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Abstract

We show how to efficiently compile any given circuit C into a leakage-resilient
circuit Ĉ such that any function on the wires of Ĉ that leaks information during a
computation Ĉ(x) yields advantage in computing the product of |Ĉ|Ω(1) elements of
the alternating group Au. Our construction resists NC1 leakage assuming L 6= NC1,
as was conjectured here and proven later [Miles, ITCS ’14]. Also, in combination with
new compression bounds for Au products obtained here, Ĉ withstands leakage from
virtually any class of functions against which average-case lower bounds are known.
This includes communication protocols, and AC0 circuits augmented with few arbitrary
symmetric gates. In addition, we extend the construction to the multi-query setting
by relying on a simple secure hardware component.

We build on Barrington’s theorem [JCSS ’89] and on the previous leakage-resilient
constructions by Ishai et al. [Crypto ’03] and Faust et al. [Eurocrypt ’10]. Our con-
struction exploits properties of Au beyond what is sufficient for Barrington’s theorem.
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1 Introduction

Motivated by successful attacks on cryptographic hardware, a recent, exciting line of work
known as leakage-resilient cryptography considers models in which the adversary obtains
more information from cryptographic algorithms than just their input/output behavior. A
general goal in this area is to compile any circuit into a new “shielded” circuit such that any
attack exploiting this extra information can in fact be carried out just using input/output
access (and hence does not succeed under standard hardness assumptions). However, the
seminal impossibility result on obfuscation [BGI+01] implies that one cannot shield circuits
against an attack that obtains just one extra bit of information about the circuit, if this
bit is computed as an arbitrary efficient leakage function of the wires of the circuit. More
specifically it is sufficient that the leakage function is powerful enough to evaluate the shielded
circuit on its own description. (There is in fact a close connection between obfuscation and
leakage resilience, see e.g. the discussion in [Rot12]).

Still, this negative result does not necessarily hinder the scope of a theoretical study of
leakage-resilient cryptography, because in practice this extra information is quite difficult to
obtain and is typically limited to some simple-to-compute functions such as the Hamming
weight of the bits carried on the wires. Thus, it makes sense to focus our attention on attacks
where the extra information is obtained from the circuit by evaluating a computationally
restricted leakage function.

One line of works considers a model that has become known as “only computation leaks”,
after Micali and Reyzin [MR04]. In this model, the compiled circuit is partitioned (by the
compiler) into topologically ordered sets of wires, i.e. so that the value of each wire depends
only on wires in its set or in sets preceding it. The leakage function then operates separately
on each set in the partition. Ishai, Sahai, and Wagner in [ISW03] allow the leakage function
to output projections of few of (the values carried on) the wires in each set. Their result
is greatly generalized by a series of works [GR10, JV10, DF12, GR12] culminating in the
construction by Goldwasser and Rothblum [GR12] which allows any arbitrary function of
each set, as long as the function has bounded output length.

In a different direction, Faust et al. [FRR+10] allow leakage functions that are computable
by small, bounded-depth circuits with And, Or, and Not gates (AC0). In contrast to the
previous setting, here the leakage function accesses all wires simultaneously; we refer to this
as the “global” leakage model. In the case of an unbounded number of queries from the
adversary – so-called “continual leakage” – the compiled circuits in [FRR+10] use a random-
ized, inputless gate that outputs a bit vector that is uniform up to having parity = 0. In
contrast, the only randomized gates used in [ISW03, GR12] output uniform and independent
bits. Gates that produce bits from a distribution other than uniform are referred to in the
literature as “secure hardware components”. The use of secure hardware in [FRR+10] was
removed by Rothblum [Rot12] at the expense of introducing a computational assumption.

1.1 Our results

In this work we give a new construction of a leakage-resilient compiler. In the multi-query
setting, our construction uses a secure hardware component similar to the one in [FRR+10].
Our construction:
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1. is secure against global NC1 leakage assuming NC1 6= L, as was conjectured here and
proved later by Miles [Mil14].

2. is candidate to having security in the OCL model; we are not aware of any other
construction that is candidate to having security simultaneously in both the global
and OCL leakage models.

3. is unconditionally secure against global leakage from natural, well-studied classes of
functions that break nearly all previous constructions; for example, it resists leakage
from parity and inner product which break [ISW03, FRR+10, DF12, GR12, Rot12].

For simplicity, we first focus on the setting where the adversary makes a single query to
the circuit, and we do not use any secure hardware. Defined next, our compiler is randomized
and takes two inputs: a circuit C : {0, 1}n × {0, 1}n → {0, 1}n, and a value k ∈ {0, 1}n for

C’s second input. It outputs a circuit Ĉ : {0, 1}n → {0, 1}n that is functionally equivalent

to C(·, k) (we choose to omit a k subscript though Ĉ depends on k). The only parts of

Ĉ that depend on k and the random coins are the values of its constant gates; the rest is
determined by C. The adversary depends on C and thus knows everything about Ĉ except
the values of certain constant gates. The adversary then selects both an input x to the
circuit and a leakage function to be evaluated on the wires of the circuit. The requirement
that the adversary “learns nothing” from the output of the leakage function is formalized by
providing an efficient simulator S. S sees only the input x and output Ĉ(x) of the circuit, as
well as the circuit C which is assumed to be public, and produces a set of wire values that
is indistinguishable from the real set of wire values by the leakage function. Throughout the
paper we will use |C| to denote the number of wires in a circuit C, which is the input length
of the leakage functions.

Definition 1.1 (Leakage-secure compiler). Let Comp(·, ·) denote a randomized algorithm
that takes as input a circuit C : {0, 1}n × {0, 1}n → {0, 1}n and a string k ∈ {0, 1}n. For a
set of functions L, Comp is an (L, ǫ)-leakage-secure compiler if the following properties hold.

1. (Structure.) For every C and k, Comp(C, k) outputs a circuit Ĉ : {0, 1}n → {0, 1}n
which is completely determined by C except for the values of its constant gates.

2. (Correctness.) For every C and k and every x ∈ {0, 1}n, Ĉ(x) = C(x, k) with proba-

bility 1 over the choice of Ĉ ← Comp(C, k).
3. (Security.) There exists a randomized polynomial-time algorithm S such that for every

C and k, every x ∈ {0, 1}n, and every ℓ ∈ L with domain {0, 1}|Ĉ|:

∆(ℓ(Ŵ ), ℓ(S(C, x, Ĉ(x)))) ≤ ǫ

where Ŵ ∈ {0, 1}|Ĉ| denotes the values carried by the wires of Ĉ(x), and the statistical

distance ∆ is over the choice of Ĉ ← Comp(C, k) and the random coins of S.

We show how to efficiently compile any circuit C into a leakage-resilient circuit Ĉ such
that any function on the wires of Ĉ that leaks information during some computation Ĉ(x)
yields advantage in computing iterated group products over the alternating group Au, which
recall is the group of even permutations of a set of size u. (For background on this group,
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see e.g. [KS04, §4.3].) The security of our construction is proved against leakage classes L
for which iterated products over Au are hard in the following sense. As discussed later we
exploit specific properties of Au, but when possible we present things over any group G.

Definition 1.2 (ǫ-fooled). Let G be a group (whose operation is written multiplicatively).
For α ∈ G and t ∈ N, letDα denote the uniform distribution over {(x1, . . . , xt) ∈ G t |

∏
i xi =

α}, and let UGt denote the uniform distribution over G t.
Then a set of functions L is ǫ-fooled by G t if ∆(ℓ(Dα), ℓ(UGt)) ≤ ǫ for every α ∈ G and

every ℓ ∈ L with domain G t.

We will use the notation Dα, UGt throughout the paper. Our security reductions are
computable by simple, local (a.k.a. NC0) functions.

Definition 1.3 (Local extension). A function f : G t → G∗ is a d-local function if each
output element depends on at most d input elements. If d = O(1) as a function of t, we
simply say local. For a set of functions L, the d-local extension of L is the set of all functions
ℓ(f(·)) where ℓ ∈ L and f is a d-local function.

Note that 1-local functions are also known as projections.
Our compiler is given by the following main theorem.

Theorem 1.4. Let G be a group. For every polynomial-time computable function t = t(n),
there is a compiler Comp for which the following holds.

1. For every C : {0, 1}n × {0, 1}n → {0, 1}n and k ∈ {0, 1}n, Comp(C, k) runs in time

poly(|C|, t) and outputs a circuit Ĉ of size O(t2 · |C|) and depth O(t · depth(C)).
2. For every set of functions L and every ǫ > 0, if the 4-local extension of L is ǫ-fooled

by G t then Comp is an (L, ǫ · t · |C|)-leakage-secure compiler.

Note that making t smaller reduces the size overhead of Ĉ, but that larger values of t are
necessary to find rich classes L that are fooled by G t.

To instantiate our construction we prove in §3 that (Au)
t fools a number of well-studied

classes of functions (with parameters polynomially related to t). For all these results we
can and will choose u = 5. One class is that of number-on-forehead multiparty protocols
introduced by Chandra, Furst, and Lipton [CFL83], which are formally defined in §3.1; here
our result relies on the long-standing lower bound by Babai, Nisan, and Szegedy [BNS92],
whose proof is increasingly streamlined in [CT93, Raz00, VW08]. Another is the class
AC0 of bounded-depth And/Or/Not circuits augmented with few gates computing arbitrary
symmetric functions, such as parity and majority. This is the richest circuit class for which
super-polynomial average-case lower bounds are known [Vio07]. In fact, one can allow few
gates whose local extension has low number-on-forehead communication under any partition,
such as polynomial threshold functions [Nis93, Vio13]. We also consider the class TC0 of
bounded-depth circuits of majority gates; for this class no lower bound is known, and our
results rely on the standard complexity assumption TC0 6= NC1.

The following theorem summarizes the results above. These results can also be seen
as giving compression bounds, similar to the work of Dubrov and Ishai [DI06] (see also
[HN10, Dru12] and others). In fact, we essentially recover for A5-products the parameters
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of the [DI06] compression bound against AC0 (building on their result), and also prove
compression bounds against stronger classes.

In the following, Od(·) and Ωd(·) hide constants that depend only on d.

Theorem 1.5. (A5)
t ǫ-fools L for:

1. L = number-on-forehead protocols with s parties communicating and outputting ≤ c
bits, under a specific partition of the input; ǫ = 2c−Ω(t/(s24s)).

2. L = AC0 circuits with depth ≤ d, size ≤ tOd(log t), an additional Od(log
2 t) arbitrary

symmetric gates, and t0.1 bits of output; ǫ = t−Ωd(log t).
3. If TC0 6= NC1 then for every k and infinitely many t, L = TC0 circuits with size ≤ tk

and k log t bits of output; ǫ = t−k.
4. L = AC0 circuits with depth ≤ d, size ≤ 2Od(t

(1−δ)/d), and tδ bits of output, for any
δ < 1; ǫ = 2−Ωd(t

(1−δ)/d).

