recall log∗ t is the
number of times we need to apply log to t to reach c. Feel free to replace log∗ t with log log t;
this contains the main ideas.

Problem 8.2. TBD Show that any function f ∈ NC1 is computable on a TM using space
zero and ncf states.

Problem 8.3. Let d be a constant and F a �eld of size ≤ d.
You are given as input a vector v ∈ F d and a sequence of operations of the type

v → v + s,

v →Mv;

where s ∈ F d and M is a d× d matrix.
Show how to compute in NC1 the result of applying the operations to v.
Hint: Write each operation as multiplication by a (d+ 1)× (d+ 1) matrix.

Problem 8.4. Prove that an AC of depth d and size nd cannot compute Gap-Maj1/2−ε,1/2+ε

on n bits where ε = 1/ logcd n.

Problem 8.5. (cf. Problem 9.1) Let G be solvable group. Prove that any function com-
putable by a group program over G of length m is computable by an ACC circuit (sec-
tion �8.3) of size mcG .
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Guideline: First prove it for abelian groups. Second, more interestingly consider the
dihedral group D3 whose elements can be written as (t, b) where t ∈ Z3 and b ∈ Z2 and
(t, b)(t′, b′) equals

(t+ t′, b′) if b = 0,

(t− t′, b′ + 1) if b = 1.

In other words, you can move b to the right by �ipping the sign of t′.
The proof for the dihedral groups contains all the ideas for the general case, which you

can tackle by induction using that G has a normal subgroup H s.t. G/H is abelian.

Problem 8.6. Let G be a group. Show that there are ACs of size nc|G| and depth c|G| whose
output distribution on uniform bits is statistically close to D := (g1, g2, . . . , gn,

∏
i≤n gi) for

uniform gi ∈ G. The distance should be 1/nω(1). Explain what is the group corresponding to
Exercise 8.23, and why for some group the output distribution cannot equal D as in Exercise
8.23.

8.7 Notes

Theorem 8.3 was proved in [243] and apparently rediscovered in [49].
The �2-out-of-3� idea, in the proof of Item 2. in Theorem 8.4, is from [81].
The main ideas behind Theorem 8.6 and its proof are from [73]. The stated version is

from [264]. Our exposition is based on [276], apparently the �rst exposition after [264].
Moving to TC, Theorem 8.9 is from [95].
The n1+c log d lower bound for computing parity by TCs is from [140].
A weaker version of Theorem 8.10, which however contains the main message, is from

[13]. The stated version matches the bound in [95] and is from [58].
Rumor has it that the submission version of [194] was titled along the lines of �The brain

can compute pseudorandom functions.�
The introductory quote is from [208]. The broader history is amusing and may serve as

an example of the power of impossibility results. Neural networks were studied since the 40's
[183]. In the book [224] it was already pointed out that a constant-depth neural network can
compute any function, though there was no good proposal for training such networks. The
book referred to in [208] is [188]. What it showed is impossibility results for minimalistic
neural networks, consisting of a threshold gate applied to And gates. It showed that such
models cannot compute parity (or other simple functions), unless the fan-in of the Ands is
large. The term �perceptron� is sometimes used to refer to this model, though the meaning
varies in the literature. Their result said nothing about networks of larger depth, yet various
sources blame it for the onset of the AI winter, during which funding for neural networks was
hard to �nd. Perhaps a better explanation is that the hardware, data, and the math weren't
yet there. The work [41] �vindicate[d] the reputation of the much maligned perceptron� by
showing that small, probabilistic perceptrons can simulate AC.
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Theorem 8.7 is from [11], but see discussion in section �6.7 for the genesis of these ideas.
The impossibility result for parity in TC is from [140].
Theorem 8.10: [13, 58].
Impossibility results for AC are among the most famous results in complexity and were

obtained in the 80's in [86, 7, 294, 216, 241, 122] via various techniques. The �rst two works
obtained super-power results, the others exponential. Each work gives a negative result for
a symmetric function and hence applies to majority as well. The proof of Theorem 8.12 we
gave is from [242], though that paper splashes mathematics in a way that doesn't help me
(Hilbert function, Grobner basis, �in the projective case the ideal I(S) is homogeneous (or
graded) if...� etc.). Perhaps one reason behind the aura of the switching lemma is that it's
hard to �nd examples. It would be nice to read: If you have this extreme DNF here's what
happens, on the other hand for this other extreme DNF here's what happens, and in general
this always works and here's the switching lemma. Examples are forever � Erdos. Instead
the switching lemma is typically presented as blam!: an example-free encoding argument
which feels deus ex machina, as in this crisp presentation by Thapen. I have tried to give a
slightly di�erent exposition of the encoding argument.

Stronger bounds for AC with parity gates for less explicit functions are in [271].
Lemma 8.6 is from [181, 115]. Our presentation follows [280].
Lemma 8.2 is from [297, 42] .
Theorem 8.11 is from [291]. One step of the original proof was somewhat indirect and it

was streamlined later in [145].

8.8 Historical vignette: The switching lemma

I must admit I had a good run (private communication)

Random restrictions have been used in complexity theory since at least the 60's [251]. The
�rst dramatic use in the context of AC is due to [86, 7]. These works proved a switching
lemma the amazing fact that a DNF gets simpli�ed by a random restriction to the point
that it can be written as a CNF, so you can collapse layers and induct. (An exposition is
given below.) Using it, they proved super-polynomial lower bounds for AC. The proof in
[86], presented in section 8.5.3, is very nice and if I want to get a quick intuition of why
switching is at all possible, I often go back to it. [7] is also a brilliant paper, and long,
unavailable online for free, �lled with a logical notation which makes some people twitch.
The �rst symbol of the title says it all, and may be the most obscene ever chosen:

Σ1
1.

Subsequently, [294] proved exponential lower bounds of the form 2n
c
, with a re�ned analysis

of the switching lemma. The bounds are tight, except for the constant c which depends on
the depth of the circuit. Finally, the star of this section [121, 122] obtained c = 1/(depth−1).

Yao's paper doesn't quite state that a DNF can be written exactly as a CNF, but it
states that it can be approximated. Hastad's work is the �rst to prove that a DNF can be
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written as a CNF, and in this sense his statement is cleaner than Yao's. However, Yao's
paper states explicitly that a small circuit, after being hit by a restriction, can be set to
constant by �xing few more bits.

The modern formulation of the switching lemma says that a DNF can be written as a
shallow decision tree (and hence a small CNF). This formulation in terms of decision trees is
actually not explicit in Hastad's work. Beame, in his primer [36], credits Cai with this idea
and mentions several researchers noted Hastad's proof works in this way.

Another switching lemma trivia is that the proof in Hastad's thesis is actually due to
Boppana. Documents detailing Hastad's original argument remain classi�ed, and contentious
to this date. All the general public is left with is this remark from [122, 121]:

There are two versions of the proof of the main lemma which are almost identical
except for notation. Our original proof was in terms of a labeling algorithm used
by Yao in his proof. The present version of the proof, avoiding the use of such
an algorithm, was proposed by Ravi Boppana.

The �rst sentence was later [124] edited to

There are two versions of the proof of the Main Lemma that are identical except
for notation.

So, let's recap. Random restrictions are already in [251]. The idea of switching is already
in [86, 7]. You already had three analyses of these ideas, two giving superpolynomial lower
bounds and one [294] giving exponential. The formulation in terms of decision trees isn't in
[122], and the proof that appears in [122] is due to Boppana.

Still, I would guess [122] is more well known than all the other works above combined.
[294] did have a following at the time -- I think it appeared in the pop news. But hey -- have
you ever heard of Yao's switching lemma?

The current citation counts o�er mixed support for my thesis:
FSS: 1351
Y: 732
H - paper "Almost optimal...:" 867
H - thesis: 582
But it is very hard to use citation information. The two H citations overlap, and papers

are cited for various reasons. For example FSS got a ton of citations for the connection to
oracles (which has nothing to do with switching lemmas).

Instead it's instructive to note the type of citations that you can �nd in the literature:

Hastad's switching lemma is a cornerstone of circuit complexity [No mention of
FSS, A, Y]

Hastad`s Switching Lemma is one of the gems of computational complexity [Notes
below in passing it builds on FSS, A, Y]

The wikipedia entry is also telling:
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In computational complexity theory, Hastad's switching lemma is a key tool
for proving lower bounds on the size of constant-depth Boolean circuits. Using the
switching lemma, Johan Haåstad (1987) showed that... [No mention of FSS,A,Y]

I think that 99% of the contribution of this line of research is the amazing idea that random
restrictions simplify a DNF so that you can write it as a CNF and collapse. 90% of the
rest is analyzing this to get superpolynomial lower bounds. And 90% of whatever is left is
analyzing this to get exponential lower bounds.

OK -- so maybe this is so, but it must then be the case that [122] is the �nal word on
this stu�, like the ultimate tightest analysis that kills the problem. Actually, it is not tight
in some regimes of interest, and several cool works of past and recent times address that. In
the end, I can only think of one reason why [122] entered the mythology in ways that other
works did not, the reason I have carefully sidestepped so far: å.
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Chapter 9

Non-commutative magic

This may be my favorite chapter. Many surprises lay ahead, including a solution to the
teaser in Chapter 0.

9.1 Computing with 3 bits of memory

We now present a surprising result that in particular strengthens Theorem 8.2. For a moment,
let's forget about circuits, branching programs, etc. and instead consider a new, minimalistic
type of programs. We will have 3 one-bit registers: R0, R1, R2, operating modulo 2. We
allow the following operations

Ri+ = Rj,

Ri+ = Rjxk
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where xk is an input bit, for any i, j ∈ {0, 1, 2}, with i 6= j. (Talk about RISC!) Here
Ri+ = Rj means to add the content of Rj to Ri, while Ri+ = Rjxk means to add Rjxk to
Ri, where Rjxk is the product (a.k.a. And) of Rj and xk.

De�nition 9.1. For i, j and f : [2]n → [2] we say that a program is for (or equivalent to)

Ri+ = Rjf

if for every input x and initial values of the registers, executing the program is equivalent to
the instruction Ri+ = Rjf(x), where note that Rj and Rk are unchanged.

Also note that if we repeat twice a program for Ri+ = Rjf then no register changes
(recall the sum is modulo 2, so 1 + 1 = 0). This feature is critically exploited later to �clean
up� computation.

We now state and prove the surprising result. It is convenient to state it for circuits with
Xor instead of Or gates. This is without loss of generality since x ∨ y = x+ y + x ∧ y.

Theorem 9.1. Suppose f : [2]n → [2] is computable by circuits of depth d with Xor and
And gates. For every i 6= j there is a program of length ≤ c4d for

Ri+ = Rjf.

Once such a program is available, we can start with register values (0, 1, 0) and i = 0, j = 1
to obtain f(x) in R0.

Proof. We proceed by induction on d. When d = 1 the circuit is simply outputting a constant
or one of the input bits, which we can compute with the corresponding instructions. (If the
circuit is the constant zero then the empty program would do.)

Proceeding with the induction step:
A program for Ri+ = Rj(f1 + f2) is simply given by the concatenation of (the programs

for)

Ri+ = Rjf1

Ri+ = Rjf2.

Less obviously, a program for Ri+ = Rj(f1 ∧ f2) is given by

Ri+ = Rkf1

Rk+ = Rjf2

Ri+ = Rkf1

Rk+ = Rjf2.

QED

Exercise 9.1. Prove that the program for f1 ∧ f2 in the proof works. Write down the
contents of the registers after each instruction in the program.
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A similar proof works over other �elds as well.
We can now address the teaser Theorem 0.1 from Chapter 0.

Proof of Theorem 0.1.. Combine Corollary 8.1 with Theorem 9.1. QED

Corollary 9.1. Iterated product of 3x3 matrices over F2 is complete for NC1 under projec-
tions.

That is, the problem is in NC1 and for any f ∈ NC1 and n one can write a sequence
of t = nc 3x3 matrices M1,M2, . . . ,Mt where each entry is either a constant or an input
variable xi s.t. for every x ∈ [2]n:

t∏
i=1

Mi ·

0
1
0

 =

f(x)
1
0

 .
Exercise 9.2. Prove this.

Recall from Chapter 7 (see in particular section 7.6) that various graph reachability
problems are complete for space-bounded computation. In particular, one can reduce any
function computable by branching programs of size s to iterated multiplication of s × s
matrices over F2.

Exercise 9.3. Prove this. Speci�cally, prove that any function f : [2]n → [2] computable
by branching programs of size s can be reduced via projections to iterated multiplication of
s× s matrices over F2. Does a similar result hold for NL?

Hence major open questions about computation are related to the following �purely math-
ematical question� that doesn't make any direct reference to computation:

Can (any one entry of) the product of s s × s matrices be reduced via projection to
the product of sd 3× 3 matrices, for some constant d? (That is, the former product has s3

variables xi and each entry in the latter product is either a variable xi or 0 or 1, all of this
is over F2.)

Speci�cally, if the answer is positive then L ⊆ NC1. And if not then we have an explicit
problem that is not in NC1. More precisely, recall that iterated multiplication of matrices
over F2 is complete for ⊕L (Theorem 7.21). Thus the �purely mathematical question� is
equivalent to (the non-uniform version of) the question ⊕L = NC1.

9.2 Group programs

The result in section �9.1 are relatively easy to present, but may feel a little deus ex machina.
Now we present an alternative proof in the framework of groups. The setup may be slightly
more convoluted, but the steps in the proof might be a bit more transparent. As is often
the case, having two perspectives on a problem is bene�cial.
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It is better to solve one problem �ve di�erent ways than to solve �ve problems
one way.

De�nition 9.2. A group program π of length ` over a group G is a word of length ` where
each element is raised to an input bit. More formally, it is given by a word (g1, g2, . . . , g`)
where gi ∈ G, an additional element h ∈ G, and a sequence (k1, k2, . . . , k`) ∈ [n]` of indices

to input bits. On input x the program π computes π(x) =
(∏`

i=1 g
xki
i

)
h ∈ G. We say π

α-computes f : [2]n → [2] if ∀x : π(x) = αf(x).

That is, the bits of the input x specify which subset of elements in the word to multiply. This
simple formulation requires the extra element h; otherwise we can't meaningfully compute
f(0) = 1.

Exercise 9.4. Consider the alternative de�nitions of group programs:
(1) The program is given by two words (g

(b)
1 , g

(b)
2 , . . . , g

(b)
` ) for b ∈ [2] and the output is∏`

i=1 g
(xki )

i ; that is, the bits specify from which word the element is to be taken.
(2) As in (1), but additionally we have another word of constants (h1, h2, . . . , h`) and the

output is
∏`

i=1 hig
(xki )

i .
Prove that (1) and (2) and De�nition 9.2 are equivalent (up to changing α in De�nition

9.2).

Computing And. Computing the And of two bits is akin to the mathematical puzzle
of hanging a picture with two nails so that removing any one of them makes the picture
fall (the solution is depicted at the beginning of the chapter). Actually, this works over any
non-abelian group. Indeed, G being non-abelian is the same as saying that there are a, b ∈ G
s.t.

ab 6= ba.

This is equivalent to saying that the commutator

aba−1b−1

is not the identity. The following group program then computes the And of bits x and y:

axbya−xb−y.

Note that if x = y = 1 then we get the commutator which as we just said is not 1.
Otherwise, either the as or the bs disappear, and the program evaluates to 1.

To compute circuits we naturally have to iterate this procedure. We can do so if we have
non-trivial commutators that can themselves be used as elements in commutators. This
approach works for any non-solvable group, a class which includes the group of matrices in
Corollary 9.1. This is worked out in Problem 9.1. But now for concreteness we present a
closely related construction over a speci�c group.
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A solution over S5. For concreteness we work with S5, the group of permutations of 5
elements. Later we discuss other groups. Abusing notation we say that a permutation g ∈ S5

is a cycle if its graph consists of exactly one cycle of length 5. For example, 1 → 5 → 2 →
3→ 4→ 1 is a cycle. We write it compactly as (15234).

Theorem 9.2. Let f : [2]n → [2] be computable by a circuit of depth d. Then for any cycle
α ∈ S5, f is α-computed by a group program of length 4d over S5. In particular, NC1 is
equivalent to power-size branching programs of width 5.

Compare this to the weaker equivalence in Theorem 8.2.

Exercise 9.5. Prove the in particular part, assuming the �rst �rst part.

To prove this theorem we begin with a lemma stating that the choice of the cycle is
immaterial.

Lemma 9.1. Let α, β ∈ S5 be two cycles, let f : [2]n → [2]. Over the group S5, f is
α-computable with length ` ⇔ f is β-computable with length `.

Proof. First recall that α and β are conjugate, that is, ∃ρ ∈ S5 such that α = ρ−1βρ. To
see this let

α = (α1, α2, ..., α5),

β = (β1, β2, ..., β5),

ρ := (α1 → β1, α2 → β2, ..., α5 → β5).

Now suppose that
(g0

1, ..., g
0
` ), (g

1
1, ..., g

1
l ), (k1, ...k`)

β-computes f ; we claim that

(ρg0
1, ..., g

0
`ρ
−1), (ρg1

1, ..., g
1
`ρ
−1)

(with the same indices ki) α-computes f . To see this, note that

∏̀
i=1

g
xki
i = 1G ⇒ ρ−1

l∏
i=1

g
xki
i ρ = ρ−1 · ρ = 1,

∏̀
i=1

g
xki
i = β ⇒ ρ−1

l∏
i=1

gxkii ρ = ρ−1βρ = α.

QED

Lemma 9.2. If f : {0, 1}n → {0, 1} is α-computable by a group program of length `, so is
1− f .
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Figure 9.1: The width-5 permutation branching program for And on two bits x and y from
the proof of Fact 9.1. All edges drawn have label 1. Every variable node has an edge with
label 0 going to the corresponding node in the next column on the right.

Proof. First apply the previous lemma to α−1-compute f . Then multiply last group elements
g0
` and g

1
` in the group program by α. QED

Lemma 9.3. If f is α-computable with length ` and g is β computable with length ` then
(f ∧ g) is (αβα−1β−1)-computable with length 4`.

Proof. Concatenate 4 programs: (α-computes f , β-computes g, α−1-computes f , β−1-
computes g). If f(x) = g(x) = 1 then the concatenated program evaluates to (αβα−1β−1);
otherwise evaluates to 1. QED

It only remains to see that we can apply the previous lemma while still computing with
respect to a cycle.

Fact 9.1. ∃α, β cycles such that αβα−1β−1 is a cycle.

Proof. Let α := (12345), β := (13542), we can check that αβα−1β−1 is a cycle. QED

Exercise 9.6. Check it.

For an illustration, see �gure 9.1. Note that it is easy to compute And with a branching
program, but the gain is that this is a permutation branching program.

Proof of �rst part of Theorem 9.2. By induction on d using previous lemmas. QED

Exercise 9.7. Give the details of the proof.

The results work over other groups as well, see Problem 9.1.
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Exercise 9.8. Describe the group generated by the matrices in Corollary 9.1. Compute the
size of the group and compare it to the size of S5.

The smallest group size that allows for this simulation is 60, met by the alternating group
A5 ⊆ S5.

9.3 Recursive function evaluation

The input to this problem is a function f : [2]b × [2]b → [2]b and 2h inputs xi ∈ [2]b. The
goal is to compute recursive applications of f corresponding to a full binary tree. Let us
introduce notation that is also useful later on. For a bit-string of length ≤ h we denote by gu
the constant function xu if |h| = u, and f(gu0, gu1) otherwise. The goal is to compute g (of
the empty string). This can be done in space cbh by a straightforward recursive approach.
Speci�cally, to compute gu we can make a recursive call to gu0 then store the b output bits,
make a recursive call to gu1, and �nally apply f .

But in fact a better algorithm exists:

Theorem 9.3. Recursive function evaluation is in space c(h log b+ b).

The techniques for proving this theorem are an extension of those in section �9.1. At
a very high level, in the space-bounded model (as opposed to the algebraic circuits in sec-
tion �9.1) we are able to carry through the techniques in section �9.1 bit by bit, thereby
accumulating log b instead of b in recursive applications.

9.3.1 Warm-up: Assume f is linear

This already illustrates the main ideas.
TBD

9.3.2 The general case

TBD

9.4 Average-case complexity

Products over a group G enjoy the useful property of random self-reducibility. The basic
idea is that given a sequence of group elements

g1, g2, g3, . . . , gn

one can easily sample a sequence of group elements that is uniform except that it has the
same product as the gi. To do this, pick r1, r2, . . . , rn−1 uniformly in G and output

g1r
−1
1 , r1g2r

−1
2 , r2g3r

−1
3 , . . . , r−1

n−1gn. (9.1)
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Note that the �rst n− 1 elements are uniformly distributed, while the product of the n
elements is the same as

∏
gi.

For groups such as S5, this property is then inherited by all of NC1 by Corollary 9.1.
As a �rst example of the usefulness of this fact we prove a result about the average-case

hardness of computing group products. Recall that in Corollary 3.1 we saw that a model can
compute a function w.h.p. over any input i� it can correlate well under every distribution.
For group products, we can substantially strengthen this equivalence: Instead of requiring
correlation under every distribution, it su�ces to have correlation under the uniform distri-
bution. We will again obtain this type of results in section 11.2.2, but only for models for
which we don't know how to prove impossibility results, whereas the reduction here is very
simple and in particular can be carried out in models for which we have impossibility results.

Claim 9.1. Let G = S5 and suppose f : Gn → G equal
∏
gi with probability p over the

choice of a uniform input g1, g2, g3, . . . , gn ∈ Gn. Then the following distribution on functions
computes

∏
gi with probability p on every input: Pick uniform r1, r2, . . . , rn and compute

f(g1r
−1
1 , r1g2r

−1
2 , r2g3r

−1
3 , . . . , rn−1gnr

−1
n ) · rn.

Exercise 9.9. Prove this.

This result can be used to relate the complexity of NC1 to its average-case complexity,
see Problem 9.3.

9.5 Cryptography in NC0

One-way functions are easy to compute but hard to invert. Let us �rst de�ne hard to invert.

De�nition 9.3. A function f : X → [2]m is ε-hard to invert for size s if for every circuit C
of size s:

Px∈X [f(C(f(x))) 6= f(x)] ≥ ε.

In words, the circuit C, given f(x), fails to �nd a pre-image of f(x), that is, a value
y s.t. f(y) = f(x). Most modern cryptography is based on e�cient one-way functions. In
fact, common candidates one-way functions are computable in NC1. The following surprising
result shows that if there are one-way functions in NC1 then there are one-way functions
computable with constant locality, i.e., in NC0. To simplify the presentation we consider
partial functions, see the notes and Problem 9.4.

Theorem 9.4. [One-way functions in NC1 ⇒ one-way functions in NC0] Suppose f : X ⊆
[2]n → [2]m is computable by circuits of depth d and is ε-hard to invert for size s. Then
there is f ′ : X ′ ⊆ [2]n

′ → [2]m
′
that is computable with locality c and is ε-hard to invert for

size s′, where n′ ≤ n+m · (4d − 1), m′ ≤ m · 4d and s′ ≥ s− cm′.
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Proof. By 9.2, each output bit of f is computable by a group program of length 4d over S5

(note that the group program multiplies to 1 of α, so we can think of it as a boolean value).
The new function f ′ takes as input x as well as m× (4d− 1) group elements ri,j and outputs
m tuples R1, R2, . . . , Rm of 4d group elements, where tuple i is a uniform tuple except the
product equals bit i of f(x), as in 9.1.

Suppose a circuit C ′ inverts f ′ with probability 1− ε.
Then to invert f we proceed as follows. On input y ∈ [2]m run C ′ on (R1, R2, . . . , Rm)

where Ri is a uniform tuple with product equals to yi, to obtain (x, ri,j). Output x.
Note that input distribution to C ′ is the same as the output of f ′ on a uniform input. So

with probability 1− ε we have that the computed (x, ri,j) is a pre-image of f ′. From which
it follows that x is a valid pre-image of y.

Finally, f ′ can be computed with locality c because each output element depends only
≤ 3 elements, as in 9.1. QED

Exercise 9.10. Suppose we instead de�ne f ′ to simply output the programs corresponding
to the input (i.e., let ri,j = 1 everywhere). Which steps breaks in the proof?

The result in Theorem 9.4 that OWF in NC1 imply OWF in NC0 can be improved to
show that even OWF in ⊕·L imply OWF in NC0. The elegant proof works by considering a
suitable group of matrices over F2.

9.6 Computing with a full memory: Catalytic space

Imagine the following scenario. You want to perform a computation that
requires more memory than you currently have available on your computer. One
way of dealing with this problem is by installing a new hard drive. As it turns
out you have a hard drive but it is full with data, pictures, movies, �les, etc.
You don't need to access that data at the moment but you also don't want to
erase it. Can you use the hard drive for your computation, possibly altering its
contents temporarily, guaranteeing that when the computation is completed, the
hard drive is back in its original state with all the data intact? [...] Can you still
make good use of this additional space?

Turns out you can. We illustrate this in a simple scenario. First, let us de�ne the model.

De�nition 9.4. Catalytic log-space (CL) is the class of problems that can be solved in
logarithmic space and power time by a machine equipped with an extra power-size memory.
For every input and any possible setting of the extra memory, the machine needs to compute
the output. At the end of the computation, the extra memory must be in the same setting
it was at the beginning.

Theorem 9.5. ⊕ · L ⊆ CL.
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Using similar techniques in combination with CRR Theorem 7.5 one can extend this to
0−1 matrices over the integers, in particular obtaining NL ⊆ CL. Even more, one can prove
that log-depth threshold circuits (TC1) is in CL.

Proof. By Theorem 7.21 it su�ces to show the iterated product of matrices (of any dimen-
sion) over F2 is in CL. The critical observation is that Theorem 9.1 works over every ring.
We consider the ring of F2 matrices. The extra memory consists of the three registers, each
holding a matrix. Before starting the computation, we read o� the bit b from the extra
memory which will then be xored with the value we want to compute.

We then use Theorem 9.1, for the formula consisting of iterated product of matrices.
Xoring with b gives us the output. We then repeat Theorem 9.1 to clear the register and
thus restoring the extra memory to its initial state.

Each operation in the program can be computed in log-space QED

9.7 Problems

Problem 9.1. (cf. Problem 8.5) Let G be a non-solvable group, equivalently, a group G
which has a non-trivial subgroup whose commutator subgroup (i.e., the subgroup generated
by commutators) is itself. Prove that any function computable in depth d is α-computable
by a program of length ≤ (4g)d over G, for any α.

Problem 9.2. (Cf. Problem 8.5) You are given as input a sequence of elements of two types:
(a, b) where a, b ∈ Z, or z which is a special ��ip� symbol. The elements obey the following
rules:

(a, b)(a′, b′) = (a+ a′, b+ b′),

z(a, b) = (b, a)z,

zz = (0, 0).

(In group theory terminology, this is the wreath product Z o Z2.)
Show that deciding if the product of a sequence of elements equals (0, 0) is in TC. For

example, (1, 2)z(−2,−1)z = (0, 0).
Hint: First compute in TC an equivalent sequence with at most one z.

Problem 9.3. Suppose there are power-size, constant-depth TCs that compute
∏

i∈[n] gi
with probability 1/2 + 1/n10 over uniform gi ∈ S5. Show NC1 = TC for non-uniform
circuits.

Problem 9.4. Show that in Theorem 9.4 we can have total functions (i.e., X = [2]n and
X ′ = [2]n

′
) with a similar construction, if we only want f ′ in AC and that f ′ is (ε− 1/nω(1))-

hard to invert. (Hint: Use Problem 8.6.)
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9.8 Notes (& mini historical vignette)

Group programs were introduced in the 60's in [182, 161] where it was shown that any
function on Gn can be computed on a simple non-abelian group. The construction involves
the use of commutators to compute And, similar to the classic puzzle of hanging a picture
with two nails so that removing any one nail makes it fall [244].

Group programs were rediscovered in the 80's as permutation branching programs of
constant width. Using essentially the same construction in [182, 161], it was shown in [189]
that NC1 equals the set of functions computable by power-length group programs, over any
non-solvable group. ([189] considers functions over the domain [2]n, so can allow the more
general class of non-solvable groups instead of the more restrictive simple non-abelian in
[182, 161], where the domain is Gn.) After [189], several related simulations were discovered,
such as [43]. section �9.2 and Problem 9.1 are from [189]. Theorem 9.1 is a variant of this
result from [43]. The proof we presented follows [61].

Recursive function evaluation was introduced in [65]. Theorem 9.3 is from [62]. Our
exposition builds on [100].

Theorem 9.4 is from [19]. They prove a stronger result, where f can be even in NL or
⊕L, and f ′ remains total if f is. Moreover, their techniques extend to other objects such as
cryptographic pseudorandom generators and one-way permutations. For an exposition see
[276].

Catalytic computation was introduced in [51]. The text at the beginning of section �9.6
is their introductory paragraph.
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Chapter 10

Proofs

The notion of proof is pervasive. We have seen many proofs in this book until now.
But the notion extends to others realms of knowledge, including empirical science, law, and
more. Complexity theory has contributed a great deal to the notion of proof, with important
applications in several areas such as cryptography.

10.1 Static proofs

As remarked in section 5.1.1, we can think of problems in NP as those admitting a solution
that can be veri�ed e�ciently, namely in P. Let us repeat the de�nition of NP using the
suggestive letter V for veri�er.

De�nition 10.1. A function f : X ⊆ [2]∗ → [2] is in NP i� there is V ∈ P (called �veri�er�)
and d ∈ N s.t.:

f(x) = 1⇔ ∃y ∈ [2]|x|
d

: V (x, y) = 1.

We are naturally interested in fast proof veri�cation, and especially the complexity of V .
It turns out that proofs can be encoded in a format that allows for very e�cient veri�cation.
This message is already in the following.
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Theorem 10.1. For any input length n, V in De�nition 10.1 can be taken to be a 3CNF of
size nd.

That is, whereas when de�ning NP as a proof system we considered arbitrary veri�ers
V in P, in fact the de�nition is unchanged if one selects a very restricted class of veri�ers:
small 3CNFs.

Proof. This is just a restatement of Theorem 5.1. QED

This extreme reduction in the veri�er's complexity is possible because we are allowing
proofs to be long, longer than the original veri�er's running time. If we don't allow for that,
such a reduction is not known. Such �bounded proofs� are very interesting to study, but we
shall not do so now.

Instead, we ask for more. The 3CNF in the above theorem still depends on the entire
proof. We can ask for a veri�er that only depends on few bits of the proof. Taking this to
the extreme, we can ask whether V can only read a constant number of bits from y. Without
randomness, this is impossible.

Exercise 10.1. Suppose V in De�nition 10.1 only reads ≤ d bits of y, for a constant d.
Show that the corresponding class would be the same as P.

Surprisingly, if we allow randomness this is possible. Moreover, the use of randomness is
fairly limited � only logarithmically many bits � yielding the following central characteriza-
tion, a.k.a. the PCP theorem.

Theorem 10.2. A function f : X ⊆ [2]∗ → [2] is in NP i� there is V ∈ P and d ∈ N s.t.:
f(x) = 1⇒ ∃y ∈ [2]|x|

d
: Pr∈[2]d log |x| [V (x, y, r) = 1] = 1,

f(x) = 0⇒ ∀y ∈ [2]|x|
d

: Pr∈[2]d log |x| [V (x, y, r) = 1] < 0.01,
and moreover V reads ≤ d bits of y.

Exercise 10.2. Prove Theorem 10.2. For the �only if� use the the (advanced) result that
any problem in NP can be map reduced to 0.01-Gap-3Sat (which is essentially Theorem 4.10,
except we did not claim map reductions or a speci�c constant there).

10.2 Proofs that yield nothing but their validity: Zero-

knowledge

In Theorem 10.2 the veri�er gains �constant con�dence� about the validity of the proof,
just be inspecting a constant number of bits. Hence the veri�er �learns� at most a constant
number of bits of the proof. This is remarkable, but we can further ask if we can modify
the proof so that the veri�er �learns nothing� about the proof. Such proofs are called zero
knowledge and are extensively studied and applied.

We sketch how this is done for Gap-3Color, which is also NP-complete. Rather than a
single proof y, now the veri�er will receive a random proof Y . This Y is obtained from a 3
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coloring y by randomly permuting colors (so for any y the corresponding Y is uniform over
6 colorings). The veri�er will pick a random edge and inspect the corresponding endpoints,
and accept if they are di�erent.

The veri�er learn nothing because all that they see is two random di�erent color. One
can formalize �learning nothing� by noting that the veri�er can produce this distribution
by themselves, without looking at the proof. (So why does the veri�er gain anything from
y? The fact that a proof y has been written down means that colors have been picked so
that every two endpoints are uniform colors, something that the veri�er is not easily able to
reproduce.)

This gives a zero-knowledge proof for veri�ers that follow the protocol of just inspecting
an edge. In a cryptographic setting one has to worry about veri�ers which don't follow the
protocol. Using cryptographic assumptions, one can force the veri�ers to follow the protocol
by considering an interactive proof: First a proof y is committed to but not revealed, then
the veri�er selects an edge to inspect, and only then the corresponding colors are revealed,
and only those. This protocol lends itself to a physical implementation that can astonish
the right audiences.

10.3 Interactive proofs

We now consider interactive proofs. Here the veri�er V engages in a protocol with a prover
P . Given an input x to both V and P , the veri�er asks questions, the prover replies, the
veri�er asks more questions, and so on. The case of NP corresponds to the prover simply
sending y to V .

It turns out that it su�ces for the veri�er to send uniformly random strings Q1, Q2, . . .
bits to P . This leads to a simple de�nition.

De�nition 10.2. A function f : X ⊆ [2]∗ → [2] is in interactive power time (a.k.a. admits
a power-time interactive proof) abbreviated IP, if there is V ∈ P and d ∈ N such that for
every x ∈ [2]n, letting b := nd:

• If f(x) = 1 then ∃P : [2]∗ → [2]b such that

V (x, P (Q1), P (Q1, Q2), . . . , P (Q1, Q2, . . . , Qb)) = 1

for every Q1, Q2, . . . , Qb ∈ [2]b.

• If f(x) = 0 then ∀P : [2]∗ → [2]b we have

PQ1,Q2,...,Qb∈[2]b [V (x, P (Q1), P (Q1, Q2), . . . , P (Q1, Q2, . . . , Qb)) = 1] ≤ 1/3.

The following amazing result shows the power of interactive proofs, compared to non-
interactive proofs. We can think of NP as �reading a book� and IP as �going to class and
asking questions.� We don't yet know how to replace teachers with books.
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Theorem 10.3. IP = PSpace.

As a �rst step towards the proof of Theorem 10.3 we show that IP contains problems not
known to be in NP. The protocol in this result is known as the sum-check protocol .

Theorem 10.4. Given a �eld F, an arithmetic circuit C(x1, x2, . . . , xv) over F computing a
polynomial of degree d ≤ |C|, and an element s ∈ F, deciding if∑

x1,x2,...,xv∈[2]

C(x1, x2, . . . , xv) = s (10.1)

is in IP, whenever (1− d/|F|)v ≥ 2/3.