The straightforward combination of Theorems 1.4 and 1.5 gives an (L, ǫ)-secure compiler
for the circuit classes listed in items 2-4 of the latter, choosing t = |C| for the following
corollary. The combination is less straightforward for protocols, which are not closed under
composition with arbitrary local functions. We obtain item 1 of the following corollary by
showing (in §4) that the local extension of a number-in-hand protocol is computable by a
number-on-forehead protocol.

Corollary 1.6. There is a single efficient compiler Comp, outputting a circuit Ĉ of size
|Ĉ| = O(|C|3), that is an (L, ǫ)-leakage secure compiler for each of the following.

1. L = number-in-hand protocols with s parties communicating and outputting ≤ δ · |Ĉ|1/3
bits, for a fixed δ > 0 and a fixed partition of Ĉ into s = O(1) sets; ǫ = 2−Ω(|Ĉ|1/3).

2. L = AC0 circuits with depth ≤ d, size ≤ |Ĉ|Od(log |Ĉ|), an additional Od(log
2 |Ĉ|) arbi-

trary symmetric gates, and |Ĉ|0.01 bits of output; ǫ = |Ĉ|−Ωd(log |Ĉ|).
3. If TC0 6= NC1 then for every k and infinitely many |C|, L = TC0 circuits with size

≤ |Ĉ|k and k log |Ĉ| bits of output; ǫ = |Ĉ|−k.
4. L = AC0 circuits with depth ≤ d, size ≤ 2Od(|Ĉ|

(1−δ)/3d), and |Ĉ|δ/3 bits of output, for

any δ < 1; ǫ = 2−Ωd(|Ĉ|
(1−δ)/3d).

In particular, our construction resists leakage from functions such as parity, majority,
inner product, and polynomial thresholds. Besides being well-studied, these functions break
most previous constructions. For example, inner product breaks [DF12, GR12], and parity
breaks [ISW03, FRR+10, Rot12]. Also, small TC0 circuits can be shown to break at least
one instantiation of the construction [JV10] using the fact that such circuits may compute
division, cf. [All01]. In fact, we are only aware of one construction that is not easily bro-
ken in TC0. This is the construction [GR10] which relies on the Decisional-Diffie-Hellman
assumption. It is broken by any leakage function that can decrypt a certain public-key cryp-
tosystem based on it, but decryption here involves modular exponentiation (to a poly-length
exponent); whether this is doable in small depth is an open problem.

Finally, note that the last item shows that we recover the security of [FRR+10] against
AC0 leakage functions.
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Security against NC1. We conjecture that our construction is secure even against leakage
from functions computable in NC1. Obviously (Au)

t does not fool NC1 circuits when u =
O(1), for such circuits can simply compute the product. However it is not clear how such a
computation would go when u = ω(1). Recall (Def. 1.2) that the security of our construction
is based on showing that for every α ∈ Au, leakage functions cannot distinguish between a
uniform vector and one whose product is fixed to α. Thus by an averaging argument and the
random self-reducibility of group products, the conjecture would follow from showing that
for every α NC1 circuits cannot decide (in the worst case) between vectors with product α
and those with product id.

Motivation for this conjecture comes from the work of Cook and McKenzie [CM87] who
show that computing products over the symmetric group Su is complete for L = logarith-
mic space (this easily extends to Au products). However, the specific decision versions of
this problem that they consider are not sufficient for our purposes. If one could use their
construction to show that the above “α vs. id” problem is L-complete for every α, then the
conjecture would hold under the standard assumption NC1 6= L. (Update: the conjecture
was proved in [Mil14].)

Only computation leaks. Next we discuss the security of our construction in the “only
computation leaks” (OCL) model due to Micali and Reyzin [MR04]. In this model, the

compiler specifies a topologically-ordered partition P = (P1, . . . , Pr) on the wires of Ĉ.

(Topologically-ordered means that for each Pi ∈ P and each wire w ∈ Pi, w’s value in Ĉ’s
computation depends only on wires w′ such that w′ ∈ Pj for some j ≤ i.) Then for each
set Pi in the partition, the adversary chooses a leakage function to be applied to Pi’s wires
during the computation Ĉ(x) for its chosen input x.

The goal in this setting is to tolerate leakage functions that are chosen adaptively for each
Pi and are computationally unrestricted other than a bound on their output length. The
work of Goldwasser and Rothblum [GR12] achieves this with a partition into O(|C|) sets each
of size O(tω) and tolerates Ω(t) bits of leakage per set, where ω is the matrix multiplication
exponent. Furthermore, their construction does not use secure hardware components.

Without the topological ordering requirement, item 1 of Corollary 1.6 gives a partition
into O(1) sets each of size O(t2 · |C| · log |G|) and tolerates Ω(t) bits of leakage per set. (For
this discussion we let G grow asymptotically and explicitly note its size.) Next we refine
this into a topologically-ordered partition with O(t · |C|) sets each of size O(t log |G|). The
amount of leakage tolerated depends on the strength of communication lower bounds for
number-on-forehead (NOF) protocols, as stated in the following theorem. For s-party NOF
protocols, we refer to the canonical partition of x ∈ Gt as the one in which player i’s forehead
contains xi, xi+s, . . . , xi+t−s.

Theorem 1.7. Assume that 8-party NOF protocols communicating ≤ c bits are ǫ-fooled by
G t under the canonical partition of x ∈ G t.

Then for each C and k there is a topologically-ordered partition P on Ĉ := Comp(C, k)
containing O(t · |C|) sets each of size O(t log |G|), such that Comp from Theorem 1.4 is an
(L, ǫ · t · |C|)-leakage secure compiler for L = all OCL leakage functions that output ≤ δ · c/t
bits per set in P , where δ is a constant that depends only on the maximum fanout of C.
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Item 1 of Theorem 1.5 gives a lower bound for NOF protocols that achieves c = Ω(t)
and ǫ = 2−Ω(t) for any constant number of parties. When the group size is constant, this is
optimal up to constant factors as the entire input to the NOF protocol has size t · |G| = O(t).
Unfortunately, plugging this into Theorem 1.7 does not give anything because c/t < 1.

In order to use Theorem 1.7 to achieve security in the OCL model, one must prove
communication lower bounds that grow with the size of the group. For example one could
ask whether, for some δ > 0, NOF protocols communicating c = δt log t bits are fooled by
(At)

t. By Theorem 1.7, this would give a partition of Ĉ into O(t · |C|) sets of size O(t2 log t)
and allow Ω(log t) bits of leakage per set. By comparison, recall that [GR12] achieves a
partition into O(|C|) sets of size O(tω) and allows Ω(t) bits of leakage per set.

Interestingly, for groups such as At whose elements are represented as permutations on
a set [t], one can only hope to prove communication lower bounds of the form c = Ω(t log t).
This is because a protocol that “traces” some point in [t] through the permutations can
distinguish any two fixed products with communication O(t log t). If one could instead
obtain an Ω(t2) lower bound against NOF protocols computing products over some group G
of size |G| = 2Θ(t), this would give a compiler tolerating Ω(t) bits of leakage per set of size
O(t2), essentially matching [GR12] (modulo the use of secure hardware). Because any group
G can be embedded in S|G| by Cayley’s theorem, there is always a “tracing” protocol that
communicates O(t log |G|) = O(t2) bits. (In fact the trivial protocol that communicates its
entire input already achieves this bound.) Thus we are posing the question of whether there
is any group G for which this is tight.

Multiple queries. We also consider the setting in which the adversary makes multiple,
adaptive queries to the circuit Ĉ. As in the previous setting, each query consists of both an
input to the circuit and a leakage function. The adversary is assumed to be computationally
unbounded, except for the restriction on the leakage functions. We defer until §5 the formal
definition of security in this setting, but it is a natural extension of Definition 1.1.

If the number of queries q is fixed in advance and known to the compiler, then our
construction in Theorem 1.4 can be extended with little difficulty to this setting. The
resulting construction increases the size of Ĉ by a factor of O(q) and likewise the security
degrades by a factor of q (details omitted).

When the number of queries q is not a priori bounded, we adopt the approach of [FRR+10]

and augment Ĉ with a so-called secure hardware component. In our construction, this com-
ponent is a randomized, inputless gate that on each execution outputs a sample from Did,
where id denotes the identity element of A5. We refer to such gates as Did-gates, and any
circuit that contains one as a Did-circuit. The complexity of this component is comparable
to the one in [FRR+10] which outputs a uniform bit vector with parity 0. (Secure hardware
components are also used in [GR10, JV10], but there the components are not inputless and
furthermore the distribution sampled is significantly more complex.)

To prove security in this setting, a slightly stronger property is required of (A5)
t than

what is given by Theorem 1.5. Specifically we require that, for every ℓ ∈ L and every ℓ′ ∈ L
that is chosen adaptively based on the output of ℓ, the distribution (ℓ(x), ℓ′(x)) when x← Dα

has statistical distance ≤ ǫ from the corresponding distribution when x← UGt . We show in
§5.1 that each of the classes L listed in Theorem 1.5 has this property; the only difference is
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that for AC0 circuits with symmetric gates, we restrict the output length to O(log2 t).
We defer the details for now and simply state our result for multiple queries.

Corollary 1.8. There is a single efficient compiler Comp, outputting a Did-circuit Ĉ of size
|Ĉ| = O(|C|3), that is a q-query (L, ǫ)-leakage secure compiler for any q and each of the
following.

1. L = number-in-hand protocols with s parties communicating ≤ δ · |Ĉ|1/3 bits, for a fixed

δ > 0 and a fixed partition of Ĉ into s = O(1) sets; ǫ = q · 2−Ω(|Ĉ|1/3).

2. L = AC0 circuits with depth ≤ d, size ≤ |Ĉ|Od(log |Ĉ|), an additional Od(log
2 |Ĉ|) arbi-

trary symmetric gates, and Od(log
2 |Ĉ|) bits of output; ǫ = q · |Ĉ|−Ωd(log |Ĉ|).

3. If TC0 6= NC1 then for every k and infinitely many |C|, L = TC0 circuits with size

≤ |Ĉ|k and k log |Ĉ| bits of output; ǫ = q · |Ĉ|−k.
4. L = AC0 circuits with depth ≤ d, size ≤ 2Od(|Ĉ|

(1−δ)/3d), and |Ĉ|δ/3 bits of output, for

any δ < 1; ǫ = q · 2−Ωd(|Ĉ|
(1−δ)/3d).

Organization. In §2 we describe our construction and prove the key lemma that enables
the proof of Theorem 1.4. In §3 we show that various computational models are fooled by
(A5)

t, proving Theorem 1.5. In §4 we prove Theorem 1.4, Corollary 1.6, and Theorem 1.7.
In §5 we extend our construction to multiple queries.

2 The construction

In this section we describe our main construction. Our compiler uses the general framework
of the works [ISW03, FRR+10]. In this framework, to every wire of C there corresponds

in the compiled circuit Ĉ a “bundle” of wires which encode the same information. (In
[ISW03, FRR+10] a bit b is encoded by a bundle x whose parity is b.) One then uses
appropriate gadgets to simulate the computation of C on the bundles. Note the distinction
between gates and gadgets in Ĉ: gadgets operate on bundles of wires, and are composed of
gates that operate on individual wires.

The main differences between our construction and the ones in [ISW03, FRR+10] are in
the encoding and in the gadgets. A side-benefit of our gadgets is that they allow for a more
modular construction yielding an arguably more intuitive proof of security. Next we describe
our encoding, our gadgets, and the proof of security. But first we make some remarks on the
group used throughout.

The choice of the group. This work exploits 3 properties of the alternating group A5.
(i) It fools various classes in the sense of Definition 1.2 (see Theorem 1.5). We show that

this is implied by the fact that every element of A5 is a commutator; such groups are known
as perfect [HP89].

(ii) It supports Barrington’s encoding of NC1 computation [Bar89], which we use in the
construction of the nand gadget below. (This is implied by the group being non-solvable,
which in turn is implied by it being perfect.)
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(iii) It has specific elements that support a more efficient encoding of certain functions
such as parity, improving on (ii). This is used in Theorem 1.5 to obtain improved parameters
and in particular to match the parameters of the previous compression bound in [DI06].

We point out that (i) is not implied by (ii). Indeed, for (ii) the group S5 is typically
chosen. However (S5)

t does not even (1/2)-fool the 1-local extension of parity, which can
compute the sign of the product permutation. This is because the sign of Dα always equals
the sign of α, whereas the sign of U(S5)t is equidistributed over {−1, 1}.

The group encoding. We encode a bit b ∈ {0, 1} by a tuple of elements over a group
G as follows. Let id denote G’s identity element, and fix an element id 6= α ∈ G. Then
(x1, . . . , xt) ∈ G t encodes b when

∏

i

xi =

{
id if b = 0

α if b = 1.

As in [Bar89], we can use any α for which there exists an element β ∈ G such that α, β,
and αβα−1β−1 are in the same conjugacy class. Equivalently, there must exist three elements
β, γ, ρ ∈ G such that the following two equations hold.

γαγ−1 = β ραβα−1β−1ρ−1 = α. (1)

For G = A5 and using cycle notation, these values can be set as follows: α = (12345),
β = ρ = (14235), γ = (12354).

For convenience we present the construction over G as opposed to {0, 1} and using gates
for group multiplication and inversion. It is straightforward to obtain a construction over
{0, 1} and any standard basis by implementing group operations via bit operations.

The nand gadget. We assume without loss of generality that C, the circuit input to the
compiler, contains only fan-in-2 gates that compute the Nand function. We now describe
the nand gadget that simulates each Nand gate in C. Given as input two bundles x, y ∈ G t

with products in {id, α}, the nand gadget outputs a bundle z ∈ G t that encodes the Nand
of x and y, i.e., that satisfies:

∏

i

z =

{
id if

∏
i xi =

∏
i yi = α

α otherwise.
(2)

The output bundle z ∈ G t is computed by the following steps.

1. Set y ← (γ · y1, y2, . . . , yt−1, yt · γ−1). (This gives
∏

i yi ∈ {id, β}.)

2. Compute x−1 := (x−1t , . . . , x−11 ) and similarly y−1.

3. Compute z ∈ G4t by concatenating (x, y, x−1, y−1). (This gives
∏

i zi ∈ {id, αβα−1β−1}.)

4. Set z ← (ρ · z1, z2, . . . , z4t−1, z4t · ρ−1). (This gives
∏

i zi ∈ {id, α}.)
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5. Set z ← (z−14t , . . . , z
−1
1 · α). (This maintains

∏
i zi ∈ {id, α} but if the product in step

4 was α it is now id, and vice versa.)

6. Compute and output z ∈ G t by multiplying consecutive groups of 4 elements in z:

z :=

(
4∏

i=1

zi,
8∏

i=5

zi, . . . ,
4t∏

i=4t−3

zi

)
.

From the equations (1) it can be verified that (2) is satisfied.

Warm-up for the random gadget. The second and last gadget that we need is called
random and is essentially applied to every bundle in Ĉ that corresponds to a wire in C.
This gadget has to satisfy two properties. First we need that on input x ∈ G t, the random
gadget outputs a bundle z ∈ G t that is distributed uniformly over {z ∈ G t | ∏i zi =

∏
i xi}.

This is necessary both for the correctness and security of the construction. The second
property, necessary only for the security, is that given an input-output pair (x, z) for this
gadget, we should be able to compute locally a distribution on the gadget’s wires that is
indistinguishable from the real distribution. (This allows us to replace the real distribution

on the wires of Ĉ with the one in which each random gadget is reconstructed. Then we
can replace each bundle of wires in Ĉ with a uniform bundle, which the simulator can do
by itself, and blame any inconsistency on the reconstructor.) This property is called local
reconstructibility and is a variant of the one in [FRR+10].

Before describing our gadget, we note that there is a simple gadget that satisfies the first
property but not the second. Namely, choose r1, . . . , rt−1 ∈ G uniformly at random, and
output

z = (x1 · r1, r−11 · x2 · r2, . . . , r−1t−1 · xt). (3)

Indeed, this basic re-randomization technique has been used to great effect in a number
of works, e.g. [Kil88, ?, AIK06, GGH+08, AAW10]. However, this simple gadget does not
satisfy local reconstructibility. One reason is that given x, z, one can come up with values for
the ri that are consistent with each gate in the circuit if and only if

∏
xi =

∏
zi. However,

the latter is an NC1-hard question, whereas consistency of the r may be checked by, say, a
DNF.

By contrast, one feature of our gadget is that given x, z one can produce consistent values
for the wires even if

∏
xi 6=

∏
zi. The catch is that in the latter case the values of certain

constant gates are not chosen as in the correct implementation, but the leakage functions
will not be able to distinguish this.

The random gadget. We now describe our gadget. The computation corresponds to
replacing each pair (ri, r

−1
i ) in (3) with a pair (R,L) ∈ G t×G t such that (

∏
j Rj) ·(

∏
j Lj) =

id, and then computing the multiplications in a specific order.
First, choose R(1), . . . , R(t−1) ∈ G t uniformly at random. Next, choose L(2), . . . , L(t) ∈ G t

at random conditioned on
∏

j

L
(i)
j =

(∏

j

R
(i−1)
j

)−1
(4)

9



for 1 < i ≤ t. In the single-query setting, we think of Comp choosing these values and
hardwiring them into Ĉ; in the multi-query setting, each pair (R(i−1), L(i)) will be output
by a secure hardware component. We will drop the superscripts on R and L when they are
clear from context. Condition (4) implies the following equation.

(
x1 ·

∏

j

R
(1)
j

)
·
(∏

j

L
(2)
j · x2 ·

∏

j

R
(2)
j

)
· · ·
(∏

j

L
(t)
j · xt

)
=
∏

i

xi. (5)

So, we compute z by letting zi ∈ G be the result of the ith parenthesized expression in (5).
Clearly this z has the correct distribution. We perform each iterated multiplication by a
depth-O(t) tree of fan-in-2 multiplication gates in a specific way, described now.

For z1, the product is computed in the straightforward way from left to right by a depth-t
tree that computes each prefix product

λm := x1 ·
m∏

j=1

Rj = λm−1 · Rm

for m = 1, . . . , t in order, and outputs z1 := λt. The product for zt is computed in the
straightforward way from left to right as well.

Now let 1 < i < t. The product for zi is computed by a depth-2t tree that multiplies
“from the inside out”. That is, it computes in order a sequence λ1, . . . , λ2t−1 defined by
λ1 := Lt · xi and recursively for j = 1, . . . , t− 1 by

λ2j := λ2j−1 · Rj

λ2j+1 := Lt−j · λ2j

and then outputs zi := λ2t−1 · Rt.
By way of illustration, when t = 3 the sequence is computed as follows.

λ1 = L3 xi

λ2 = L3 xi R1

λ3 = L2 L3 xi R1

λ4 = L2 L3 xi R1 R2

λ5 = L1 L2 L3 xi R1 R2

zi = λ6 = L1 L2 L3 xi R1 R2 R3.

It is interesting to note that that the size overhead of O(t2) in our construction comes
from the fact that the random gadget has this size, and not from the nand gadget which
has size O(t). This is in contrast to previous constructions using the parity encoding (e.g.
[ISW03, FRR+10]), for which it is not known how to compute Nand with this size. Improving
the O(t2) overhead in any of these constructions, including ours, is an interesting open
problem.

The following key lemma in this work shows that the random gadget is locally recon-
structible. We say that x, z ∈ G t are plausible if it is possible for random(x) to output z,
i.e. if

∏
i xi =

∏
i zi.

10



Lemma 2.1. There is a poly(t)-time computable distribution on 1-local functions Rrandom :
G t×G t → G|random| for which the following holds. Let Wx→z denote the distribution on the
wires of z = random(x). For any ℓ with domain G|random| and any plausible x, z ∈ G t, if

∆(ℓ(Rrandom(x, z)), ℓ(Wx→z)) > ǫ · (t− 1)

then some 1-local extension of ℓ is not ǫ-fooled by G, i.e., there is a g ∈ G and a 1-local
function f : G t → G|random| such that

∆(ℓ(f(Dg)), ℓ(f(UGt))) > ǫ.

Proof. We first describe an alternate procedure for generating Wx→z. Fix any plausible
x, z ∈ G t. For the tree computing z1, choose each λj uniformly at random for j = 1, . . . , t−1,
and compute each R

(1)
j := λ−1j−1 · λj for j = 1, . . . , t, defining λt := z1 and λ0 := x1. Choose

the wires for the tree computing zt analogously. Then for i = 2, . . . , t − 1 in order, choose
the wires for the tree computing zi as follows.

1. Choose L(i) ∈ G t uniformly over vectors with product = (
∏

j R
(i−1)
j )−1.

2. For j = 1, . . . , t− 1 choose λ2j ∈ G uniformly at random.

3. For j = 0, . . . t− 1 compute λ2j+1 := L
(i)
t−j · λ2j, where λ0 := xi.

4. For j = 1, . . . , t compute R
(i)
j := λ−12j−1 · λ2j, where λ2t := zi.

To show that this distribution is identical to Wx→z, it is enough to observe that the
vectors R(i), L(i) are distributed correctly, i.e. uniformly conditioned on (4) and on the ith
parenthesized expression in (5) equalling zi for all i. This is because the above procedure
computes consistent wire values, and the R(i), L(i) (along with x, z) determine the values of
all other wires. R(1) and L(t) are clearly distributed correctly. Then for each 1 < i < t, L(i)

is distributed correctly assuming that R(i−1) is, R
(i)
j is uniform for 1 ≤ j < t, and R

(i)
t takes

the unique consistent value.
This computation is sequential, due to the selection of L(i) based on R(i−1) in step 1.