Proof. If v = 1 then V can decide this question by itself, by evaluating the circuit. For
larger v we give a way to reduce v by 1.

As the �rst prover answer, V expects a polynomial p of degree d in the variable x, which
is meant to be

s′(x) :=
∑

x2,x3,...,xv∈[2]

C(x, x2, x3 . . . , xv).

V checks if p(0) + p(1) = s, and if not rejects. Otherwise, it recursively runs the protocol to
verify that ∑

x2,x3,...,xv∈[2]

C(Q1, x2, x3, . . . , xv) = p(Q1). (10.2)

This concludes the description of the protocol. We now verify its correctness.
In case equation (10.1) is true, P can send polynomials that cause V to accept.
In case equation (10.1) is false, s′(0) + s′(1) 6= s. Hence, unless V rejects right away

because p(0) + p(1) 6= s, we have p 6= s′. The polynomials p and s′ have degree ≤ d. Hence
by Lemma 2.1

PQ1 [p(Q1) 6= s′(Q1)] ≥ 1− d/|F|.
When this event occurs, equation (10.2) is again false, and we can repeat the argument.
Overall, the probability that we maintain a false statement throughout the protocol is ≥
(1− d/|F|)v. QED

Exercise 10.3. The protocol exchanges cv messages (equivalently, has v alternations be-
tween prover and veri�er, or cv rounds). Modify it so that it exchanges only v/100 messages.

To apply the sum-check protocol to boolean rather than algebraic circuits we use a far-
reaching technique: arithmetization. We construct an arithmetic circuit Cφ over a �eld F
which agrees with φ on boolean inputs, but that can then be evaluated over other elements
of the �eld. This is done in the following way:

x→ x

f ∧ g → f · g
f ∨ g → f + g − f · g
¬f → 1− f.
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Exercise 10.4. Given a 3CNF formula φ and k ∈ N, deciding if φ has exactly k satisfying
assignments is in IP.

To show PSpace ⊆ IP or in fact even weaker statements like Π2P ⊆ IP one needs to
consider formulas with both ∃ and ∀ quanti�er. To determine the validity of such a formula
it is natural to proceed as in Exercise 10.4 and make the following substitutions:

∃x : f(x)→
∑
x∈[2]

f(x)

∀x : f(x)→
∏
x∈[2]

f(x).

This is a valid transformation: the formula is true i� the corresponding integer is > 0.
We would then be running the sum-check protocol, with the di�erence that when the

polynomial p corresponds to a Π gate we check that p(0) ·p(1) = s (instead of p(0)+p(1) = s,
note here the variable s does not just correspond to a sum). We call this the sum-prod-check
protocol.

The main problem with this approach is that the degree of the polynomials to be sent in
the protocol can explode, making it unfeasible for the veri�er to even receive such polyno-
mials.

Example 10.1. Let
f(x, y1, . . . , xk) := ∃x∀y1y2 · · · yk : x.

(This simple example su�ces for the point made; one can always use the yi in trivial ways
such as (yi ∨ ¬yi) to get a more complicated expression involving the yi making the same
point.)

The arithmetization of this would be

f(x, y1, . . . , xk) :=
∑
x∈[2]

∏
y1,...,yk∈[2]

x =
∑
x∈[2]

x2k .

The polynomial in x corresponding to the
∑

gate has too large a degree.

The solution is similar in spirit to the reduction of circuits to Sat, Theorem 5.1: we are
going to add new variables.

Lemma 10.1. Let f = Q1x1Q2x2 · · ·Qkxkg(x1, x2, . . . , xk) be a formula where g is quanti�er-
free. All quanti�ers are over [2]. Proceeding from left to right, replace an occurrence of

∀xi∃xi+1 · · ·Qkxk : g(x1, x2, . . . , xi−1, xi, xi+1, · · · , xk)

with the formula

∀xi∃x′1, x′2, . . . , x′i−1 :
((
∧i−1
j=1xj ⇐⇒ x′j

)
∧ ∃xi+1 · · ·Qkxk : g(x′1, x

′
2, . . . , x

′
i−1, xi, xi+1, · · · , xk)

)
.
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At the end of the process we have obtained f ′ s.t.:
(1) f ⇐⇒ f ′,
(2) |f ′| ≤ |f |+ ck ·D, where D is the number of ∀ quanti�ers in f , and
(3) If f ′ is true then there exists a prover that in the sum-prod-check protocol on the

arithmetization of f ′ sends polynomials of degree at most the degree of the arithmetization
of g plus a constant.

Note that xj ⇐⇒ x′j means that the variables are equal; it can be written as (xj ∧x′j)∨
(¬xj ∧ ¬x′j).

Proof. (1) is evident by the transformation rule.
(2) holds because for each ∀ quanti�er we add a string which is linear in the number of

variables in f , which is ≤ k.
(3): Note that we are applying the sum-prod-check protocol to the arithmetization of a

formula that is not in prenex form (a formula is in prenex form if all quanti�ers are at the
beginning). However, it is almost in prenex form, the only di�erence are the ⇐⇒ equality
checks. In a generic step of the execution, we have �xed some variables to �eld elements,
and we are considering a univariate polynomial in a variable x corresponding to a quanti�er
Qx. If a ∀ quanti�er appears to the right of x, then the degree of x is ≤ the degree of the
equality check; the rest of the formula does not involve the variable x and thus does not
a�ect its degree. If no ∀ quanti�er appears then the degree is at most that of the equality
check plus the degree in the arithmetization of g. QED

Example 10.2. Let us return to Example 10.1 and set k = 2 for simplicity. Thus we
consider the formula

∃x∀y1y2 : x.

First note that the arithmetization is ∑
x∈[2]

x4,

which is a polynomial of degree 4. Let us now see how the transformation in Lemma 10.1
reduces the degree. Applying it to the leftmost ∀y1 quanti�er in f we get

∃x [∀y1∃x′ : (x′ ⇐⇒ x) ∧ ∀y2 : x′] .

Next the transformation would be applied again to the ∀y2 quanti�er. We don't write this
down because the above formula only depends on x′, but this wouldn't change the degree of
x in the protocol. The important point is that in the arithmetization the degree in x is only
the degree of the equality check, which is 2 (whereas recall previously it was 4).

Proof of IP=PSpace (Theorem 10.3).
To show IP ⊆ PSpace one can give a recursive algorithm that, given a veri�er and an

input, computes the highest probability that the veri�er can be made to accept by some
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prover. The details of this are similar to the proof that QBF ∈ PSpace, cf. Theorem 7.13,
and are omitted.

For the other direction it su�ces to show that QBF ∈ IP by Theorem 7.13. Given a
QBF f , the veri�er applies the transformation in Lemma 10.1 to obtain f ′. The veri�er then
computes the arithmetization g of f ′. Recall ∃x ∈ [2] in f ′ becomes Σx∈[2] in g and ∀x ∈ [2]
becomes

∏
x∈[2]. Hence g denotes a number and we note

f is true ⇐⇒ f ′ is true ⇐⇒ g > 0.

The prover will show that g > 0 by �rst sending a prime p and then proving g = K over
the �eld Fp using the sum-prod-check protocol. Note that g can be, and is at most, doubly
exponential in n. By Theorem 2.5 a prime of nc bits can be found so that g 6= 0 over Fp.
QED

The study of interactive proofs is rich. Many interrelated aspects are of interest, includ-
ing the e�ciency of the veri�er, the number of rounds of the protocol, the communication
complexity, and the error parameter. The e�ciency of the prover is also of interest. By this
we mean the e�ciency of the prover P in the case f(x) = 1. The veri�er should reject with
high probability in case f(x) = 0 even when interacting with a computationally unbounded
prover. (Again, variants in which the protocol only withstands computationally bounded
provers are of interest too).

10.4 Merlin-Arthur

The special case of interactive proofs where the number of rounds is bounded is known as
Arthur-Merlin protocols. Here Merlin stands for the all-powerful prover and Arthur for the
computationally bounded veri�er.

A basic class is the one in which Merlin sends a proof, and then Arthur veri�es it.

De�nition 10.3. A function f : X ⊆ [2]∗ → [2] is in MA if there is V ∈ P and d ∈ N such
that for every x ∈ [2]n, letting b := nd:

• If f(x) = 1 then ∃P ∈ [2]b such that V (P,R) = 1 for every R ∈ [2]b.

• If f(x) = 0 then ∀P ∈ [2]b we have PR∈[2]b [V (P,R) = 1] ≤ 1/3.

The de�nition of MA is similar to that of ∃ · BP · P. But there is one key di�erence, if
f(x) = 1 we only have guarantees on the number of R that cause V (P,R) to accept for a
valid proof P . But in ∃ ·BP ·P we would need guarantees for every P , because in De�nition
6.3 we did not consider partial functions.

From the de�nition, we have MA ⊆ Σ2P. Recall Exercise 6.7 showing that if Exp is
in PCkt then Exp is in Σ2P. The same implication holds for other classes. The theory of
interactive proofs allows us to strengthen Σ2P to MA. In fact, we can prove equivalence with
MA.
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Theorem 10.5. Maj · P ⊆ PCkt⇒ P#·P ⊆ MA.

Proof. The assumption implies that P#·P ⊆ PCkt. Inspection of the protocol in Exercise
10.4 reveals that the prover can be implemented in P#·P. So Merlin can send a circuit for
the prover, and Arthur can run the protocol by himself. This allows Arthur to answer each
query to the # · P oracle by himself. Note in Exercise 10.4 the output of the # · P query is
given as input, but Arthur can run the circuit once to obtain this value, and then verify it.
QED

Corollary 10.1. Maj · P ⊆ PCkt⇒ PH = Maj · P = P#·P = MA.

Proof. By essentially the same proof as Problem 6.6, we have MA ⊆ Maj · P. Also, MA ⊆
PH ⊆ P#·P, where the �rst containment is by de�nition, and the second is Corollary 6.1.
The result follows by Theorem 10.5. QED

With this machinery we can now prove Theorem 6.7.

Proof of Theorem 6.7. If Maj · P is not in PCkt we are done. Otherwise, by Corollary
10.1 Maj · P equals PH, and we conclude by Exercise 6.6. QED

10.5 Interactive proofs within P

In this section we discuss interactive proofs for problems in P. The goal is having the veri�er
run in linear or quasi-linear time, and the prover run in power time.

Exercise 10.5. Show that any function in L has interactive proofs where the veri�er runs
in quasi-linear time. Are the proofs in your protocol computable in P?

The following stronger result is known.

Theorem 10.6. Any function in L has interactive proofs where the veri�er runs in quasi-
linear time, and moreover when a proof exists it can be computed in P.

The appeal of this theorem is clear: One can delegate expensive computation of functions
in L (for example, functions which naively take time n10) and verify it in quasi-linear time;
and the delegated computation is still feasible.

The proof of Theorem 10.6 displays a beautiful interplay between algebra and compu-
tation, and in fact, we will establish stronger results (applying to NL and other classes).
Before this, however we give a simple example where an e�cient prover exists. This serves
as a warm-up for the proof of Theorem 10.6.
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10.5.1 Counting triangles

We consider the problem of counting the number of triangles in a graph. Such a problem
can be trivially solved in time nc. Whether faster run time such as n logc n are possible is
unknown. We show that such time bounds can be achieved via interaction, and moreover
the proofs are still feasible.

Theorem 10.7. Given an undirected graph G with n nodes andm ≥ n edges, and an integer
s, there is an interactive proof for deciding if the number of triangles in G is s. Moreover,
the veri�er runs in time m logcm and the prover runs in P.

Proof. We construct a suitable arithmetic circuit and then apply the sum-check protocol
from Theorem 10.4. The circuit has v := 3 log n variables xi organized in 3 blocks y0, y1, y2

where each yi consists of log n variable. Each yi corresponds to a node name in the graph.
Thus, the number of triangles can be written as∑

x1,x2,...,xv∈[2]

∏
i,j∈[3],i<t

E(yi, yj)

where E is 1 if yi and yj are an edge in G.
To run the sum-check protocol we need an arithmetic circuit, that is, we need to be able

to make sense of evaluating the circuit over large �elds. The function E is only de�ned over
bits, so we need to view it as a polynomial that can be evaluated over larger �elds. At the
same time, computing this polynomial should be easy for the veri�er (so we can't just say it
has some polynomial like any other function, since the polynomial could have degree 2 log n
and require quadratic time, which isn't in the veri�er budget).

For this, we de�ne the following polynomial

Ê(z, z′) :=
∑
α,α′

(z = α) · (z′ = α′) (10.3)

where the sum is over all edges {α, α′} and z = z0z1 · · · zlogn−1. (We should assume that the
graph has no self loops.) In turn, we can write

z = α ⇐⇒
∏

i∈[logn]:αi=1

zi
∏

i∈[logn]:αi=0

(1− zi)

and the same for z′.
With this notation, the veri�er needs to verify that∑

x1,x2,...,xv∈[2]

∏
i,j∈[3],i<t

Ê(yi, yj).

Now Ê is a polynomial of degree 2 log n. Hence the whole expression is a polynomial of
degree d ≤ c log n. We run the sum-check protocol over a �eld F size q := logc n. The
correctness follows from Theorem 10.4.
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Let us now verify the running times. The prover at each round sends a univariate
polynomial of degree d which is obtained by summing over nc values. Hence the prover
is in P. The veri�er at each round except the last one needs to evaluate a polynomial of
degree d over a �eld of size q, and perform a constant number of �eld operations. This takes
time dc. At the last round, the veri�er needs to evaluate∏

i,j∈[3],i<t

Ê(y′i, y
′
j)

for some �xed y′i ∈ F. Each factor Ê(y′i, y
′
j) can be computed by the veri�er using

equation (10.3). This requires going through the m edges of the graph, and for each edge
perform c log n �eld operations. QED

Exercise 10.6. Modify the proof so that the protocol has only a constant number of rounds
(i.e., the veri�er only asks a constant number of questions), while the veri�er still runs in
time ctm logcm. Hint: You may need to modify the sum-check protocol.

10.5.2 Proof of Theorem 10.6

As mentioned, we actually prove stronger results for circuits. Naturally, the circuits need
to satisfy a certain uniformity condition. This condition (stated in the theorem) will be
algebraic, as one can expect from arithmetization. Before stating this we have to discuss
how to encode gates in the circuit.

Encoding gates We shall consider functions computable by circuits of power-size ne and
depth d(n) := loge n. (The results generalize to larger depth, with the depth factoring in
the veri�er runtime.) It will be convenient to arrange the gates into a matrix of d(n) rows
and ne columns, where row 0 corresponds to the output and row d − 1 to the input. This
way, we can always index the gates in a level by log ne bits. Unused gates can be set to the
constant 0. Any gate in a circuit is indexed by log(dne) bits.

Also, we will need to work over larger �elds; at the same time, this switch to larger �elds
should not cause the number of descriptions of gates to become infeasible. So, we shall pick
a �eld F and H ⊆ F and index gates by strings of

m := (log(dne))/ log |H|

elements from H. In terms of bits, this is log(dne) like before.
When working over larger �elds, we will use the same number of elements, but this time

from F. In terms of bits this will be
log |F| ·m

which will still be c log(dne) if |F| ≤ |H|c. Indeed, we set

|H| := log n

|F| := logce n.
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The connection function The algebraic connection function φ : (u, v, w) ∈ H3m → [2]
indicates if gate u in Cn takes as input gates v and w.

De�nition 10.4. A function f : [2]∗ → [2] computable by circuits of size ne and depth
loge n has e�cient algebraic connections if the circuit Cn for f : [2]n → [2] has an algebraic
connection function φ : (u, v, w) ∈ H3m → [2] computable by a polynomial that can be
written down in time loge n and has degree loge n.

We used the same parameter e for both the complexity of f and φ for simplicity and
w.l.o.g., for increasing e makes the de�nition easier and easier to satisfy, as we can always
ignore some gates.

Satisfying this de�nition is not typically an issue, in the sense that it's hard to �nd
examples where it is hard to satisfy it. Still, let us now verify that the circuits for L indeed
have explicit algebraic connections. Rather than working directly over the �eld H, we shall
�rst prove that the connection function over bits (as opposed to �eld elements) has e�cient
ACs, and then use a generic transformation.

Exercise 10.7. Let f ∈ L. The circuits C : [2]n → [2] for f can have the following structure
(part of which is the same as in Theorem 8.1). Let a = cf . There is a layer A of na gates
at distance 1 from the input, each depending on a single input bit. The rest of the circuit
consists of a log n copies of a circuit M : [2]n

a → [2]n
a
stacked on top of each other, with one

copy taking A as input. The output copy has a speci�ed gate as output.
(1) Explain what A and M compute.
(2) Prove that C has e�cient AC connections: In time logcf n we can compute AC circuits

for the connection function φ : (u, v, w) ∈ [2]3m log |H| → [2]. (In particular, the circuits have
size logcf n.)

(3) Prove that C has e�cient algebraic connections.

Main statement and proof Thanks to Exercise 10.7, Theorem 10.6 follows from the
following statement about circuits.

Theorem 10.8. Let f : [2]∗ → [2] have circuits of size ne, depth loge n, and e�cient algebraic
connections. Then f has interactive proofs where the veri�er runs in time n logce n and the
prover is in P.

In the remainder of this section we present the proof of 10.8. Given input x, let αi denote
the value of the gates at distance i from the output. So α0 is the output and αd−1 is the
input. The protocol proceeds in d stages. In stage i− 1 a claim of the form

α̂i−1(zi−1) = bi−1

is reduced to a claim of the form
α̂i(zi) = bi.
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Here zi ∈ Fm, bi ∈ F, and α̂ : Fm → F is the arithmetization of α which agrees with α over
Hm and is de�ned as

α̂(x) :=
∑
y∈Hm

EQ(x, y) · α(y).

where EQ(x, y) is a polynomial that, when evaluated over Hm, computes equality. This is
known as low-degree extension.

Exercise 10.8. Give such a polynomial for EQ that has degree m(H − 1) and can be
evaluated in time logce n. In fact, time m logc d(n) su�ces. Hint: Use that xq−1 = 1 for
x 6= 0 in a �eld of size q.

Note these polynomials are never sent to the veri�er, as they are not within their budget.
Various univariate restrictions of these polynomials (of the same degree dc) will sent to the
veri�er. On the other hand, the polynomials are computable by the prover in power time.
What constitutes a �claim� are the values i, zi, bi.

At Stage i = 1 we have that z0 is the output gate and b0 is the output of the circuit.

Exercise 10.9. Explain how the claim at Stage i = d, corresponding to the input level, is
veri�ed in time n logce n, without further interaction.

The induction step: Stage i − 1. W.l.o.g. assume the circuit consists of NAnd gates
only. We have

α̂i−1(z) =
∑

u,v,w∈Hm
EQ(z, u) · φ(u, v, w) · (1− α̂i(v) · α̂i(w)).

Note that on the rhs we could have written αi instead of α̂i. Indeed, they agree on Hm.
However, we need to apply the sum-check protocol so we need algebraic computation.

The current claim is that the rhs equals bi−1. The term inside the sum on the rhs is an
algebraic circuit computing a polynomial of degree

≤ m · |H|+ loge n+ 2m|H| ≤ logce n.

The sum-check protocol reduces the claim to

EQ(z, û) · φ(û, v̂, ŵ) · (1− α̂i(v̂) · α̂i(ŵ)) = b,

for some û, v̂, ŵ ∈ Fm and b ∈ F. (We only stated the protocol for sums over [2], but one can
readily extend it to sums over larger sets such as H.) This requires m iterations. In each
iteration the prover sends a univariate polynomial of degree logce n and the veri�er evaluates
it at |H| = log n points. This takes time logce n. The error will be ≤ logce n/|F| ≤ 1/ logce n
in each iteration, by our choice for the size of F. Overall, the error is ≤ 1/ logce n.

However, the new claim appears to require two evaluations of α̂i, which would yield an
exponential increase in complexity. To avoid it, we use another idea to reduce the evaluation
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at two points to a single point. The prover sends a univariate polynomial p(t) of the same
degree as α̂i, which is meant to be p(t) := α̂i(v̂ + t(ŵ − v̂)). The veri�er checks that

EQ(z, û) · φ(û, v̂, ŵ) · (1− p(0) · p(1)) = b

and it rejects if it does not hold. If it does hold, it picks a uniform value t ∈ F and the new
claim is now

α̂i(v̂ + t(ŵ − v̂)) = p(t).

Note that if p(t) 6= α̂i(v̂ + t(ŵ − v̂)) then the claim is still false, except with probability,
again, logce n/|F| ≤ 1/ logce n over t. The complexity and error probability at this step are
no more than those incurred in the sum-check protocol.

By a union bound over the loge n stages, the probability of error is ≤ loge n/ logce n ≤
logce n.

10.6 A PCP from the sum-check protocol

First we describe a speci�c interactive proof for the NP-complete problem Quad-Sys, which
is slightly more convenient to work with than 3Sat. Then we turn this protocol into a non-
interactive one, via a trivial brute-force transformation, under the assumption that the proof
has some special structure. This protocol is e�cient assuming that the prover is restricted
to send a low-degree proof. Finally, we show how to remove this restriction on the prover.

10.6.1 An interactive protocol for Quad-Sys (Problem 4.5)

We can write an instance of Quad-Sys of size n as

∀i ∈ [n] :
∑
j,k∈[n]

α(i, j, k)x(j)x(k) +
∑
j∈[n]

β(i, j)x(j) + γ̂(i) = 0.

Here i indices the equation, α(i, j, k) the coe�cient of x(j)x(k) in Equation i, and so on.
As in section 10.5.2 we need low-degree extensions to larger �elds. We use the same

parameters H, F there. So can think of i, j, k as ranging in Hm, where m := log n/ log |H|.
In the protocol, �rst the prover sends a map ŵ : Fm → F, which is meant to be the

low-degree extension of a satisfying assignment w : Hm → [2]. The veri�er then needs to
verify

∀i ∈ Hm :
∑

j,k∈Hm
α̂(i, j, k)ŵ(j)ŵ(k) +

∑
j∈Hm

β̂(i, j)ŵ(j) + γ̂(i) = 0. (10.4)

To do, it will pick a uniform i ∈ Fm and verify the corresponding equation. This veri�-
cation is done via the sum-check protocol. (One can rewrite the equation as a single sum to
match the way we stated the sum-check protocol.)
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To analyze the correctness of �xing i, rewrite equation (10.4) as

∀i ∈ Hm : f(i) = 0

for a suitable f . This is equivalent to

∀i ∈ Fm : f̂(i) = 0

as can be veri�ed by the de�nition of low-degree extension. However, f̂ is a polynomial of
degree ≤ mH in each variable. Hence by Lemma 2.1, if it is not zero then Pi∈Fm [f̂(i) = 0] ≤
mH/F.

The rest of the correctness follows by the correctness of the sum-check protocol. However
this is only guaranteed if the prover sends a low-degree polynomial.

10.6.2 A non-interactive protocol

To make the protocol non-interactive, we simply let the prover send its answers for every
veri�er's message. Note the number of possible messages from the veri�er is ≤ nc. Each
prover message also has length ≤ nc. Hence the total length of the proof is ≤ nc.

The veri�cation time is ≤ logc n.

10.6.3 Low-degree testing

Finally, we explain how the veri�er can verify that ŵ is indeed a low-degree polynomial.
TBD

10.7 Problems

Problem 10.1. TBD Prove that Σ2P ⊆ IP.
Prove that ⊕ · P ⊆ IP.
You cannot use the result that IP = PSpace.

Problem 10.2. Improve Theorem 10.8 to constant rounds for functions in AC.
To isolate the essence of the problem, let f be a function computable by power-size,

cosntant-depth AC with fan-in n0.1. Suppose that the circuit Cn for f : [2]n → [2] has an
algebraic connection function φ : (u,w1, w2, . . . , wt) ∈ H(t+1)m → [2] which outputs 1 i� u
takes as inputs w1, w2, . . . , wt and which is computable by a polynomial that can be written
down in time

√
n and has degree

√
n (cf De�nition 10.4).

Prove that f has interactive proofs where (1) the veri�er runs in quasi-linear time, (2)
the prover is in P, and (3) the number of rounds is constant.

Hint: Modify the protocol in the proof of Theorem 10.8 following Exercise 10.3.
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10.8 Notes

Interactive proofs were put forth simultaneously in [27, 106]. The latter paper also introduced
zero-knowledge. The zero-knowledge protocol for 3Color is from [101].

Theorem 10.3 is from [177, 231], with the last paper proving it as stated. For the history
of this famous result see [22].

The proof of Theorem 6.7 follows [1].
Interactive proofs for functions in P with e�cient veri�er were �rst studied in [105], where

essentially Theorem 10.8 appears. Our presentation of this result follows [99]. The latter
di�ers from the former in the way the uniformity of circuits is handled. Our presentation
also di�ers and uses that the circuits for simulating L or NL are su�ciently uniform. In
fact, this was studied already in [144] where even constant-locality uniformity is achieved.
Theorem 10.7 is from [103]. [221] give protocols that are even constant-round for TiSP.
[256] gives alternative arguments (not achieving constant-round) based on matrix powering.
Simpler constant-round protocols for smaller classes are in [104]. For a survey of some of
these works, see [99].

For more on interactive proofs and zero knowledge see the book [256].
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Chapter 11

Pseudorandomness

Suppose I say to you that I've tossed coin 40 times and got this sequence of heads (0)
and tails (1):

0101010101010101010101010101010101010101.

You'd probably think this can't be true. But suppose instead I claim that I got

1000111110100010011110100101111101100100.

Maybe you would think this is possible then? But why do we feel this way? For a fair
coin, the two strings have the same probability of 2−40!

This example leads to a very interesting question: What is randomness? Of course, we've
been using randomness all along since the �rst chapter. Still, let's step back and consider
three possible answers:

1. Classical: Each string has the familiar probability. This viewpoint is useful in math-
ematics but the example above shows that it doesn't capture our intuitive notion of
randomness.

2. Intrinsic (or ontological): A string is the less random the shorter description it has.
The �rst string has the short program �Print 01 for 20 times,� while the shortest pro-
gram for the second seems to be �Print 1000111110100010011110100101111101100100.�

3. Behaviouristic: Randomness is in the eyes of the beholder: A string R is random for
f if f can't distinguish it from a truly random string. In other words, R fools f into
thinking that R is random.
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The last answer seems the most useful, and we now make it precise.

De�nition 11.1. A distribution R over [2]n ε-fools (or is ε-pseudorandom for) a function
f : [2]n → [2] if |E[f(R)] − E[f(U)]| ≤ ε, where U is uniform in [2]n. A function f ε-breaks
(or tells, distinguishes) distributions D and E if |E[f(D)]− E[f(E)]| ≥ ε. If E is omitted it
is assumed to be the uniform distribution.

We are naturally interested in distributions that are pseudorandom yet have very little
entropy. As in Chapter 3, counting arguments show that very little entropy is needed for
non-explicit distributions, about logarithmic in the number of tests to be fooled. But our
ability to explicitly construct such distributions is limited by the grand challenge:

Claim 11.1. Let R be a distribution over [2]n with support of size < 2n/2. Suppose that R
1/2-fools a set F of functions. Then the indicator function g : [2]n → [2] of the support of R
is not in F .

Proof. We have E[g(U)] < 1/2 while E[g(R)] = 1, so g is not 1/2-fooled and cannot be in
F . QED

For example, if F = PCkt and R can be sampled in P then g ∈ NP, and so NP 6⊆ PCkt.
The above claim can be strengthened. In general, constructing such distributions can

be thought of as a re�ned impossibility result that is closely related to correlation, recall
De�nition 3.2.

To simplify the following discussion, we introduce the notion of a pseudorandom generator
which makes it easier to talk about the entropy of the distribution and its explicitness.

De�nition 11.2. An algorithm G is a pseudorandom generator , abbreviated generator or
PRG, that ε-fools a class F of functions (or a generator for F with error ε) with seed length
s (a function of both n and ε) if on input n and ε, and a uniform seed U of length s(n, ε), G
outputs a distribution on n bits that ε-fools any function in F on inputs of length n. The
stretch is n− s(n, ε).

Note that we use n to denote the output length of G, because it is the input length for a
test that's trying to tell G from random. Also, we typically have the output length of G much
longer than the input length. For some applications, it su�ces if G is computable in power-
time in the output length, which can be exponential in the input length. We shall simply
say that G is explicit in this case. However many generators we present below, especially
those for restricted models, are explicit in a stronger sense: Given an input and an index to
an output bit, that bit can be computed in P.

Exercise 11.1. Suppose there is a > 0 and an explicit generator with seed length s(n) =
a log n that 0.1-fools circuits of size n, for a constant a. Prove that P = BPP.

Note that to eliminate one parameter we set the size of the circuit test equal to the output
length of G. Recall from De�nition 1.4 that input gates are not counted towards size; the
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circuit may simply ignore most of its input bits, which makes sense since very few input bits
su�ce, information-theoretically, to tell the output of G from uniform.

Given Claim 11.1, there are two main avenues for research, closely paralleling the devel-
opment of earlier chapters. The �rst is proving unconditional results for restricted models,
like AC. Actually, pseudorandomness being a more re�ned notion of impossibility, even very
simple models like local functions are non-trivial, and results for them very useful. The
second is proving reductions, that is linking the existence of PRGs to other conjectures.
Interestingly, some of the techniques are general and apply to both settings.

11.1 Basic PRGs

In this section we present PRGs for several basic classes of tests. Besides being basic, these
tests are the backbone of several other constructions, and somewhat surprisingly su�ce to
fool apparently stronger classes of tests.

11.1.1 Local tests

The simplest model to consider is perhaps that of local functions.

De�nition 11.3. A distribution over [2]n is k-wise uniform if every k bits are uniform in [2]k

(equivalently, any k-local function is 0-fooled). A k-wise generator is a map whose output
distribution is k-wise uniform.

Exercise 11.2. Given an explicit 1-wise uniform generator with seed length s(n) = 1.

Theorem 11.1. There are explicit k-wise uniform generators with seed length s = ck log n.

Proof. Wlog assume n is a power of 2 and let F be the �eld of size n. More generally, the
range of G will be Fn, and the distribution of any k coordinates will be uniform over Fk.
View the input as coe�cients ai i ∈ [k] of a polynomial p of degree k − 1. De�ne the i
output element of G to be p(i). Any k-tuple of �eld elements is uniform, for if two di�erent
polynomials give the same tuple then their di�erence is a non-zero polynomial of degree k−1
with ≥ k roots, violating Lemma 2.1. (We can assume k ≤ n for else the theorem is trivial.)
QED

The bound on s is tight for k ≤ nc. For k closer to n di�erent arguments apply, but we
won't need them here.

Theorem 11.2. The minimum seed length is ≥ ck log(2n/k).

Proof. Think of the support as {−1, 1}n, and write down a 2s × n matrix where row x is
G(x). For even k, and for any T ⊆ [n] of size k/2, consider the 2s-long vector vT obtained
by multiplying together the columns indexed in T . Note that the vT are orthogonal, hence
independent (A.13), and so 2s ≥

(
n
k/2

)
, whence s ≥ ck log(2n/k). QED

Powerlog-wise uniformity su�ces to fool AC:
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Theorem 11.3. Any log(m/ε)cd-wise uniform distribution over [2]n ε-fools AC of size m and
depth d.

In particular, there are explicit generators that ε-fool such circuits with seed length
log(m/ε)cd. We give generators with this seed length below, via a di�erent route.

11.1.2 The power of NC0: Local maps can fool local tests

To compute the construction in the proof of Theorem 11.1 it seems we need to read the
entire input of ck log n bits. We now give a di�erent construction where it su�ces to read
c log n bits. Note this is a dramatic saving when k is large. In fact we give a general tradeo�
between the locality and the seed length.

Theorem 11.4. There are k-uniform generators G : [2]s → [2]n that are d-local, whenever(
cdk

s

)d/2
≤ 1

n
.

For example, we can have s = ck log n and d = c log n. At the other extreme, we can also
have s = n0.1 and d = c. It even su�ces if the seed is dk uniform as opposed to completely
uniform.

Proof. Pick a random bipartite graph with s nodes on the left and n nodes on the right.
Every node on the right side has degree d and computes the XOR of its neighbors. By Fact
A.17 it su�ces to show that for any non-empty subset S ⊆ [n] of size ≤ k, the XOR of
the corresponding bits is unbiased. For this it su�ces that S has a unique neighbor. For
that, in turn, it su�ces that S has a neighborhood of size greater than d|S|

2
(because if every

element in the neighborhood of S has two neighbors in S then S has a neighborhood of size
< d|S|/2). We pick the graph at random and show by standard calculations that it has this
property with non-zero probability. Write N(S) for the set of neighbors of nodes in S. We
need to bound

P
[
∃S ⊆ [n], 0 < |S| ≤ k, s.t. |N(S)| ≤ d|S|

2

]
.

We can rewrite this as the probability that there is a small T that contains N(S), and then
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bound the latter:

P
[
∃S ⊆ [n], 0 < |S| ≤ k, and ∃T ⊆ [s], |T | ≤ d|S|

2
, s.t. N(S) ⊆ T

]
≤

k∑
i=1

(
n

i

)
·
(

s

d · i/2

)
·
(
d · i
s

)d·i
≤

k∑
i=1

(e · n
i

)i
·
(

e · s
d · i/2

)d·i/2
·
(
d · i
s

)d·i
=

k∑
i=1

(e · n
i

)i
·
(
e · d · i/2

s

)d·i/2

=
k∑
i=1

e · ni ·
(
e · d · i/2

s

)d/2
︸ ︷︷ ︸

A


i

.

It su�ces to have A ≤ 1/2, so that the probability is strictly less than 1, because
∑k

i=1 1/2i =
1− 2−k. The result follows. QED

11.1.3 Low-degree polynomials

Another natural model is that of low-degree polynomials. Chapter 6 and section �8.5 give
several applications, and we encounter more below in section 11.1.4.

Theorem 11.5. There are explicit generators that ε-fool degree-1 polynomials over F2 with
seed length s = c log(n/ε).

Such distributions care called ε-bias , or small-bias .

Exercise 11.3. Prove Theorem 11.5 using the construction in the proof of Lemma 6.6.

To fool polynomials of degree d > 1, we can take the xor of d independent copies of
generators for degree 1. This is known to work for d < log n, and is unknown beyond that.

Theorem 11.6. The sum of d generators that ε-fool degree-1 polynomials over F2, on
independent seeds, fools degree-d polynomials with error ≤ cε1/2

d−1
.

Question 11.1. Does this work for d > log n?

11.1.4 Expander graphs and combinatorial rectangles: Fooling AND
of sets

In this subsection we construct a PRG to fool the And of (the indicator functions) of sets.
We use �set� and �function� interchangeably in this section. This basic construction ties
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together many things we have seen and showcases techniques which allow to build even more
powerful PRGs. Also, it su�ces for the time-e�cient simulation of BPP in PH, Item (2) in
Theorem 6.3.

Theorem 11.7. There is a PRG G that ε-fools the product of t subsets of [2]m with seed
length m + c(log t) log(mt/ε). In other words, for any functions fi : [2]m → [2] we have
|E[
∏

i fi(Ui)]− E[
∏

i fi(Xi)]| ≤ ε where (X1, X2, . . . , Xt) = G(U).