This selection is there to ensure condition (4). However by dropping this condition, we can
break the dependencies between multiplication trees and give a local reconstructor. Namely,
we define Rrandom(x, z) to be the above computation except that L(i) is chosen uniformly at
random in step 1. Note that Rrandom is a distribution on 1-local functions.

To prove the lemma, we define a set of hybrid distributions Hm on the wires of random
for m = 1, . . . , t − 1. Fix any plausible x, z ∈ G t. In Hm, the wires in the tree computing
zi for i ≤ m are chosen as in Wx→z, and for i > m the wires are chosen as in Rrandom(x, z).
Then, we have H1 ≡ Rrandom(x, z) and Ht−1 ≡ Wx→z (note that the first and last trees are
distributed identically in Wx→z and Rrandom(x, z)). Thus if there is a function ℓ such that

∆(ℓ(Rrandom(x, z)), ℓ(Wx→z)) > ǫ · (t− 1)

then there is an m ∈ [2, t− 1] such that

∆(ℓ(Hm−1), ℓ(Hm)) > ǫ. (6)

11



Now let g ∈ G be the fixed value (depending on x, z) such that
∏

j R
(m−1)
j = g with

probability 1 in both Hm and Hm−1. Thus in Hm−1 (resp. Hm), L
(m) is distributed according

to UGt (resp. Dg−1). (Note that this g is arbitrary, i.e. not only α or id, and hence we are
using the full generality of Definition 1.2.) Because Hm−1 and Hm differ only in the tree
computing zm, and because the distribution on these wires is independent of all other wires
when x and z are fixed, by an averaging argument we can fix all wires outside this tree while
preserving (6). Then given a vector v ∈ G t distributed according to either UGt or Dg−1 ,
a 1-local function (of v) can generate Hm−1 or Hm by setting L(m) := v and performing
steps 2-4 in the above computation. Fixing the randomness of this function by an averaging
argument, we obtain the function f : G t → G|random| in the statement of the lemma.

Using the above gadgets and Lemma 2.1 one may complete the proof of Theorem 1.4
essentially following [FRR+10, Lemma 13]. For completeness we include a proof in §4.

3 On compressing group products

In this section we show that (A5)
t fools in the sense of Definition 1.2 a number of computa-

tional models, proving Theorem 1.5. As mentioned in §1.1, the results of this section can be
viewed as giving compression bounds against a variety of classes for the task of computing
A5-products. We start by recalling a number of facts related to groups and computation.
Then in each of the subsections we analyze each computational model in turn.

First, it will be convenient later to prove that ℓ(Dα) and ℓ(Did) are close for every α ∈ G,
ℓ ∈ L, and we observe that this is sufficient.

Lemma 3.1. If ∆(ℓ(Dα), ℓ(Did)) ≤ ǫ for every α ∈ G and every ℓ in the 1-local extension
of L, then L is ǫ-fooled by G t.

Proof. If L is not ǫ-fooled by G t then ∃α ∈ G, ℓ ∈ L such that ∆(ℓ(Dα), ℓ(UGt)) > ǫ. Then
by an averaging argument, ∃β ∈ G such that ∆(ℓ(Dα), ℓ(Dβ)) > ǫ. Defining ℓ′(x1, . . . , xt) :=
ℓ(x1, . . . , xt · β) in the 1-local extension of L, we have ∆(ℓ′(Dαβ−1), ℓ′(Did)) > ǫ.

We will also make use of the random self-reducibility of the distributions Dα.

Lemma 3.2 ([Kil88]). There exists a distribution on 1-local functions R : G t → G t such
that for any α ∈ G and any x in the support of Dα, R(x) ≡ Dα.

Proof. R chooses r1, . . . , rt−1 ∈ G uniformly and outputs (x1r1, r−11 x2r2, . . . , r−1t−1xt).

Recall the following standard terminology: α is an involution if α = α−1, and α is the
commutator of β and γ if α = βγβ−1γ−1. We say that M : {0, 1}n → (A5)

∗ α-computes a
function f : {0, 1}n → {0, 1} if for every x,

∏
i M(x)i = αf(x) (where α0 = id and α1 = α).

The next theorem follows from [Bar89, Theorem 5] because every element of A5 is a
commutator.

Theorem 3.3 ([Bar89]). For every α ∈ A5 and every fan-in-2 circuit C : {0, 1}n → {0, 1}
of depth d, there is a 1-local function M : {0, 1}n → (A5)

O(4d) that α-computes C.
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Moreover, let f1, . . . , fm : {0, 1}n → {0, 1} be functions such that for each i ≤ m there is
a 1-local function M ′

i : {0, 1}n → (A5)
n that α-computes fi. Then, for every fan-in-2 circuit

C : {0, 1}m → {0, 1} of depth d there is a 1-local function M : {0, 1}mn → (A5)
O(n·4d) that

α-computes C(f1(·), . . . , fm(·)).

The following two lemmas allow certain functions to be more efficiently α-computed.
These can be compared with the works by Cai and Lipton [CL94] and Cleve [Cle91] which
give increasingly efficient versions of Barrington’s construction (here efficiency is measured
in the length of M ’s output). Our construction is simpler than the ones given in these works,
but also less general.

Lemma 3.4. For every involution α ∈ A5, the following holds.

1. There is a 1-local function M : {0, 1}n → (A5)
n that α-computes

⊕n
i=1 xi.

2. If M and M ′ α-compute some Boolean functions f and f ′, then their concatenation
(M,M ′) α-computes the function f ⊕ f ′.

Proof. For the first item: given input x ∈ {0, 1}n, output y ∈ (A5)
n such that yi = αxi. The

correctness of this construction, as well as the second item, follows from the isomorphism
between the group {0, 1} (under ⊕) and the subgroup {id, α} ⊂ A5.

For the next lemma, note that because every k-cycle (a1 a2 · · · ak) can be written as
a product of k − 1 transpositions (a1 a2)(a1 a3) · · · (a1 ak), every element of A5 is either a
3-cycle, a 5-cycle, the product of two disjoint transpositions, or the identity.

Lemma 3.5. Every non-involution in A5 is the commutator of two involutions.

Proof. Let a, b, c, d, e denote arbitrary, distinct elements of {1, . . . , 5}. Every non-involution
in A5 is either a 3-cycle (a b c) which is the commutator of involutions (a b)(d e) and (b c)(d e),
or a 5-cycle (a b c d e) which is the commutator of involutions (b e)(c d) and (a d)(b c).

3.1 Multi-party protocols

In this section we consider functions computable by a multi-party communication protocol
in the “number on forehead” model [CFL83], defined as follows. A protocol P with n-bit
inputs consists of k = k(n) parties, each with unlimited computational power. The input
x ∈ {0, 1}kn is partitioned into k blocks, and party i sees all input bits except those in the
ith block. The parties communicate in the broadcast model, so every bit sent is seen by all
parties. The (m = m(n))-bit output of P is defined to be the final m bits that are broadcast,
and the cost of P is the total number of bits broadcast by all parties. When P ’s input comes
from a group G, we assume some canonical representation of G’s elements as (log |G|)-bit
strings.

We prove the following compression bound for such protocols.

Theorem 3.6. There is a partition of the inputs in (A5)
t into k pieces such that any k-party

protocol communicating c bits and outputting ≤ c bits is ǫ-fooled by (A5)
t for ǫ = 2c−Ω(t/(k24k)).
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We prove this theorem by combining an efficient translation from bits to group products
with the following lower bound. Define the generalized inner-product function GIPn,k :
{0, 1}nk → {0, 1} as

GIPn,k(x) :=
n⊕

i=1

k∧

j=1

xi,j.

Then we have the following lemma, originally due to Babai, Nisan, and Szegedy [BNS92]
and with increasingly streamlined proofs in [CT93, Raz00, VW08].

Lemma 3.7 ([BNS92]). There is a partition of the inputs to GIPn,k into k blocks such that
for every protocol P : {0, 1}nk → {0, 1} with k parties that communicates at most c bits,
Prx[P (x) = GIPn,k(x)] ≤ 1

2
+ 2c−Ω(n/4k).

We give the following translation to bits from group products.

Lemma 3.8. For every α ∈ A5, there is a 1-local function M : {0, 1}nk → (A5)
O(nk2) that

α-computes GIPn,k.

Proof. Assume α is an involution. LetM ′ : {0, 1}k → (A5)
O(k2) be the function guaranteed by

Theorem 3.3 that α-computes the k-wise AND of its input. Then letting x(i) := (xi,1, . . . , xi,k)
for each i ≤ n, the function

M(x) := (M ′(x(1)), . . . ,M ′(x(n)))

α-computes GIPn,k by the second item of Lemma 3.4.
If α is not an involution, let β, γ ∈ A5 be the involutions guaranteed by Lemma 3.5 such

that α = βγβγ (note that β = β−1 and γ = γ−1). Then let M ′ instead β-compute the AND
of its input, and compute M as

M(x) := (M ′(x(1)), . . . ,M ′(x(n)), γ,M ′(x(1)), . . . ,M ′(x(n)), γ).

We now give the proof of Theorem 3.6.

Proof of Theorem 3.6. For an appropriate n = Ω(t/k2), let M : {0, 1}n·k → (A5)
t be the

1-local function guaranteed by Lemma 3.8 that α-computes GIPn,k. Consider the partition
on the t elements of the input from (A5)

t that is induced by M from the partition on GIPn,k

guaranteed by Lemma 3.7.
Assume for contradiction that some protocol on this partition is not ǫ-fooled. Without

loss of generality the protocol outputs 1 bit. (The last player can simulate whatever set
maximizes the statistical distance of the multi-bit protocol output distributions.) By Lemma
3.1, there is an α ∈ A5 and a protocol P : (A5)

t → {0, 1} with k parties communicating ≤ c
bits such that ∆(P (Dα), P (Did)) ≥ 2c−βt/(k

24k), for a suitable constant β.
By combining the P with M we now give a distribution on protocols P ′ : {0, 1}n·k →

{0, 1} for GIPn,k with the same number of parties, the same communication, and the same
advantage up to the constant β. This contradicts Lemma 3.7.

On input x, each party in P ′ first computes the portion of y := M(x) ∈ (A5)
t that

depends on the input bits it can see; this is done with no communication as M is 1-local.
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Next each party computes the portion of z := (y1 · r1, r−11 · y2 · r2, . . . , r−1t−1 · yt) that depends
on the input bits it can see, again with no communication. (r is a public random string.)
Finally the parties compute and output P (z) using the protocol P .

Note for every x such that GIPn,k(x) = 1 (resp. GIPn,k(x) = 0), z is distributed according
to Dα (resp. Did) over the choice of r. The proof is now completed using the fact that
Prx[GIPn,k(x) = 0] > Prx[GIPn,k(x) = 1] ≥ 1/2− 2−Ω(n/2k) [VW08, Claim 2.11].

3.2 TC0

In this section we observe that, because computing products over A5 is complete for NC1, if
TC0 6= NC1 then the set of TC0 circuits with O(log t) bits of output is t−ω(1)-fooled by (A5)

t.
Recall that NC1 is the class of poly-size fan-in-2 And/Or/Not circuits with depth O(logn),

and TC0 is the class of poly-size unbounded-fan-in constant-depth circuits where each gate
computes, for some c, the c-threshold function which is 1 iff ≥ c inputs are 1.

The high-level idea behind the next theorem is the following. Assume there is an α ∈ A5

and a TC0 circuit C that can distinguish between Dα and Did with advantage ≥ t−k for
some k. Then for any NC1 circuit B we construct a TC0 circuit that, on input x, chooses
m = tO(k) samples from the distribution DαB(x) and outputs 1 iff the number of samples on
which C outputs 1 is sufficiently close to m ·Pr[C(Dα) = 1]. This last check can be computed
with threshold gates, and we can sample from DαB(x) by using Theorem 3.3 to obtain a single
element in its support and then relying on the random self-reducibility of this distribution.

Theorem 3.9. If TC0 6= NC1 then ∀k and infinitely many t, the class L of TC0 circuits
with size ≤ tk and output length k log t is t−k-fooled by (A5)

t.

Proof. Assume that ∃k such that for sufficiently large t, L is not t−k-fooled by (A5)
t. Then

by Lemma 3.1 there exists an α ∈ A5 and a TC0 circuit C : (A5)
t → {0, 1}k log t with size

≤ tk such that ∆(C(Dα), C(Did)) ≥ t−k. Let S ⊆ {0, 1}k log t be the set that maximizes
Pr[C(Dα) ∈ S]−Pr[C(Did) ∈ S], and note that checking x ∈ S can be done by a TC0 circuit
of size tO(k). Thus, there is a TC0 circuit C ′ : (A5)

t → {0, 1} of size tO(k) such that

Pr[C ′(Dα) = 1]− Pr[C ′(Did) = 1] ≥ t−k. (7)

Define ǫα := Pr[C ′(Dα) = 1] and ǫid := Pr[C ′(Did) = 1], and note that ǫα ≥ t−k.
Let B : {0, 1}n → {0, 1} be any NC1 circuit, and for an appropriate t = nO(1) let

M : {0, 1}n → (A5)
t be the 1-local function (guaranteed by Theorem 3.3) that α-computes

B. Let C ′′ : {0, 1}n → {0, 1} be the randomized TC0 circuit that performs the following
steps on input x ∈ {0, 1}n.

1. Compute y = M(x) ∈ (A5)
t.

2. For m := t3k(n + 2)/ǫα = nO(k), sample z1, . . . , zm ∈ (A5)
t independently from DαB(x)

by computing R(y) where R is the 1-local function from Lemma 3.2.

3. Use two layers of threshold gates to output 1 iff

(1− 1/(2tk)) ·mǫα ≤
m∑

i=1

C ′(zi) ≤ (1 + 1/(2tk)) ·mǫα.
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We now prove the following claim.

Claim. ∀x ∈ {0, 1}n: Pr[C ′′(x) = B(x)] ≥ 1− 2−n−1 over the random coins of C ′′.

This implies the theorem, as follows. By a union bound there is a way to fix the random
coins of C ′′ such that C ′′(x) = B(x) for every x. Then because B ∈ NC1 was arbitrary and
C ′′ ∈ TC0, we have TC0 = NC1.

Proof of Claim. Denote X :=
∑m

i=1C
′(zi), and µ := E[X ].

Fix x, and first assume B(x) = 1 which means µ = mǫα = t3k(n+ 2). Then

Pr[C ′′(x) = B(x)] = Pr
[
|X − µ| ≤ µ/(2tk)

]
≥ 1− 2e−µ·t

−3k ≥ 1− 2−n−1

by a Chernoff bound.
Now assume B(x) = 0. Then µ = mǫid, and since ǫα/ǫid ≥ 1 + 1/tk by (7), we have

(1− 1/(2tk)) ·mǫα ≥ µ(1 + 1/(3tk)). Then using another Chernoff bound, we have

Pr[C ′′(x) = B(x)] ≥ 1− Pr[X ≥ µ(1 + 1/(3tk))] ≥ 1− e−µ·t
−3k ≥ 1− 2−n−1.

This completes the proof of the theorem.

3.3 AC0

In this section, we observe that by combining the following compression bound against AC0

due to Dubrov and Ishai [DI06] with our Lemma 3.4 above, we can obtain a quantitatively
identical compression bound for A5-products against AC

0.
Let ⊕−1(b) denote the uniform distribution over n-bit strings with parity = b.

Theorem 3.10 ([DI06]). For every 0 < δ < 1 and every d ∈ N, there is a constant ǫ > 0
such that the following holds. For every unbounded-fan-in circuit C : {0, 1}n → {0, 1}nδ

of

depth ≤ d and size ≤ 2ǫ·n
(1−δ)/d

:

∆(C(⊕−1(0)), C(⊕−1(1))) < 2−ǫ·n
(1−δ)/d

.

Theorem 3.11. For every 0 < δ < 1 and every d ∈ N, there is a constant ǫ > 0 such that
the following holds. Let L be the class of unbounded-fan-in circuits C : (A5)

t → {0, 1}tδ of

depth ≤ d and size ≤ 2ǫ·t
(1−δ)/d

. Then, L is 2−ǫ·t
(1−δ)/d

-fooled by (A5)
t.

Proof. Assume for contradiction that L is not 2−ǫ·t
(1−δ)/d

-fooled by (A5)
t. Then by Lemma

3.1 there is a circuit C ∈ L and an α ∈ A5 such that

∆(C(Dα), C(Did)) ≥ 2−ǫ·t
(1−δ)/d

.

For n = Ω(t), let M : {0, 1}n → (A5)
t be the 1-local function guaranteed by Lemmas 3.4

and 3.5 such that
t∏

i=1

M(x)i =

{
id if ⊕n

j=1 xj = 0

α if ⊕n
j=1 xj = 1.
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Let R be the function from Lemma 3.2. Then we have

∆(C(R(M(⊕−1(0)))), C(R(M(⊕−1(1))))) ≥ 2−ǫ·t
(1−δ)/d

= 2−ǫ
′·n(1−δ′)/(d+1)

for appropriately chosen ǫ′ = ǫ′(ǫ) and δ′ = δ′(δ). Noting that the depth of C(R(M(·))) is
d+1 and using an averaging argument to fix the randomness of R, this contradicts Theorem
3.10.

3.4 AC0 with symmetric gates

Here we show that our hardness assumption holds when L is the class of unbounded-fan-in
constant-depth circuits that contain tO(log t) And/Or/Not gates and O(log2 t) gates that each
compute an arbitrary symmetric function. Specifically, we prove the following.

Theorem 3.12. For every d, there is an ǫ > 0 such that the following holds for every t.
Let L be the set of functions ℓ : (A5)

t → {0, 1}t0.1 where each output bit of ℓ is computable
by an unbounded-fan-in circuit of depth ≤ d that contains ≤ tǫ log t And/Or/Not gates and
≤ ǫ log2 t arbitrary symmetric gates.

Then, L is t−ǫ log t-fooled by (A5)
t.

Note that in fact these circuits have up to O(t0.1·log2 t) arbitrary symmetric gates, though
each output bit only depends on O(log2 t) of them.

The proof of Theorem 3.12 extends a lower bound due to Viola [Vio07] and combines it
with an efficient translation from bits to group products. Viola’s lower bound shows that the
following function PAPn,m : {0, 1}n2m → {0, 1} (for “parity-and-parity”) is hard on average
for this circuit class to compute.

PAPn,m(x) :=
n⊕

i=1

m∧

j=1

n⊕

k=1

xi,j,k

We use the following translation from PAP -inputs to group products.

Theorem 3.13. For every α ∈ A5, there is a 1-local function M : {0, 1}n2m → (A5)
O(n2m2)

that α-computes PAPn,m.

The proof of this theorem is analogous to that of Lemma 3.8, using the “moreover” part
of Theorem 3.3. We omit the details.

For the remainder of this section, we let PAP denote PAPn,0.3 logn. By combining The-
orem 3.13 with the random self-reducibility of the distributions Dα, we prove the following.

Lemma 3.14. Let L be as in Theorem 3.12, and assume that L is not t−ǫ log t-fooled by (A5)
t.

Then there is an n = Ω(
√
t/ log t), an ǫ′ = ǫ′(ǫ) > 0, and a function ℓ′ : {0, 1}n2·0.3 logn →

{0, 1}t0.1 such that each output bit of ℓ′ is computable by an unbounded-fan-in circuit of depth
≤ d+1 that contains ≤ nǫ′ logn And/Or/Not gates and ≤ ǫ′ log2 n arbitrary symmetric gates,
and

∆(ℓ′(PAP−1(1)), ℓ′(PAP−1(0))) ≥ n−ǫ
′ logn.
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Proof. If L is not t−ǫ log t-fooled by (A5)
t, then there is an α ∈ A5 and an ℓ ∈ L such that

∆(ℓ(Dα), ℓ(Did)) ≥ t−ǫ log t. For an appropriate n = Ω(
√
t/ log t), let M : {0, 1}n2·0.3 logn →

(A5)
t be the 1-local function guaranteed by Theorem 3.13 that α-computes PAP . Let R :

(A5)
t → (A5)

t be the randomized 1-local function from Lemma 3.2. Then ℓ′ := ℓ(R(M(·)))
satisfies the lemma, and by an averaging argument we can fix the randomness of R so that
ℓ′ is deterministic.

We now prove Theorem 3.12. The lower bound in [Vio07] shows that, when restricted to
one output bit and with domain {0, 1}n2·0.3 logn, circuits in L have correlation n−Ω(log n) with
PAP . This is done by showing that with probability 1−n−Ω(log n) over a random restriction
ρ to the input bits of a circuit C ∈ L, we have both that PAP |ρ = GIP and that C|ρ
is computable by a (0.3 logn)-party protocol communicating log5 n bits, which triggers the
lower bound of Lemma 3.7.

In addition to the translation to group products above, we extend this argument to t0.1

output bits by using a union bound to show that ρ satisfies these properties simultaneously for
all output bits, again with probability 1−n−Ω(log n). The protocol now exchanges t0.1 ·log5 n <
n0.21 bits which is still sufficiently small to use Lemma 3.7.

Proof of Theorem 3.12. Assume that L is not t−ǫ log t-fooled by (A5)
t, and let n, ǫ′, and ℓ′ =

(ℓ′1, . . . , ℓ
′
t0.1) be given by Lemma 3.14. Let R be the following distribution over restrictions

ρ on n2 · 0.3 logn bits that leave n · 0.3 logn bits unrestricted:

• Choose ρ′ uniformly over all restrictions that leave (n2 · 0.3 logn)0.9 bits unset.