Except for the extra log t factor, the seed length is good.

Exercise 11.4. Prove Item (2) in Theorem 6.3 assuming Theorem 11.7.

The fundamental case of t = 2 is known as expander graphs.

Exercise 11.5. [Where is the graph, and why is it expanding?] Let L and R be two disjoint
sets with M := 2m nodes each, and de�ne the graph on vertices L∪R and edges (x, y) from
L to R for any output (x, y) = G(z). For simplicity, further assume that x is uniform for
uniform z (a condition satis�ed by the construction below). Prove that any set X ⊆ L of
αM nodes has ≥ (1− ε/α)M neighbors in R.

For expander graphs, explicit constructions with seed length m+c log 1/ε are known. We
give below a simpler construction with seed length m + c log(m/ε). Expander graphs have
many applications. A simple example is that the general case t > 2 is obtained from the
t = 2 case via recursion.

Recursion

To fool 2t sets, �rst run the generator for 2 sets with error ε/c to get two seeds for generators
for t sets with error ε/c. Then, run twice the generator for t sets on those seeds. Speci�cally,
given 2t functions fi, let g1 : [2]mt → [2] be the product of the �rst t, and g2 the product of
the last t. Let Gt be a generator for the product of t functions. We have:

|E[g1(U) · g2(U)]− E[g1(G(S1)) · g2(G(S2))]| ≤ ε/2.

To see this, de�ne the �hybrid� distribution H = g1(G(S1))·g2(U), and note that the distance
of E[H] from each of the expectations inside the absolute value is ≤ ε/c, and use the triangle
inequality.

Now the key idea is that we can think of g1 composed with G as another function h1, and
similarly for g2. We can fool h1 · h2 with the generator for two sets with error ε/2, obtaining
a generator for t sets with error ε/2 + ε/2 = ε, as desired.

To analyze the seed length, denote it by s(m, t, ε) for parameters m, t, and ε. The
de�nition above gives the recursion

s(m, 2t, ε) ≤ s(s(m, t, ε/c), 2, ε/c) ≤ s(m, t, ε/c)+c log s(m, t, ε/c)/ε ≤ s(m, t, ε/c)+c log(mt/ε).

The second inequality is by the base t = 2 case, and the next is because seed mt always
su�ces, trivially. Iterating log2 t times, we obtain seed length

≤ s(m, 2, ε/tc) + c log(t) log(mt/ε)

which is as desired, using again the base case.
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Expander graphs

The generator for the base case outputs (U,U+D) where U is uniform andD is a distribution
that ε-fools linear polynomials over F2 (!). By Theorem 11.5 the seed length is as desired.
To analyze, it is natural to write the functions f1 and f2 in terms of polynomials. For slight
convenience we think of the inputs in {−1, 1} instead of {0, 1}, so that multiplication of
input bits corresponds to xoring. In particular we will write U ·D for U +D.

Exercise 11.6 (Hypercube analysis). For α ⊆ [n], we write xα for
∏

i∈α xi, with x
∅ := 1.

Let f : {−1, 1}n → R be a function.
(1) Show that f can be written as

f(x) =
∑
α

f̂α · xα,

for some f̂α ∈ R. Guideline: First write f(x) =
∑

a∈{−1,1} f(a)Ia(x), where Ia(x) = 1 if
x = a and 0 otherwise.

(2) Show that f̂α = Ex[f(x)xα]. In particular and for example, f̂∅ = E[f(U)].
(3) Show that

∑
α f̂

2
α = E[f 2(U)].

Writing f = f1 and g = f2 we need to bound |E[f(U)g(U ·D)]− E[f(U)]E[g(U)]|. Note
that in the �rst E the two occurrences of U denote the same sample, whereas in the second
they denote independent samples. Using Exercise 11.6, the second summand is f̂∅ĝ∅. The
�rst is

Ex←U,D[
∑
α,β

f̂αĝβx
α(x ·D)β].

Because (x ·D)β = xβ ·Dβ, the terms with α 6= β give 0. So we can rewrite it as

ED

[∑
α

f̂αĝαD
α

]
.

Putting this together, we remove the α = ∅ term, and our goal is to bound∣∣∣∣∣∣ED
∑
α 6=∅

f̂αĝαD
α

∣∣∣∣∣∣ .
This is at most
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∑
α 6=∅

|̂fα| · |ĝα| · |ED[Dα]| (by the triangle inequality)

≤ε
∑
α

|̂fα| · |ĝα| (by the assumption on D)

≤ε
√∑

α

f̂ 2
α ·
√∑

α

ĝ2
α (by Fact A.8)

=ε
√
E[f 2(U)] ·

√
E[g2(U)] (by Exercise 11.6, Item (3))

≤ε (because the range of f and g is [2]).

11.2 PRGs from hard functions

In this section we present a general paradigm to construct PRGs from hard functions. We
begin with a general claim showing that PRGs with non-trivial seed length s(n) = n− 1 are
in fact equivalent to correlation bounds, recall De�nition 3.2.

Claim 11.2. Let f : [2]n → [2] be a function. We have:
(1) If C : [2]n+1 → [2] ε-breaks G(x) := xf(x) then there is b ∈ [2] s.t. C ′b : [2]n → [2]

de�ned as C ′b(x) := C(xb)⊕ b has correlation Ee[C ′b(x)⊕ f(x)] ≥ ε with f .
(2) Conversely, suppose C : [2]n → [2] has ε-correlation with f . Then C ′ : [2]n+1 → [2]

de�ned as C ′(x, b) := C(x)⊕ b ε/2-breaks xf(x).

Proof of (1). Pick b uniformly and write

Ex,be[C ′b(x)⊕f(x)] = Ex,b⊕f(x)e[C
′
b⊕f(x)(x)⊕f(x)] = Ee[Cb⊕f(x)(x(b⊕f(x)))⊕b] =

1

2
|ExC(xf(x))−ExC(xf(x))| = |ExC(xf(x))−EC(U)|.

So there is b s.t. the LHS is at least the RHS. This establishes the �rst claim. QED

Exercise 11.7. Prove (2) in Claim 11.2.

The contrapositive of (1) is that functions with small correlation immediately imply a
1-bit of stretch generator. Naturally, we'd like to increase the stretch. A natural idea is
repetition: From a pseudorandom distribution D over [2]n, we construct Dk := D,D, . . . , D
over [2]k·n.

Claim 11.3. If f ε-distinguishes Dk and Ek then a restriction of f ε/k-distinguishes D and
E.

Proof. Via the �hybrid method,� a.k.a. the triangle inequality, cf. proof of Theorem 11.7.
De�ne Hi := D0D1 · · ·Di−1EiEi+1 · · ·Ek−1 over nk bits for i ∈ [k], where each factor in the
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RHS is over n bits. Note that H0 is Ek and Hk is Dk. Write

ε ≤ |E[f(H0)]− E[f(Hk−1)]|

= |
∑
i∈[k]

E[f(Hi)]− E[f(Hi+1)]|

≤
∑
i∈[k]

|E[f(Hi)]− E[f(Hi+1)]|.

So one of the terms on the RHS is ≥ ε/k. The corresponding distributions Hi and Hi+1

di�er in only one factor. We can �x all others and the claim follows. QED

Note we went from ε to ε/k. This means the claim is only applicable when ε is fairly
small. In general, this loss cannot be avoided:

Exercise 11.8. Exhibit a distribution D that is 0.1-pseudorandom (for say PCkt) but Dk

is not even 0.9 pseudorandom, for suitable k. Now strengthen this to D of the form xf(x),
for some boolean function f .

However, repetition works for resamplable functions, like parity. These are functions h
s.t. given any �correct� pair (x, h(x)) we can generate uniform correct pairs (y, h(y)), and
similarly for �incorrect� pairs (x, h(x)⊕ 1) � using the same distribution.

De�nition 11.4. A function h : [2]n → [2] is resampled by a distribution F on functions
from [2]n+1 to [2]n+1 if for every x ∈ [2]n and b ∈ [2], F (x, h(x)⊕ b) outputs (y, h(y)⊕ b) for
uniform y ∈ [2]n.

Claim 11.4. Suppose h : [2]n → [2] is balanced (i.e., P[h(U) = 1] = 1/2) and resampled by
F . Let D = (X, h(X)). Suppose f ε-breaks Dk. Then f(G,G, . . . , G) ε/2-breaks D, where
each occurrence of G is either an occurrence of F or a �xed value.

Proof. Because h is balanced, we can sample Un+1 by �rst tossing a coin b, and then
outputting (X, h(X)⊕b). Because f ε-breaks D, we can �x coins b1, . . . , bk s.t. the quantities

E [f ((X1, h(X1)), (X2, h(X2)), . . . , (Xk, h(Xk)))]

E [f ((X1, h(X1)⊕ b1), (X2, h(X2)⊕ b2), . . . , (Xk, h(Xk)⊕ bk))]

have distance ≥ ε.
The coordinates where bi = 0 are the same. So we can �x those and obtain a restriction

f ′ of f s.t. for some j ≤ k the quantities

E [f ′ ((X1, h(X1)), (X2, h(X2)), . . . , (Xj, h(Xj)))] =: (I)

E
[
f ′
(
(X1, h(X1)), (X2, h(X2)), . . . , (Xj, h(Xj))

)]
=: (II)

have distance ≥ ε.
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Now we use this to break D. As in the proof of Claim 11.2 it su�ces to tell D from
D := (X, h(X)). On input z ∈ [2]n+1, we compute

f ′(F (z), F (z), . . . , F (z)).

If z = D then this is the same as (I), and if z = D this is the same as (II). QED

Claim 11.5. Parity is resamplable in AC.

Exercise 11.9. Prove this.

Combining the results in this section with the correlation of ACs and parity � Corollary
8.4 � we obtain a PRG with seed length n− n/ logcd n that fools ACs of size nd and depth d
on n bits. In the next section, leveraging the exponentially-small correlation bounds between
ACs and parity, we will obtain a much shorter, logarithmic seed length for ACs.

However, for other classes of circuits like AC[2] such strong correlation bounds are not
known. For these classes, the results in this section give the best-known explicit generator.
For example, for AC[3] we can again use that parity has correlation ≤ 1/100 with such
circuits, as follows from Exercise ??, and obtain a generator stretching n− n/ logcd n bits to
n. For AC[2] one can work with a di�erent function and again obtain that stretch. Better
stretch is not known.

Question 11.2. Give an explicit generator with seed length 0.9n for AC[2] circuits of size
nc and depth c on n bits.

11.2.1 From correlation bounds to stretch: Sets with bounded in-
tersections

The repetition PRG outputs values of a hard function h on independent inputs. We now
study a powerful technique which instead outputs values from dependent inputs. This gives
a better trade-o� between seed and output length. It is a derandomized analogue of Claim
11.3. Rather than picking independent inputs as in the repetition generator, we select them
based on a collection of subsets of [u], where u is the seed length.

De�nition 11.5. Let S = T1, T2, . . . , TS be collection of subsets of [u] of size `. Then the
bounded-intersection generator

BIGS : [2]u →
(
[2]`
)S

is de�ned as BIGS(x) := xT1 , xT2 , . . . , xTS . Here xTj are the ` bits of x indexed by Tj.

For a distribution H on functions from [2]` → [2] and a generator G : [2]u →
(
[2]`
)S

we
write H ◦ G(σ) for the result H(x1), H(x2), . . . , H(xS) of applying H to the outputs of G,
where G(σ) = (x1, x2, . . . , xS) and the occurrences of H denote independent samples.

For example, if H is a uniform function then H ◦ BIGS is uniform over [2]S. The next
key result shows that BIG preserves indistinguishability, similar to the repetition generator,
as long as the sets in S have small intersections. The intersection size governs the locality
(recall De�nition 1.5), and hence the complexity, of the reduction.
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Theorem 11.8 (BIG PI). Let BIG and S be as in De�nition 11.5. Furthermore, suppose
|Ti ∩ Tj| ≤ w for any i 6= j. Let V and W be two distributions on functions from [2]` to [2].

Suppose f ε-tells the distributions (σ, V ◦ BIGS(σ)) and (σ,W ◦ BIGS(σ)), over u + |S|
bits.

Then there are w-local functions gi s.t. f(g1, g2, . . . , gu+|S|) distinguishes (X, V (X)) from
(X,W (X)) with advantage ≥ ε/|S|, where X is uniform in [2]`.

Exercise 11.10. Derive Claim 11.3 from Theorem 11.8 for the special case D = (X, V (X))
and E = (X,W (X)).

Proof. Write D = (σ, V ◦GS(σ)) = D0D1 · · ·D|σ|+S−1 and E = (σ,W ◦GS(σ)) = E0E1 · · · .
As in the proof of Claim 11.3, de�ne hybrids

Hi := D0D1 · · ·Di−1EiEi+1 · · ·E|σ|+S−1

over |σ| + S bits. Note that H0 is E and H|S| is D. So there is i ∈ [S] s.t. f distinguishes
two adjacent hybrids H|σ|+i and H|σ|+i+1 with advantage ≥ ε/S. (The �rst |σ| bits in D and
E are equal.)

We can �x the u− ` bits in the seed σ that are not in set Ti. Now every bit in position
j 6= i depends on ≤ w bits in Ti, and so can be computed by a distribution Gj on w-local
functions.

The following distribution on circuits tells (X, V (X)) from (X,W (X)), again with ad-
vantage ≥ ε/|S|: On input (x, b) run f on

(G0(x), G1(x), . . . , Gi−1(x), b, Gi+1(x), Gi+2(x), . . . , G|σ|+|S|−1(x)).

We can �x the Gi to gi and maintain the advantage. QED

To apply Theorem 11.8 we need a collection S with small intersections. We'd like to have
as many sets as possible (that's the output length of the generator) which are as large as
possible (that's the input length to the hard function) which are subsets of as small a set as
possible (that's the seed length) and such that any two have as small intersection as possible
(that's the overhead in the reduction). The probabilistic method shows that collections with
great parameters exist. The following is a simple explicit construction.

Lemma 11.1. [Sets with small intersections] There are explicit collections of qd subsets of
[q2] of size q such that any two sets intersect in ≤ d elements, for any q that is a power of 2
and > d.

Proof. View the universe [u] = [q2] as F2
q. For a parameter d, the sets correspond to the

graphs of polynomials p of degree < d. (I.e., the set {(x, p(x)) : x ∈ F}.) The number of sets
is qd. The size of each set is q =

√
u. To bound the intersection of two sets, consider the

corresponding polynomials and let p be their di�erence, which is not zero. Any element in
the intersection of the sets corresponds to a zero of p. By Lemma 2.1, the intersection has
size ≤ d. QED
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To illustrate parameters, we can have m = qd subsets of size ` =
√
q from a universe of

size u = `2 = q with intersections at most d. For example, given m we can set d = logm
and q = logam, and the intersection size is only `1/a while the universe is only quadratic in
the set size, i.e., u = `2.

Corollary 11.1. There are generators G : [2]logcd n → [2]n that 1/n-fool ACs of size n and
depth d.

As in Exercise 11.1, in this corollary, to eliminate one parameter we set the size of the
circuit equal to the output length of G. The same statement holds if the size is nd instead
of n.

Exercise 11.11. Prove Corollary 11.1. Explain how the parameters are set and which
results you are combining.

The seed length in Corollary 11.1 is about the best we can do given current impossibility
results, and recall once again from section �7.3 that stronger impossibility would imply major
separations.

Still, one can ask if PRGs could be built if we had such stronger results. In particular,
one would like to have seed length say c log n instead of logc n. This is the setting that allows
for conclusions such as P = BPP, cf. Exercise 11.1. Lemma 11.1 doesn't give this, since the
universe is always at least quadratic in the set size, but the following construction does.

Lemma 11.2. [Sets with small intersections, II] For any a and n ≥ ca there is an explicit
collection of n subsets of [ca log n] of size ca log n with pairwise intersection ≤ a log n.

Using this we can prove the following weaker version of Theorem 2.9.

Corollary 11.2. Suppose there is ε > 0 and f ∈ E that on inputs of length n has correlation
at most 2−εn with circuits of size 2εn. Then P = BPP.

Exercise 11.12. Prove Corollary 11.2 assuming Lemma 11.2.

11.2.2 Turning hardness into correlation bounds

We remark that none of the known hardness ampli�cation results can be
applied to the computational models for which we actually can establish the
existence of hard functions (i.e. prove lower bounds).

We can't expect to prove that correlation bounds under uniform are equivalent to impos-
sibility or hardness results, as one can construct pathological functions which are easy to
compute on, say, .75 fraction of the inputs, but impossible to compute on a .76 fraction. So
instead our approach will be to construct functions which have small correlation under the
uniform distribution.
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A natural candidate for such a function, starting from a �mildly hard� function f : [2]n →
[2] is f ′ : [2]nk → [2] de�ned as

f ′(x1, . . . , xk) := ⊕ki=1f(xi).

An XOR Lemma is a statement showing that if f has correlation ≤ ε with a certain computa-
tional model (e.g., PCkt), then the correlation of f ′ with a related model decays exponentially
fast with the number k of copies (cf. De�nition 3.2 of correlation).

There is a strong informational (as opposed to computational) intuition why the XOR
Lemma should work. To illustrate, consider the �computational model� of constant functions
0 or 1. The claim that f has correlation at most ε with this model then simply means that
for every constant function g(x) = 0 or g(x) = 1 we have

|Eef(x) + g(x)| = |Eef(x)| ≤ ε.

And indeed in this case the correlation decays exponentially fast:

|Eef ′(x′) + g(x′)| = |Eef ′(x′)| = |Eef(x)|k ≤ εk.

More generally, consider that if f has correlation ≤ ε with small circuits C, then f ′

indeed has correlation ≤ εk with small circuits of the special product form C(x1, . . . , xk) :=
⊕ki=1Ci(xi). This is again because

|Eef ′(x′) + C(x1, . . . , xk)| =
∣∣Ee⊕ki=1 (f(xi)⊕ C(xi))

∣∣ = |Eef(x)⊕ C(x)|k ≤ εk.

This generalizes the example of constant functions since they are trivially in the special
product form.

Intuitively, no circuit can do better than a circuit in the special form, and the XOR
Lemma is true. But is the intuition true?

Exercise 11.13. Consider circuits C made of a single majority gate. Prove that the XOR
lemma is false for C. Feel free to pick n even and de�ne the value of Majority on inputs of
weight n/2 to be 1, and recall

(
n
n/2

)
·
√
n

2n
∈ [c, c].

One can extend this result to AC with a small number of majority gates.

Question 11.3. Does the XOR lemma hold for AC with parity gates, or even constant-degree
polynomials over F2?

But for more powerful models, we can indeed prove the xor lemma, and the proof follows
the information-theoretic intuition above. To connect to this intuition, we consider functions
which may output a uniform bit on some inputs.

De�nition 11.6. We say that a distribution on functions F : [2]n → [2] is δ-random if there
exists a subset H ⊆ [2]n with |H| = 2δ2n such that F (x) = U1 (i.e. a coin �ip) for x ∈ H
and F (x) is deterministic (i.e., a �xed value) for x /∈ H.
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Thus, a δ-random function has a set of relative size 2δ on which it is information-
theoretically unpredictable. To illustrate the XOR lemma, suppose that f is δ-random.
Then f ′ will be almost a coin �ip. Speci�cally, the probability that the output is not a coin
�ip is (1 − 2δ)k, the probability that no input falls into H. When some input falls into H,
the output is a coin �ip, and no circuit, e�cient or not, can have non-zero correlation.

This intuition can be formalized via the hardcore-set lemma, which allows us to pass
from computational hardness to information-theoretic hardness. Before stating the lemma
we emphasize an important point:

The hardcore-set lemma is only known to hold for computational mod-
els which can compute majority. This is because the proof of correct-
ness uses majority, as will be apparent in section �11.3. So to apply
it, we have to start from an impossibility result for circuits that can
compute majority. As discussed in Chapter 8, we essentially have no
such result. In fact, in some restricted models, the xor lemma is false
(cf. Exercise 11.13). So the results in this section are mostly condi-
tional. Still, they allow us to spin a fascinating web of reductions
between correlation and randomness, pointing to several challenges.

The following hardcore set lemma says that any function that has somewhat small cor-
relation with small circuits admits a somewhat large hardcore set on which the function has
very small correlation with small circuits. To illustrate parameters, note that a δ-random
function has correlation ≤ 1 − 2δ with any �xed function (or circuit) (we can extend De�-
nition 3.2 to random functions by taking expectation over both the input and the random
function). This is because when the input falls in the set H of density 2δ from De�nition 11.6
then the correlation is zero. The hard-core set lemma shows that this is the only way that
small correlation may arise: any function with small correlation with small circuits is in fact
close to a δ-random function. We state the result in terms of distinguishing input-output
pairs, as opposed to computing the function. This is equivalent by an argument similar to
Claim 11.2 but is more convenient as it immediately allows us to talk about multiple inputs,
as we also do in the next statement. Here we use · to denote concatenation.

Lemma 11.3 (Hardcore Set). Let f : [2]n → [2] have correlation ≤ 1 − 2δ with circuits of
size s. Then there exists a cδ-random function g : [2]n → [2] such that X ·f(X) and X ·g(X)
are ε-indistinguishable by circuits of size csε2δ2, for any ε, where X ≡ Un.

In particular, by Claim 11.3,

X1 · · ·Xk · f(X1) · · · f(Xk) and X1 · · ·Xk · g(X1) · · · g(Xk)

are kε-indistinguishable for size csε2δ2, where the Xi's are uniform and independent.

We can now easily formalize the proof of the xor lemma.

Lemma 11.4. Suppose f : [2]n → [2] has correlation ≤ (1−2δ) with circuits of size s. Then
f ′ : [2]nk → [2] de�ned as f ′(x1, . . . , xk) := ⊕ki=1f(xi) has correlation ≤ (1− cδ)k + k/sc with
circuits of size δcsc.
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For example, if s = 2n
c
and δ = c, we can take k = cn and have hardness 2−cn. However

the function is on cnc bits, so in terms of the input length n′, f ′ has hardness 2−n
′c
.

Proof. We use Lemma 11.3 with ε := 1/sc. From its conclusion it follows that

X1 · · ·Xk · ⊕if(Xi) and X1 · · ·Xk · ⊕ig(Xi)

are k/sc-indistinguishable for size δcsc. Following the intuition above, the right-hand distri-
bution is (1−cδ)k close to X1 · · ·Xk ·U1. Hence the left-hand distribution is ((1−cδ)k+k/sc)-
indistinguishable from X1 · · ·Xk · U1 and the result follows from Claim 11.2. QED

11.2.3 Derandomizing the XOR lemma

A drawback of the xor lemma is that the input length of the new function is ≥ kn. This
prevents us from obtaining correlation 2−cn (as opposed to 2−c

√
n) which is important for

the �agship conclusion P = BPP, cf. Corollary 11.2. To remedy this we shall use... PRGs!
Rather than independently, we will pick the k inputs to f ′ using a generator. We need two
properties from this PRG. First, to behave like repetition, we need BIG (Theorem 11.8).
Also, we need to �hit� the hard-core set, for which we need HIT. We can get both properties
by xor-ing the generators together. The generator is de�ned as

BIG-HIT(σ1, σ2) := BIGS(σ1)⊕ HIT(σ2),

where HIT is a hitter, given next.

Lemma 11.5. For every ε and δ there exists an explicit generator HIT : [2]2n → ([2]n)s with
s = 1/εδ s.t. for every set H ⊆ [2]n of size ε, Pσ[HIT(σ)i 6∈ H for every i] ≤ δ.

Proof. Pairwise independence. Consider the �eld F2n . The seed σ speci�es a, b ∈ F and
we output b, a + b, 2a + b, . . .. Let Xi be the indicator variable of HIT(σ)i ∈ H. The
Xi are pairwise independent. Their expectation is εs. Hence the probability to bound is
≤ P[|

∑
Xi − εs| ≥ εs]. Squaring both sides of the inequalities and doing calculations gives

the result. QED

Exercise 11.14. Do the calculations.

Using this, we can boost correlation (1−2−cn) to correlation ≤ 2−cn. We give an example
for an interesting setting of parameters.

Lemma 11.6. Suppose E has a function f : [2]∗ → [2] that on inputs of length n has
correlation (1− 2−cn) with circuits of size 2cn. Then E has a function f ′ : [2]∗ → [2] that has
correlation ≤ 2−cn with circuits of size 2cn.
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Note the conclusion implies P = BPP by Corollary 11.2.

Proof. Let ε := 2−cn and δ := 2−cn. De�ne f ′ : [2]cn → [2] as f ′(σ) := ⊕si=1f(xi) where
BIG-HIT(σ) = (x1, x2, . . . , xs), where s = 1/δε and the set system for BIG is from Lemma
11.2.

We use Lemma 11.3 with ε := sc. Let g the corresponding δ-random function. From
Theorem 11.8 it follows that

σ, f ◦G and σ, g ◦G

are εc-indistinguishable for size 1/εc. In particular this holds if we take parities, so

σ,⊕ki=1f(X1) and σ,⊕ki=1g(X1)

are no more distinguishable, where (X1, . . . , Xk) = G(σ). By the hitting property of HIT,
Lemma 11.5, the chance of not hitting the hardcore set is ≤ δ, and we conclude as in the
proof of Lemma 11.4. QED

Exercise 11.15. Gotcha!? We can't quite use Theorem 11.8 and Lemma 11.5 as stated.
Explain why and how to modify the statements and proofs of Theorem 11.8 and Lemma
11.5 so that the above proof of Lemma 11.6 does work.

11.2.4 Encoding the whole truth-table

The results in the previous section give us functions with small correlation starting from
functions on n bits with with correlation (1 − 2−cn), but not quite from any impossibility
results, which only gives correlation ≤ (1− 2/2−n) < 1.

Exercise 11.16. Explain where the previous proofs break down.

To start from worst-case hardness we need to encode the entire truth table of the function.
We give a simple code that su�ces for our results.

Theorem 11.9. Suppose there is f ∈ E that on inputs of length n cannot be computed by
circuits of size s(n). Then there is f ′ ∈ E that has correlation (1− 1/nc) with circuits of size
ncs(cn).

Recall in Theorem 3.9 we saw an equivalence between computing and correlating under
every distribution. Had we had that result for the uniform distribution we could have
skipped all the ampli�cation results, including Theorem 11.9 and constructed PRGs much
more directly. However in general we can't guarantee that. In fact, one can construct
functions that are very easy over the uniform distribution, say because they are almost
always one, but still are hard to compute, say because there is a small set of inputs that
makes the function hard.
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Proof. Thinks of an n-bit input to f as ` variables of n/` bits; so each variable is over a set
H of size 2n/`. We can write down f as a polynomial pf of degree (H − 1)` over any �eld
that includes H. This pf is done as in section 10.5.2, using Exercise 10.8. That is:

f(x) =
∑
a∈H`

f(a) · EQ(x, a).

Now the gain is that we can think of evaluating pf over a larger �elds. Set q := n10 and
d := n5 and ` := n/ log d. The new function f ′ is constructed in two steps. First, we consider
inputs over F`q. Note the length of such inputs is ≤ c` log q ≤ cn bits, as desired. This gives
a non-boolean function. To make the function boolean, we output bit i of pf , where i is part
of the new input. That is,

f ′(x1, . . . , x`, i) := pf (x1, . . . , x`)i

where xi ∈ Fq and i ∈ [log q].
We'd like to show that if there's a small circuit C computing f ′ on a (1 − 1/nc) frac-

tion of inputs then there's another small circuit computing f everywhere. Let C(x) :=
C(x, 1) · · ·C(x, log q). First note that the fraction α of x ∈ F`q such that C(x) 6= pf (x) is
≤ 1/nc ≤ c/d`. Because if it's larger, every such x contributes at least one input (x, i) where
C disagrees with f ′, contradicting the assumption.

Using C we give a distribution C ′ on circuits which computes pf w.h.p. on every given
input y. Pick a uniform line going through y, and run C on this line for d` points. That is,
pick uniform s ∈ F`q and run C(y + 1s), C(y + 2s), . . . , C(y + d`s).

Because each evaluation point is uniform, and d`α ≤ c, with prob. > 1/2 the evaluations
of C will be correct, and equal pf (y + 1s), pf (y + 2s), . . . , pf (y + d`s).

Note that for �xed y and s, pf (y + ts) is a univariate polynomial q in t of degree ≤ d`.
We can compute the coe�cients of q from its evaluations at d` points. (It's a linear system,
with a unique solution by Lemma 2.1 because the degree of q is ≤ ` · d < q.)

We can then output q(0) = pf (y).
Finally, we can repeat this cn times and output the most likely value. On every input x

this errs w.p. < 2−n. Hence we can �x the random choices and obtain a �xed circuit that
succeeds on every x. QED

Exercise 11.17. �Put it all together� and prove Theorem 2.9.

11.2.5 Monotone ampli�cation within NP

To increase the hardness of functions in NP we cannot use XOR since NP is not known to
be closed under complement. We will use a combination of many things in this chapter �
including the (unconditional) generator for AC in Corollary 11.1 � to establish the following.

Theorem 11.10. If NP has a balanced function that has correlation ≤ 1/10 with circuits
of size 2n

c
, then NP also has a balanced function with correlation ≤ 2−n

c
with circuits of

size 2n
c
.
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Several optimizations have been devised, see the Notes. Still, we don't enjoy the same
range as for E:

Question 11.4. Prove Lemma 11.6 for NP instead of E, even starting from hardness δ ≥ c.

11.2.6 Proof of Theorem 11.10

Rather than XOR, to amplify we use the Tribes function, a monotone read-once DNF.

De�nition 11.7. The Tribes function on k bits is:

Tribes(x1, . . . , xk) := (x1 ∧ . . . ∧ xb) ∨ (xb+1 ∧ . . . ∧ x2b) ∨ . . . ∨ (xk−b+1 ∧ . . . ∧ xk)

where there are k/b clauses each of size b, and b is the largest integer such that (1−2−b)k/b ≥
1/2. Note that this makes b ≤ c log k.

The property of xor that we used is that if one bit is uniform, then the output is uniform.
We use an analogous property for tribes, that if several bits are uniform, then the output is
close to uniform.

Lemma 11.7. Let Np be a noise vector where each is 1 independently with probability p.
Then Ex,Npe[Tribes(x)⊕ Tribes(x⊕Np)] ≤ 1/kcp .

We shall take k exponentially large. The resulting function is still in NP as we can use
non-determinism to pick a clause. We use the generator BIG-AC(σ) = (x1, x2, . . . , xs), which
is like BIG-HIT except that HIT is replaced with the generator in Corollary 11.1, for circuits
of size (k2n)c. Note its seed length is nc for k ≤ 2n

c
.

De�ne f ′ : [2]2n → [2] as f ′(σ) := Tribes ◦ (f(x1), . . . , f(xs)) where BIG-AC(σ) =
(x1, x2, . . . , xs), and the set system for BIG is from Theorem 3.1. Following the proof of
Lemma 11.6, use Lemma 11.3 with ε := sc. Let g the corresponding δ-random function.
From Theorem 11.8 it follows that

σ, f ◦ BIG-AC and σ, g ◦ BIG-AC

are εc-indistinguishable for size 1/εc. In particular this holds if we take Tribes of the output,
i.e.What remains to show is that

σ,Tribes◦g ◦ BIG-AC

is close to uniform. That is, we have to show that with high probability over σ, just over
the choice of g, the value Tribes◦g ◦ BIG-AC is close to a uniform bit.

It su�ces to bound
Eσ|Ege[Tribes◦g ◦ BIG-AC(σ)]|.

Here the inner expectation is over the random choices in all the s evaluations of g. Up
to a power, this is

≤ EσE2
ge[Tribes◦g ◦BIG-AC(σ)] = Eσ,g,g′e[Tribes◦g ◦BIG-AC(σ)⊕Tribes◦g′ ◦BIG-AC(σ)].
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Now the critical step is that Tribes ◦ g is computable by a distribution on AC of size
(s2n)c and depth c. Note that the circuit computes g in brute-force, but the dependence on
s is good. Because BIG-AC fools such circuits with error 2−n

c
, the latter expectation equals

E(x1,...,xs),g,g′e[Tribes◦g◦(x1, . . . , xs)⊕Tribes◦g′◦(x1, . . . , xs)] = Ex,Npe[Tribes(x)⊕Tribes(x⊕Np)],

for p = c. We conclude by Lemma 11.7.

11.3 Proof of the hardcore-set Lemma 11.3

At the high-level, this is just min-max and concentration of measure, just like the equivalence
between computation and correlation in Theorem 3.9. However, the proof is slightly more
involved than one might anticipate. We break it up in two claims. First we obtain hardness
w.r.t. a �smooth� distribution D: D(x) ≤ d/N for every x. For example, D could be ��at,�
i.e. uniform over a set of size N/d (then D(x) is either 0 or d/N). In the proof, D will be a
combination of such �at distributions. Second we obtain a set from a smooth distribution.
The straightforward combination of the claims yields the lemma.

Claim 11.6. Suppose f : [2]n → [2] is 1/d-hard for circuits of size s (cf. De�nition 3.2).
Then there is a distribution D on [2]n s.t. D(x) ≤ d/N for every x, and every circuit C of
size s′ := s · (ε/ log d)c has Ex←De[C(x) + f(x)] ≤ ε.

Proof. We use the duality Theorem 3.10 where one set consists of sets S of N/d inputs, and
the other consists of circuits C of size ≤ s′, and p(S,C) := Ex∈Se[C(x)+f(x)]. (In the proof
of Theorem 3.9 p was just a �single point,� here it's an average.)

Suppose there is a distribution over sets S of size N/d such that for every circuit we have
ES[p(S,C)] = ESEx∈Se[C(x) + f(x)] ≤ ε. Let D be the induced distribution over inputs x,
and note that D(y) ≤ d/N for every y, and we're done.

Otherwise by the min-max Theorem 3.10 there is a distribution C on circuits s.t. for any
set T of size N/d we have

ECp(T,C) ≥ ε. (11.1)

Call an input x hard if C does not do well on it: ECe[C(x) + f(x)] ≤ ε/2. Now, there can't
be N/d hard inputs, for else we contradict equation (11.1) for a set T of N/d hard inputs.
In fact, we can't even have (1− ε/2)N/d hard inputs. Otherwise the set T consisting of the
N/d elements where ECe[C(x) + f(x)] is smallest would have only (N/d)ε/2 easy inputs,
yielding ECp(T,C) < ε/2 + ε/2 = ε, again contradicting equation (11.1).

We conclude by observing that for every easy x, picking log(d)/εc samples from C and
taking majority gives error prob. ≤ ε/2d, using Theorem 2.1 as in the proof of Theorem 2.2.
The prob. of not computing correctly a uniform x ∈ [N ] is then at most the prob. that x is
hard plus the prob. that the samples of C give the wrong value: (1− ε/2)/d + ε/2d = 1/d.
This contradicts the hardness of f . QED
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When using the following claim for a hard function h, we can let F be the set of functions
of the type e(h(x)+C(x)) where C is a small circuit. In this way |E|D[f(D)]| is the correlation
of h and C w.r.t. D.