• If PAP |ρ′ has ≥ 1 input unrestricted per bottom ⊕ gate, then choose ρ′′ uniformly over
restrictions to the remaining bits that leave exactly 1 input unrestricted per bottom ⊕
gate.

• Else, choose ρ′′ uniformly over all restrictions to the remaining bits that leave exactly
n · 0.3 logn bits unrestricted.

• Output ρ = ρ′ ◦ ρ′′.

Say that ρ is good if PAP |ρ has exactly 1 input unrestricted per bottom ⊕ gate and for
every i = 1, . . . , t0.1, ℓ′i|ρ is computable by a (0.3 logn)-party protocol (under any partitioning
of the input) exchanging log5 n bits of communication. Combining [Vio07, Claim 11 &
Lemma 12] with a union bound over all ℓ′i, we obtain

Pr
ρ←R

[ρ is good] ≥ 1− n−Ω(log n).

Because ∆(ℓ′(PAP−1(1)), ℓ′(PAP−1(0))) ≥ n−ǫ
′ logn, there is a set S ⊆ {0, 1}t0.1 such

that
Pr
x
[ℓ′(x) ∈ S | PAP (x) = 1]− Pr

x
[ℓ′(x) ∈ S | PAP (x) = 0] ≥ n−ǫ

′ logn. (8)

For any ρ that is good, let Pρ : {0, 1}n·0.3 logn → {0, 1} be the following (0.3 logn)-party
protocol exchanging t0.1 · log5 n + 1 ≤ n0.21 bits. On input y, the parties first compute
each ℓ′i|ρ(y) by communicating t0.1 · log5 n bits, and then output 1 iff ℓ′|ρ(y) ∈ S using one
additional bit of communication.
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For every ρ that is good, PAP |ρ is equal (up to complementing some inputs) to the
generalized inner-product function GIP from §3.1. Thus, by Lemma 3.7 we have

Pr
y
[Pρ(y) = PAP |ρ(y)] < 1/2 + 2−n

Ω(1)

(9)

for every good ρ.
Now notice that choosing a random x ∈ {0, 1}n2·0.3 logn can be thought of as first choosing

ρ from R and then choosing y uniformly over {0, 1}n·0.3 logn. Then letting Eb denote the event
“ρ is good and PAP |ρ(y) = b”, we have

Pr
x
[ℓ′(x) ∈ S | PAP (x) = 1]− Pr

x
[ℓ′(x) ∈ S | PAP (x) = 0]

= Pr
ρ,y
[ℓ′|ρ(y) ∈ S | PAP |ρ(y) = 1]− Pr

ρ,y
[ℓ′|ρ(y) ∈ S | PAP |ρ(y) = 0]

≤ Pr
ρ,y
[ℓ′|ρ(y) ∈ S | E1]− Pr

ρ,y
[ℓ′|ρ(y) ∈ S | E0] + Pr

ρ
[ρ is not good]

= Pr
ρ,y
[Pρ(y) = 1 | E1]− Pr

ρ,y
[Pρ(y) = 1 | E0] + Pr

ρ
[ρ is not good]

= Pr
ρ,y
[Pρ(y) = 1 | E1] + Pr

ρ,y
[Pρ(y) = 0 | E0]− 1 + Pr

ρ
[ρ is not good]

< (1/2 + 2−n
Ω(1)

)/(1/2− 2−n
Ω(1)

)− 1 + Pr
ρ
[ρ is not good]

= 2−n
Ω(1)

+ Pr
ρ
[ρ is not good]

≤ n−Ω(log n)

which contradicts (8) for sufficiently small ǫ′. Note that the second inequality follows from

(9) because PAP |ρ = GIP is balanced up to an additive factor of 2−n
Ω(1)

.

4 Proofs of main theorems

In this section we prove Theorem 1.4, Corollary 1.6, and Theorem 1.7.

Theorem 1.4. Let G be a group. For every polynomial-time computable function t = t(n),
there is a compiler Comp for which the following holds.

1. For every C : {0, 1}n × {0, 1}n → {0, 1}n and k ∈ {0, 1}n, Comp(C, k) runs in time

poly(|C|, t) and outputs a circuit Ĉ of size O(t2 · |C|) and depth O(t · depth(C)).
2. For every set of functions L and every ǫ > 0, if the 4-local extension of L is ǫ-fooled

by G t then Comp is an (L, ǫ · t · |C|)-leakage-secure compiler.

Proof. Let C : {0, 1}n × {0, 1}n → {0, 1}n and k ∈ {0, 1}n be the input to Comp. As

described in §2, Comp constructs a circuit Ĉ by replacing each wire in C with a bundle of
t wires, and replacing each gate in C with a set of gadgets. Specifically for each Nand gate
in in C with two input wires and m output wires, Ĉ contains a nand gadget followed by m
random gadgets in parallel (each of which takes as input the nand gadget’s output).

In order for Ĉ(x) to map {0, 1}n → {0, 1}n, it must encode x ∈ {0, 1}n to x′ ∈ (G t)n as a
first step, and decode z′ ∈ (G t)n to z ∈ {0, 1}n as a final step. This is done in the following
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straightforward way. The input encoder sets each x′i to be either (id, . . . , id) or (id, . . . , id, α)
depending if xi = 0 or 1. The output decoder computes each product

∏t
j=1(z

′
i)j, and

sets zi = 0 or 1 depending if this product is id or α. The decoder may use any correct
multiplication tree, i.e. the specific tree used is not relevant to the proof of security.

The size/depth bounds of Comp are immediate. To prove that Ĉ is a correct circuit (i.e.

that Ĉ(x) = C(x, k) for every x), one can apply an inductive argument to show that each
bundle at the output of a random gadget correctly encodes the value of the corresponding
wire in C, and thus the output decoder indeed produces C(x, k).

In the hybrid arguments below, we will crucially use the fact that each bundle of the
secret state and each bundle at the output of a random gadget is uniform (over the random
coins of Comp) subject to correctly encoding the corresponding wire of C.

On input (C, x, Ĉ(x)), the simulator S computes a distribution on the wires of Ĉ as
follows.

First, S computes the wires for the encoder and decoder honestly. For the encoder
this is straightforward. For the decoder, S chooses n vectors z′i ∈ G t which are uniform

conditioned on the correct product (determined by Ĉ(x)i), and then computes the wires
for the multiplication trees honestly. These wires are distributed identically to the real
distribution on Ĉ(x)’s wires and thus will not affect the hybrid arguments that follow, which
is why these multiplication trees and the complexity of S for this step are not of interest.

Next, S chooses uniformly at random the values for each wire encoding the secret input
k, as well as each connecting wire at the output of a random gate (except those which touch
the output decoder and have already been chosen).

Next, for each nand gadget S computes values for its internal wires and for its output
wires by simply evaluating the gadget. (Here we use the fact that the output of one nand

gadget is never the input of another, so all nand input bundles have already been set.)
Finally, S computes internal wire values for each random gadget using Rrandom.

Now let Ĉ ← Comp(C, k), and recall that Ŵx denotes the real distribution on the wires

of Ĉ(x). We define an intermediate distribution W ′
x as follows: first draw a sample from

Ŵx, and then recompute the internal wires of each random gadget from its input/output
bundles using Rrandom.

We now show that W ′
x is indistinguishable (by L) from both Ŵx and S(C, x, Ĉ(x)).

Claim 1. If the 1-local extension of L is ǫ-fooled by G t, then ∀ℓ ∈ L:

∆(ℓ(W ′
x), ℓ(Ŵx)) ≤ ǫ · |C| · (t− 1).

Proof. Assume that there an ℓ ∈ L such that ∆(ℓ(W ′
x), ℓ(Ŵx)) > ǫ · |C| · (t−1). Define some

fixed ordering on the ≤ |C| random gadgets of Ĉ. Then by a hybrid argument, there is
an m ≤ |C| and two distributions H and H ′, defined as follows, for which ∆(ℓ(H), ℓ(H ′)) >

ǫ ·(t−1). H is defined by first drawing a sample from Ŵx, and then recomputing the internal
wires of random gadgets 1, . . . , m from their input/output bundles; H ′ is the same except
only random gadgets 1, . . . , m− 1 are recomputed.

Now by an averaging argument, we can fix all wires in both H and H ′ except those
internal to the mth random gadget, obtaining a function ℓ′ (with domain G|random|) in the
1-local extension of L. Then ℓ′ distinguishes the real wires of the mth random gadget from
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those computed by Rrandom with advantage > ǫ · (t − 1). In combination with Lemma 2.1,
this contradicts the claim’s hypothesis.

Claim 2. If the 4-local extension of L is ǫ-fooled by G t, then ∀ℓ ∈ L:

∆(ℓ(S(C, x, Ĉ(x))), ℓ(W ′
x)) ≤ ǫ · |C|.

Proof. Assume that there an ℓ ∈ L such that ∆(ℓ(S(C, x, Ĉ(x))), ℓ(W ′
x)) > ǫ · |C|. Define

some fixed ordering on the ≤ |C| bundles of Ĉ that either encode a bit of the secret input k
or are at the output of a random gadget but do not touch the output decoder. Then by a
hybrid argument, there is an m ≤ |C| and two distributions H and H ′, defined as follows,
for which ∆(ℓ(H), ℓ(H ′)) > ǫ. In H , bundles 1, . . . , m are uniformly random and bundles
m+1, . . . , |C| are random subject to correctly encoding the value of the corresponding wire
in C; in H ′ only bundles 1, . . . , m− 1 are uniformly random. In both, each nand’s internal
wires are computed using the gadget itself, and each random’s internal wires are computed
using Rrandom.

Let g ∈ {id, α} be the value encoded by the mth bundle in W ′
x (determined by C, k and

x). Note that the mth bundle is necessarily the input of a nand gadget, and is either the
output of a random gadget or a bundle encoding a bit of k. By an averaging argument, we
can fix all wires in H and H ′ while preserving ∆(ℓ(H), ℓ(H ′)) > ǫ, except for the following:
the mth bundle, the internal and output wires of the nand gadget that it touches, the
internal wires of the random gadgets that are adjacent to the output of this nand gadget,
and the internal wires of the random gadget that outputs the mth bundle (if it exists).

Finally, a 4-local function can compute one of the two distributions from an input v ∈ G t

distributed according to either UGt or Dg: it plugs v into the mth bundle and computes the
(4-local) nand gadget and the (1-local) Rrandom.

Finally, because ∆ is a metric, these two claims give part 2 of the theorem.

Corollary 1.6. There is a single efficient compiler Comp, outputting a circuit Ĉ of size
|Ĉ| = O(|C|3), that is an (L, ǫ)-leakage secure compiler for each of the following.

1. L = number-in-hand protocols with s parties communicating and outputting ≤ δ · |Ĉ|1/3
bits, for a fixed δ > 0 and a fixed partition of Ĉ into s = O(1) sets; ǫ = 2−Ω(|Ĉ|1/3).

2. L = AC0 circuits with depth ≤ d, size ≤ |Ĉ|Od(log |Ĉ|), an additional Od(log
2 |Ĉ|) arbi-

trary symmetric gates, and |Ĉ|0.01 bits of output; ǫ = |Ĉ|−Ωd(log |Ĉ|).
3. If TC0 6= NC1 then for every k and infinitely many |C|, L = TC0 circuits with size

≤ |Ĉ|k and k log |Ĉ| bits of output; ǫ = |Ĉ|−k.
4. L = AC0 circuits with depth ≤ d, size ≤ 2Od(|Ĉ|

(1−δ)/3d), and |Ĉ|δ/3 bits of output, for

any δ < 1; ǫ = 2−Ωd(|Ĉ|
(1−δ)/3d).

Proof. For all four items, we choose t = |C|. As mentioned in §1.1, items 2-4 follow in a
straightforward manner from Theorem 1.4 and the results of §3. Next we prove item 1.

The key is to show that the local extension of any number-in-hand (NIH) protocol, under
any partition satisfying a certain restriction discussed below, is computable by a number-
on-forehead (NOF) protocol under a corresponding partition. This allows us to show that

any NIH protocol breaking the security of Ĉ, in combination with the local reduction from
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Theorem 1.4, gives an NOF protocol that is not fooled by (At)
t which contradicts item 1 of

Theorem 1.5. We now give the details.
Let F = {f : G t → {0, 1}|Ĉ|} denote the set of possible reductions from the proof of

Theorem 1.4. Let P be any s-party NOF partition of strings in G t. We assign to each wire
j ∈ Ĉ a set Sj ⊆ [s] of NOF players with the following property: for every f ∈ F and x ∈ G t,
j’s value in f(x) depends only on elements of x that are on the foreheads of players in Sj .

Then if a given NIH partition P ′ of Ĉ satisfies
⋃

j∈P ′

i
Sj ( [s] for every set P ′i ∈ P ′, we say

that P ′ is simulatable. The key is that for any NIH protocol ℓ under a simulatable partition
P ′ and any f ∈ F , ℓ(f(·)) is computable by an s-party NOF protocol under partition P with
the same amount of communication. Indeed, player i’s communication in the NIH protocol
can be simulated in the NOF protocol by any player in [s] \⋃j∈P ′

i
Sj.

To construct our simulatable NIH partition, we note that the set of reductions F given by
the proof of Theorem 1.4 is the union of two sets F1 and F2, where Fi contains the reductions
arising from Claim i. F1 and F2 each contain O(1)-local reductions as previously discussed,
but in fact they satisfy the stronger property that every bit j in the output depends on the
same O(1) inputs for every function in the set. Formally, the following holds ∀j ≤ |Ĉ|.

∣∣{i ≤ t | ∃f ∈ F1 whose jth output depends on its ith input}
∣∣ ≤ 1

∣∣{i ≤ t | ∃f ∈ F2 whose jth output depends on its ith input}
∣∣ ≤ 4

Now let P be the partition of strings in (A5)
t onto s = 6 foreheads given by Theorem 3.6.

We define a simulatable partition P ′ of strings in {0, 1}|Ĉ| into 6 hands as follows. For each

wire j ≤ |Ĉ|, we assign j to hand i for some i ∈ [6] such that for every f ∈ F1 ∪ F2, the jth
output bit of f does not depend on any input element on forehead i in P . This is possible
because each output bit depends on ≤ 4 + 1 = 5 input elements and thus ≤ 5 foreheads of
P , and P ′ is simulatable because we have Sj ( [6] for every j.

To complete the proof, recall that Theorem 1.4 shows that for every k ∈ {0, 1}n, if there
is a function ℓ on domain {0, 1}|Ĉ| and an x ∈ {0, 1}n such that

∆(ℓ(Ŵx), ℓ(S(C, x, Ĉ(x))) ≥ ǫ · t · |C| (10)

for Ĉ ← Comp(C, k), then there exists α ∈ G and a function f ∈ F1 ∪ F2 such that

∆(ℓ(f(Dα)), ℓ(f(UGt))) ≥ ǫ. (11)

If (10) holds for a NIH protocol ℓ under P ′, then (11) contradicts item 1 of Theorem 1.5.

The previous proof constructed a simulatable NIH partition P of Ĉ into 6 sets each of size
O(|Ĉ|) = O(t2 · |C| · log |G|). To analyze the security of our compiler in the only computation
leaks (OCL) model, we now show that this partition can be refined into a simulatable,
topologically-ordered partition with O(t · |C|) sets each of size O(t log |G|). (Recall from §1.1
that P is topologically-ordered if for each Pi ∈ P and each wire j ∈ Pi, j’s value in Ĉ’s
computation depends only on wires j′ such that j′ ∈ Pi′ for some i′ ≤ i.) In the following,
the canonical partition of x ∈ Gt for s-party NOF protocols is the one in which player i’s
forehead contains xi, xi+s, . . . , xi+t−s.
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Theorem 1.7. Assume that 8-party NOF protocols communicating ≤ c bits are ǫ-fooled by
G t under the canonical partition of x ∈ G t.

Then for each C and k there is a topologically-ordered partition P on Ĉ := Comp(C, k)
containing O(t · |C|) sets each of size O(t log |G|), such that Comp from Theorem 1.4 is an
(L, ǫ · t · |C|)-leakage secure compiler for L = all OCL leakage functions that output ≤ δ · c/t
bits per set in P , where δ is a constant that depends only on the maximum fanout of C.

Proof. In the OCL model, the compiler specifies a topologically-ordered partition P on the
wires of the compiled circuit Ĉ, and the adversary adaptively chooses leakage functions to
be applied to the wires of each set in P . We observe that any such adversary defines a
number-in-hand (NIH) communication protocol on Ĉ(x)’s wires under P . Thus following
the proof above, any OCL adversary under a simultable partiton P that breaks the security
of Ĉ contradicts item 1 of Theorem 1.5. (For this theorem we consider 8-party protocols
rather than 6-party solely because it makes the partition cleaner to describe.)

Recall the two classes of reduction functions f : G t → {0, 1}|Ĉ| in Theorem 1.4. In the
first class, f(x) plugs x into the bundle L in some multiplication tree of some random

gadget, and reconstructs the other wires in the tree via the method described in Lemma 2.1;
all wires outside this tree (and the gadget) are fixed in f ’s output by the hybrid argument.

In the second class, f(x) plugs x into a bundle at the output of some random gadget
(thus also at the input of some nand gadget). It then computes honestly the wires in
the nand gadget, reconstructs the random gadget that outputs x, and reconstructs the
random gadgets that take the nand gadget’s output as input. All other wires are fixed in
f ’s output by the hybrid argument.

We now describe the partition P and the sets Sw ⊆ [8] for each wire w ∈ Ĉ. (Recall that
for P to be simulatable, each Sw must have the property that w’s value in the output of any
reduction f(x) depends only on the foreheads of players in Sw under the canonical partition

of x.) P first splits Ĉ into O(|C|) sets corresponding to the gadgets, and then refines each
gadget’s set as described below.

Partition for nand. First let w be a wire in a nand gadget N . If w is N ’s ith input
wire (1 ≤ i ≤ t), then Sw = {i mod 8}. This is because for each f ∈ F , w’s value in f(x)’s
output is either fixed by the hybrid argument or is equal to xi which is on the forehead of
player i mod 8.

If w is a wire at the output of an inversion gate whose input is N ’s ith input wire, then
we again have Sw = {i mod 8}.

If w is a wire at the output of a multiplication gate in N (including N ’s output wires),
we have either Sw = {1, 2, 3, 4} or Sw = {5, 6, 7, 8}. This is because each multiplication gate
depends on ≤ 4 consecutive elements from N ’s input.

Thus we partition each nand gadget into two sets of equal size O(t log |G|): the wires w
such that Sw ⊆ {1, 2, 3, 4}, and the wires w such that Sw ⊆ {5, 6, 7, 8}. Note that so far P
is topologically ordered and simulatable.

Partition for random. Now let w be a wire in a random gadget D. If w is D’s ith
output wire then we have Sw = {i mod 8} for the same reason as above: w’s value is either
fixed by the hybrid argument or is equal to xi.
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If w is one of D’s input wires then by construction it is an output wire of some nand

gadget, and so we already have Sw = {1, 2, 3, 4} or Sw = {5, 6, 7, 8}. Recall that each input
wire of D becomes the middle input to a (2t + 1)-wise multiplication tree, in which the
leftmost t inputs are denoted L and the rightmost t inputs are denoted R.

If w is the ith wire (1 ≤ i ≤ t) in a bundle L of some tree, then we have Sw = {i mod 8}
because again w’s value is either fixed by the hybrid argument or is equal to xi.

If w is the ith wire in a bundle R of some tree, then by the reconstruction procedure in
Lemma 2.1 w depends only on its “mirror image” in L, i.e. the (t− i+ 1)th wire of L; thus
we have Sw = {t − i + 1 mod 8}. There are two exceptions to this. First, the first wire of
R also depends on the middle input wire of the tree, i.e. one of D’s input wires (recall that
this dependence is in the reconstruction procedure, not in the gadget’s computation itself);
thus for this wire we have either Sw = {1, 2, 3, 4, 8} or Sw = {5, 6, 7, 8}. Second, the last
wire of R also depends on the output wire of this tree, i.e. one of D’s output wires; thus for
this wire we have Sw = {1, m} for some m ∈ [8].

We now illustrate the sets Sw for the 2t + 1 input wires of a multiplication tree in D.
Either they are

L︷ ︸︸ ︷
{1} · · · {8} . . . {1} · · · {8} {1, 2, 3, 4}

R︷ ︸︸ ︷
{1, 2, 3, 4, 8}{7} · · ·{1} . . . {8} · · · {2}{1, m}

for some m ∈ [8], or else they are

L︷ ︸︸ ︷
{1} · · · {8} . . . {1} · · · {8} {5, 6, 7, 8}

R︷ ︸︸ ︷
{5, 6, 7, 8}{7} · · ·{1} . . . {8} · · · {2}{1, m}.

P partitions each such set of input wires as follows, which induces a partition on the
whole tree. Essentially, P works from the outside towards the middle, grouping blocks of
4 consecutive wires from each side. So, the first set contains wires 1, . . . , 4 of L and wires
(t− 3), . . . , t of R, the next set contains wires 5, . . . , 8 of L and wires (t − 7), . . . , (t− 4) of
R, and so on. The middle 8 + 1 + 8 = 17 wires are handled differently, but note that for
each set so far we have

⋃
w Sw = {5, 6, 7, 8} or ⋃w Sw = {1, 2, 3, 4, m} for some m ∈ [8].