Claim 11.7. Let D be a distribution over [N ] s.t. D(x) ≤ d/N . Let F be a set of ≤ cecε
2N/d2

functions f : [N ]→ {−1, 1}. Suppose for every f ∈ F we have ED[f(D)] ≤ ε.
Then there is a set S ⊆ [N ] of size |S| ≥ cN/d s.t. for every f ∈ F we have Ex∈S[f(x)] ≤

cε.

Even this second step is not immediate, due to the fact that the set S is constructed
probabilistically and so its size � which is the normalization in the correlation � is not �xed.
So we'll �rst prove concentration around a quantity related to D only, then connect it to |S|.

Proof. Construct S by placing each x ∈ [N ] in S independently with prob. D(x)N/d ∈ [0, 1].
ConsiderX :=

∑
x∈[N ] S(x)f(x), where S is the indicator of set S. The variables S(x)f(x) are

independent and have range [−1, 1]. Also, E[X] = (N/d)ED[f(x)], and so |E[X]| ≤ cεN/d.
By tail bounds, Exercise 2.4:

PS

∣∣∣∣∣∣
∑
x∈[N ]

S(x)f(x)

∣∣∣∣∣∣ ≥ cεN/d

 ≤ 2e−cε
2N/d2 .

Also, E[
∑

x∈[N ] S(x)] = N/d]. And so again by tail bounds the probability that |S| ≤ cN/d

is, say, ≤ e−cN/d
2
.

By a union bound, there exists S of size ≥ cN/d s.t. for every f ∈ F we have∣∣∣∣∣∣
∑
x∈[N ]

S(x)f(x)

∣∣∣∣∣∣ ≤ cεN/d.

Now it's the moment to connect to |S|. Dividing both sides by |S| we have

|Ex∈S[f(x)]| ≤ cε(N/d)/|S| ≤ cε,

as desired. QED

11.4 Problems

Problem 11.1. Let ACSize(d, s) be the functions computable by explicit ACs of size s and
depth d. Prove that BP ·ACSize(d, s) ⊆ ACSize(d+c, 2logcd s). That is, we can de-randomize
small-depth circuits in time much smaller than exponential.

Problem 11.2. Let f be the And function on n bits.
(1) Letting f =

∑
α f̂αx

α as in Exercise 11.6, give an expression for the f̂α.
(2) Use (1) to show that a pseudorandom generator for degree-1 polynomials fools any

And function (on any subset of the bits).
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Problem 11.3. Give a �direct� construction of PRGs su�cient to prove P = BPP from
a δ-hard function h in E. Guideline: Use BIG-HIT to generate an n × n matrix of inputs,
evaluate h on every input, and then XOR the rows. Start with δ = c. How small can you
make δ and still have this construction?

11.5 Notes

For more on unconditional pseurandom generators see [125]. For a broader view of pseu-
dorandomness, with an emphasis on connections between various objects, see [262]. For
hypercube analysis, see [204].

For expander graphs see [132]. They have many equivalent presentations, for example in
terms of eigenvalues. My presentation is in terms of the mixing lemma, see Section 2.4 in
[132]. In my de�nition I allow for repeated edges. Di�erent notions of explicitness are also
natural. In my de�nition one can output an edge given an index. More stringently, one can
ask, given a node and an index to an incident edge, to compute the corresponding neighbor.
The construction I presented immediately gives the more stringent explicitness as well.

k-wise uniform distributions were studied before complexity theory, cf. [213]. The com-
plexity viewpoint is from [59, 15].

Generators for degree-1 polynomials originate in [191], with alternative constructions in
[16]. The idea of xoring generators for degree-1 polynomials to fool higher-degree polynomials
is from [46]. It was studied further in [175, 277], with the latter paper proving Theorem 11.6.

Regarding 11.2: A construction computable in time nc �rst appeared in [201], where 11.2
also appears. Alternative constructions computable with small space or with alternations
appeared respectively in [158] and [272]. Still, all these constructions use resources at least
exponential in the seed length, while for several applications such as Lemma 11.6 one needs
power in the seed length. This stronger explicitness is obtained in [114] building on an idea
presented in [119] of using error-correcting codes. Speci�cally, one can use the polynomial
code from 2.12 in combination with 11.2 for logarithmic-scale collections (for which the
former notion of explicitness is now acceptable).

The XOR lemma was reportedly announced in talks associated with the work [293],
cf. [102]. Hardness ampli�cation within NP was �rst studied in [203] which established
correlation about 1/

√
n. Exponentially small correlation was achieved in [127], with opti-

mizations in [176, 107]. Our exposition follows [127].
Corollary 3.1 and the connection to min-max is from [295]. Hardcore sets were introduced

in [138]. They were optimized and shown to be connected to boosting techniques in machine
learning in [157] and subsequent works.

Theorem 11.9 is from [24], building on results in the same spirit from [40, 173, 23, 92].
Other proofs of Theorem 2.9 don't use the derandomized xor lemma, or only use it from

constant hardness, and instead rely on results in [138] (see e.g. the original proof [142]) or
[252] (see e.g. [262] or [20]).

Problem 11.3 is similar to a construction in [252], except I use XOR instead of extractors,
cf. Remark 15 in [252].
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For more on hitters, see Appendix C in [96].
The quote at the beginning of section 11.2.2 is from my PhD thesis [273].

11.5.1 Historical vignette: Polylogarithmic independence fools AC
(Theorem 11.3)

In 1991 [199] constructed a pseudorandom generator for AC (a.k.a. alternating circuits or
AC0 circuits), vastly improving the parameters of the pioneering work [10]. This is one of my
favorite papers ever. (Mini historical vignette: A large fraction of papers cite [201] for this
result, possibly even the majority. This issue of credit is indeed complicated, since the 1988
conference version of [201] claims ownership for this AC result, and cites an unpublished
manuscript with the same title as [199], but with both authors. One can only guess that the
authors decided that the AC result should only be attributed to Nisan.)

Nisan's distribution, and even the earlier one in [10], is polylog-wise uniform, that is, any
polylog bits are uniform. (The polylog depends on the parameters of the circuit to be fooled
in a standard way which is ignored here.) In fact, these results apply to a natural class of
polylog-wise distributions: If you pick a uniform sparse linear transformation, the output
distribution will be polylog-wise uniform, and Nisan's proof shows that it fools AC.

However, the proof does not show that every polylog-wise distribution fools AC. Later,
Linial and Nisan [172] conjectured that polylog-wise uniformity su�ces to fool AC, which
would generalize both [10] and [199].

This problem was somewhat notorious but there was no progress until the paper by Bazzi
[35], 15+ years after the conjecture was posed, which proves it for the special case of DNFs.

Bazzi's paper is quite hard to read, and the journal version is also long � 60 pages.
Consequently it was hard to �nd referees, both for the conference and the journal version.
Things must have gotten somewhat desperate, because when it �nally was my turn to be
asked to review the journal version it was deemed appropriate to extract a commitment
from me before I could see the submission, something that has never occurred to me for
any other paper. My back-and-forth with the author during the refereeing process was
then abruptly stopped by, I suspect, the circulation of Razborov's follow up [219] which
dramatically simpli�es the presentation, especially with an idea by Wigderson. It was then
clear that the results were correct and the paper could be accepted, even though I never
claimed to understand Bazzi's proof for the non-monotone case.

The message in the papers [35] and [219] was loud and clear: You can make progress
with just a little duality. From Razborov's paper:

By linear duality, this conjecture is an approximation problem of precisely the
kind considered in [LMN93, BRS91, ABFR94]. Therefore, it is quite remarkable
that the only noticeable progress in this direction was achieved only last year by
Bazzi [Baz07].

At this point it was clear that the general case of AC might not be that hard. Shortly after
Razborov's paper, Braverman [48] indeed proved this, albeit with a quadratic rather than
linear dependence on the depth of the circuit. This dependence was later improved.
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As usual we can look at citation count:
[48] 143
[34] 91
But more interestingly the literature is full of citations like:

A breakthrough result by Braverman [No mention of Bazzi or Razborov]

My de�nition of breakthrough result is roughly that of progress on a problem such that many
people have thought about it but have been stuck for a long time. This applies to [34].

Approximate number of years gap:
[172]-[34]: XXXXXXXXXXXXXXXXX
[34]-[219]: XX
[219]-[48]: X
I also think that if a problem was open even for depth 2, then going from 1 to 2 tends

to be more fundamental than going from 2 to d. One can think of situations where this
wouldn't be the case, for example if the depth-2 case was known for a while, and people
were really stuck and couldn't do even depth 3, and that turned out to require a completely
di�erent approach. This isn't the case here.

Consider the following example. Tonight a breakthrough lower bound for depth-3 Ma-
jority circuits comes out. Then in a year this result is extended to any constant depth with
additional but related techniques. Which result, if any, is the breakthrough?
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Chapter 12

Eigenvalues, expanders, connectivity in L
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Figure 12.1: A 3-regular expander.

Figure 12.2: The circle graph, on 31 nodes. A set of 10 nodes, shown in red, only has 2 edges
leaving it.

12.1 Expanders without eigenvalues

In this section we give a simple and self-contained proof of the existence of constant-degree
expander graphs . Informally, an expander graph is a graph that is sparse yet �highly con-
nected.� Several related notions of expansion exist: vertex, edge, and spectral expansion. In
this section we work solely with edge expansion:

De�nition 12.1. A d-regular graph G = (V,E) is a combinatorial edge δ-expander if for
every set S ⊆ V of size ≤ V/2 its crossing probability -(S) that from a uniform s ∈ S moving
to a uniform neighbor takes us out of S is ≥ δ. Note

- (S) =
E(S, S)

dS
,

where E(S, T ) is the set of edges with an endpoint in S and the other in T .

Exercise 12.1. Whereas De�nition 12.1 is stated for sets of density ≤ 1/2, it implies ex-
pansion for other sets as well: Let G = (V,E) be a δ-expander and let S ⊆ V of density
≤ (1− ε). Prove - (S) ≥ δε/(1− ε).

213



Any connected graph G = (V,E) is a δ-expander for noticeable δ ≥ 1/E, since at least
one edge leaves S. Expander graphs are graphs where δ is bounded independent of the size
of the graph.

Example 12.1. The circle graph over nodes ZN with edges {x, x+1}, depicted in �gure 12.2,
is not an expander. For example, - ([N/2]) → 0 with N → ∞. On the other hand, the 3-
regular expander in �gure 12.1, which can be obtained from the circle by adding �chords,�
can be shown to be an expander. This expander has Fp as nodes, and the neighbors of x are
x ± 2 and 1/x. For x = 0 we replace the unde�ned 1/x with a self-loop, making the graph
3-regular.

Here's another simple expander. TBD the vertex set of a graph G on N nodes is Z√N ×
Z√N , where Z

√
N is the ring of the integers modulo

√
N . Each vertex v is a pair v = (x, y)

where x, y ∈ Z√N . For matrices T1, T2 and vectors b1, b2 de�ned below, each vertex v ∈ GN

is connected to T1v, T1v+b1, T2v, T2v+b2 and the four inverses of these operations. It can be

shown that for the choices T1 :=

(
1 1
0 1

)
, T2 :=

(
1 0
1 1

)
, b1 :=

(
1
0

)
and b2 :=

(
0
1

)
the resulting graph (which is 8-regular) is an expander.

Pictures are sexy, but we need to compute with expanders. Typically the graph is huge
(think Internet) and we have to compute neighbors e�ciently given a node name (or index)
and an edge name. The expansion properties don't depend on the naming, but the compu-
tation does. Several conventions about indexing are possible. Consistency is convenient and
natural. It asks that an edge name is the same from either endpoint.

De�nition 12.2. A d-regular graph G = (V,E) has neighbor function f : V × [d] → V if
f(u, i) for i ∈ [d] are the d neighbors of u. We say f is consistent if whenever f(u, i) = v
then also f(v, i) = u.

A consistent neighbor function is thus equivalent to an edge coloring of the graph with d
colors. While not every d-regular graph admits an edge coloring with d-colors all the graphs
in this section have this stronger property.

The main result in this section is that there are expander graphs that are explicit: They
have a consistent neighbor function computable in P.

Theorem 12.1. There are c-expanders on 2n nodes with degree c and a consistent neighbor
function in P.

The expander is obtained by starting with expanders with logarithmic degree, and com-
bining them using an operation on graphs called replacement product which reduces the
degree without sacri�cing the expansion. It su�ces to apply this product three times to
reduce the problem to constructing expander graphs on very few nodes � which we can just
brute force.

We now give each of these component. First, we give a non-explicit construction of
expanders.
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Figure 12.3: The expander in �gure 12.1 is the union of these three matchings.

Theorem 12.2. There are c-regular c-expanders on N nodes with a consistent neighbor
function computable in time 2N

c
.

Proof. We use the probabilistic method. We pick a random d-regular graph by picking
d independent, uniform matchings. A matching is a maximal collection of disjoint edges.
For simplicity, we assume that N is even, and we exclude self-loops from matchings, so a
matching has size N/2. �gure 12.3 illustrates a decomposition in matchings for the expander
in �gure 12.1; because the number of nodes is odd there, each matching also includes a
self-loop. We will soon need to analyze how the distribution of a uniform matching looks
locally. For this purpose, we note that for any node v we can sample a uniform matching by
�rst sampling a uniform edge {v, w} for w 6= v and then sampling a uniform matching on
the remaining N − 2.

Now �x a set S. We pick the matching iteratively, at every iteration matching the �rst
unmatched node (in an arbitrary ordering of S). This is possible because of the way we
can sample a uniform matching we just described. The iterative process is repeated over
≥ dS/2e =: T elements of S (accounting for the fact that one edge matches 2 or 1 nodes).
For each of the �rst T such iterations, we have matched ≤ S/2 ≤ N/4 elements outside
of S. Hence the probability of matching within S at that iteration is ≤ S/(N − N/4) =
S/0.75N =: p ≤ 2/3. These events are not independent, but we can still use the deviation
bound Theorem 2.1 via Exercise 2.4. So the prob. that this matching is bad in the sense
that more than q fraction of these T iterations is matched within S satis�es

P[bad]1/T ≤
(
p

q

)q (
1− p
1− q

)1−q

≤
(
p

q

)q (
1

1− q

)1−q

≤ pq/2

for q ∈ [1− c, 1]. The latter inequality holds because using p ≤ 2/3 it is implied by

(2/3)q/2 ≤ qq(1− q)1−q

which holds for q → 1 as the lhs goes to
√

2/3 < 1, and the right-had side goes to 1.
If we pick d matchings the probability that they are all bad is ≤ pcdT . (This loose bound

su�ces for our claim.) When that does not happen, the crossing prob. - (S) is at least
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the prob. of selecting a good matching (≥ 1/d), times the probability of picking one of the
≥ (1− q)T ≥ (1− q)dS/2e ≥ cS nodes matched outside of S. Overall, - (S) ≥ c/d, which is
as desired for constant d.

The prob. that there exists a bad set S of size k with lower - (S) is by a union bound
and Fact A.3

≤
(
N

k

)
pcdT ≤

(
eN

k

)k (
k

0.75N

)cddk/2e
≤ 1

2k

for d ≥ c.
Hence the prob. there is any bad set of size ≤ N/2 is ≤

∑N/2
k=1 2−k < 1.

For the explicitness, we enumerate over all graphs. Each graph can be described using
Nc logN bits. Its expansion can be checked by again enumerating over all ≤ 2N subsets of
nodes. Because our graph is obtained as the union of matchings, it has a consistent neighbor
function (each matching corresponds to an edge index, or equivalently a color). QED

Exercise 12.2. Repeat this proof with the goal of �nding the smallest value d for the degree
that works (to obtain expansion dependent on d only).

Next we give explicit expanders with logarithmic degree. We essentially already saw this
construction in section 11.1.4.

Theorem 12.3. There are c-expanders on 2n nodes with degree nc with a consistent neighbor
function computable in P.

Proof. Let Y be an ε-biased distribution on Fn2 (cf Theorem 11.5); the neighbors of x ∈ Fn2 are
x+ Y . Theorem 11.5 implies that the graph is explicit. The neighbor function is consistent
because (x+ Y ) + Y = x.

To analyze, let S be a set as in De�nition 12.1 and let f be the 0 − 1 characteristic
function of f , and p := S/N the density of S. We have

- (S) = p−1E[f(X)(1− f(X + Y ))] = 1− p−1E[f(X)f(X + Y )].

We write f =
∑

α f̂αχα in the basis of parity functions (cf Exercise 11.6). Note that

f̂0 = E[f ] = E[f 2] =
∑
α

f̂ 2
α = p.

Hence E[f(X)f(X + Y )] =
∑

α f̂
2
αεα = p2 +

∑
α 6=0 f̂

2
αεα ≤ p2 + ε(p− p2). Plugging this above

we get
- (S) ≥ 1− p− ε(1− p) = (1− p)(1− ε).

The latter is ≥ c for p and ε both ≤ c. QED

We now seek to reduce the degree to constant by means of the following operation.
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De�nition 12.3. [Replacement product] Let G be a D-regular graph on N vertices and H
a d-regular graph on D vertices. The replacement product G�H is the following 2d-regular
graph on N · D vertices (x, i). For every vertex x ∈ G there is a copy Hx of H, i.e., we
connect the nodes (x, i) for i ∈ [D] according to H. In addition, we connect (x, i) to (y, i) if
x[i] = y, with d repeated edges.

Equivalently, we can write edges as [bj] where b ∈ [2] and j ∈ [d]; then (v, i)[0j] is
connected to (v, i[j]) and (v, i)[1j] is connected to (v[i], i). (The square brackets correspond
to 3 di�erent neighbor functions.)

Note that if G and H have consistent neighbor function, then so does G�H. Repeating
edges makes it equally likely that a random neighbor makes a step inside a copy of H or
outside, corresponding to an edge in G.

Theorem 12.4. Suppose E1 is a D-regular δ1-expander on N nodes, and E2 is a d-regular
δ2-expander on D nodes. Then E3 := E1 � E2 is 2d-regular cδ2

1δ2-expander on ND nodes.

Proof. Let X be a set of nodes in E2 of size ≤ ND/2. We view the vertex set of E3 as
composed of N clusters of vertices Ci, each of size D = Ci. Let Xi := X ∩ Ci and consider
two cases. Either many Xi are underfull (in Ci), in which case many edges are leaving X
within the clusters due to the expansion of E2; or many Xi are almost full, in which case
there are many edges leaving X between the clusters, due to the expansion of E1. Details
follow.

Let I ′ be the indices of the Xi which we call underfull and have size ≤ (1− δ1/4)Ci. and
let I ′′ be the others; let X ′ := ∪i∈I′Xi and X ′′ := ∪i∈I′′Xi.

If X ′/X ≥ δ1/10 then we can think of the experiment in - (X) as sampling a uniform
node from X ′ with prob.≥ δ1/10. For any Xi ⊆ X ′ we have - (Xi) ≥ 0.5 ·δ2(δ1/4) by Exercise
12.1, where the 0.5 is for taking a step withing Ci. Hence - (X) ≥ (δ1/10) · 0.5 · δ2δ1/4 and
we are done in this case.

Otherwise X ′′/X ≥ (1− δ1/10). Let F (for �full�) be the union ∪i∈I′′Ci of the almost full
clusters we have

E(X,X) ≥ E(F, F )− E(∪i∈I′′Xi, F )− E(X ′, X ′). (12.1)

To bound E(F, F ), recall Xi ≥ Ci(1 − δ1/4) for i ∈ I ′′. Summing over such i we get
F ≤ X ′′/(1− δ1/4) ≤ 4X ′′/3 ≤ 4X/3 ≤ 2ND/3. By Exercise 12.1, E(F ) ≥ 0.5dFδ1. Next,
the term E(∪i∈I′′Xi, F ) is ≤ (I ′′ ·D · δ1/4)d = (Fδ1/4) · d. (Note each node in ∪i∈I′′Xi has
≤ d neighbors outside of F .) So the �rst di�erence in the rhs in equation (12.1) above is
≥ (Fδ1/4) ·d. Because F ≥ (1−δ1/4)X ′′ ≥ (1−δ1/4)(1−δ1/10)X ≥ (3/4)(9/10)X ≥ 0.5X,
this di�erence is ≥ Xdδ1/8. Finally, E(X ′, X ′) is trivially ≤ dX ′ ≤ dXδ1/10. Hence
E(X) ≥ Xdcδ1. QED

We can now mix these three ingredients to construct explicit expanders.

Proof of Theorem 12.1.. Start with E1 the expander from Theorem 12.3 with 2n nodes
and degree nc, and E2 the same expander but on nc nodes and degree logc n.
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Then E1 � E2 is an expander with degree logc n. That is, one replacement product
allows us to reduce the degree logarithmically. Doing this again, we can reduce the degree
to logc log n. Finally, we take a replacement product with the non-explicit expander from
Theorem 12.2 to obtain constant degree. The neighbor function in the latter is computable
in time 2logc logn = no(1). Because each graph is an expander, and we only apply replacement
product three times, the �nal graph is an expander by Theorem 12.4. QED

Exercise 12.3. Prove that the neighbor function is computable in L.

12.2 Eigen stu�

We now turn to eigenvalues, a.k.a. spectral, analysis. (I suspect one can also present the
main results in the next sections without eigenvalues, but not clear there is much gain and
eigenvalues are important for many things, so we won't pursue that direction now.) Let
us view a vector as a probability distribution over the vertices of a graph G. For example,
u = (1/n, . . . , 1/n) is the uniform distribution over n vertices. For now, we also assume
that the graph G is regular, i.e. each vertex has degree d, and also that each vertex has a
self-loop. We justify this assumption later for our applications. For each graph G, we have
a normalized adjacency matrix A, where �normalized� means each entry is divided by the
degree d. The following matrix is the adjacency matrix of the graph in Figure 12.4.

A =

 1/3 1/3 1/3
1/3 2/3 0
1/3 0 2/3

 .

Figure 12.4: Graph example.

For a starting random vector v, Av would be the probability distribution after doing one
random step starting at v. For example, for v = (1, 0, 0) we have Av = (1/3, 1/3, 1/3) in
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the graph above. It would be convenient if the act of multiplying by A corresponded to
some simple behavior, like Av = λ · v for some scalar λ. Such λ and v are called eigenvalue
and eigenvector respectively. Although every matrix has them, in general they need to be
complex, as for example is needed if A corresponds to a rotation of the space. However, the
matrices that arise from graphs have a special structure, in particular they are symmetric.
One can show that in this case there is a basis of n real eigenvectors, called an eigenbasis.
Moreover, we can choose them to be orthonormal, i.e. length-1 vectors that have zero inner
product.

Theorem 12.5 (Eigenbasis). Let A be an n× n real symmetric matrix. Then there exists
an orthonormal basis of real eigenvectors v1, v2 . . . , vn ∈ Rn.

Some thoughts on the proof are in section A.5.1. This theorem allows us to write any
vector v in the eigenbasis and see the act of multiplying the vector by the matrix A as simply
multiplying each coordinate of v by the corresponding eigenvalues.

We list several basic properties.

Lemma 12.1. Let A be the normalized random-walk matrix of a d-regular graph G. We
have:

(1) The eigenvalues of A are in [−1, 1]. This holds more generally for any matrix that
is real, symmetric, where each entry is ≥ 0, and each row sums to ≤ 1 (a.k.a. row sub-
stochastic).

(2) If moreover G has a self-loop on each node and is d-regular then the eigenvalues are
in [−1 + 1/d, 1].

(3) If G is regular then the uniform distribution is an eigenvector with eigenvalue 1. Its
multiplicity (that is, the dimension of the span of the eigenvectors) equals the number of
connected components of G.

(4) G is bipartite i� −1 is an eigenvalue.

Proof. (1) Let v be an eigenvector and wlog let v1 = maxi |vi|. As Av = λv, in particular
|(Av)1| = |λv1|. We have |(Av)1| = |

∑
iA1ivi| ≤

∑
iA1i|vi| ≤ v1

∑
iA1i ≤ v1. Hence

|λv1| ≤ |v1| and the result follows. QED

Exercise 12.4. Prove (2)-(4). Hint: For (2), consider A − I/d, then use (1). For (3), �rst
give orthogonal eigenvectors, then prove every other eigenvector with eigenvalue 1 is in the
span.

The next useful lemma gives a useful characterization and property of the second largest
eigenvalue, in absolute value order. It shows that it gives a bound on how closer we get to
uniform after taking a random step. We simply write |v| for the 2-norm |v|2 =

√∑
i v

2
i .

Lemma 12.2. Let A be the normalized adjacency matrix of a connected graph G. Sort the
eigenvalues of A by absolute value: 1 = |λ1| ≥ |λ2| ≥ . . . ≥ |λn| ≥ 0 then

|λ2| = max
v⊥u

|Av|
|v|
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where u is the uniform distribution.
In particular, for any probability distribution v we have

|Av − u| ≤ |λ2||v − u|.

Proof. Take any vector v ∈ Rn. Write v = a1v1 + · · ·+anvn where the vi are the eigenvectors
of the matrix A, from Theorem 12.5, and v1 = u. Because v⊥u and G is connected we have
a1 = 0 by Lemma 12.1. So v = a2v2 + · · · + anvn. We now have, by Fact A.11 and
orthonormality of the vi:

|Av|2 = |λ2a2v2 + · · ·+ λnanvn|2 = |λ2a2|2 + · · ·+ |λnan|2 ≤ |λ2|2|v|2.

This bound is met by v = v2.
The �in particular� part is because |Av − u| = |A(v − u)| and (v − u) ⊥ u by direct

veri�cation. So by the previous claim |A(v − u)| ≤ |λ2||v − u|. QED

Exercise 12.5. Let A and G be as in Lemma 12.2. Sort the eigenvalues (without taking
absolute values) as 1 = λ1 ≥ λ2 ≥ . . . ≥ λn ≥ −1. Prove

λ2 = max
v⊥u

〈Av, v〉
〈v, v〉

,

1− λ2 = min
v⊥u

∑
{i,j}∈E(vi − vj)2

d · 〈v, v〉
. (12.2)

The rhs of Exercise 12.5 gives a useful way to think of the spectral gap 1 − λ as of
minimizing a certain �energy� function on the edges over the choice of a uniform edge.

Notation 12.1. We write λi for the eigenvalues in standard order, and λ′i for those in absolute
value order. We write λ2(G) and λ′2(G) for the maximum non-trivial eigenvalue in each order,
and omit G when is clear from the context.

Spectral vs. edge expansion We now show that a graph is an edge expander in the sense
of De�nition 12.1 i� λ′2 is small. We �rst illustrate this via the following �gem� that directly
relates the bias of the construction in Theorem 12.3 to the second largest eigenvalue.

Theorem 12.6. Let D be an ε-biased distribution on [2]n, and let A be the 2n×2n adjacency
matrix of the graph on [2]n where Aa,b := P[D = a+ b] (i.e., the weight of edge a→ b is the
prob. of going from a to b when xor-ing a with a sample from X.

Then λ′2 ≤ ε.
In particular, explicit graphs with λ′2 exist with degree (ε−1 logN)c.

Proof. By Lemma 12.2 we need to bound |Av|/|v| for any vector v ⊥ u. Let's pick a
natural and convenient basis. The 2n vectors χS(x) := (−1)〈S,x〉 of length 2n, for S ∈ [2]n,
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are orthogonal, hence independent (Fact A.13). Let us write v in this basis: v =
∑
aSχS.

Because v ⊥ u, a0 = 0.
We now have

Av = λv =
∑

λaSχS =
∑
S 6=0

aSAχS =
∑

aSεSχS,

where εS = E[χS(D)] is the bias of χS wrt D. is To check the last equation:

(AχS)(x) =
∑
y

Ax,yχS(y) =
∑
y

P[D = x+ y]χS(y) =
∑
y

P[D = y]χS(x+ y) = χS(x)E[χS(D)],

where we replace y with x+ y and then use χ(x+ y) = χ(x) · χ(y)
Hence

|Av|
|v|

=

√∑
S 6=0 a

2
Sε

2
S√∑

S 6=0 a
2
S

≤ ε.

The �in particular� follows from Theorem 11.5. QED

More generally, we have the following connections between λ and δ in De�nition 12.1.
The bottom line is that each of δ and λ is bounded i� the other is.

Theorem 12.7. [Edge vs. spectral expansion] Let G be a graph, and let δ be the maximum
s.t. G is a δ-expander. Then:

(1) [Spectral expansion ⇒ edge expansion] δ ≥ (1− λ2)/2,
(2) [Edge expansion ⇒ spectral bound] λ2 ≤ 1− δ2/2,and
(3) [Edge expansion + self-loops ⇒ absolute spectral expansion] if G has self-loops on

each node then
λ′2 ≤ 1−min{δ2/2, c/d}.

Proof. 2(1) We use the characterization in Exercise 12.5. Let xi := S if i ∈ S and −S if
i ∈ S. Note that x is orthogonal to uniform. By Exercise 12.5, 1 − λ2(G) ≥

∑
{i,j}∈E(xi −

xj)
2/d〈x, x〉.
The numerator of the rhs is 2E(S, T )V 2 since each edge leaving S contributes V 2. Also

note that 〈x, x〉 = SS
2

+ SS2 = SSV . Hence

1− λ2(G) ≤ 2E(S, S)V 2

dSSV
=

2E(S, S)V

dSS
=- (S)

2V

S
≤ 2 - (S).

(2) Let Q := I−A. Note if λ is an eigenvalue of A then 1−λ is an eigenvalue of Q. So it
su�ces to prove that the eigenvalues of Q are ≥ δ2/2. Let z be an eigenvector orthogonal to
uniform. This orthogonality implies that z has both coordinates > 0 and also < 0. Sort the
coordinates as z1 ≥ z2 ≥ z3 ≥ ... ≥ zn. We assume that exactly m ≤ n/2 of its coordinates
are ≥ 0. (Otherwise, one can consider −z.) Note that (Qz)i = λzi for all i. In particular,

λ =

∑
i≤m(Qz)izi∑

i≤m z
2
i

.
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Consider the numerator, multiplied by d. Plugging the de�nition of Q and expanding out,
and writing E for the multi-set of edges, e.g. E = {{1, 2}, {2}, {2}, {1, 2}, {2, 3}} (two self-
loops, and two parallel edges), we can write it as

∑
i≤m

(dz2
i −

∑
j:{i,j}∈E

zizj) =
∑

{i,j}∈E:i<j≤m

(zi − zj)2 +
∑

{i,j}∈E:i≤m<j

zi(zi − zj)

≥
∑

{i,j}∈E:i<j≤m

(zi − zj)2 +
∑

{i,j}∈E:i≤m<j

z2
i . (12.3)

Let x be equal to z except negative entries are zero. We claim that we can switch from
z to x, and in fact sum over all edges: The rhs above is

≥
∑
{i,j}∈E

(xi − xj)2.

To verify this, note that edges with i < j ≤ m contribute the same in the expression with
the z and with the x. The same holds for edges with i ≤ m < j since zj = 0. And edges
with both i and j bigger than 0 contribute nothing.

The key thing is that this sum is now over all edges, so we can rely on the expansion of
the graph. For intuition, suppose that x was ��at:� equal to 1 over [m], and 0 otherwise. In
this case, the contribution of xi − xj is 0 unless {i, j} ∈ E([1..m], [m+ 1..n]), in which case
it is c. By edge expansion, the number of crossing edges is ≥ ρmd. Hence the numerator is
≥ cρm. The denominator is m. Hence

λ ≥ cρm

m
≥ cρ

and we are done.
The rest of the proof is for the general case where x may not be �at; it is based on the

same idea but it has a few algebraic manipulations. Let x be equal to z except negative
entries are zero. We can replace zi with xi for any i ≤ m by de�nition, and replace

∑
x2
i

with |x|2. Hence by above we have

λ ≥
∑
{i,j}∈E(xi − xj)2/d

|x|2
. (12.4)

Now our goal is to somehow �turn� (xi−xj)2 into x2
i −x2

j , because it allows us count more
easily the contribution from each term. For this purpose, consider the quantity

∑
{i,j}∈E(xi+

xj)
2/d. Note that this equals |x|2 up to constants. Indeed, it is larger than

∑
{i,j}∈E(x2

i +

x2
j)/d = |x|2, the equality holding because the degree of each node is d. Also, it is ≤∑
i,j Ai,j(xi + xj)

2 ≤ c|x|2 + c
∑

i,j Ai,jxixj ≤ c|x|2 by Fact A.8.
Hence multiplying equation (12.4) by d|x|4 we obtain

d|x|4λ ≥ c
∑

(xi − xj)2 ·
∑

(xi + xj)
2 ≥ c

(∑
(xi − xj)(xi + xj)

)2

= c

 ∑
{i,j}∈E

(x2
i − x2

j)

2

(12.5)

222



where we use Fact A.8.
Finally, we can rewrite the inner sum telescopically as

∑
{i,j}∈E,i<j

j−1∑
k=i

x2
k − x2

k+1.

Note now that each term x2
k − x2

k+1 appears as many times as the number of edges {i, j}
with i ≤ k < j. Hence the double sum equals

m∑
k=1

E([1..k], [k + 1..n])(x2
k − x2

k+1);

where we use that xk = 0 for k ≥ m. By expansion and the fact that m ≤ n/2, the E term
is ≥ dkρ. So the sum is

≥ dρ

n/2∑
k=1

k(x2
k − x2

k+1) = dρ
(∑

kx2
k − (k − 1)x2

k

)
= dρ|x|2.

Plugging this bound inside equation (12.5) we obtain λ ≥ cρ2. QED

Exercise 12.6. Prove equation (12.3) in the proof. Prove (3) in Theorem 12.7.

Exercise 12.7. Prove that a connected graph on n nodes with a self-loop on each node has
λ′2 ≤ 1− 1/nc. Hint: Use Theorem 12.7.

Analysis of the random-walk algorithm Using eigenvalues we can analyze a simple
randomized log-space algorithm for UConn (cf De�nition 7.5). This random walk algorithm,
on input a graph on n nodes and vertices s and t decides if s and t are connected as follows.
Starting with v := s, it moves to a uniformly selected neighbor of v for nc times. If it ever
encounters t, it reports connected, otherwise it reports not-connected.

Theorem 12.8. The random walk algorithm runs in logarithmic space and has error prob. ≤
1/2.

Exercise 12.8. Prove this. Guideline: Use Lemma 12.2 and Exercise 12.7, Divide the walk
of length ` in sub-walks of length

√
`. First prove that each subwalk has noticeable prob. of

reaching t if it is connected to s.

12.3 Robust UConn

To introduce the approach, note that we can solve UConn (cf De�nition 7.5) in deterministic
log-space on graphs with λ′2 ≤ 1/nc. This is because by Lemma 12.2 the distance between
Av and u is ≤ 1/nc. But if Av puts no mass on t the distance would be larger. Hence simply
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trying all neighbors of s we can determine if s and t are connected. Our input graph doesn't
have to satisfy this strong requirement, nevertheless just the fact that it's connected (which
is the interesting case of the analysis) implies a noticeable spectral gap (Exercise 12.7).

Thus we would be done if we could somehow turn the graph into a strong expander where
every non-trivial eigenvalue is ≤ 1/nc in absolute value. While this can be done, it is slightly
more convenient to work with a �robust� version of the problem which will �only� require a
constant spectral bound. The following claim also justi�es our assumption that graphs are
regular, which we used in previous sections.

Claim 12.1. UConn is log-space reducible to the following robust-UConn problem: given a
4-regular graph with a self-loop on each node, and given two connected sets of nodes S and
T of density ≥ 1/3, decide whether S and T are in the same connected component.

Proof. Given an instance G, s, t of UConn, where G has n nodes, we construct G′ in the
following way. Add n copies of s and n copies of t. Set S consists of all copies of s, and
same for T . Put n/2 copies of a cycle on S, and similarly on T , as shown in Figure 12.5, so
that the extra copies of s and t have degree n. Observe that the degree of each node is ≤ n

Figure 12.5: Duplicate s and add cycles.

except for s and t which may have degree as large as 2n. To reduce the degree, replace each
node of degree d with a 4-regular graph on d nodes, as shown in Figure 12.6. And call this
�nal graph G′.

By construction, the number of nodes in G′ is nc, G′ is 4-regular, and |S| ≥ |G′|/3,
|T | ≥ |G′|/3. The bound on |S|, |T | follows because (1) this bound holds before reducing the
degree, (2) the degree reduction blows up a node by its degree, and (3) every node in S ∪ T
has degree at least as large as that of any other node in the graph. QED

We now show that this more robust version is �easy� when the second eigenvalue is small.
This is similar to the previous observation that we can solve UConn easily on graphs with
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Figure 12.6: Replace each node with a 4-regular graph.

very small eigenvalue bound. However, we will now work with constant eigenvalue bound.
We do not restrict the degree: we will apply the following claim to graphs of power degree.
Jumping ahead, these will arise by modifying the 4-regular graphs given by Claim 12.1 using
appropriate operations that reduce the eigenvalue bound.

Claim 12.2. Let G be a graph with λ′2 ≤ 1/10. Let S and T be connected sets of nodes of
density ≥ 1/3. If some node in S is connected to some node in T , then some node in S is
adjacent to some node in T .

Note the reverse implication is trivial. Therefore, if the neighbors of G are computable
in logspace then we can also decide in log-space whether given dense sets S and T are in the
same connected component, by cycling over all nodes in S and their neighbors.

The basic idea is that since S is large and λ′2 is small, S has many neighbors (> 2n/3),
and one of them must be in T .

Exercise 12.9. Prove Claim 12.2. Guideline: Let u represent the uniform distribution
(i.e. u = (1/n, 1/n, . . . , 1/n)), v represent the uniform distribution on S (i.e. v = (3/n, . . . , 3/n, 0, . . . , 0)
where the coordinates with mass 3/n are exactly those in S). Our goal is to show Av has
non-zero weight on some coordinate in T . Bound |Av − u| from above using 12.2 and from
below in case Av has no mass on T .

We are now left with the task of reducing the eigenvalue bound of our graph.

12.3.1 An attempt to reduce the eigenvalue bound

One attempt to reduce the eigenvalue of a graph is by squaring. The squared graph is the
graph in which edges correspond to paths of length 2 in the original graph; Figure 12.7 shows
an example.
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Figure 12.7: Squaring a graph.

Note that the eigenvectors of (the normalized adjacency matrix A of) G2 are the same
as those of G, and the corresponding eigenvalues square, because

A2v = A(Av) = λAv = λ2v. (12.6)

So if we start with a connected graph with a self-loop at each node � which has λ′2 ≤
1− 1/nc by Exercise 12.7� and we square it ` = c log n we obtain the bound

λ′2

(
G2`
)
≤
(

1− 1

nc

)2`

=
1

10
.

Although we obtain the desired eigenvalue bound, the degree of the graph G2` is D2` ≥ Dn,
which is exponential in n. This means we cannot apply Claim 12.2 to determine connectivity
in logarithmic space, since the idea there was to cycle over all neighbors of nodes in S.

In order to apply Claim 12.2, we need another graph operation that can decrease λ′2 while
at the same time keeping the degree small. Note that an edge in G2` corresponds to a path
of length nc in G. With the new operation we will still have that an edge in the �nal graph
corresponds to a path of that length in G. But the crucial di�erence is this: whereas in
G2` we consider all, exponentially many paths, in the new graph we only consider a sparse,
polynomial-size collection of paths. We will prove that this sparse collection has the same
hitting properties of the collection of all paths, as measured by the eigenvalue bound.

12.3.2 Reducing the eigenvalue via derandomized graph squaring

Derandomized graph squaring is similar to the replacement product (cf De�nition 12.3). One
advantage is that it does not increase the number of nodes.

De�nition 12.4. [Derandomized graph squaring] Let X be a k-regular graph on n nodes,
and G be a d-regular graph on k nodes. X 	G is a graph on n nodes with degree k · d. The
neighbors of v in X 	G are v[a][b] where b is a neighbor of a in graph G, i.e. v[a][a[e]] where
a ∈ [k] and e ∈ [d].
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Note that in the above de�nition we see a as both an edge index for X and a node in
G. Whereas in graph squaring the neighbors of v are v[a][b] for every a, b, in derandomized
graph squaring the neighbors are v[a][b] for some a, b. The following main result shows that
applying derandomized graph squaring we somewhat decrease λ2:

Theorem 12.9 (Analysis of derandomized graph squaring). If λ′2(X) = λ and λ′2(G) = µ,
then λ′2(X 	G) ≤ (1− µ)λ2 + µ.

To illustrate parameters, note when µ is su�ciently small, derandomized squaring essen-
tially squares λ. Numerically, one can verify that if λ′2(G) = 1

100
and λ′2(X) = 1− γ ≥ 1/10,

then λ′2(X 	 G)| ≤ 1 − 12
11
γ. So if we start with λ′2 ≤ 1 − 1/nc and repeat this operation

c log n times we will get λ′2 ≤ 1/10, qualitatively the same as graph squaring.
To prove Theorem 12.9 we start with a useful lemma that shows that a random step in

a graph G with λ′2(G) = λ can be seen as going to the uniform distribution with probability
(1−λ), and not doing harm otherwise. Denote by Jn the n×n matrix with 1/n everywhere.
Multiplying any probability distribution v by J we obtain the uniform distribution u.

Lemma 12.3. Let G be a graph on n nodes with n × n normalized adjacency matrix A
satisfying λ′2(A) = λ. Then A = (1− λ)Jn + λC where ∀v : |Cv| ≤ |v|.

Proof. Let C := (A− (1− λ)Jn)/λ. Let v be a vector and write v = a · u+ w where a is a
constant, u represents uniform distribution and u⊥w. Then

|Cv|2 = |au+ Aw/λ|2 = |au|2 + |Aw/λ|2 ≤ |au|2 + |w|2 = |v|2.

The �rst equality is obtained by de�nition and using Au = u and Jw = 0. The rest is
Fact A.11, Lemma 12.2, and Fact A.11 again. QED

Exercise 12.10. Prove the �rst equality.

To analyze the adjacency matrices arising from derandomized graph squaring we write
random-walk matrices in a speci�c way, also using tensor products (De�nition A.1). Let us
illustrate in a simple case. Taking a random step in a graph G can be thought as as 3-step
process:

v → (v, a)→ (v[a], a)→ v[a],

where a is a random edge. This is overkill when dealing with a single random-walk matrix
A, but it will be useful when analyzing derandomized graph squaring as we will be able to
�remember� the edge label. Each of the three steps above can be implemented by a di�erent
matrix, to obtain

A = PÃL

Let G be d-regular on n nodes. The �rst step is given by the �lift� matrix L := In ⊗
(1/d, . . . , 1/d)T which is n · d× n.
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The second step is given by Ã which is a n · d×n · d matrix, where Ã(u,a),(u′,a′) = 1 if and
only if a = a′ and u′ = u[a]. This matrix corresponds to taking a step in G after the choice
for the step has been made. No entropy is added by Ã, which is a permutation matrix.

Finally, the last step is given by the �projection� matrix P := In ⊗ (1, . . . , 1) which is
n× n · d. Starting with a distribution vector v concentrated on a single node, L spreads the
mass onto the d edges, Ã permutes the node accordingly, keeping the edge label intact, and
�nally P collects the mass.

Proof of Theorem 12.9. Let A be the normalized adjacency matrix of X, and B be the
normalized adjacency matrix of G. We can view a random step in the derandomized-squaring
graph X 	G as

v → (v, a)→ (v[a], a)→ (v[a], b)→ (v[a][b], b)→ v[a][b]

where a is a random node in G and b is a random neighbor of a in G.
We now de�ne matrices that implement each of the above steps.
The �rst step is given by the �lift� matrix L := In ⊗ (1/k, . . . , 1/k)T which is n · k × n.
The second step is given by Ã which is a n · k×n · k matrix, where Ã(u,a),(u′,a′) = 1 if and

only if a = a′ and u′ = u[a]. This matrix corresponds to taking a step in X after the choice
for the step has been made. No entropy is added by Ã, which is a permutation matrix.

The third step is given by B̃ = In ⊗B.
The fourth step is Ã again.
Finally, the �fth step is given by the �projection� matrix P := In ⊗ (1, . . . , 1).
The adjacency matrix M of X 	G satis�es

M = PÃB̃ÃL.

By Lemma 12.3, B = (1− µ)Jk + µC where |Cv| ≤ |v| for all v. It follows that

B̃ = In ⊗B = (1− µ)In ⊗ Jk + µIn ⊗ C.

Plugging this into the expression for M one gets

M = (1− µ)PÃ (In ⊗ Jk) ÃL+ µPÃ (In ⊗ C) ÃL.

One can now observe the following:
(1) In ⊗ Jk = L · P ;
(2) P · Ã · L = A, as remarked before the proof; and
(3) D := PÃ (In ⊗ C) ÃL satis�es |Dv| ≤ |v| for every v. This can be shown also using

the fact that C satis�es this property as we saw before.
Plugging (1) and (2) in the above expression for M , and the de�nition of D we get

M = (1− µ)PÃLPÃL+ µD = (1− µ)A2 + µD.

Then, by Lemma 12.2 and the triangle inequality for |.|:

λ′2(X 	G) = max
v⊥u

|Mv|
|v|
≤ |(1− µ)A2v|

|v|
+
|µDv|
|v|

≤ (1− µ)λ2 + µ.
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QED

Exercise 12.11. Prove (3). Guideline. For a matrix A de�ne ||A|| := maxv |Av|/|v|. This
is like λ′2 (cf Lemma 12.2), except v does not need to be perpendicular to u. Our goal is to
show ||D|| ≤ 1. Prove:

(I) ||A ·B|| ≤ ||A|| · ||B||,
(II) ||A⊗B|| ≤ ||A||·||B||. Hint: Write |A⊗Bv|2 =

∑
iA,iB

(∑
jA,jB AiA,jABiB,jBvjA,jB

)2

,

(III) For a permutation matrix Π such as Ã,||Π|| = 1,
(IV) ||L|| = 1/

√
k, ||P || =

√
k.

Combine this to prove ||D|| ≤ 1.

12.4 Proof of Theorem 7.7 that Uconn is in L

We can assume that we are given a graph G and nodes s and t which are connected, because
if s and t are not connected, the algorithm we are about to present will never declare them
connected. By Claim 12.1, we can focus on 4-regular graph with sets S and T . Call this
4-regular graph X. To start-up our sequence, let X1 := X t for a suitable constant t.

De�ne the sequence of graphs

Xi+1 := Xi 	Gi

where each Gi is an expander graph with degree c, λ′2 ≤ 1/100, on a number of nodes equal
to the degree of Xi. Such expanders are obtained from Theorem 12.1. The latter gives edge
expansion, and we infer spectral expansion by Theorem 12.7. The speci�c bound λ′2 ≤ 1/100
can be obtained by squaring the graph a few times, using equation (12.6). (To show that
UConn is in space c log n log log n the log-degree expanders in Theorem 12.3 su�ce.)

The neighbor function of Gi is computable in L (cf Exercise 12.3).
Let ` := c log n. By Theorem 12.9 (cf. the observation right after its proof) we have

λ′2(X`) ≤ 1/10.
Then we can apply Claim 12.2 and solve UConn by going through all s ∈ S and checking

if one of its neighbors in X` lies in T .
It remains to verify that we can compute neighbors in X` in L.
The intuition is: if v ∈ X1, then the neighbors are v[a1] where a1 ∈ [d]; if v ∈ X2, then

the neighbors are v[(a1, a2)] = v[a1][a1[a2]] where a1, a2 ∈ [d]; if v ∈ X3, then the neighbors
are v[(a1, a2, a3)] = v[(a1, a2)][(a1, a2)[a3]] = v[a1][[a1[a2]][(a′1, a

′
2)]] = v[a1][a1[a2][a′1][a′1[a′2]]]

where a1, a2, a3 ∈ [d]; etc.
An edge inX` is speci�ed by (a1, a2, . . . , a`) where ai ∈ [d]. To this edge there corresponds

a path of length 2`−1 in the graph X1 with labels (b1, b2, . . . , b2`−1) where bi ∈ [d]. The
associated neighbor of v in X` is v[b1][b2] · · · [b2`−1 ]. So to compute v[(a1, . . . , a`)], we proceed
in 2 phases:

1. compute (b1, . . . , b2`−1), and
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Figure 12.8: Compute bi's from ai's.

2. compute v[b1][b2] · · · [b2`−1 ].

We must do this in space about log n, and so we cannot a�ord to write down the output of
the �rst phase. Instead, the following shows given (a1, . . . , a`) and an index i ≤ 2`−1 how to
compute bi ∈ [d] in space c log n. From this, one can perform Phase 2 one step at the time.

Observe that the the indices bi are obtained from the indices ai as in �gure 12.8.
So to compute bi, we just need to go from the root to the leaf bi in the tree. The space

needed for this is just the name of the node in the tree, plus the space needed to compute
neighbors in the expander graphs, which is comparable. This completes the proof that
UConn is in L.

12.5 Notes

TBD expanders.
The proof of Theorem 7.7 in [220] is similar to the one we presented, but uses di�erent

graph operations to reduce the eigenvalue bound. The proof using derandomized graph
squaring is from [225]. We follow the presentation in [274]

12.6 Historical vignette: TBD
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Chapter 13

Communication complexity

Communication complexity is the study of rectangles.
(... alright, let me try to make this sound more fun to the uninitiated; though the ultimate

goal is to convince the uninitiated that rectangles are fun.)
Communication complexity is the study of the amount of information that needs to be

exchanged among two or more parties (or players) which are interested in reaching a common
computational goal. The critical di�erence with interactive proofs is that in communication
complexity the parties cooperate. By contrast, the setting of cryptographic proofs is ad-
versarial or cryptographic: The veri�er may be interactive with a malicious party. Other
than that, the same parameters are studied in both settings, like the number of rounds, the
length of the communication (which is a lower bound on the e�ciency of the party), etc.
But, in communication complexity we can be more basic by disregarding the computational
model and instead bestowing unlimited computational power on the parties, and only paying
attention to the amount of communication.

13.1 Two parties

We start with the model in which there are only 2 parties, A and B. Their task is to compute
a function of two inputs

f : X × Y → Z

where A only knows x ∈ X, and B only knows y ∈ Y . The parties A and B engage in
a communication protocol and exchange bits. We can generally assume that the parties
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alternate sending a message, and that the last message is the output of the protocol. We
say that the protocol uses communication d bits if for every input, A and B exchange ≤ d
bits. The bits exchanged are called transcript.

We can visualize a protocol via a binary tree (13.1). Each node is labeled with a function
mapping that party's input to the possible messages.

TBD

Figure 13.1: Protocol tree

13.1.1 The communication complexity of equality

Consider the function Equality : [2]n × [2]n → [2], Equality(x, y) = 1 ⇔ x = y. Trivially,
Equality can be computed with communication n + 1: A sends her input to B; B then
communicates the value of Equality. The same trivial upper bound holds for any function
f : [2]n × [2]n → [2]. We now prove the following lower bound.

Theorem 13.1. Any protocol for equality must exchange at least n bits.

Before proving this theorem, we cover some properties of protocols.

De�nition 13.1. A rectangle in X×Y is a subset R ⊆ X×Y such that R = A×B for some
A ⊆ X and B ⊆ Y . Equivalently, R ⊆ X×Y is a rectangle if whenever {(x, y), (x′, y′)} ⊆ R
then we also have {(x, y′), (x′, y)} ⊆ R.

Exercise 13.1. Prove the equivalence.

The connection between rectangles and protocols is the following.

Lemma 13.1. Let P be a protocol that uses d bits, let t ∈ [2]d be a transcript. The set of
inputs that induce transcript t is a rectangle.

Proof. Let A ⊆ X × Y be the set of inputs that induce communication t. Suppose that
(x, y), (x′, y′) ∈ A, we want to show that (x, y′) ∈ A (similarly for (x′, y)). We prove by
induction on i that the i-th bit exchanged by P on input (x, y′) is ti. Of course this means
that the protocol exchanges t on input (x, y′) and so (x, y′) ∈ A as desired.

For i = 1, the bit sent by A only depends on x, but we know P (x, y) exchanges t1, so we
are done.

For general i, suppose it is A's turn to speak. The bit she sends is a function of x and
the communication so far. By induction hypothesis the communication so far is t1, . . . , ti−1.
So A cannot distinguish between (x, y) and (x, y′) and will send ti as next bit.

If it is B's turn to speak, we reason in the same way replacing (x, y′) with (x′, y′). QED

232



Corollary 13.1. Suppose f : X × Y → [2] is computable by a d-bit protocol, then there is
a partition of X × Y in 2d rectangles, where each rectangle is f -monochromatic: all inputs
in the rectangle give the same value of f .

Proof. For each transcript t, consider Rt := the set of inputs that induce t. Rt is a rectangle
by the previous lemma. It is obviously a partition and f -monochromatic. QED

Example 13.1. The equality function, seen as a matrix, is the identity matrix. �gure 13.2
shows two ways to partition it in monochromatic rectangles. Intuitively, because the ones
are only on the diagonal, we need many rectangles in any monochromatic partition.

Figure 13.2: Two ways to partition equality in monochromatic rectangles.

We can now prove the lower bound for equality.

Proof of Theorem 13.1. Assume we can partition X × Y in equality-monochromatic
rectangles. Consider the 2n inputs (e, e) where e ∈ {0, 1}n. Observe that no equality-
monochromatic rectangle can contain both (e, e) and (b, b) if e 6= b, for else (e, b) is in the
rectangle, but since e 6= b this cannot be equality-monochromatic.

Since the rectangles must cover all of the 2n inputs (e, e), we need ≥ 2n rectangles which
implies that any protocol must use at least n bits of communication. QED

13.1.2 The power of randomness

We de�ne randomized protocols as a distribution on protocols, similarly to the randomized
polynomials in De�nition 6.5.

De�nition 13.2. A randomized protocol P with communication d is a distribution on pro-
tocols with A function f : X×Y → Z has randomized communication d with error ε if there
is a randomized protocol P that on every input x computes it correctly w.p. ≥ 1 − ε, that
is, PP [P (x) 6= f(x)] ≤ ε.

The equality function demonstrates the power of randomness in communication:

Theorem 13.2. Equality has randomized protocols with error ε and communication c log 1/ε,
for any ε ≤ 1/2.

Exercise 13.2. Prove this.
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13.1.3 Public vs. private coins

Our de�nition of randomized protocols is public-coin: the parties share randomness. One
can also consider private-coin protocols. There are de�ned like (deterministic) protocols,
except that each party's message is a distribution on messages.

Exercise 13.3. Suppose that f : [2]n × [2]n → [2] has a (public-coin) randomized protocol
with communication d and error ε. Show that f has a private-coin protocol with communi-
cation d+ c log(n/ε) and error 2ε. Guideline: Use tail bounds and the union bound to show
that the public coin protocol needs only be supported on few protocols.

13.1.4 Disjointness

The disjointness function Disj : [2]n × [2]n → [2] is de�ned as Disj(x, y) = ∨i∈[n]xi ∧ yi. It
asks to determine if x and y, viewed as subsets of [n], (do not) intersect. This function is of
central importance pretty much for the same reason that 3Sat is: Its simple structure makes
it excellent for reductions, as we shall see in section 13.1.7.

Theorem 13.3. The randomized communication complexity of Disj with error ε is ≥ cεn.

The hard distribution D is de�ned as follows for n = 4m − 1. First pick a uniform
partition of [n] into (P,Q, {i}) where P (and Q) is a uniform set of size 2m − 1. Now let
X (resp., Y ) be a uniform subset of P

⋃
{i} (resp. Q

⋃
{i}) of size m. In particular, the

intersection is either empty or a singleton. Note that the distribution is not product; it is
known that the communication is ≤ c

√
n on product distributions.

13.1.5 Greater than

Another well-studied function is Greater-Than, where the parties wish to determine if x > y
as integers.

Theorem 13.4. The randomized communication complexity of greater-than is ≤ c log n.

Proof. We sketch the clever protocol. We perform binary search to �nd the most signi�cant
bit where x and y di�er. Each comparison during this binary search corresponds is an equality
problem, which as we saw has small randomized communication complexity (Theorem 13.2).

The naive way to implement this search is to set the error to ≤ c/ log n in Theorem 13.2.
But this won't give overall communication c log n.

Instead, we set the error to constant, and perform binary search with noisy comparisons.
A random-walk-with-backtrack algorithm shows that c log n comparisons su�ce, leading to
the result. The idea is to start each recursive call with a check that the target element is
contained in the current interval, and if not backtrack. QED

The above bound is tight.

Theorem 13.5. The randomized communication complexity of greater-than is ≥ c log n.
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13.1.6 Application to TMs

One-tape TMs have e�cient randomized communication protocols. This is essentially the
same as the crossing-sequence argument we saw in Chapter 3.

Theorem 13.6. For a function f : [2]n×[2]n → [2] consider the padded function pf : [2]3n →
[2] de�ned as pf (x0ny) = f(x, y). If pf is computable by an s-state TM in time t then f has
randomized protocols with communication c(log s)t/n and error ≤ 1/2.

Proof. For ∈ [n], de�ne the protocol Pi as follows: A is in charge of the �rst n + i cells
(which include x); B is in charge of last n + (n − i) cells (which include y). They simulate
the TM in turn, communicating log s+ c bits whenever the TM crosses the boundary of the
(n + i)-th cell. These bits represent the state of the machine or a special symbol denoting
that the computation is over with �nal state s, from which the value of the function can be
determined. The parties carry this simulation for up to (t/n)/(c log s) crossings. If the TM
hasn't stopped they stop and output, say, 0.

The distribution on protocols is PI where I is uniform in [n]. QED

We will soon exhibit functions which require linear randomized communication, recov-
ering the quadratic impossibility results for TMs from Chapter 3. In fact, we will show
stronger results.

13.1.7 Application to streaming

tbd

13.2 Number-on-forehead

There are various ways in which we can generalize the 2-party model of communication
complexity to k > 2 parties. The obvious generalization is to let k players compute a k-
argument function f(x1, . . . , xk) where the i-th party only knows the i-th argument xi. This
model is known as �number-in-hand� and useful in some scenarios, but we will focus on a
di�erent, fascinating model which has an unexpected variety of applications: the �Number
on the Forehead� model . Here, again f(x1, . . . , xk) is a Boolean function whose input is k
arguments, and there are k parties. The twist is that the i-th party knows all inputs except
xi, which we can imagine being placed on his forehead. Communication is broadcast.

The grand challenge here is to give an explicit function f :

k︷ ︸︸ ︷
[2]n × ...× [2]n → [2] that

cannot be computed with k := 2 log n parties exchanging k bits. This would have many
applications, one of which is described next.
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13.2.1 An application to ACC

Functions computable by small ACC (recall section �8.3) have low communication complex-
ity:

Lemma 13.2. AC[d] on n bits of size nd and depth d have equivalent protocols with logcd n
parties communicating logcd n bits, for any partition of the input bits.

Proof. By Lemma 8.2 it su�ces to prove it for depth-2 circuits consisting of a symmetric
gate on s And gates of fan-in t, where s and t are ≤ logcd n. Fix an arbitrary partition of the
input in t + 1 sets x1, . . . , xt+1. All that the players need to compute is the number of And
gates that evaluate to 1. Consider any And gate. Since it depends on at most t variables, it
does not depend on the bits in one of the sets, say xj. Then the j-th party can compute this
And without communication. So let us partition the And gates among the parties so that
each party can compute the gates assigned to them without communication. Each party
evaluates all the And gates assigned to them privately and broadcasts the number ≤ s of
these gates that evaluate to 1. This takes a total of ct log s bits. QED

13.2.2 Generalized inner product is hard

In this section we prove an impossibility result for computing the generalized inner product
function GIP : ([2]n)k → [2]:

GIP(x1, . . . , xk) :=
n∑
i=1

k∧
j=1

(xj)i mod 2.

In fact, we shall bound even the correlation between GIP and k-party protocols exchang-
ing d bits, denoted Cor(GIP, d-bit k-party). Recall from section �3.5 that this is de�ned as
the maximum of |Exe[GIP(x) + f(x)]| for any protocol f with corresponding parameters,
where x is uniform and e(z) := (−1)z. By (the easy direction of) Corollary 3.1, this implies
that the randomized communication complexity of GIP is large. Let us spell out again this
implication: Having randomized communication complexity ≤ d with small error means that
there is a distribution of protocols with communication d s.t. on every input x, a randomly
selected protocol achieves error ≤ ε. From this, we can average over x, and then �x a proto-
col to obtain small correlation. Because we prove next that small correlation is impossible,
it follows that the randomized communication complexity is large too.

Theorem 13.7. Cor(GIP, d-bit k-party) ≤ 2d · 2−cn/4k .

To prove the theorem we associate to any function a quantity R(f) ∈ R enjoying the
following two lemmas:

Lemma 13.3. Cor(f, d-bit k-party) ≤ 2d ·R(f)1/2k , for any f : X1 × ...×Xk → [2].

Lemma 13.4. R(GIP) ≤ 2−cn/2
k
.

The combination of these two facts proves Theorem 13.7.
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Intuition for R(f): Think of k = 2; we saw that any 2-party d-bit protocol partitions
the inputs in 2d f -monochromatic rectangles. How about we check how well f can be so
partitioned? Instead of picking an arbitrary rectangle, let us pick one in which each side
has length 2, and see how balanced the function is there. If a �good� partition exists, with
somewhat high probability our little rectangle should fall in a monochromatic rectangle, and
we should always get the same values of f . Otherwise, we should get mixed values of f .

Speci�cally, for k = 2,

R(f) := E x01,x
0
2

x11, x
1
2

e
[
f(x0

1, x
0
2) + f(x0

1, x
1
2) + f(x1

1, x
0
2) + f(x1

1, x
1
2)
]
∈ R.

In general, for any k:

R(f) := Ee
x01,...,x

0
k

x11,...,x
1
k

 ∑
ε1,...,εk∈[2]

f(xε11 , . . . , x
εk
k )

 ∈ R.

Exercise 13.4. Prove:
R(f) ≥ 0 for every f .
R(f) = 1 for constant f .
EFR(F ) = 1 − (1 − 2−n)k ≤ k/2n for uniform F : ([2]n)k → [2]. Hint: The inequality is

Fact A.5.

13.2.3 Proof of Lemma 13.3

We prove this theorem via a sequence of claims.

De�nition 13.3. A function gi : X1 × . . .×Xk → [2] is a cylinder in the i-th dimension if
∀(x1, . . . , xk) and x′i we have gi(x1, . . . , xi−1, xi, xi+1, . . . , xk) = gi(x1, . . . , xi−1, x

′
i, xi+1, . . . , xk).

A set S ⊆ X1 × . . . × Xk is a cylinder intersection if ∃ cylinders g1, . . . , gk such that
S = {x :

∏
gi(x) = 1}.

Recall we saw that a 2-party protocol partitions the input in monochromatic rectangles.
The following extension of this fact to k parties is via cylinder intersections.

Claim 13.1. Any d-bit k-party protocol for f :

k︷ ︸︸ ︷
[2]n × ...× [2]n → [2] partitions the inputs

in 2d f -monochromatic cylinder intersections.

Proof. Fix a transcript t, and consider the set At of inputs yielding that transcript. We claim
that At is a cylinder intersection. To see this, consider the cylinder functions gi(x) = 1 ⇔
�From the point of view of the i-th party, x could yield transcript t� ⇔ ∃x′i such that
P (x1, . . . , xi−1, x

′
i, xi+1, . . . , xk) yields transcript t.

Obviously if x is in At then gi(x) = 1 for all i.
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To see the converse, take some input x = (x1, . . . , xk) such that gi(x) = 1 for all i. This
means that ∃(x′1, . . . , x′k) such that

(x′1, x2, . . . , xk) yields t;
(x1, x

′
2, . . . , xk) yields t;

... ...
(x1, x2, . . . , x

′
k) yields t.

We must show that x yields t as well, i.e. x ∈ At. This is argued by induction on the bits
in t, using the same �copy and paste� argument that was used for k = 2. QED

Using the notion of cylinder intersections we can now relate an arbitrary protocol to a
special class of protocols p∗. Each protocol p∗ can be written as p∗(x) =

∑
gi(x) mod 2,

where gi is a cylinder in i-th dimension. This corresponds to each party sending just one bit
independently of the others, and the output of the protocol being the XOR of the bits. Note
the communication parameter is not present anymore. We write Cor∗ for the corresponding
correlation, where k is given by the context.

Claim 13.2. Cor(f, d− bit) ≤ 2d · Cor∗(f).

Proof. We use a general trick to turn products

cylinder intersection︷ ︸︸ ︷∏
i

gi(x) = 1 into sums

p∗︷ ︸︸ ︷∑
gi(x) mod 2.

Fix any d-bit protocol, let {x :
∏

i g
1
i (x) = 1}, . . . , {x :

∏
i g

D
i (x) = 1} be the corresponding

D := 2d f -monochromatic cylinder intersections (by the previous claim). Observe that for a
�xed x,

E
y1,...,yk∈{−1,1}

[
(y1)1+g1(x) · (y2)1+g2(x) · . . . · (yk)1+gk(x)

]
=

{
1 if ∃i : gi(x) = 0
0 if ∀i : gi(x) = 1.

Therefore,

e(p(x)) =
D∑
i=1

r(i) E
y1,...,yk∈{−1,1}

[
(y1)1+gi1(x) · (y2)1+gi2(x) · . . . · (yk)1+gik(x)

]
where r(i) ∈ {−1, 1} is the value of the protocol on the i-th cylinder intersection. Note that
for any x exactly one expectation will be 1, the one corresponding to the cylinder intersection
where x lands. So we have:

Ee[f(x) + p(x)]
= Ex[e(f(x)) · e(p(x))]

= Ex
[
e(f(x)) ·

∑D
i=1 r(i) E

y1,...,yk∈{−1,1}

[
(y1)1+gi1(x) · (y2)1+gi2(x) ·... · (yk)1+gik(x)

]]
=
∑D

i=1 Ex,y1,...,yk∈{−1,1}

[
e(f(x)) · r(i) · (y1)1+gi1(x) · (y2)1+gi2(x) ·... · (yk)1+gik(x)

]
≤ D · Ex,y1,...,yk∈{−1,1}

[
e(f(x)) · r(i) · (y1)1+gi∗1 (x) · (y2)1+gi∗2 (x) ·... · (yk)1+gi∗k (x)

]
,
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where i∗ is the value of i that gives the largest summand. Now �x y1, . . . , yk to maximize
the expectation, and let J ⊆ {1, . . . , k} be the indices corresponding to yj = −1, i.e.,
j ∈ J ⇒ yj = −1. The last expression above is

D · Ex
[
e(f(x)) ·

∏
j∈J

(−1)1+gi∗j (x)
]

= D · Exe

[
f(x) +

∑
j∈J

(
1 + gi∗

j (x)
)]

≤ D · Cor∗(f).

QED

Claim 13.3. Eex[g(x)] ≤ R(g)1/2k for every function g := X1 × . . .×Xk → [2].

Proof. Recall that for every random variable X: E[X2] ≥ E[X]2, Fact A.7. Also recall that
if X,X ′ are independent then E[X ·X ′] = E[X] · E[X ′].

Applying the �squaring trick:�

Ex1,...,xke[g(x1, . . . , xk)]
2 = Ex1,...,xk−1

[Exke[g(x1, . . . , xk)]]
2 ≤ Ex1,...,xk−1

[Exk e[g(x1, . . . , xk)]
2]

= Ex1,...,xk−1
[Ex0k,x1ke[g(x1, . . . , xk−1, x

0
k) + g(x1, . . . , xk−1, x

1
k)]].

The lemma follows by repeating this k times. QED

Claim 13.4. For every function f : X1 × . . .×Xk → [2], and every protocol∗ p∗,

R(f ⊕ p∗) = R(f),

where f ⊕ p∗ simply is the function whose output is the XOR of f and p∗.

Proof. Suppose p∗(x) = g1(x) + ...+ gk(x), where gi is a cylinder in the i-th dimension. We
show ∀f,R(f ⊕ gk) = R(f); the same reasoning works for the other coordinates. Note for
every x, ∑

ε1,...,εk∈[2]

(f(xε11 , . . . , x
εk
k ) + gk(x

ε1
1 , . . . , x

εk
k ))

=
∑

ε1,...,εk

f(xε11 , . . . , x
εk
k ) +

∑
ε1,...,εk

gk(x
ε1
1 , . . . , x

εk
k )

=
∑

ε1,...,εk

f(xε11 , . . . , x
εk
k ) +

∑
ε1,...,εk

gk(x
ε1
1 , . . . , x

0
k)

=
∑

ε1,...,εk

f(xε11 , . . . , x
εk
k ) + 2

∑
ε1,...,εk−1

gk(x
ε1
1 , . . . , x

0
k)

=
∑

ε1,...,εk

f(xε11 , . . . , x
εk
k ) mod 2,

where the second equality holds because gk does not depend on xk. QED

The straightforward combination of the claims in this section proves Lemma 13.3.
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13.2.4 Proof of Lemma 13.4

We have:

R(GIP) = Ee
x01,...,x

0
k

x11,...,x
1
k

 ∑
ε1,...,εk∈{0,1}

∑
i

∏
j

(x
εj
j )i

 = E
∏
i

e

[ ∑
ε1,...,εk

∏
j

(x
εj
j )i

]

= Ee

[ ∑
ε1,...,εk

∏
j

(x
εj
j )1

]n
= R

(∧
k

)n

,

using in the last equality the fact that any two independent random variables X, Y satisfy
E[X · Y ] = E[X] · E[Y ], and where

∧
k is the AND function on k bits.

To save in notation let us replace (x0
1)1, . . . , (x

0
k)1 with (y0

1, . . . , y
0
k), where (y0

i ) ∈ [2]; and
similarly for (x1

1)1, . . . , (x
1
k)1. So we have:

R(GIP) = Ee
y0
1 ,...,

y0
k

y1
1 ,...,y

1
k

 ∑
ε1,...,εk∈{0,1}

∏
j

y
εj
j

n .
Suppose that y0

1 6= y1
1,. . . ,y

0
k 6= y1

k; then there exists exactly one choice of ε1, . . . , εk making∏
j y

εj
j = 1 (recall that yεj ∈ [2]; if any one of them is 0 the whole product is zero), and

consequently

e

( ∑
ε1,...,εk

∏
j

y
εj
j

)
= e(1) = −1.

We have y0
1 6= y1

1,. . . ,y
0
k 6= y1

k with probability 2−k. Therefore:

R(GIP) = Ee

[∑∏
j

y
εj
j

]n
≤ (−1 · 2−k + 1 · (1− 2−k))n = (1− 2−k+1)n ≤ e−cn/2

k

.

Exercise 13.5. (1) Rewrite the proof of the GIP correlation bound Theorem 13.7 in the
case k = 2 of inner product IP(x, y) :=

∑
i xiyi mod 2, simplifying the notation.

(2) Optimize the constant in the exponent.
(3) Derive the following basic result. Let D be the uniform distribution over a rectangle

X×Y ⊆ [2]n× [2]n where X = Y = 2αn. Show Ee[IP(D)] ≤ c ·2(2(1−α)−c)n. Show for α = 1/2
there is a rectangle for which the expectation is 1.

Exercise 13.6. Formally state and prove, using Theorem 13.7, that TMs running in sub-
quadratic time do not correlate with IP.

13.3 Any partition

The results in the previous sections, in particular the correlation bound for GIP in Theorem
13.7 apply to a speci�c partition of the input in foreheads.
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Exercise 13.7. Give a di�erent partition of the input in foreheads s.t. GIP has constant
communication.

To generalize these impossibility results to any partition is natural and has a number
of applications. It turns out that the same parameters for GIP can be achieved under any
partition.

Theorem 13.8. There is an explicit function h : [2]n → [2] s.t. for any partition of the input
into k sets of equal size, Cor(h, d-bit k-party) ≤ 2d · 2−n/ck .

The construction is a hyper-edge analogues of GIP, and the analysis shows that in every
partition we can �nd a large instance of GIP. In more detail, the construction of h is based
on expander graphs. The expansion property that su�ces is that any 2 sets of size ≥ t are
connected, closely related to edge expansion De�nition 12.1. From any graph, one constructs
the hypergraph where the edges are the subsets of size k where one node is adjacent to all
other k − 1. Using the expansion property one can iteratively �nd

≥ n− kt
d

disjoint hyperedges, each intersecting each part. We'd like t and d to be as small as possible,
and suitable expander graphs of degree d are cn/

√
d-interconnected. Hence setting d := ck2

we �nd ≥ n/kc disjoint hyperedges. De�ning h to be the parity over hyperedges of the Ands
over the bits in the hyperedge, we conclude by the GIP bound Theorem 13.7.

13.4 The power of logarithmic players

The impossibility results in the previous sections are e�ective when the number of players
is k ≤ c log n, but useless when k ≥ log n. We now show that this is for a good reason:
there are e�cient protocols for large k. For generalized inner product this is unsurprising,
since the function is almost always 0 for large k. But this is not clear if we replace, say, And
with Majority. In fact, surprisingly there is a general protocol that works for many such
composed functions. For functions f : [2]n → [2] and g : [2]k → [2] we consider computing
f ◦ g(k) whose input is a k × n matrix M and the output is obtained by computing g on
each of the n columns, and then evaluating f on that. Here player j has row j of M on the
forehead.

We �rst show the seminal result that there are e�cient protocols whenever f and g are
both symmetric.

Theorem 13.9. Let k ≥ log n + 2. There is a simultaneous k-party protocol with commu-
nication c log3 n s.t. given a k × n matrix M (player j sees all M except row j) computes
(y0, y1, . . . , yk) where yi is the number of columns in M with weight i.

In particular, f ◦ g(k) has simultaneous protocols with the same e�ciency in case both f
and g are symmetric.
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Proof. We prove this for k = dlog n+ 2e (cf Exercise 13.8). Each player j communicates the
number aj(i) of columns that they see having weight i, for every i. This takes communication
ck log n = c log2 n per player.

We claim that the aj(i) uniquely specify the yi, which concludes the proof.
To show this, note

bi :=
∑
j

aj(i) = (k − i)yi + (i+ 1)yi+1

for i < k. This is because a column with weight i will be seen as a column of the same
weight i by k − i players (those missing a 0) while a column of weight i + 1 will seen as
having weight just i but i+ 1 players (those missing a 1).

We in fact claim that even the bi uniquely specify the yi. To verify this, assume towards a
contradiction that there are yi and y′i for i ≤ k that satisfy these equations, are non-negative,
and have the same sum, n, and for some i we have yi 6= y′i. We derive a contradiction as
follows. Let di := yi − y′i. Since both the yi and the y′i satisfy the equations above, we get
for i < k

(k − i)di + (i+ 1)di+1 = 0.

Hence

di = −k − (i− 1)

i
di−1 = (−1)i

(
k

i

)
d0.

We know that d0 6= 0 (for else by above di would be 0 too, but we assumed it is not) and in
fact d0 ≥ 1 since it is an integer. Also note that yi + y′i ≥ |yi − y′i| = |di|.

Hence we obtain the following contradiction

2n =
k∑
i=0

yi + y′i ≥ |di| ≥
k∑
i=0

(
k

i

)
= 2k > 2n.

QED

Exercise 13.8. Explain why it indeed su�ces to consider k = dlog n+ ce.

In the next result, g can be arbitrary. Compared to Theorem 13.9, we obtain a worse
communication bound and require interaction. However, both shortcomings can be addressed
by an extension of the proof (cf Problem 13.1 and Exercise 13.9). I have chosen the simplest
exposition giving the main takeaway, which is that when k = logc n the communication is
logc n.

Theorem 13.10. Let k ≥ log n + 2. For any symmetric f : [2]n → [2] and g : [2]k → [2]
there is a k-party protocol with communication kc for f ◦ g(k).

Proof. Let M be the k × n input matrix. For v ∈ [2]k denote by nv the number of columns
equals to v. It su�ces to compute ∑

v:g(v)=1

nv (13.1)
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because f is symmetric.
Let us assume that the players know a �base� vector u ∈ [2]k with nu = 0. From

this, they can compute any nv as follows. Consider a path from v to the base vector u:
w0 := v → w1 → w2 → . . . → ws := u where wi and wi+1 di�er in exactly one bit and
1 ≤ s ≤ k. Note these paths only depend on u.

Then, telescopically:
nv =

∑
i∈[s]

(−1)i
(
nwi + nwi+1

)
, (13.2)

using that nws = nu = 0. Note there is player that can compute nwi + nwi+1
: since wi and

wi+1 di�er in exactly one position h, player h can communicate the number of columns which
agree in all other positions.

To compute equation (13.1) each player will communicate the sum over v : g(v) = 1 of
their terms in equation (13.2). The total sum is ≤ 2kkn, so k + log kn bits su�ce.

There remains to compute u. Player 1 can simply communicate a string u′ ∈ [2]k−1 that
does not occur as! a column in matrix M with the �rst row removed. This takes ≤ k bits.
Such a u′ exists because 2k−1 > n. In particular, u := 0u′ ∈ [2]k does not occur and so
nu = 0. QED

The protocol in Theorem 13.10 requires interaction. We now explain how we can make
it non-interactive, a.k.a. simultaneous. The main tool is the following.

Exercise 13.9. Give a simultaneous version of Theorem 13.10, with communication c log3 n.

13.4.1 Pointer chasing

We consider the basic problem of following a path in a directed graph. We have k layers,
with edges going from nodes in layer i to nodes in layer i + 1 only. The last layer does not
have edges but labels in [2] for each node. The goal is to compute the label at the node
reached from a start node in Layer 1. (Equivalently, instead of labels we can allow for k+ 1
layers with the last layer consisting of two nodes only, and the task is outputting the node
reached.)

It is convenient to work with a version of this problem where we output m labels, and
where the size of each layer grows by a factor b. Note for m = 1 this is a boolean function.
We shall show that the communication is at least b.

Formally, the input to the pointer-chasing function Gm,b
k is a layered graph as above,

where Layer i has mbi nodes, and each node has outdegree 1. In other words, the input are
functions gi for i ∈ [k] where gi : [mbi]→ [mbi+1] for i ∈ [k], and gk−1 : [mbk−1]→ [2].

Exercise 13.10. Let m = 1. Give a simultaneous protocol with communication cb.

The next theorem implies that the communication is ≥ ckmb.

Theorem 13.11. Let P be a k-party one-way protocol using communication ≤ ckmb. Then
Px[P (x) 6= Gm,b

k ] ≥ cmk .
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For example, for m = 1 and �xed k we obtain a tight bound of b up to constant factors.
The total input length is n ≤ kbk−1. Thus for constant k one needs communication

≥ ckn
1/(k−1). One can work out the dependence on k and show that the bound remains

non-trivial for any k ≤ logc n where n is the total input length.

Proof. We proceed by induction on k. For every k we prove the statement for any setting
of m, b. The base case k = 1 is clear: P (x) is a �xed string, while G is a uniform string in
[2]m. The error probability is ≥ 2−m.

For the induction step, let P use communication t and p := Px[P (x) 6= Gm,b
k ]. Write

x = (x1, y) where x1 is on the forehead of the �rst party. We have

Py
[
Px1 [P (x) ≥ Gm,b

k ] ≥ p/2
]
≥ p/2.

Let Pa be the protocol P where the �rst party always communicates string a, regardless
of y. We claim there exists a s.t.

Py
[
Px1 [Pa(x) = Gm,b

k ] ≥ p/2
]
≥ 2−tp/2.

Note that the probability over x1 is not reduced because the �rst party's message does
not depend on x1.

Now let m′ := mb and de�ne protocol P ′ for Gm′,b
k−1 . On input y, P ′ runs Pa for r times

on inputs (xi, y) for i ∈ [r], where the xi are independent choices for the �rst party's input.
For any of the m′ bits that are pointed to by some xi, P ′ outputs the corresponding bit. In
case di�erent runs give di�erent values, the answer can be arbitrary. For any bit that is not
pointed by any xi, P ′ guesses at random. This gives a randomized protocol; one can �x the
randomness and preserve the success probability.

The communication of P ′ is ≤ rt.
To analyze the success probability. Fix any y for which Px1 [Pa(x) = Gm,b

k ] ≥ p/2. The
probability that all the r runs are correct is ≥ (p/2)r. The probability that there are ≥ cm′

bits that are not pointed to by some xi is at most the probability that there is a set of size
cm′ s.t. mr pointers fall there, which is at most

≤
(
m′

cm′

)
(1− c)mr ≤ cm

′
c−mr ≤ cm

′
,

for r ≥ cb.
When that does not happen, the random guesses will be correct w.p. ≥ 2−cm

′
.

Overall, the success probability over uniform y is

≥ 2−tp/2 · ((p/2)r − cm′) · 2−cm′ .

For p ≥ 2−cm and t ≤ cm′, the overall success probability is ≥ cm
′
. QED

In the case k = 3 according to Theorem 13.11 we need communication ≥ c
√
n. As

mentioned above, this is tight for G, because of the way the layers are constructed. But one
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can consider the natural question of chasing pointers where each layer (except the �rst) has
n nodes. It is a tantalizing open question whether there is a protocol with communication
≤ c
√
n. The trivial protocol takes communication n, and one might wonder if that's tight.

But a clever protocol achieves sublinear communication.

13.4.2 Sublinear communication for 3 player

For k = 3 we consider pointer chasing on layers of sizes 1, n, n. De�ne G as

G(i, g, h) := h(g(i))

where i ∈ [n],g : [n]→ [n], and h : [n]→ [2].
We consider the even more restricted simultaneous communication model where the play-

ers speak once, non-interactively. Naive intuition suggests that linear communication might
be needed. In fact, such bounds were claimed several times, but each time the proof only
applied to special cases. Indeed, we have:

Theorem 13.12. G above has simultaneous communication o(n).

Proof. TBD Add details
We sketch the ideas in case g is a permutation π. Let H be a bipartite graph H between

the n nodes in the middle layer and the n nodes in the last. For any permutation π, let GH,π

denote the graph on the n last nodes where {x, y} is an edge i� π−1(x) has an edge to y in
H.

The main claim is that there is H of degree d = (1 + ε)pn s.t. for any π GH,π has a
partition in r = o(n) sets s.t. any two nodes in the same set are connected in GH,π. We call
the sets cliques. Note any graph has a trivial partition consisting of n singletons.

The protocol is as follows. H is known to all.
Player 1, for each of the r cliques, announces the parity of the bits h(x) for x in the

clique.
Player 2 announces h(x) for all the d neighbors x of i in H. This is d bits.
Player 3 knows k := π(i). It considers the clique of GH,π containing k. It knows the

parity of the h(x) for x in this clique. Also, for any x in the clique, x and k are connected,
hence π−1(k) = i is adjacent to x. So from the message of Player 2 we know h(x). We can
subtract o� all these bits to get h(k).

As stated, this protocol is not simultaneous. To make it simultaneous, let Player 3
announce which of the cliques k is in, and also which of the d neighbors of i are connected
via H to nodes in that clique that are not k. Then the referee has a bit per clique, knows
which bit to look at, and knows which bits of Player 2 to consider.

Player 3 message takes log r + d.
The existence of H with suitable parameters can be established by the probabilistic

method. Speci�cally, let H be distributed as G(n, p), a random graph where each edge is
present independently with prob. p. We observe that for any permutation GH,π is random
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from G(n, p2). Thus its complement H is random from G(n, 1 − p2). One can show that
w.h.p. H has chromatic number at ≤ r = o(n). This implies that H has a covering is equal
to the minimum number of independent sets that you need to cover the nodes of the graph.
From this the result follows. QED

This protocol can be generalized to more players.

Exercise 13.11. TBD Prove that if H has chromatic number r then we can partition the
nodes of H in r sets so that

13.5 Problems

Problem 13.1. Extend the proof of Theorem 13.10 to obtain:
(1) The same bound for the more general case of f(g1, g2, . . . , gk) where the gi may be

di�erent.
(2) An improved bound of logc n for any k.

13.6 Notes

�Because it is basic.�

Communication complexity was initiated in [296] (to whose author the quote is credited,
according to [287]). Exercise 13.3 is from [198].

Several proofs of Theorem 13.3 exist [148, 218, 31], see the books [163, 214] or the survey
[57] for two di�erent expositions. For more on disjointness see also the survey [234].

Theorem 13.4 is from [200]. For the random-walk with backtrack, see [75]. The matching
lower bound, Theorem 13.5, is from [281].

The number-on-forehead model is from [56]. Computing degree-k polynomials with k+1
parties, used in the proof of Lemma 13.2, is from [123].

Theorem 13.7 is from [28]. Several presentations of the proof exist: [60, 215, 285]. We
followed the latter.

The any-partition result, section �13.3, is from [126].
Theorem 13.10 is from [4] but our presentation has some minor di�erences. The result

can be extended in various ways, cf. [4] and [117]. Theorem 13.9 is from [25], and is the �rst
amazing protocol in this line of works.

The result can be extended in various ways, such as making the protocol simultaneous,
applying di�erent functions gi to each column, allowing for more complicated matrix struc-
tures, and so on. The �rst amazing protocol in this line of works is from [25] and applies
when g is symmetric too.

A proof of Theorem 13.11 in the case k = 3 appeared in [26] but did not readily extend
to larger k. The proof we presented is a streamlined version of the argument in [286]. The
latter paper works with trees instead of graphs to obtain slightly better parameters at the
cost of a slightly more involved analysis of the number of bits hit by pointers.
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The main idea in Theorem 13.12 for permutations, which we sketched, is from [212].
The extension to general functions is from [50]. These works don't quite give simultaneous
protocols though.

Regarding randomness vs. determinism in number-on-forehead protocols, a non-explicit
linear separation is in [38]. This work only contains a weaker explicit separation. An explicit,
power separation is in [156]. A candidate for an explicit linear separation the problem of
deciding if xyz = 1G for a group G. With randomness, this can be solved with constant
communication, for any group. (Show this!) Without randomness, there are groups where
this requires c log log |G| ≥ c log n communication, see [283], quantitatively the same explicit
separation in [38].
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Chapter 14

Algebraic complexity

∑
S⊆[n],|S|=d

∏
i∈S

xi = (−1)n
∑

j1,j2,...,jd≥0:
∑d
k=1 kjk=d

n∏
k=1

(−1)jk

jk!kjk

∑
i∈[n]

xki

jk

.

Stepping back, previous chapters have investigated the complexity of computing strings
of length 2n, corresponding to the truth-table of functions from [2]n to [2] starting from basic
strings (or functions) and changing them via simple operations. For example for boolean
circuits the basic functions are the constants 0, 1 and the variables xi, and we combine them
via And/Or/Not gates.

It is natural to consider other objects and to allow for di�erent operations. In fact,
we have already encountered other models which are more algebraic, like polynomials and
matrices. In this chapter we explore more algebraic models, and in particular we consider
computing other objects, namely polynomials.

Perhaps unexpectedly, the development of this theory closely parallels that of its boolean
counterpart. We will encounter again many of the main themes and results seen so far,
including depth reduction, impossibility results for small-depth models that are �just short�
of proving major separations, the grand challenge, reductions, completeness, the surprising
power of restricted models, and an algebraic analogue of NP.

14.1 Linear transformations

A very simple algebraic model consists of Xor circuits , made only of Xor gates on 2 bits.
Obviously such circuits only compute linear functions M : [2]n → [2]m. Note that any such
linear function can be computed using ≤ mn wires. Similarly to Theorem 3.6, most linear
functions require about that many wires. The challenge is to come up with an explicit linear
function requiring many wires. Again similarly to the boolean setting (cf. section �8.1.2) we
do not know of explicit linear functions requiring a super-linear number of wires, even for
log-depth circuits (for example for m = cn). In this setting, the techniques developed earlier
(Theorem 8.6) relate this quest to that of rigid matrices.
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Theorem 14.1. Let C : [2]n → [2]an be a circuit with an wires and depth a log n. Then the
matrix MC corresponding to the linear transformation computed by C can be written as

MC = L+ E

where L has rank ≤ can/ log log n, and E has ≤ n1.01 non-zero entries.

In other words, C computes a linear function that is close to a low-rank function L. The
matrix E gives the errors.

Exercise 14.1. Prove Theorem 14.1 by going through the proof of Theorem 8.6 and ex-
plaining what changes are needed.

As before, we can consider small-depth circuits, with unbounded fan-in Xor gates. The
trivial upper bound of cnm wires mentioned above can be implemented in depth 1.

A natural candidate hard linear transformation is given by good (n, an, bn)2 codes C :
[2]an → [2]n. Recall this means that a and b are constants independent of n, cf Exercise
2.12.(1). The fact that such codes can be linear is in Problem 6.8.

Exercise 14.2. Prove that any depth-1 Xor circuits computing an (n, an, bn)2-good code of
length n has ≥ ca,bn

2 wires.

You might suspect that the quadratic bound holds even for depth 2 and higher. In fact,
even depth 2 su�ces for quasi-linear size.

Theorem 14.2. There are good linear codes (n, cn, cn)2 that are computable by depth-2
Xor-circuits with cn log2 n wires.

Proof. It su�ces to give a construction that for any non-zero input outputs a string with
weight ≥ cn, cf. Problem 6.8. Divide the gates in the middle layer in c log n blocks. We
will show that for every input there is a block that is nearly balanced, that is, the fraction
of gates in the block that evaluates to 1 is in [c, c]. From this, we can obtain the output
layer probabilistically by summing together one uniformly chosen gate from each block, and
conclude by the tail bound Theorem 2.1. The output layer has cn log n wires.

It remains to construct the middle layer. The construction is again probabilistic. Let
Xi ⊆ [2]k be the set of inputs of, say, weight ∈ [2i, 2i+1] for i ∈ [log k], assuming k = cn is a
power of two. For each gate in the block, �rst select k/2i uniformly chosen input bits, then
pick a random subset of them, and output the sum. For every �xed input x ∈ Xi, each gate
has a constant probability of selecting a 1 bit in the �rst step, in which case the sum is 1
with probability 1/2 in the second step. We want to �x the block so that it works for every
input in Xi. By the probabilistic method and tail bounds (Theorem 2.1) it su�ces to pick
c log |Xi| gates in that block.

Now the intuition is that Xi is about
(
k
2i

)
, which is ≤ (ck/2i)2iby Fact A.3. Hence,

log |Xi| ≤ c2i log k. Hence overall the number of wires in the block is

c
k

2i
· 2i log k ≤ ck log k.
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Summing over all blocks, the total number of wires in the middle layer is ck log2 k. QED

Exercise 14.3. Prove log |Xi| ≤ c2i log k.

Exercise 14.4. Come up with an idea to improve the number of edges to o(n log2 n) by
modifying this construction slightly. This is good practice of balancing parameters. The
execution of the idea is slightly technical and deferred to Problem 14.1.

14.2 Computing integers

Another basic algebraic question is that of computing n-bit integers using arithmetic circuits
over the integers, with no variables and no constants except 1 and −1. Usual counting
argument like that in the proof of Theorem 3.6 show that most n-bit integers require circuits
of size n/ logc n. And this is again nearly tight since any integer t ∈ [2]n can be computed
with cn operations by writing t = 20t0 + 21t1 + · · ·+ 2n−1tn−1 (computing all the 2i takes cn
operations).

As usual, the grand challenge is to exhibit �explicit� integers that are hard to compute.
In particular, integers that cannot be computed with logc n operations. A prominent integer
in this context is the factorial. Recall that n! is a number with Θ(n log n) bits. The log
factor won't play a role in these connections, so one can informally think of n! as an n-bit
number.

Similarly to Theorem 1.7, we can show that if computing factorials is easy then factoring
is also easy. The �rst conclusion of the following theorem gives the simplest setting that
conveys the main idea. The second conclusion refutes a popular conjecture in cryptography
that is the basis of several cryptosystems.

Theorem 14.3. Suppose n! has algebraic circuits of size loga n. Then
(1) there are boolean circuits of size nca that factor the product of any two n-bit primes

p and q s.t. p ≤ k < q, for any k dependent only on n.
(2) let P and Q be i.i.d. n-bit primes, arbitrarily distributed. There is a boolean circuit

of power size that given P ·Q computes P with prob. ≥ c.

Proof. (1) By assumption, there are algebraic circuits for k! of size logca k. Note k < q ≤ 2n,
so the size is ≤ nca . We use this circuit to compute r := k! mod x, as a boolean integer. To
do so, we simply run the circuit and compute mod x at each gate to keep the bit-length
feasible. Finally, we output gcd(r, x) as one of the factors. QED

Exercise 14.5. Explain why this proof of (1) works. Hint: Fact A.1.
Prove (2).

Thus we have shown that if factorial is easy, then factoring is also easy. And we will see
below in section �14.4 that if it factorial is hard then another long-sought separation follows.
Hence the complexity of computing factorials appears pivotal.
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14.3 Univariate polynomials

A next natural question is computing univariate polynomials. We make two remarks on the
model.

First, here the goal is to understand monomials, not coe�cients, so we allow gates that
compute any �eld element (unlike in section �14.2).

Second, an important distinction must be made. We can consider computing polynomials
formally, which we can think of as a sequence of coe�cients, or informally, as functions. This
distinction disappears when the �eld is larger than the degree by Lemma 2.1, but otherwise
leads to di�erent theory. For example over F2 we have x2 = x informally (i.e. the identity
holds for every �eld element) but obviously not formally. Obviously formal identities are
also informal, so informal impossibility results are harder to establish than formal. Given
this, the cleanest setting may be when the underlying �eld is in�nite.

Regarding impossibility results, the situation is similar to the previous section �14.2. A
speci�c polynomial of interest is the approximation to the exponential function:

∑n
i=0 X

i/i!.

14.4 Multivariate polynomials

Arguably the most studied setting is the one of polynomials in n variables, because it is
closely related to other classes (as we shall see).

Exercise 14.6. Let B : [2]n → [2] be a (boolean) circuit of size s. Show that over any �eld
there is an algebraic circuit A of size s s.t. A(x) = B(x) for all x ∈ [2]n.

The same remarks in section �14.3 apply to this section.
Again, the challenge is to exhibit �explicit� polynomials that are hard to compute. For

larger-depth there is a superlinear informal result that does not have a formal counterpart.
For several explicit degree-d polynomials in n variables it can prove bounds of the form
cn log d. We state one example:

Theorem 14.4. Computing
∑

i∈[n] x
d
i requires size cn log d.

The beautiful proof is the combination of these two facts.

Lemma 14.1. Computing a polynomial p and simultaneously all its n partial derivatives
w.r.t. the n variables only costs a constant factor more than computing p.

Lemma 14.2. Computing the polynomials pi(x1, x2, . . . , xn) for i ∈ [n] where x are n vari-
ables requires size ≥ cn log d.

We now turn to constant-depth circuits.
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Algebraic impossibility from boolean impossibility

Note that over the �eld F2 the informal imp. results obtained in section 8.4 (see especially
Theorem 8.12) are algebraic (since And is like multiplication) � and nothing better is known
even if one is informal, for small depth. The techniques in section 8.4 can be extended to
slightly larger �elds. The idea is similar to that in section 8.4: we show that such circuits are
approximated by low-degree polynomials. We sketch this idea in the case of ΣΠΣ circuits,
highlighting where the �eld size plays a role. It su�ces to approximate ΠΣ circuits well.
Consider one such circuits, and let r be the rank of the linear forms input to the Π gate
(excluding their constants, if any). If the rank is large, then over a uniform input it's likely
that at least one linear form will be zero and so the whole circuit is zero. If the rank r is
small, then we can write each linear form as a linear combination of ≤ r linear forms. Now
if we expand the Π gate we will have a sum of products of these r linear forms. Now we can
use the fact that over a �eld of size q we have Xq = X, so we reduce the degree of each form
in any product to at most q − 1. Overall, the degree will be ≤ (q − 1)r.

Using these ideas one can obtain algebraic impossibility results over small �elds. But
for larger, or in�nite �elds a di�erent set of techniques appears necessary, and only formal
results are known.

14.4.1 VNP

Similarly to NP, an important class of polynomials can be de�ned by summing over all
boolean values of a set of variables.

De�nition 14.1. The Σ-algebraic circuits S(X1, . . . , Xn) of size ≤ s are those that can be
written as Σy1,...,ys∈[2]C(X1, . . . , Xn, y1, . . . , ys) where C is an algebraic circuit of size ≤ s.

Several polynomials of interest that are not known to have small algebraic circuits can
be shown to have small Σ-algebraic circuits.

Example 14.1. We show that the permanent polynomial in n2 variables x,

p(x) =
∑
π

∏
i∈[n]

xi,π(i)

where π ranges over all permutations of [n], has Σ-algebraic circuits of size nc. It is an open
problem whether it has (plain) arithmetic circuits of power size.

We will encode π using n2 bits M specifying an n × n permutation matrix also written
M . Suppose we have a polynomial g s.t. g(M) = 1 if M is a permutation and 0 otherwise.
Then we have:

p =
∑

M∈[2]n2

g(M)
∏

i∈[n],j∈[n]

xi,j ·Mi,j.

Thus it only remains to show that g has small algebraic circuits.

Exercise 14.7. Finish the example.
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Similar to the P vs. NP question, the prominent question here is whether Σ-algebraic
and algebraic circuits have similar power (known as the VNP vs. VP question). The next
two results prove several consequences of algebraic equivalences.

First we have the following consequence in the boolean world. For simplicity we work on
suitable �elds.

Exercise 14.8. [Σ-algebraic circuits are easy⇒ Maj · PCkt ⊆ PCkt] Suppose there is a
constant a s.t. over any �eld any Σ-algebraic circuit of size s has an equivalent algebraic
circuit of size sa. Then Maj · PCkt ⊆ PCkt. (Cf. section �6.3 for the de�nition of the
operator.)

The following result connects the power of Σ-algebraic circuits to the complexity of
computing integers (section �14.2). One can get similar results for other integers or even
univariate polynomials (including those mentioned in 14.3). For simplicity we state this
connection for circuits over the integers, and only using �xed constants.

Theorem 14.5. [If Σ-algebraic circuits are easy then so is factorial] Suppose there is a
constant a s.t. over the integers, every Σ-algebraic circuit of size s using constants 0 and 1
only has an equivalent algebraic circuit of size na using constants 0 and 1 only.

Then n! has algebraic circuits of size logca n.

The proof is an excellent display of �scaling up and down� and connecting disparate
complexity results.

Proof. Rather than giving circuits for n!, a number of ≤ cn log n bits, we will give circuits
for 2n/nc!, a number of 2n bits. This makes it slightly easier to connect to other results, and
to index bits.

First we claim bit i of this 2n-bit factorial given i ∈ [2]n is computable in

Maj ·Maj · · · · ·Maj · PCkt,

where the number of applications of the Maj operator is c. This follows from the fact that
iterated multiplication of integers is in TC (Theorem 8.8). Similarly to Exercise 14.8, the
hypothesis implies that Maj · PCkt ⊆ PCkt. Repeating this c times we obtain a boolean
circuit C of size nc s.t. C(i) is bit i of the factorial.

We can view C as an algebraic circuit over the integers and consider

S ′(Xn−1, . . . , X0) :=
∑

j0,j1,...,jn−1∈[2]

C(j)Xj0
0 X

j1
1 ·X

jn−1

n−1

in the variables Xi. Note that S ′(2n−1, . . . , 8, 4, 2, 1) equals the desired factorial. We can't
immediately apply the hypothesis to S ′, until we note

Xj0
0 = (X0j0 + 1− j0)

which allows to write S ′ as a Σ-algebraic circuit. Applying the hypothesis again yields an
equivalent nc-size algebraic circuit C ′, and then again the desired factorial is C ′(2n−1, . . . , 8, 4, 2, 1).
The powers of 2 take cn operations. QED
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14.5 Depth reduction in algebraic complexity

To set the stage, we note that reducing the depth of general algebraic circuits is impossible:

Exercise 14.9. Give an algebraic circuit of size s that does not have an equivalent algebraic
circuit of depth < s, for all s.

However, interestingly it is possible to reduce the depth under the additional assumption
that the circuit computes a polynomial of low degree:

Theorem 14.6. Any algebraic circuit of size s computing a polynomial degree d has an
equivalent circuit of size sc and depth c(log s)(log d).

In the unbounded fan-in setting, the following is known and reminiscent of Theorem 8.6.

Theorem 14.7. Any n-variate polynomial of degree d computable by a size-na arithmetic
circuit can be computed by a depth-3 ΣΠΣ of size nca

√
d.

We shall see in section �14.8 that impossibility results for circuits of size nc
√
d computing

degree-d polynomials are known. Thus, as mentioned at the beginning of the chapter, the
situation in the algebraic world is strikingly analogous to that in the boolean world discussed
in section �7.3. We have impossibility results for small-depth circuits that are �just short�
of having major consequences for larger-depth models.

14.6 Completeness

The results in section �9.1, extended to other �elds, show that iterated product of 3 × 3
matrices is complete for algebraic circuits of small depth. As in that section, the reduction
is as simple as it gets: For any power-size circuit one can write down a power-size product
where the matrix entries are either constants or variables that computes the same polynomial.
Using the depth reduction in section �14.5, one can extend this completeness to arbitrary
circuits computing low-degree polynomials.

TBD: Determinant, permanent

14.7 The power of AAC: algebraic AC

Consider the elementary symmetric polynomial of degree d in n variables:

en,d(x1, x2, . . . , xn) :=
∑

S⊆[n],|S|=d

∏
i∈S

xi. (14.1)

These polynomials, and e�cient ways for computing them, are of central importance, as
we also see below in section �14.8. The RHS is an expression for a circuit of size ≥ nd. But
in fact one can do better.
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Theorem 14.8. For any d, en,d has depth-3 circuits of size cn2.

Proof. Linear algebra magic. Note that

p(t, x) :=
n∏
i=1

(1 + txi) =
n∑
i=0

tien,i,

that is, en,i is the coe�cient of td in p(t, x), where x = (x1, x2, . . . , xn). We can compute
p(t, x) e�ciently, and so we should be able to get its coe�cients via interpolation. Speci�cally,
for a �eld element α denote by v the �moment� vector

v := (α0, α1, . . . , αn).

Also denote by e the vector of polynomials in x

e := (e0, e1, . . . , en).

Note that p(α, x) = 〈v, e〉. Suppose we have �eld elements αi for i ∈ [n + 1] whose
corresponding vectors vi are linearly independent. Then we can �nd a linear combination∑

i

aivi

that equals the vector wd with 1 in the coordinate with index d, and zero elsewhere. We
could then compute ed as∑

i

aip(α, x) =
∑
i

ai〈vi, e〉 = 〈
∑
i

aivi, e〉 = 〈wd, e〉 = ed.

The LHS is an algebraic circuit of size cn2.
There remains to exhibit such �eld elements. We can simply pick αi = i,i ∈ [n+ 1], and

the vectors vi are linearly independent (Fact A.12). Over the complex numbers we can also
let αi := ωi where ω is the (n+ 1)-th primitive root of unity e

√
−12π/(n+1). The vectors vi are

then orthogonal because
〈vi, vj〉 =

∑
k∈[n+1]

ωk(i−j)

which is 0 if i 6= j and otherwise is n+ 1. Hence they are independent (Fact A.13). QED

We shall see in Claim 14.1 a di�erent approach where the circuit is somewhat larger but
has additional structure.

14.8 Impossibility results for small-depth circuits

In this section we prove impossibility results for small-depth algebraic circuits. For simplicity,
we only prove such results for circuits of depth 3, and over �elds F of characteristic zero such
as R. The argument contains most of the ideas that go into extending the result to higher
depth and other �elds. The main result we prove is:
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Theorem 14.9. There are explicit polynomials over R of degree d := c log n in n variables
that require depth-3 arithmetic circuits of size ≥ nc

√
d.

The proof has the following steps.

1. We de�ne set-multilinear circuits and prove that any circuit can be converted into a
set-multilinear circuit e�ciently.

2. We introduce a complexity measure, and give an explicit set-multilinear polynomial
for which it is large.

3. We show that the measure is small for e�cient set-multilinear circuits.

We now develop each step in turn.
For concreteness, we allow multiplication by arbitrary constants along wires. So for

example, if two gates compute polynomials p and q, a Σ gate can compute ap + bq for any
a, b ∈ F, and a Π gate can compute apq for any a ∈ F.

14.8.1 Step 1

We partition the n variables into d sets Xi, i ∈ [d]. This partition is �xed throughout the
argument. Jumping ahead, the sizes of the Xi will not be equal, but we will worry about
this later.

De�nition 14.2. A polynomial p is set-multilinear , abbreviated sm, if there is D ⊆ [d]
s.t. every monomial in p has exactly one variable in Xi for every i ∈ D, and no variable in
Xi for i 6∈ D. A circuit is sm if every gate computes an sm polynomial

In particular, p has degree D and is multilinear. Note that D needs not equal [d]; in
particular, p does not have to have degree d, and this will be useful later. On the other hand,
if p does have degree d then necessarily D = [d].

Lemma 14.3. Any ΣΠΣ circuit of size s computing a degree-d sm polynomial has an
equivalent sm ΣΠΣΠΣ circuit of size dcdsc.

In turn we break the proof of this lemma in three claims. The second and third claim
are technically easy, but provide useful breaking points for the proof. Some of the �magic�
happens right in the �rst claim. A simple consequence of it, stated in the second claim, is
making the fan-in of multiplication gates ≤ d. This then makes the size blow-up in the third
claim tolerable. The lemma and the �rst claim generalize without new ideas to circuits of
any depth, we focus on ΣΠΣ for simplicity. The other claims we state in full generality.

The �rst claim makes polynomials homogeneous , i.e., each gate computes a polynomial
where each term has the same degree (but the polynomial is not necessarily sm or even
multilinear). The second reduces the fan-in of the multiplication gates. The third gets sm.

For a polynomial p we de�ne p(k) as the degree-k homogeneous part, consisting of the
monomials of degree exactly k. We say p is homogeneous if p = p(k) for some k
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Claim 14.1. Suppose a ΣΠΣ circuit of size s compute polynomial p. Then there is a ΣΠΣΠΣ
homogeneous circuit of size ddsc which computes the homogeneous parts (p(0), p(1), . . . , p(d))
of p.

The size bound can be improved to c
√
dsc by a less crude analysis of the repeated appli-

cations of Fact A.16 below.

Proof. Consider one product gate q. We show how to compute q(k) with the desired resources.
From this we compute p(k) as follows. Either p(k) = 0, in which case there is nothing to do,
or else it is the sum of q(k)

i where p =
∑
qi.

Write the input Σ gates of q as `i+bj where each `i is a sum
∑

j ai,jxj and bj is a constant
term. Assuming bj = 1, we have

q =
∏
i≤s

(`i + 1) =
∑
S⊆[s]

∏
i∈S

`i.

The k-homogeneous part of q is

q(k) :=
∑

S⊆[s],|S|=k

∏
i∈S

`i.

This is the elementary symmetric polynomial es,k, equation (14.1), evaluated at the `i. It is
a homogeneous polynomial, but as mentioned in section �14.7, computing it directly as in
the RHS above would give size ≥ nd, which we cannot a�ord. The construction in the proof
Theorem 14.8 has smaller size, but it not homogeneous.

We seek an alternative e�cient, homogeneous, ΣΠΣΠΣ circuit. Towards this, consider
the power sum polynomials

ps,k :=
∑
i≤s

xki .

We have (suppressing the subscript s for simplicity)

e1 = p1

e2 = p2
1/2− p2/2

e3 = p3
1 − 3p1p2/2 + p3

...

and so on, which convinces us that we can express the ek via the pk, and as it turns out this
expression is more e�cient.

More in detail, we have by A.16 that

k · ek =
k∑
i=1

(−1)i−1ek−i · pi,

for all k. Applying this repeatedly, we write ek as a sum of ≤ kk products of ≤ k polynomials
pi. Since each pi is naturally a homogeneous

∑∑∏
circuit, we obtain a homogeneous
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∑∏∑∏
circuit for ek. Instantiating the variables with the `i we obtain a

∑∏∑∏∑
circuit for q(k). The size of this circuit is ≤ kk · k · s · k · n, where each factor corresponds to
the fan-in at a level.

Because of homogeneity, we only need to consider k ≤ d. Hence the total size is ≤ ddsc.
QED

Exercise 14.10. Show that we can assume that bj = 1.

Exercise 14.11. Explain why the construction in the proof of Theorem 14.8 is not homo-
geneous.

Claim 14.2. A homogeneous circuit computing a polynomial of degree d has an equivalent
homogeneous circuit of no larger size in which the fan-in of each Π gate is ≤ d.

Proof. Replace all gates computing polynomials of degree > d with the constant 0. The
correctness of this step can be argued inductively. For Σ gate computing a polynomial of
degree d, it is safe to set to 0 any summand with degree > d. This is because by homogeneity,
the summands do not have monomials of degree ≤ d, so all their monomials must cancel
in the output. For a Π gate the same holds, because multiplication increases degree (Fact
A.15), so if it is computing a polynomial p of degree d and a term has degree > d, then in
fact p = 0.

After this, a non-zero product gate can have ≤ d non-constant terms. The constant terms
multiply to a constant that can be placed on a wire following our convention. QED

Finally, we get sm.

Claim 14.3. Suppose sm degree-d polynomial p is computable by a circuit of size s and
depth t where the fan-in of each multiplication gate is ≤ d. Then p is also computable by a
sm circuit of depth t and size dcds.

Proof. We inductively replace each gate g in the circuit with 2d gates gD where for D ⊆ [d]
gate gD computes the monomials in g that are sm w.r.t. D; and add circuitry accordingly.

If g is an input variable x ∈ Xi we have gD = x if D = {i} and gD = 0 otherwise.
If g is a constant we have g∅ = g and gD = 0 otherwise. (Alternatively, we can disallow

constant but de�ne more general addition and multiplication gates with constants in them.)
If

g = g1 + g2 + · · ·+ gi

then simply

gD = g1,D + g2,D + · · ·+ gi,D

for any D.
Finally, if

g = g1 · g2 · · · · · gi
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note that

gD =
∑

g1,D1g2,D2 · · · gi,Di
where the sum is over all partitions (D1, . . . , Di) of D. Now we use the assumption that the
fan-in i of this multiplication is ≤ d. Hence the number of such partitions is at most the
number of partitions of [d] into d elements, which is ≤ dd.

Applying these transformations, the depth of the circuit does not increase as we can
merge adjacent Σ and Π gates. The size multiplies by dcd. QED

Example 14.2. Let n = d = 2, X0 = {0} and X1 = {1} and xi ∈ Xi. Consider the circuit
C := (x0 + x1)2 − x2

0 − x2
1. This circuit is homogeneous but not sm or even multilinear, yet

it computes the sm polynomial 2x0x1.
Let us illustrate how we transform C into an sm circuit.
Consider the Π gate g computing x2

0. Then g{0} = x0,{0}·x0,∅+x0,∅·x0,{0} = x0·0+0·x0 = 0.
Consider now g = (x0 + x1)2. Then g{0,1} = x0x1 + x0x1 = 2x0x1. And the other gD are

∅.
Note how non-multilinear terms such as x2

0 are removed during the process.

14.8.2 Step 2

For this step we further partition the blocks [d] in two. We consider blocks with index i < t,
denoted T1 and those with i ≥ t denoted T2, for a threshold t that will be set later.

De�nition 14.3. Let p be an sm polynomial w.r.t. D ⊆ [d]. We de�ne the matrixMp where
the rows are indexed by the monomials with variables Xi for i ∈D ∩ T1 and the columns by
monomials with variables Xi for i ∈ D∩T2. The m1,m2 entry of the matrix is the coe�cient
of the monomial m1m2 in p.

If either D ∩ T1 or D ∩ T2 is empty the matrix is a row or column matrix, and we can
think of either m1 or m2 as being the constant 1.

The complexity measure µ(p) is the rank of Mp normalized by the geometric mean of the
two sides:

µ(p) :=
rank(Mp)√∏

i∈D∩T1 |Xi| ·
∏

i∈D∩T2 |Xi|
.

Note that the denominator can be written simply as
√∏

i∈D |Xi|. However thinking of
it as a mean of the two sides may help following the argument.

Example 14.3. Consider a sm polynomial ` of degree 1. All the variables belong to one set
Xi, and D = {i}. Then M` is a vector, of rank 1. So µ(`) = 1/

√
|Xi|.

The hard polynomials will have large µ. To construct such polynomials p, we can set the
dimensions to be equal: ∏

i∈T1

|Xi| =
∏
i∈T2

|Xi| (14.2)
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so that Mp is square; and then pick p so that Mp has full rank, for example it is diagonal or
permutation. For such a p we obtain

µ(p) =

∏
i∈T1 |Xi|√∏

i∈T1 |Xi| ·
∏

i∈T2 |Xi|
=

∏
i∈T1 |Xi|∏
i∈T1 |Xi|

= 1.

This value of µ is maximum as also given by the next lemma which will be used in the
next step.

Lemma 14.4. The measure µ enjoys:
1. µ(p) ≤ 1
2. [Sub-additivity] If p and q are sm w.r.t. the same D, µ(p+ q) ≤ µ(p) + µ(q).
3. [Multiplicativity] If p1 and p2 are sm w.r.t. D1 and D2, where D1 ∩D2 = ∅, then p1p2

is sm w.r.t. D1 ∪D2 and µ(p1p2) = µ(p1) · µ(p2).

Exercise 14.12. Prove this. For 3., use Fact A.14.

14.8.3 Step 3

We now need to pick the sizes of the Xi so that µ will be small for the e�cient circuit, while
at the same time keeping equation (14.2). We let Xi with i ∈ T1 have size m and the others
have size m1−δ where δ := 1/(2

√
d). The total number of variables is n = t ·m+(d−t) ·m1−δ,

and so m ≥ nc.
The parameters m and t are picked so that equation (14.2) is true. This requires

mt = m(1−δ)(d−t) ⇐⇒ t = (1− δ)d/(2− δ) ⇐⇒ t = d− d/(2− δ).

We now proceed to show that for such parameters, µ is small.
Consider a ΣΠΣΠΣ circuit. Let q be a Π gate closest to the output and write

q := f1 · f2 · · · · · fk

where the sum of the degrees of the fi is ≤ d and each fi is a ΣΠΣ circuit.
We will show that

µ(q) ≤ 1/mc
√
d (14.3)

from which we conclude the proof of Theorem 14.9 below. To prove equation (14.3) we
consider two cases.

Some fi has degree ≥ c
√
d.

Exercise 14.13. Prove this case. Guideline: Let Ci,j be a
∏∑

sub-circuit of fi; prove:
(1) Wlog Ci,j has the same degree as fi (which is ≥ c

√
d).

(2) µ(Ci,j) ≤ 1/mc
√
d. Use Lemma 14.4 and Example 14.3.

(3) µ(fi) ≤ s/mc
√
d ≤ 1/mc

√
d.

(4) µ(q) ≤ 1/mc
√
d (equation (14.3)).
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Every fi has degree ≤ c
√
d. This is where we use the unbalance. At the high-level, the

idea is simple. Recall the target matrix is square, and has measure 1, which is the maximum.
In the case we are considering, the matrix is �made up� of many small pieces. The size of the
pieces are chosen so that few pieces don't make a square. For perhaps the simplest example
of the phenomenon, suppose you have many domino pieces of size p and many of size q,
where p and q are primes. By picking q of the former and p of the latter, you can make a
pq × pq square. But, if you use few pieces, say < q pieces of length p, you'll never get a
square. Returning to the proof, the di�erence in the side lengths translates into a bound on
µ for each fi, showing that µ is signi�cantly smaller than 1. By multiplicativity of µ, the
bound for q will be the product of these bounds, giving something substantially smaller than
1.

Let fi be sm w.r.t. Di and let ai := |Di ∩ T1| and bi := |Di ∩ T2|. The matrix M(fi) has
sides mai and m(1−δ)bi . Because the rank of M(fi) is at most the minimum of the sides, we

have that µ(fi) is at most the minimum of
√

mai

m(1−δ)bi
and

√
m(1−δ)bi
mai

, which is

1

m0.5|ai−bi(1−δ)|
.

We now argue that this is small, using that ai and bi are integers summing to ≤
√
d. The

quantity of interest is the distance

|ai − (1− δ)bi|,

which we need to bound below.
Generally, we claim that if a, b are integers in [c/ε] then |a− (1− ε)b| ≥ cε(a+ b).

Exercise 14.14. Prove this.

Using this claim we get

µ(fi) ≤
1

mc(ai+bi)/
√
d
.

By the multiplicativity property from Lemma 14.4 we have

µ(q) ≤
∏
i

1

mc(ai+bi)/
√
d
≤ 1

mcd/
√
d
≤ 1

mc
√
d
,

as desired.

14.8.4 Putting the steps together, proof of Theorem 14.9

By Lemma 14.3, equation (14.3), and the sub-additivity property in Lemma 14.4, the measure
of the circuit is

≤ dcdsc/mc
√
d.

As remarked earlier, m ≥ nc and so the denominator is ≥ nc
√

logn. This is bigger than the
numerator and so the ratio will be < 1.

Picking a target polynomial as in Step 2 for which the measure is 1 completes the proof.
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14.9 Algebraic TMs

TBD

14.10 Problems

Problem 14.1. Execute the idea in Exercise 14.4.

Problem 14.2. Prove that Theorem 14.8 is false over F2.

14.11 Notes

The complexity of linear transformations was studied independently in [109, 264].
Theorem 14.2 is from [88]. For depth 2 they prove a slightly stronger, tight bound; they

also show that depth log∗ n su�ces for a linear number of wires.
For the connection to factoring see [230, 174].
Impossibility results for univariate polynomials were �rst studied in [250]. That paper

establishes negative results for polynomials with very large coe�cients, but the results are
non-trivial since arbitrary constants can be used by the circuit. For a survey see the book
[53].

For an introduction to multivariate algebraic complexity see [53] and the survey [237].
14.1 is from [33]. 14.2 is from [249]. For section 14.4 see [110].

Theorem 14.5 is from [160, 52].
For Theorem 14.8 and related constructions, also involving some of the ideas that go into

Claim 14.1, see [236]. For more on the power of algebraic AC see [17].
Theorem 14.9 in section �14.8 is from [170]. It builds on a long line of works, see [171]

for discussion. The complexity measure originates in [202]. The transformation to sm in the
proof of Lemma 14.3 only works for large characteristic, due to the factors arising in Fact
A.16 and related steps. [77] proves the lemma over any �eld, although whether circuits can
be made homogeneous over any �eld remains open, cf. [77] for more discussion.

Theorem 14.7 is the culmination of a line of works about depth reduction that was
rekindled by [6]. See discussion of subsequent work in [111] for this statement for depth 3.
A formulation for any depth is stated in [171].

A general depth reduction theorem was �rst established in [135], but the size bounds
were not controlled. Theorem 14.6, where the size is simultaneously controlled, is from [265]
(see discussion in [265] for more on the history).
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Chapter 15

Data structures

Data structures aim to maintain data in memory so as to be able to support various op-
erations, such as answering queries about the data, and updating the data. The study of
data structures is fundamental and extensive. We distinguish and study in turn two types
of problems: static and dynamic. In the former the input is given once and is not modi�ed
by the queries. In the latter queries can modify the input; this includes classical problems
such as supporting insert, search, and delete of keys.

15.1 Static data structures

Here we have n bits of input data about which we would like to answer m queries. The data
structure aims to accomplish this by storing the input into s words of memory, where each
word is w bits. This is accomplished via an arbitrary map g, with no bound on resources.
But after that, the queries can be answered by a very e�cient map h: each query only
depends on t words. In general, these words can be read adaptively. But for simplicity we
focus on the case in which the locations are �xed by the data structure and the same for
every input x ∈ [2]n. Refer to �gure 15.1.

De�nition 15.1. A static data-structure problem is simply a function f : [2]n → [q]m. A
data structure for f with word-space s, word size w and time t is a decomposition

f(x) = h(g(x))

where g : [2]n → [2w]s, h : [2w]s → [q]m, and each output bit coordinate of h depends on ≤ t
input words.

We say word-space to emphasize s refers to the number of words, not bits. The bit-space
of the structure is sw. Sometimes the queries and or the word size are boolean. Another
typical setting is q = 2w.
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m

t

Figure 15.1: The static data-structure problem.

Exercise 15.1. Consider the data structure problem f : [2]n → [2]m where m = n2 and
query (i, j) ∈ {1, 2, . . . , n}2 is the parity of the input bits from i to j.

Give a data structure for this problem with s = n, w = 1, and t = 2.

Exercise 15.2. Show that any data-structure problem f : [2]n → [2]m has a data structure
with w = 1 and the following parameters:

(1) s = m and t = 1, and
(2) s = n and t = n.

Exercise 15.3. Prove that for every n and m ≤ 2n/2 there exist functions f : [2]n → [2]m

s.t. any data structure with space s = m/2 and w = 1 requires time t ≥ n− c.

By contrast, next we present the the best known impossibility result. To set the stage,
we �rst show how to establish slightly weaker impossibility results via a calculation-free
reduction to communication protocols (cf Chapter 13).

Exercise 15.4. Let f be a data-structure problem as in De�nition 15.1. Show that if a
f has a data structure with parameter names as in De�nition 15.1 then the function g :
[2]n× [2]logm → [q] de�ned as g(x, i) := f(x)i has communication complexity ≤ ct(log s+w).

Focusing on the natural setting where logm ≤ n, we have that if g requires maximum
communication complexity ≥ c logm then

t ≥ c
logm

log s+ w
.

This bound is meaningful when m is large; but in typical settings where n ≤ s ≤ m ≤ nc

it gives nothing.
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The next result gives a re�ned bound where the term log s in the denominator is replaced
with log s/n. This makes for a meaningful bound as long as s is close to n. Settings such
as s = n2 are terra incognita. The re�ned bound is established for bounded-uniformity,
cf. section 11.1.1 and De�nition 11.3.

De�nition 15.2. A function f : [2]n → [q]m is d-wise uniform, or simply d-uniform, if any
d output coordinates are uniform when the input to f is uniform.

Theorem 15.1. Let f : [2]n → [q]q be d-wise uniform. Let q be a power of 2 and c log q ≤ d.
Then any data structure with w = log q using word-space s and time t has:

t ≥ c
log q

log(s/d)
.

Let's make sense of the many parameters. Note that such d-wise uniform functions are
computable with n = d log q = dw input bits, interpreting the input as coe�cients of a
degree d− 1 univariate polynomial over Fq and outputting its evaluations, as in the proof of
Theorem 11.1. Moreover, this is trivially the smallest possible n. Also, let us set m = q so
that m = q = 2w. Plugging these parameters, we obtain for any n and m (powers of 2) an
explicit function f : [2]n → [m]m with the data-structure bound

t ≥ c
logm

log(sw/n)
,

valid as long as c log q ≤ d ⇐⇒ cw ≤ n/w. A typical setting is w = 10 log n giving
m = q = n10. Recall that sw is the bit-space. It follows that if the bit-space is linear in n
then t ≥ c logm. This result remains non-trivial for s slightly super-linear. But remarkably,
if sw = n1+c then nothing is known (for m power in n one only gets t ≥ c).

Proof. The idea in the proof, known as cell sampling, is to �nd a subset S of less than d
memory cells that still allows us to answer ≥ d queries. This is impossible, since we can't
generate d uniform outputs from less than d memory cells.

Let p := 1/q1/4t. Include each memory cell in S with probability p, independently. By
Theorem 2.1, P[|S| ≥ cps] ≤ 2−cps.

We are still able to answer a query if all of its queries fall in S. The probability that this
happens is ε := pt = 1/q1/4. We now claim that with probability ≥ 0.5ε, we can still answer
0.5εq ≥ √q queries. Indeed, let B be the number of queries we cannot answer. We have
E[|B|] ≤ q(1− ε). And so

P[|B| ≥ q(1− 0.5ε)] ≤ 1− ε
1− 0.5ε

≤ 1− 0.5ε.

Thus, if the inequality 2−cps < 0.5ε = 1/qc holds then there exists a set S of cps cells with
which we can answer ≥ √q > d queries. Since the function is d-uniform, answering the latter
queries requires ≥ dw input bits, and so Sw ≥ dw ⇐⇒ S ≥ d ⇐⇒ cps ≥ d.
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Therefore we reach a contradiction if the following chain of inequalities is true:

c log q ≤ cps < d.

Because d > c log q by assumption, we can say that the �rst inequality is automatically
satis�ed. Speci�cally, we can set s to be the largest s.t. cps < d, and the �rst inequality is
satis�ed. We reach a contradiction if cps < d, and the result follows. QED

Surprisingly, this result is nearly tight. There are many parameters �oating around,
so �tight� should be quali�ed. But basically, there are bounded-uniform functions f , with
nearly optimal parameters, which have data structures with a tradeo� matching Theorem
15.1. One can in fact achieve results in the same spirit for f with optimal parameters (i.e.,
polynomial evaluation), thus matching the function in Theorem 15.1, but this requires a
di�erent construction, and I don't know if constant time is known.

Theorem 15.2. Let q = n10 = 2w. There is f : [2]n → [q]q which is d-wise uniform and has
a data structure with w-bit words, time t, word-space s = cdw ·m1/t, and n = ctdw.

Let us illustrate parameters. Both n and sw (regardless of time ) are ≥ dw, for else you
can't generate d uniform coordinates. So there is a d-wise uniform f with nearly optimal
n that has a data structure achieving space optimal up to a factor cm1/t, and time t. For
example, we can have n = cdw, word space dw · q0.01, and t = c. Whereas you could have
thought that word space close to q would be necessary. Qualitatively, the space approaches
optimal exponentially fast with the time t, the same behavior exhibited in the Theorem 15.1.
For a proof see Problem 15.1.

15.1.1 Succinct data structures

Succinct data structures are those where the space is close to the minimum, n. Speci�cally,
we let s = n + r for some r = o(n) called redundancy. Unsurprisingly, stronger bounds can
be proved in this setting. But, surprisingly, again these stronger bounds were shown to be
tight. Moreover, it was shown that improving the bounds would imply stronger circuit lower
bounds.

To illustrate, consider error-correcting codes, cf Exercise 2.12.

Theorem 15.3. Any data-structure for an a-good code f : [2]n → [2]m with w = 1 using
space n+ r requires time ≥ can/r.

This is nearly matched by the following result. In fact, later we will prove the stronger
result that dynamic data structures exist for error-correcting codes.

Theorem 15.4. There is a good code f : [2]n → [2]m that for any r has a data structure
with w = 1, space n+ r, and time c(n/r) log3 n.

Exercise 15.5. Prove this using the code in Theorem 14.2. Hint: If a circuit has ` wires,
there are ≤ r gates with fan-in > `/r. That's your redundancy.
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The techniques in the hint apply generically. They imply that proving a time lower bound
of (n/r) logc n would imply new circuit lower bounds, for circuits with XOR gates only, or
for circuits with arbitrary gates. For the boolean model, the following connection is also
known.

Theorem 15.5. Let f : [2]n → [2]am be a function computable by bounded fan-in circuits
with bm wires and depth b logm, for constants a, b. Then f has a data structure with space
n+ o(n) and time no(1).

Hence, proving nε time lower bounds for succinct data structures would give functions
that cannot be computed by linear-size log-depth circuits, cf. 8.1.2.

15.1.2 Succincter: The trits problem

In this section we present a cute and fundamental data-structure problem with a shocking
and counterintuitive solution. The trits problem is to compute f : [3]n → ([2]2)n where on
input n �trits� (i.e., ternary elements) (t1, t2, . . . , tn) ∈ [3]n f outputs their representations
using two bits per trit.

Example 15.1. For n = 1, we have f(0) = 00, f(1) = 01, f(2) = 10.

Note that the input ranges over 3n elements, and so the minimum space of the data
structure is s = dlog2 3ne = dn log2 3e ≈ n · 1.584 . . . This will be our benchmark for space.
One can encode the input to f as before using bits without loss of generality, but the current
choice simpli�es the exposition.

Simple solutions

• The simplest solution is to use 2 bits per ti. With such an encoding we can retrieve
each ti ∈ [3] by reading just 2 bits (which is optimal). The space used is s = 2n and
we have linear redundancy.

• Another solution, which we basically already mentioned, is what is called arithmetic
coding : we think of the concatenated elements as forming a ternary number between
0 and 3n − 1, and we write down its binary representation. To retrieve ti it seems we
need to read all the input bits, but the space needed is optimal.

• For this and other problems, we can trade between these two extreme as follows. Group
the ti's into blocks of t. Encode each block with arithmetic coding. The retrieval time
will be ct bits and the needed space will be

(n/t)dt log2 3e ≤ n log2 3 + n/t

(assuming t divides n). In other words, block-wise arithmetic coding. This provides a
power trade-o� between time and redundancy, but no more (see the notes).
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The shocking solution: An exponential trade-o�

We now present an exponential trade-o�: retrieval time ct bits and redundancy n/2t + c. In
particular, if we set t = c log n, we get retrieval time c log n and redundancy c. Moreover,
the bits read are all consecutive, so with word size w = log n this can be implemented in
constant time. To repeat, we can encode the trits with constant redundancy and retrieve each
in constant time. This solution can also be made dynamic.

Theorem 15.6. The trits problem has a data structure with space n log2 3 + n/2t + c (i.e.,
redundancy n/2t + c) and time ct, for any t and with word size w = 1. For word size
w = log n the time is constant.

Next we present the proof.

De�nition 15.3. [Encoding and redundancy] An encoding of a set A into a set B is a one-to-
one (a.k.a. injective) map f : A→ B. The redundancy of the encoding f is log2 |B|−log2 |A|.

The following lemma gives the building-block encoding we will use.

Lemma 15.1. For all sets X and Y , there is an integer b, a set K and an encoding

f : X × Y → [2]b ×K

with redundancy ≤ c/
√
|Y | and s.t. x ∈ X can be recovered just by reading the b bits in

f(x, y).

Exercise 15.6. Prove K ≤ cY .

The basic idea for proving the lemma is to break Y into C ×K and then encode X ×C
by using b bits:

X × Y → X × C ×K → [2]b ×K.

There is however a subtle point. If we insist on always having |C| equal to, say,
√
|Y | or

some other quantity, then one can cook up sets that make us waste a lot (i.e., almost one
bit) of space. The same of course happens in the more basic approach that just sets Y = K
and encodes all of X with b bits. The main idea will be to �reason backwards,� i.e., we will
�rst pick b and then try to stu� as much as possible inside [2]b. Still, our choice of b will
make |C| about

√
|Y |.

Proof. Assume Y > 1 without loss of generality. De�ne b :=
⌈
log2

(
X ·
√
Y
)⌉

, and let

B := [2]b. To simplify notation, de�ne d := 2b/X. Note c
√
Y ≤ d ≤ c

√
Y .
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How much can we stu� into B? For a set C of size |C| = bB/Xc, we can encode elements
from X × C in B. The redundancy of such an encoding can be bounded as follows:

logB − logX − logC =

= log
2b

X
− log

⌊
2b

X

⌋
= log d− logbdc
≤ log d− log(d− 1)

= log

(
1 +

1

d− 1

)
≤ c

d− 1

≤ c√
Y − 1

≤ c√
Y
.

To calculate the total redundancy, we still need to examine the encoding from Y to C×K.
Choose K of size |K| = dY/Ce, so that this encoding is possible. With a calculation similar
to the previous one, we see that the redundancy is:

logC + logK − log Y

= log

⌈
Y

C

⌉
− log

Y

C

≤ log

(
1 +

C

Y

)
≤cC

Y

≤c

⌊
2b

X

⌋
Y

≤c 2b

X · Y

≤c2
log(X·

√
Y )

X · Y

≤c
√
Y

Y

=c
1√
Y
.

The total redundancy is then c/
√
|Y |. By construction, x ∈ X can be recovered from

the element of B only. QED
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Proof of Theorem 15.6. Break the ternary elements into blocks of size t: (t′1, t
′
2, . . . , t

′
n/t) ∈

T1 × T2 × . . . × Tn/t, where Ti = [3]t for all i. The encoding, illustrated in �gure 15.2, is
constructed as follows, where we use fL to refer to the encoding guaranteed by Lemma 15.1.

Compute fL(t′1, t
′
2) = (b1, k1) ∈ B1 ×K1.

For i = 2, . . . , n/t− 1 compute fL(ki−1, t
′
i+1) := (bi, ki) ∈ Bi ×Ki.

Encode kn/t−1 in binary as bn/t using arithmetic coding.
The �nal encoding is (b1, b2, . . . , bn/t). We now compute the redundancy and retrieval time.
One can visualize this as a �hybrid argument� transforming a product of blocks of ternary
elements into a product of blocks of binary elements, one block at the time.

Redundancy: From (1) in Lemma 15.1, the �rst n/t − 1 encodings have redundancy
c3−t/2 ≤ 1/2ct. For the last (arithmetic) encoding, the redundancy is at most 1. So the total

redundancy is at most
(n
t
− 1
)
· 1

2ct
+ 1 =

n

2ct
+ c.

Retrieval Time: Say that we want to recover some tj which is in block t′i. To recover
block t′i, Lemma 15.1 guarantees that we only need to read at bi−1 and bi. This is because
ki−1 can be recovered by reading only bi, and t′i can be recovered by reading ki−1 and bi−1.
Thus to complete the proof it su�ces to show that each bi has length ct.

This is not completely obvious because one might have thought that theKi become larger
and larger, and so we apply the lemma to larger and larger inputs and the Bi get large too.
However, recall that each Ki ≤ cTi = c3t from Exercise 15.6. Hence, every time we apply
the lemma on an input of size at most s ≤ 3ct. Since the encoding in Lemma 15.1 has small
redundancy, none of its outputs can be much larger than its input, and so Bi = 2ct. QED
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Figure 15.2: Succinct Encoding
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15.2 Dynamic data structures

We now study dynamic data structures. As we mentioned, here the input is not �xed but can
be modi�ed by the queries. For concreteness, we focus on the speci�c problem of maintaining
a codeword.

De�nition 15.4. A dynamic data-structure for a code f : [2]n → [2]m supports two types
of operations, starting with the all-zero message x ∈ [2]n:

M(i, b) for i ∈ {1, 2, . . . , n} and b ∈ [2] which sets bit i of the message to b, and
C(i) for i ∈ {1, 2, . . . ,m} which returns bit i of the codeword corresponding to the current

message.

The time of a dynamic data structure is the maximum number of operations in memory
cells required to support an operation. This is similar to the cell-probe RAM (De�nition 1.8)
where we ignore details and solely focus on information transfer among cells. Recall for RAMs
and a fortiori cell-probe RAMs we do not know how to prove impossibility results. This can
be considered as an o�ine mode of computation. By contrast the setting of data structure
is online in that we have to answer queries as they arrive. In this setting it is natural to ask
for small running times, like constant, and we can prove non-trivial impossibility results.

Theorem 15.7. Dynamic data-structures for any good code (cf Exercise 2.12) take time
t ≥ c logw n ≥ (c log n)/ log log n for cell size w := log n.

One might wonder if stronger bounds can be shown. But in fact there exist good codes
for which the bounds are nearly tight.

Theorem 15.8. There are dynamic data structures for good codes running in time c log2 n
with cell size w = 1.

Exercise 15.7. Prove Theorem 15.8 using the code in Theorem 14.2. Hint: The data
structure is the middle layer. Bound the fan-out of the input gates in the proof of Theorem
14.2.

Proof of Theorem 15.7. Pick x ∈ [2]n uniformly and i ∈ {1, 2, . . . ,m} uniformly, and
consider the sequence of operations

M(1, x1),M(2, x2), . . . ,M(n, xn), C(i).

That is, we set the message to a uniform x one bit at a time, and then ask for a uniformly
selected bit of the associated codeword which we denote by Cx := (Cx(1), Cx(2), . . . , Cx(n)) ∈
[2]m.

We divide the n operations M(i, xi) into consecutive blocks, called epochs. Epoch e
consists of n/w3e operations. Hence we can have at least E := c logw n epochs, and we can
assume that we have exactly this many epochs (by discarding some bits of n if necessary).
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The geometrically decaying size of epochs is chosen so that the number of message bits
set during an epoch e is much more than all the cells written by the data structure in future
epochs.

A key idea of the proof is to see what happens when the cells written during a certain
epoch are ignored, or reverted to their contents right before the epoch. Speci�cally, after the
execution of the M operations, we can associate to each memory cell the last epoch during
which this cell was written. Let De(x) denote the memory cells of the data structure after
the �rst n operations M , but with the change that the cells that were written last during
epoch e are replaced with their contents right before epoch e. De�ne Ce

x(i) to be the result
of the data structure algorithm for C(i) on De(x), and Ce

x = Ce
x(1), Ce

x(2), . . . , Ce
x(n).

Let t(x, i, e) equal 1 if C(i), executed after the �rst n operations M , reads a cell that was
last written in epoch e, and 0 otherwise. We have

t ≥ max
x,i

∑
e

t(x, i, e) ≥ Ex,i
∑
e

t(x, i, e) =
∑
e

Ex,it(x, i, e) ≥
∑
e

Ex∆(Cx, C
e
x), (15.1)

where the last inequality holds because Ce
x(i) 6= Cx(i) implies t(x, i, e) ≥ 1.

We now claim that if t ≤ w then Ex∆(Cx, C
e
x) ≥ c for every e. This concludes the proof.

In the remainder we justify the claim. Fix arbitrarily the bits of x set before Epoch e.
For a uniform setting of the remaining bits of x, note that the message ranges over at least

2n/w
3e

codewords. On the other hand, we claim that Ce
x ranges over much fewer strings. Indeed,

the total number of cells written in all epochs after e is at most

t
∑
i≥e+1

n/w3i ≤ ctn/w3(e+1).

We can describe all these cells by writing down their indices and contents using B :=
ctn/w3e+2 bits. Note that this information can depend on the operations performed dur-
ing Epoch e, but the point is that it takes few possible values overall. Since the cells last
changed during Epoch e are reverted to their contents before Epoch e, this information
su�ces to describe De(x), and hence Ce

x. Therefore, C
e
x ranges over ≤ 2B strings.

For each string in the range of Ce
x at most two codewords can have relative distance ≤ c,

for else you'd have two codewords at distance ≤ 2c, violating the distance of the code.
Hence except with probability 2 · 2B/2n/w3e

over x, we have ∆(Cx, C
e
x) ≥ c. If tM ≤ w

then the �rst probability is ≤ 0.1, and so Ex∆(Cx, C
e
x) ≥ c, proving the claim. QED

Exercise 15.8. Explain how to conclude the proof given the claim.

15.3 Problems

Problem 15.1. Prove Theorem 15.2. Hint: Use the construction Theorem 11.4. How
uniform needs the input be?
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Problem 15.2. In this problem you will show that proving impossibility results for dynamic
data structures is easier (or no harder) than proving them for static data structures.

Let f : [2]n → [2]m be a static data structure problem. Give a set of n+m queries s.t. if
a dynamic data structure can support them in time t then f has a data structure with space
s ≤ tn and time t. Feel free to assume word size w = 1 and non-adaptive query algorithms
throughout (though these cases are not really satisfying, since the power of dynamic data
structure relies on larger word size and adaptivity � but one can prove a suitable extension
for more general cases). (A non-adaptive query algorithm means that the memory locations
accessed depend only on the query, and not on the values of previous queries.)

15.4 Notes

The connection between data structures and communication complexity is from [186] and
was studied more in [187]. Theorem 15.1 is from [238]. It was rediscovered in [166]. E�cient
data structure for polynomial evaluation (complementing Theorem 15.2) are in [153].

Theorem 15.3: [89]. E�cient data structures for ECC, both static in Theorem 15.4 and
dynamic in Theorem 15.8, as well as the connection to circuits, are from [282].

The breakthrough result on the trits problem is from [209]. After that a negative result
was proved in [279], whose parameters were then matched by Theorem 15.6, proved in
[209, 70]. Our exposition is from [274]. Using number-theoretic results on logarithmic forms,
it is shown in [279] that block arithmetic coding does not do better than a power tradeo�.

For dynamic data structures, the technique in the proof of Theorem 15.7 is from [84] and
has been applied to many other natural problems. It is not far from the state-of-the art in
this area, which is log1+c n [167].
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Chapter 16

Barriers

In an attempt to understand the Grand Challenge (Chapter 3), one can identify several
proof techniques and show or speculate that they cannot solve it. Such arguments are known
as �barriers.� Several barriers have been put forth, and in fact there are even barriers to
barriers, i.e., arguments indicating that proving a barrier is di�cult, making complexity
theory a rather philosophical and introspective �eld.

The two main barriers are the black-box (a.k.a. oracle or relativization barrier) and the
natural proofs barrier.

16.1 Black-box

As hinted, many of the results we have shown don't really exploit the speci�cs of the model
we are working with, but work in greater generality. How to make this more precise? When
programming, we can think of having access to a powerful library , a.k.a. subroutine, oracle,
black box, etc. If our argument also applies when given access to any black box we say it
is black-box, or that it relativizes. The black-box barrier helps us understand the limits of
basic simulation arguments, including diagonalization, which tend to relativize.
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The precise model is the same we encountered in Chapter 4, see De�nition 4.2. We equip
our models, such as TMs, with access to a function f : [2]∗ → [2], known as oracle. At any
point, the model can ask for the value of the function at an input that has been computed.
In the case of TMs, we can think of a special oracle tape and a special oracle state. Upon
entering the state, the contents x ∈ [2]∗ on the oracle tape are replaced in one step with
f(x) ∈ [2]. We can then de�ne corresponding complexity classes, denoted Pf , and so on.

To illustrate, consider the separation P 6= Exp, which follows from the Time Hierarchy
Theorem 3.3. The result relativizes:

Theorem 16.1. For every oracle f : [2]∗ → [2], Pf 6= Expf (i.e., P 6= Exp relativizes).

Proof. Diagonalization and the time hierarchy work just as well for oracle machines. Specif-
ically, when simulating a machine M running in time t with a machine M ′ running time
t′ > t, the simulation proceeds as before, and if M queries the oracle then M ′ does that as
well. QED

Exercise 16.1. Prove PSpacef ⊆ Expf for every oracle (i.e., PSpace ⊆ Exp relativizes).

Next we argue that relativizing techniques cannot resolve other major questions. Perhaps
the simplest example is for P vs. PSpace, because the way the oracle is accessed is clear. We
show that there are oracles w.r.t. which the P vs. PSpace question can be resolved either
way, so one cannot resolve in a way that extends to all oracles, as in Theorem 16.1.

Theorem 16.2. There are oracles f, g s.t.:
Pf = PSpacef , and
Pg 6= PSpaceg.

Proof. The oracle f can be any PSpace-complete function. For example, let f take as input
(M, 1s, x), simulate M using space s on input x for ≤ |M |s steps, and return its answer. If
M exceeds space s, the oracle returns 0. We claim that PSpacef = PSpace. This is just
because the oracle queries can be answered by direct simulation using power space. Further,
PSpace ⊆ Pf , because an algorithm on the rhs can query f on the input corresponding to
an algorithm on the lhs. The proof is completed by combining the two claims.

The construction of g is more involved. To illustrate the main idea, let us �rst assume
that oracle machines, on inputs of length n, only query the oracle at inputs of length n as
well. Then we can de�ne the oracle g as follows. Let M1,M2, . . . be an enumeration of all
oracle machines. On an input of length n, run Mn for 2n − 1 steps on input 1n, returning
zero for all oracle queries (if M doesn't stop, force stop and output, say, 0). If M outputs 1
then set g to be zero on all [2]n. Otherwise, set g to be zero on all [2]n except for one input
y that M didn't query, where g(y) = 1. This concludes the de�nition of the oracle. Now
consider the problem Hg of determining, on input 1n, if there exists y ∈ [2]n : g(y) = 1. This
problem is in PSpaceg, by going through all y. But by construction it isn't in Pg. To show
the latter, assume there is a s.t. Ma solves the problem in time na. Pick b large enough so
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that Mb is equivalent to Ma and ba < 2b, and consider Mb(1
b) = Ma(1

b). By construction, g
returns 0 on all oracle queries, and queries < 2b of the inputs of length b. By construction,
the machine returns 0 i� there is y ∈ [2]b : g(y) = 1. Contradiction.

That's the main idea. Now, for completeness, we drop the assumption that on inputs
of length n only oracle queries of length n are made. The idea is just to pick su�ciently
spaced-out inputs so that the above strategy can be executed again. We set values of the
oracle one machineMi at the time (whereas previously one could have processed all machines
simultaneously). For each machine we set the values of the oracle at one more input length,
so that on that input length the power-time oracle machine makes a mistake. In the generic
iteration, we start with having an oracle s.t. Hg cannot be solved by machine Mj running in
time nj, for any j < i, and only the �rst ci input lengths of the oracle are set. (The latter
condition is w.l.o.g..) Again, our goal is to extend the oracle so that Hg cannot be solved
even by Mi running in time ni. To do this, consider an input length m s.t. (1) Mi = Mm,
(2) mi < 2m, and (3) g(y) was not set for any y ∈ [2]m. We set the oracle as before. That
is, run Mm on input 1m for 2m − 1 steps, answering all oracle queries of length m or bigger
with zero, and all oracle queries of length < m following the de�nition of g (which we can
assume to be set on all lengths < m, and note may involve both 0 and 1 outputs). Then we
de�ne g as before: If Mm outputs 1 we set g to be zero on inputs of length m, otherwise we
set it to 1 on one of the queries of length m that wasn't queried by Mm on input 1m. QED

Exercise 16.2. (1) Write down the de�nition of NPf . (2) show that P vs. NP cannot be
solved via black-box techniques, by following the proof of Theorem 16.2.

16.2 Natural proofs

The natural proofs barrier aims to explain the limit of combinatorial proof techniques. The
idea is simple:

(1) Most combinatorial proof techniques against a class of functions F (for example, F
are the functions on n bits computable by circuits of size n10 and depth 10 log n) do more
than providing a separation: They yield an e�cient algorithm that given the truth table
of length 2n of a function can distinguish tables coming from F from those coming from
uniformly random functions.

(2) The classes F for which we would like to prove impossibility are believed to be powerful
enough to compute pseudorandom functions, i.e., truth tables that cannot be e�ciently
distinguished from uniformly random functions.

Note that (2) is not known unconditionally, but just believed to be the case. This is
where complexity theory gets quite philosophical. We can't really prove (2) without solving
the Grand Challenge, in which case these barriers are not actual barriers. On the other hand
one can have a belief that (2) is indeed true even though we can't prove it, and if that's
the case indeed to solve the Grand Challenge one needs to somehow bypass (1) and �nd
alternative techniques. We currently don't seem to have such techniques.
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That's not all, however. In some cases we can bypass (2) and claim unconditionally that
e�cient techniques won't work. The idea is that if lower bounds are not true, we can't
prove them; but if lower bounds are true, then we can use them to construct pseudorandom
functions.

16.2.1 TMs

We illustrate the natural-proofs barrier for 1TMs. Let us revisit the information bottleneck
technique from section �3.1 to show that from it we can extract an e�cient algorithm to
distinguish truth-tables computed by fast 1TMs from uniform functions. One is tempted to
consider a test checking if there is a large set where the function is constant, and moreover
X is a product set X = Y ×Z. However, it is not clear that this test would be e�cient. It is
more convenient to use the simulation of 1TMs by low-communication protocols, Theorem
13.6, and use the quantity R from section 13.2.2.

16.2.1.1 Telling subquadratic-time 1TMs from random

Given the truth-table of a function f : [2]n → [2], our test D will consider the function
f0 : [2]n/3 × [2]n/3 → [2] de�ned as f0(x, y) := f(x0n/3y), and check if R(f0) ≥ 2−cn.

First, let us verify that fast 1TMs indeed pass D. Let M be an s-state 1TM running in
time t computing f : [2]n → [2]. By Theorem 13.6, f0 has 2-party protocols with communi-
cation d := c(log s)t/n and error ≤ 1/2. By Lemma 13.3, R(f0) ≥ 2d/c ≥ sct/n.

Second, let's verify that D is e�ciently computable. Indeed, following the de�nition we
can compute D in time 2cn, which is power in the input length 2n.

Third, and �nally, we show that random functions U : [2]n → [2] don't pass the test.
Indeed, we have

EU [R(U)] = EUEe x01,x02
x11, x

1
2

[U(x0
1, x

0
2) + U(x0

1, x
1
2) + U(x1

1, x
0
2) + U(x1

1, x
1
2)].

When the x1 are distinct and the x2 are distinct, the expectation is 0. In the other
case the expectation is 1, and this happens with prob. ≤ 2−cn. Therefore EU [R(U)] ≤ 2−cn.
Moreover, R is never negative, for R(f) = Ex01

x11

(Eye[f(x0
1, y) + f(x0

2, y)])
2
. Hence

PU [R(U) ≥ 2−cn] ≤ 2−cn.

The upshot of all of the above is that we have devised an e�cient test that can distinguish
truth tables of functions computed by fast 1TMs from truth tables of uniformly random
functions.

16.2.1.2 Quadratic-time 1TMs can compute pseudorandom functions

We now sketch a candidate pseudorandom function computable in quadratic time by 1TMs
with cn2 states. The candidate is an asymptotic generalization of a well-documented and
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Figure 16.1: One round of an SPN

widely used block cipher: the Advanced Encryption Standard , AES . AES is based on the
substitution-permutation network (SPN) structure, and will actually compute a function
from [2]n → [2]n (whereas range [2] would su�ce for our goals). On input x ∈ [2]n, an SPN
is computed over a number r of rounds, where each round �confuses� the input by dividing it
into m/b bundles of b bits and applying a substitution function (S-box) to each bundle, and
then �di�uses� the bundles by applying a matrix M with certain �branching� properties. At
the end of each round i, the n bits are xor-ed with an n-bit round seed ki, refer to �gure 16.1.

The candidate follows the design considerations behind the AES block cipher, and par-
ticularly its S-box. For any n that is a multiple of 32, we break the input into m := n/8
bundles of b = 8 bits each, viewed as elements in the �eld F28 , and perform r = n rounds.
We use the S-box S(x) := x2b−2. M is computed in two (linear) steps. In the �rst step, a
permutation π : [m] → [m] is used to shu�e the b-bit bundles of the state; namely, bundle
i moves to position π(i). The permutation π is computed as follows. The m bundles are
arranged into a 4 ×m/4 matrix. Then row i of the matrix (0 ≤ i < 4) is shifted circularly
to the left by i places. In the second step, a maximal-branch-number matrix φ ∈ F4×4 is
applied to each column of 4 bundles.

Let us now illustrate how one round can be computed in time cn with cn states. The
bundles are written on the tape in column-major order: First the 4 bundles of the 1st
column, then the 4 bundles of the 2nd column, and so on. The cn instances of S and ϕ can
be computed in time cn. To see that π can also be computed in time cn, note that due to
the representation, we can compute π with one pass, using that all but c bundles need to
move ≤ c positions away. Finally, encoding the n-bit seed in the TM's state transitions, the
addition of each round key also takes time cn.

Therefore, the r = n rounds can be computed in time cn2 with cn2 states.
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By the simulation of TMs by circuits, this candidate is also computable by power-size
circuits. A naive implementation gives fairly large depth, so next we consider smaller-depth
circuits.

16.2.2 Small-depth circuits

In section �8.5 we saw several impossibility results for AC. In the next exercise you are asked
that at least one of the proof techniques we saw is natural.

Exercise 16.3. Give an e�cient algorithm to distinguish truth tables of functions in AC
from uniform. Hint: Use Exercise 8.19.

There are candidate pseudorandom functions computable in TC. Some of them are based
on popular conjectures, such as the hardness of factoring, cf Theorem 14.3. The critical
feature of TC that enables computing such candidates is iterated multiplication, see Theorem
8.8.

16.3 Notes

In an e�ort to make progress and understand the reach of current techniques, essentially
every technique in complexity theory has been analyzed and, with few exceptions, �led
under �black-box� or �natural-proofs.� Especially for �black-box� this involved a myriad
di�erent oracle constructions. Often, these constructions are related to, and have provided
some motivation for the study of, basic complexity classes. For example, PHf basically
corresponds to AC functions of the truth table of f , and one can use results about AC to
give various oracle separations for PH and related classes. Indeed, a major motivation for
impossibility results for AC was showing that the PH does not collapse w.r.t. some oracles
[294]. After this �rst proli�c phase of oracle constructions, starting about half a century
ago, a second phase has followed during which it was realized that oracles provide limited
information and they were relegated as curiosities. In a more recent third phase they have
made a comeback in cryptography and quantum computing, often under the terminological
disguise of black-box.

Relativization originated in the seminal work [30] and led to countless works on oracles.
A variant of relativization where the oracles have additional algebraic structure is sharper
for certain proof techniques and is studied in [2].

Natural proofs is from [217]. AES is described in [67]. The SPN structure of alternat-
ing �confusion� and �di�usion� steps was put forth already in [232]. The candidate 1TM
pseudorandom function in section 16.2.1.2 is from [185].

The PRF in TC is from [193]. It gives TC of size ≥ nc. The work [13] considers TC of
size n1+ε. [185] present a candidate, also based on AES, with these resources.
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Chapter 17

I believe P=NP

�[...] Now it seems to me, however, to be completely within the realm of possibility that
φ(n) grows that slowly. Since it seems that φ(n) ≥ k·n is the only estimation which one can
obtain by a generalization of the proof of the undecidability of the Entscheidungsproblem
and after all φ(n) ∼ k · n (or ∼ k · n2) only means that the number of steps as opposed
to trial and error can be reduced from N to logN (or (logN)2). However, such strong
reductions appear in other �nite problems [...].� [94]

The only things that matter in a theoretical study are those that you can prove, but
it's always fun to speculate. After worrying about P vs. NP for half my life, and having
carefully reviewed the available �evidence� I have decided I believe that P = NP.

A main justi�cation for my belief is history:

1. In the 1950's Kolmogorov conjectured that multiplication of n-bit integers requires time
≥ cn2. That's the time it takes to multiply using the method that mankind has used
for at least six millennia. Presumably, if a better method existed it would have been
found already. Kolmogorov subsequently started a seminar where he presented again
this conjecture. Within one week of the start of the seminar, Karatsuba discovered his
famous algorithm running in time cnlog2 3 ≈ n1.58. He told Kolmogorov about it, who
became agitated and terminated the seminar. Karatsuba's algorithm unleashed a new
age of fast algorithms, including the next one. I recommend Karatsuba's own account
[150] of this compelling story.

2. In 1968 Strassen started working on proving that the standard cn3 algorithm for multi-
plying two n×n matrices is optimal. Next year his landmark cnlog2 7 ≈ n2.81 algorithm
appeared in his paper �Gaussian elimination is not optimal� [248].

3. In the 1970s Valiant showed that the graphs of circuits computing certain linear trans-
formations must be a super-concentrator, a graph which certain strong connectivity
properties. He conjectured that super-concentrators must have a super-linear num-
ber of wires, from which super-linear circuit lower bounds follow [263]. However, he
later disproved the conjectured [264]: building on a result of Pinsker he constructed
super-concentrators using a linear number of edges.
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4. At the same time Valiant also de�ned rigid matrices and showed that an explicit
construction of such matrices yields new circuit lower bounds. A speci�c matrix that
was conjectured to be su�ciently rigid is the Hadamard matrix. Alman and Williams
recently showed that, in fact, the Hadamard matrix is not rigid [14].

5. Constructing rigid matrices is one of three ways to get circuit lower bounds from a
graph decomposition in [264]. Another way is via communication lower bounds. Here
a speci�c candidate was the sum-index function, but then Sun [253] gave an e�cient
protocol for sum-index.

6. The LBA problems (Is L = NL? Is NL closed under complement?) A negative solution
to the second problem obviously implies a negative solution to the �rst. A solution
to the second problem was found after more than 20 years after the formulation [137,
254, 255]. The general belief was that NL is not closed under complement, just like
today the general belief seems to be that NP is not. But in fact, NL is closed under
complement, cf Theorem 7.20.

7. the second problem was solved in the a�rmative would imply a negative answer to t
TBD

8. After �nite automata, a natural step in lower bounds was to study sightly more general
programs with constant memory. Consider a program that only maintains c bits of
memory, and reads the input bits in a �xed order, where bits may be read several
times. It seems quite obvious that such a program could not compute the majority
function in polynomial time (see Chapter 0). This was explicitly conjectured by several
people, including [47]. Barrington [189] famously disproved the conjecture by showing
that in fact those seemingly very restricted constant-memory programs are in fact
equivalent to log-depth circuits, which can compute majority (and many other things)
(see Theorem 9.1).

9. Mansour, Nisan, and Tiwari conjectured [180] in 1990 that computing hash functions
on n bits requires circuit size Ω(n log n). Their conjecture was disproved in 2008 [143]
where a circuit of size O(n) was given.

10. For 30+ years the fastest run-time for graph isomorphism was exponential. A great
deal was written on e�cient proof systems for graph non-isomorphism. In 2015 Babai
shocked the world with an almost power-time algorithm for graph isomorphism.

11. Max�ow is a central problem studied since the dawn of computer science. All solutions
had running time ≥ n1+c, until a quasi-linear algorithm obtained in 2022.

12. In number-on-forehead communication complexity, the function Majority-of-Majorities
was raised as a candidate for being hard for k ≥ log1+c n players. This was disproved in
[25] and subsequent works, where many other counter-intuitive protocols are presented,
see section �13.4. For pointer chasing, a similar bound was �rst claimed and then
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retracted [69], then it was made again more recently (personal communication), only
to be found in contradiction with the protocol in [212] (Theorem 13.12).

And these are just some of the more famous ones. The list goes on and on. In data
structures, would you think it possible to switch between binary and ternary representation
of a number using constant time per digit and zero space overhead? Turns out it is [209,
70] (see section 15.1.2). Do you believe factoring is hard? Then you also believe there
are pseudorandom generators where each output bit depends only on c input bits [19], see
section �9.5. Known algorithms for directed connectivity use either super-polynomial time
or polynomial memory. But if you are given access to polynomial memory full of junk that
you can't delete, then you can solve directed connectivity using only logarithmic (clean)
memory and polynomial time [51], section �9.6. And I haven't even touched on the many
broken conjectures in cryptography, most recently related to obfuscation.

On the other hand, arguably the main thing that's surprising in the lower bounds we
have is that they can be proved at all. The bounds themselves are hardly surprising. Of
course, the issue may be that we can prove so few lower bounds that we shouldn't expect
surprises. Some of the undecidability results I do consider surprising, for example Hilbert's
10th problem. But what is actually surprising in those results are the algorithms, showing
that even very restricted models can simulate more complicated ones (same for the theory
of NP completeness). In terms of lower bounds they all build on diagonalization, that is, go
through every program and �ip the answer, which is boring.

The evidence is clear: we have grossly underestimated the reach of e�cient computation,
in a variety of contexts. All signs indicate that we will continue to see bigger and bigger
surprises in upper bounds, and P=NP. Do I really believe the formal inclusion P=NP?
Maybe, let me not pick parameters. What I believe is that the idea that lower bounds
are obviously true and we just can't prove them is not only baseless but even clashes with
historical evidence. It's the upper bounds that are missing.

The �thousand di�erent problems� argument for P 6= NP

�The class NP [...] contains thousands of di�erent problems for which no e�cient solving
procedure is known.�[97]

�Among the NP-complete problems are many [...] for which serious e�ort has been ex-
pended on �nding polynomial-time algorithms. Since either all or none of the NP-complete
problems are in P, and so far none have been found to be in P, it is natural to conjecture
that none are in P.� [134], Page 341.

I �nd these claims strange. In fact, the theory of NP completeness leads me to an opposite
conclusion. As we saw, the problems can all be translated one into the other with extremely
simple procedures, essentially doing nothing, just maybe complementing a bit. In what sense
are they di�erent? I think a good de�nition of di�erent is that they are not known to be
reducible to each other in a simple manner.
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The �lots of people tried� argument for P 6= NP

The conjectures above were made by n top scientists in the area. On the other hand, N � n
people outside of the area attempted and failed to solve NP-hard problems. The fact that
they are outsiders can be a strength or a weakness for the argument. It can be a strength,
because of the sheer number, and because unshackled by the trends of the community, and
without much interaction, the N people have been free to explore radically new ideas:

�Many of these problems have arisen in vastly di�erent disciplines, and were the subject
of extensive research by numerous di�erent communities of scientists and engineers. These
essentially independent studies have all failed to provide e�cient algorithms for solving these
problems, a failure that is extremely hard to attribute to sheer coincidence or a stroke of
bad luck.�[97]

But it can also be a weakness, because unaware of the well-studied pitfalls, and with little
communication, these N people are likely to all have followed the same route. Indeed, most
of the countless bogus proofs claiming to resolve major open problem in complexity fail in
one of only a handful of di�erent ways. So it is likely that those N people don't quite count
for N distinct attempts, but in fact a much smaller number, quite possibly less than n.

The �catastrophe� argument for P 6= NP

It's easy to consider scenarios in which P = NP would not cause a catastrophe. A trivial
scenario is if the algorithms take time nd for exceedingly large d. A less obvious scenario is
that the algorithms use complicated component X (think the classi�cation of simple groups,
or the 4-color theorem, etc.). And then we would enter a phase in which for a problem you
ask if it can be solved without using X.

A typical instantiation of the catastrophe is that most cryptography collapses. Again, one
can imagine a scenario where it doesn't collapse. For example, the attacks are complicated
or impractical. People continue to publish papers and use the protocols regardless. The new
result just gives a more nuanced view of security. This would not be too di�erent, perhaps,
from the fact that the simplex algorithm is commonly used, even though there's a proof that
it takes exponential time in some cases.

My �stop right before major results� argument for P = NP

Why do available techniques for impossibility results stop �right before� proving major re-
sults? This phenomenon appears to permeate complexity theory: we saw examples in sec-
tion �7.3, Chapter 8, and Chapter 14. The most reasonable conclusion, it seems to me, is
that this happens because the major results are actually false.

My �get stuck at the same point� argument for P = NP

An issue related to the �stop right before major results� issue is why the same impossibility
results that we have are sometimes obtained via seemingly very di�erent proofs. One of
several examples: the polynomial method and the switching lemma give two di�erent proofs
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that AC can't compute parity, cf section �8.5. The proofs appear genuinely di�erent, I would
argue more di�erent than the various NP-complete problems (see the �thousand di�erent
problems� argument above). Why should di�erent approaches stop at the same point, except
because there is nothing else to prove?

Throughout history, science has often proved wrong those who wouldn't take things at
face value.

Complexity theory is perhaps unique in science. It appears that math is not ready for its
problems. It is a bulwark against the business approach to science, the frenzy of the illusion
of progress. For ultimately it doesn't matter how much you rake in or even who is writing
bombastic recommendation letters for you, etc. These problems remain untouched. And
progress may be more likely to come when you are alone, staring at blank paper:

�You do not need to leave your room. Remain sitting at your table and listen.
Do not even listen, simply wait. Do not even wait, be quiet still and solitary.
The world will freely o�er itself to you to be unmasked, it has no choice, it will
roll in ecstasy at your feet.� [147]
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�All that he does seems to him, it is true, extraordinarily new, but also,
because of the incredible spate of new things, extraordinarily amateurish, indeed
scarcely tolerable, incapable of becoming history, breaking short the chain of the
generations, cutting o� for the �rst time at its most profound source the music of
the world, which before him could at least be divined. Sometimes in his arrogance
he has more anxiety for the world than for himself.� [147]
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Appendix A

Math facts

Here we collect some additional observations and mathematical facts, sometimes basic, that
are used in the main text.

A.1 Integers

Fact A.1. gcd(x, y) = gcd(x mod y, y).

A.2 Basic inequalities

Fact A.2.
(
n
k

)
≤ c2n/

√
n, for all k.

Fact A.3. (n/k)k ≤
(
n
k

)
≤ (en/k)k.

Fact A.4. 1 + α ≤ eα ≤ 1 + α + α2, for all α ≤ 1.
The rhs is ≤ 1 + 2α for α ∈ [0, 1], and ≤ 1 + α/2 for α ∈ [−1/2, 0] (because α(1 + α) ≤

α/2 ⇐⇒ (1 + α) ≥ 1/2).

Fact A.5. (1 + α)r ≥ 1 + rα for all α ≥ −1 and r ≥ 1.

Fact A.6. For any α ∈ R,1 + α ≤ 1
1−α ≤ 1 + (1 + ε)α. The �rst inequality holds for any

α ∈ R, the second for α ∈ [0, ε/(1 + ε)].

For example, 1/(1− α) ≤ 1 + 2α (ε = 1) for α ≤ 1/2.

A.2.1 Squaring tricks

Fact A.7. For every real random variable X, E2[X] ≤ E[X2].

Proof. E[(X − E[X])2] is ≥ 0. Expand the square. QED

This is a special case of:
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Fact A.8. For real random variables X, Y , jointly distributed: E2[XY ] ≤ E[X2]E[Y 2].

Proof. Let

Z := X − E[XY ]

E[Y 2]
Y.

Since E[Z2] ≥ 0, expanding Z2 concludes the proof. QED

Equivalently, for reals ai, bi one has (
∑

i aibi)
2 ≤ (

∑
i a

2
i ) (
∑

i b
2
i ); and for vectors v, w one

has 〈v, w〉 ≤ |v| · |w|.

A.3 Probability theory

Developing intuition about random variables is one of the hardest skills to master and even
de�ne. To anyone struggling I'd like to mention that my background was null, and in fact
I didn't even like the emphasis on randomization, given the status of the �eld (cf. Chapter
3). Naturally, with e�ort I grew to like it. I think of it simply as normalized counting, and
I do �nd the normalization useful. Many times when reading a new result I �nd myself
translating the statements in the language of probability to make them more �physical.�

I �nd the joke at the incipit of Chapter 2 a good illustration of how elusive the concept
of probability is.

Fact A.9. [Linearity of expectation] TBD

A.4 Groups

A group is a set together with an invertible operation. The theory of groups is rich and
pervasive.

A.5 Linear algebra

The only game in town.

First we recall list some basic de�nitions.

• A vector v = (v1, v2, . . . , vn) ∈ Rn.

• Inner product 〈v, w〉 =
∑

i vi · wi.

• Two vectors are orthogonal, denoted v⊥w, if 〈v, w〉 = 0.

• The length of a vector is |v| = |v|2 :=
√∑

i v
2
i =

√
〈v, w〉.

Fact A.10. [Triangle inequality for vectors] |v + w| ≤ |v|+ |w| for any vectors v, w.
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Fact A.11. If v⊥w, then |v + w|2 = |v|2 + |w|2.

Proof. The lhs is
∑

i(v(i) + w(i))2. Expand the square and use orthogonality. QED

Fact A.12. Let αi, i ∈ [n + 1] be di�erent elements from a �eld F. Then the vectors
(α0

i , α
1
i , . . . , α

n
i ) are linearly independent.

Proof. We show it instead for the vectors (αj0, α
j
1, . . . , α

j
n), then appeal to the fact that row

rank equals column rank (for the n + 1 × n + 1 matrix αji ). Suppose there are aj, not all
zero, s.t.: ∑

j∈[n+1]

aj(α
j
0, α

j
1, . . . , α

j
n) = (0, 0, . . . , 0).

Then the αi are roots of the non-zero polynomial
∑

j∈[n+1] ajx
j of degree n. This contradicts

Lemma 2.1. QED

Fact A.13. Orthogonal vectors vi are in particular linearly independent.

Proof. Suppose that
∑

i aivi = 0 for some coe�cients ai. Then for any j we have

0 = 〈
∑

aivi, vj〉 =
∑

ai〈vi, vj〉 = aj〈vj, vj〉,

and so aj = 0. QED

De�nition A.1. Let A be a n×m matrix, and B be a n′ ×m′ matrix. The tensor product
of A and B is is an n · n′ ×m ·m′ matrix de�ned as (A⊗B)(iA,iB),(jA,jB) = AiA,jA ·BiB,jB.

Diagrammatically,

A⊗B =

 a11B . . . a1nB
... . . .

...
an1B . . . annB

 .
But the algebraic De�nition A.1 makes most sense and is almost always more convenient.

Fact A.14. rank(A⊗B) = rank(A) · rank(B).

A.5.1 The eigenbasis Theorem 12.5

The proof relies on the fundamental theorem of algebra that every polynomial has a complex
root. This proves the existence of eigenvectors. Then from �rst principles one can verify
that for symmetric matrices they are real, and one can �nd an orthonormal basis.
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A.6 Polynomials

Fact A.15. Let p and q be multi-variate polynomials over a �eld. De�ne the degree deg
of a polynomial as the maximum sum of exponents of any monomial. Then deg(p · q) =
deg(p) + deg(q).

Proof. ≤ is obvious. ≥ is not because some terms may cancel. De�ne an ordering on
monomials where larger degree comes �rst, and for equal degree we use lexicographic order.
(That is, �rst compare the exponent of x1, if equal compare the exponents of x2, and so on.)
We claim that the product of the �rst (in this order) monomial in p times the �rst monomial
in q occurs in no other way, because if m1 > m2 and m3 > m4 then m1 ·m3 > m2 ·m4, where
the mi are any monomials. The result follows. QED

Fact A.16. In the context of the proof of 14.1, k · ek =
∑k

i=1(−1)i−1ek−i · pi, for all k.

Proof. Let f(x) := (x−x1)(x−x2) · · · (x−xs). The coe�cient of xi in f(x) is es,s−i(x1, x2, . . . , xs)·
(−1)s−i. We also have f(xj) = 0 for any j. Summing over j proves the claim for k = s. To
prove it for s > k, consider any monomial on the LHS. Set to 0 all the other variables. Now
the claim reduces to the case s = k. This shows that the coe�cient of any monomial on the
LHS is the same as that on the RHS, �nishing the proof. QED

A.7 Analysis of boolean functions over groups

A.7.1 Abelian groups

Fact A.17. Let D be a distribution over [2]n that fools degree-1 polynomials over F2 with
error 0 (a.k.a. 0-biased). Then D is uniform.

Proof. By Exercise 11.6, we write for any x ∈ [2]n,

D(x) =
∑
α

D̂αx
α = D̂∅x

∅ = D̂∅ = Ey[D(y)y∅] = Ey[D(y)] =
1

2n

∑
y

D(y) =
1

2n
.

QED

304



Appendix B

Annotated meta-bibliography

[20] Standard reference for complexity theory. Especially good reference for a proof of the
PCP theorem.

[97] Complexity theory. Somewhat narrower in scope compared [20]. Some uncommon
details and examples can be found here.

[146] A book �all about proving lower bounds.�
[169] Massive reference for �nite �elds, though the focus is not computational.
[204] All things analysis of boolean functions (Exercise 11.6).
[214] Communication complexity.
[72] The theory of deviation bounds, from the point of view of theoretical computer

science.
[287] Broad and enticing overview of the �eld.
[53] Algebraic complexity.
[262] Pseudorandomness.
[125] Pseudorandomness, with a focus on unconditional pseudorandom generators.
[134] Still a great reference; stay away from the watered-down �revisions.�
[240] Standard reference for theory of computation and introduction to complexity theory.
[205] Still conveying passion and originality. Seferis' poem is worth quoting in full:

I wish nothing else but to speak simply
please grant me this privilege
because we have burdened our song with so much music
that it is slowly sinking
and our art has become so ornate
that the makeup has corroded her face
and it is time to say our few simple words
because tomorrow our soul sails away
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B.1 Some non-technical books

[71]: Another very enjoyable read. Wittgenstein was hilarious, but then again he always
is. But if you like me were expecting an Armageddon or a Ragnarok unleashed by Godel's
incompleteness, you are going to be disappointed. There are only c scenes with him, and
while one does show him on the board scribbling actual lines from him masterwork, the
meaning and �repower of his discovery is nowhere to be found in the book, which ends
instead with yet another...

[288]: Highly recommended if you ever wonder about the meaning of life, especially
academic life, or even marital.

[154, 155]. Masterful accounts of key events that shaped the geography of science pro-
duction.

306



Appendix C

Research tips

1. Thou shall not use the letter n.

2. Keep a journal.
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dynamic data-structure for a code, 271

E
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fool, 190
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G
Gap-3Sat, 81
Gap-Maj, 104
Generality, 21
Good code, 49
group program, 166

H
hard, 61
hardcore-set, 202
hashing, 47
HIT, 203
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homogeneous, 256
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I
impossibility results, 51

inapproximability, 81
information bottleneck, 52
input length, 25
interactive power time, 176
interactive proof, 176
IP, 176

L
L, 118
library, 274
linear time, 58
local, 30
Locality, 21
logic, 60
low-degree approximation, 151
low-degree extension, 185

M
MA, 180
MAlloc, 33
map reduction, 67
Markov's inequality, Claim 2.1, 42
Max-3Sat, 81, 97
mergesort, 93
Min-Ckt, 101
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Multiplication, 67
Multi-tape machines, 27
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natural proofs, 274
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NExp completeness, 96
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oblivious TM, 27
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Or-Vector, 79
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pairwise uniform, 47
pairwise uniformity, 47
palindrome, 18, 23, 27, 52
partial functions, 25
PCkt, 29
PCP theorem, 81, 175
pebble, 119, 138
pebbling, 119
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ΠTime, 100
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power hierarchy, 100
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sum of random variables, 41
pseudorandom, 190
pseudorandom functions, 276
pseudorandom generator, 190
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quanti�ed boolean formula, 129
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Quasilinear-time completeness, 95
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RAM, 33
random, 201

random parity principle, 44
random self-reducibility, 169
random walk algorithm, 223
randomized protocols, 233
randomized TMs, 48
randomness, 40
Rapid-access machines, 33
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reduction, 65
regular, 58
relations, 25
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resamplable, 197
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search problems, 80
Search-3Sat, 80
seed length, 190
SETH, 70
set-multilinear, 256
ΣTime, 100
small-bias, 193
sorting, 91
sorting network, 92
Space, 118
SPN, 278
squared graph, 225
Squaring, 67
stretch, 190
Strong exponential-time hypothesis, 70
structured objects, 24
SubquadraticTime, 68
subroutine, 66, 274
Subset-sum, 72
substitution-permutation network, 278
Succinct-3Sat problem, 96
sum-check protocol, 177
System, 78
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tensor product, 303
terms (in a DNF), 29
CktGates(g(n)), 29
Majority, 19
threshold circuit, 147
Time, 36
Time complexity, 25
time hierarchy, 55
TM, 22
TM-Time, 25
total functions, 25
Turing machine, De�nition 1.1, 22

U
UConn, 125
unique neighbor, 192
Unique-3Sat, 97
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universal TM, 26
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