We partition the middle 17 wires into two sets as follows. If the middle wire has Sw =
{5, 6, 7, 8} then we partition as the other wires: the outermost 8 wires form one set (with⋃

w Sw = {1, 2, 3, 4}), and the innermost 9 form the other (with
⋃

w Sw = {5, 6, 7, 8}). If
instead the middle wire has Sw = {1, 2, 3, 4}, then we make one set from the outermost
10 wires (with

⋃
w Sw = {1, 2, 3, 4, 5}), and the other from the innermost 7 wires (with⋃

w Sw = {1, 2, 3, 4, 6, 7, 8}).
The partition on the input wires induces a partition on the whole tree in the natural

way: each internal wire, which is the output of some multiplication gate, is assigned to the
set containing the input wire on which it depends. This preserves the value of each

⋃
w Sw

listed above, and thus the partition is simulatable. It is also topologically ordered, as the
sets in the partition form “concentric subtrees” that can be evaluated from the inside out.

For each tree, we have created a partition into O(t) sets each of size O(log |G|). (Here
the hidden constants depend on s = O(1).) Since there are t trees in a random gadget,
näıvely this partitions the whole gadget into O(t2) sets each of size O(log |G|). However, by
combining the sets from each tree that are at the same depth in the concentric subtrees, we
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can instead get a partition into O(t) sets each of size O(t log |G|). This partition remains
simulatable and topologically ordered.

Overall, we have O(t · |C|) sets each of size O(t log |G|) as promised.

From NIH to NOF. Assume that, for some circuit C and string k, there is an OCL
adversary ℓ under partition P and an input x such that ∆(ℓ(Ŵx), ℓ(S(C, x, Ĉ(x))) ≥ ǫ ·t · |C|,
where Ĉ ← Comp(C, k) and S is the simulator from Theorem 1.4. Then by Theorem 1.4
there is some α ∈ G and f ∈ F such that ∆(ℓ(f(Dα)), ℓ(f(UGt))) ≥ ǫ. By construction,
the function ℓ(f(x)) can be computed by an s-party NOF protocol under the canonical
partition of x ∈ G t, because ℓ corresponds to an NIH protocol and P is simulatable. The
only remaining question is how much communication is required in the NOF protocol.

Let b ∈ N be a bound on the output length of each leakage function chosen by the OCL
adversary, i.e. a bound on the amount of communication by each player in the NIH protocol.
Let d denote the maximum fanout of any gate in C. The key point is that for each f ∈ F , all
wire values in f(x) ∈ {0, 1}|Ĉ| are fixed by the hybrid argument (independent of x) except for
in at most d+O(1) gadgets, and thus in at most O(td) sets in P . Since no communication is
needed to simulate the NIH players whose inputs are fixed, the NOF protocol communicates
O(tdb) bits in total. Thus if b = δc/t for sufficiently small δ that depends only on d, this
contradicts the assumption of the theorem.

5 Multi-query security via secure hardware

In this section we consider the extension of our construction to the setting where the ad-
versary can make multiple, adaptive queries. We follow the approach of [FRR+10], using a
simple secure hardware component. As mentioned in §1.1, in our setting this component has
no input and outputs a sample from the distribution Did.

We generalize Definition 1.1 to the multi-query setting following [FRR+10, Definition 1],
beginning with an overview. As before, the adversary A is restricted to choosing leakage
functions from some class L and remains otherwise computationally unbounded. A makes q
queries to the circuit Ĉ, denoted (xi, ℓi) ∈ {0, 1}n × L for i ≤ q, and in response to the ith

query A receives (Ĉ(xi), ℓi(Ŵi)) where Ŵi denotes the wires of Ĉ(xi). A chooses its queries
adaptively, meaning that each query can depend on all responses seen so far.

On input (C, k), the compiler from §2 implicitly computes a string k̂0 ∈ (G t)n that
encodes k. In the multi-query setting, this encoding must be “refreshed” between queries,
as otherwise A can learn, say, the first bit of k after O(t) queries. To accomplish this, the

compiler below outputs a circuit Ĉ : {0, 1}n × (G t)n → {0, 1}n × (G t)n as well as an initial

encoding k̂0. Then, the second output k̂i of Ĉ(xi, k̂i−1) is used as the second input to Ĉ in the
(i+1)th query. (This corresponds to the notion of a stateful circuit in [FRR+10].) Crucially

A does not directly obtain any k̂i, but the leakage functions operate on these values as they
are carried on wires of Ĉ.

For an adversary A interacting with such a circuit Ĉ on initial encoding k̂0, we let

25



(x1, ℓ1) = A(Ĉ) be the first query, and then inductively define

(yi, k̂i) := Ĉ(xi, k̂i−1)

(xi+1, ℓi+1) := A(Ĉ, x1, y1, ℓ1(Ŵ1), . . . , xi, yi, ℓi(Ŵi)). (12)

We note two final differences from the single-query setting. First, the circuit Ĉ is random-
ized, which means that it contains gates whose output comes from some distribution rather
than being deterministically fixed by the input. (In our construction, the only randomized
gates will be the secure hardware components which output a sample from Did.) Second,
the simulator S is stateful, which means that between subsequent evaluations it maintains
some state. (In our construction the state will be an element of (G t)n.)

Definition 5.1. Let Comp(·, ·) be a randomized algorithm that takes as input a circuit
C : {0, 1}n × {0, 1}n → {0, 1}n and a string k ∈ {0, 1}n. For a set of functions L, Comp is a
q-query (L, ǫ)-leakage-secure compiler if the following properties hold.

1. (Structure.) For every C and k, Comp(C, k) outputs a string k̂0 ∈ (G t)n, and a ran-

domized circuit Ĉ : {0, 1}n× (G t)n → {0, 1}n× (G t)n which is completely determined
by C.

2. (Correctness.) For every A as above, every C, k, and every i ≤ q: yi = C(xi, k) with
probability 1.

3. (Security.) There is a randomized polynomial-time stateful algorithm S such that
the following holds for every C, k and every A as above. Let Dreal denote the dis-
tribution (ℓ1(Ŵ1), . . . , ℓq(Ŵq)), and let Dsim denote the corresponding distribution

(ℓ1(S(C, x1, y1)), . . . , ℓq(S(C, xq, yq))) when each Ŵj in (12) (1 ≤ j ≤ i) is replaced
with S(C, xj, yj). Then, ∆(Dreal, Dsim) ≤ ǫ.

The construction. Recall from §1.1 that a Did-gate is a gate with no input that on each
execution of the circuit outputs a string of length 2t sampled from Did, and any circuit that
contains one or more Did-gates is a Did-circuit.

Then, Comp outputs a Did-circuit Ĉ : {0, 1}n × (G t)n → {0, 1}n × (G t)n as follows. Ĉ
is identical to the construction in §2 with two exceptions. First, each pair (R(i), L(i+1)) in

each random gadget is computed by a Did-gate. Second, Ĉ computes its second output k̂i
by applying a random gadget to each bundle of its second input k̂i−1.

The simulator S then operates as follows. For the first query, S chooses k̂0, k̂1 ∈ (G t)n

uniformly at random, and produces wire values for Ĉ(x1, k̂0) conditioned on output (y1, k̂1)

as described in Theorem 1.4. Between queries i and i+ 1, S stores the value k̂i, and for the
(i+ 1)th query it chooses k̂i+1 uniformly at random and proceeds in the same manner.

Proving the security of this construction requires a slightly stronger property of the group
encoding than what is given by Definition 1.2. Namely, it requires that the leakage class L
cannot distinguish the distributions Dα and UGt even with two adaptive queries. The need
for this is due to the fact that each k̂i (1 ≤ i < q) is given as input to two leakage functions:

once when k̂i is an output of Ĉ and once when it is an input. Formally, we require the
following strengthening of Definition 1.2.
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Definition 5.2. Let G be a group and t ∈ N. A set of functions L is 2-adaptive ǫ-fooled by
G t if for every α ∈ G, every ℓ ∈ L, and every function A : range(ℓ) → L, the following two
distributions are ǫ-close in statistical distance.

1. Sample w ← Dα, compute ℓ′ := A(ℓ(w)), and output (ℓ(w), ℓ′(w)).

2. Sample w ← UGt , compute ℓ′ := A(ℓ(w)), and output (ℓ(w), ℓ′(w)).

With this stronger property, the following theorem can be proved by building on Theorem
1.4. Specifically, one first uses Theorem 1.4 to show that the security property of Definition
5.1 holds when the simulator chooses each k̂i as in the real execution but the internal wires
of each evaluation Ĉ(xi, k̂i) are reconstructed. Then, a hybrid argument over each bundle

in each k̂i is used to show that the security property is satisfied even when S chooses each
k̂i uniformly at random. The proof is essentially identical to the proof of [FRR+10, Lemma
15], and we omit the details.

Theorem 5.3. Let G be a group. For every polynomial-time computable function t =
t(n, |C|), there is a compiler Comp for which the following holds.

1. For every C : {0, 1}n × {0, 1}n → {0, 1}n and k ∈ {0, 1}n, Comp(C, k) runs in time

poly(|C|, t) and outputs a Did-circuit Ĉ of size O(t2 · |C|) and depth O(t · depth(C)).

2. For every set of functions L, every q ∈ N, and every ǫ > 0, if the 4-local extension of
L is 2-adaptive ǫ-fooled by G t then Comp is a q-query (L, ǫ′)-leakage-secure compiler
for ǫ′ := (q + 1) · ǫ · (n + t · |C|).

Similarly to Corollary 1.6, Corollary 1.8 is derived as a result of Theorem 5.3 and the
following subsection, by choosing t = |C|.

5.1 Adaptive compression bounds

In this section, we show that the function classes from §3 are 2-adaptive fooled by (A5)
t. For

the class of functions computable by AC0 with symmetric gates, this requires asymptotically
smaller output length.

5.1.1 Multi-party protocols

Theorem 5.4. There is a partition of the inputs in (A5)
t into k pieces such that the set

L of k-party number-on-forehead protocols communicating c bits and outputting ≤ c bits is
2-adaptive ǫ-fooled by (A5)

t for ǫ = 2c−Ω(t/(k24k)).

Proof. The partition is the same as in Theorem 3.6. Assume that L is not 2-adaptive ǫ-fooled
by (A5)

t, and let α ∈ A5, P
′ ∈ L, and A : range(P ′)→ L violate Definition 5.2.

Consider the following k-party protocol P that communicates and outputs 2c bits. On
input x, the parties first compute P ′(x) by communicating c bits. Then, they each determine
P ′′ := A(P ′(x)) with no communication. Finally, they compute P ′′(x) again communicating
c bits. By assumption we have ∆(P (Dα), P (U(A5)t)) ≥ ǫ, which contradicts Theorem 3.6.
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5.1.2 TC0

Theorem 5.5. If TC0 6= NC1 then ∀k and infinitely many t, the class L of TC0 circuits
with size ≤ tk and output length k log t is 2-adaptive t−k-fooled by (A5)

t.

Proof. Assume that there exists k such that for sufficiently large t, L is not 2-adaptive t−k-
fooled by (A5)

t. Let α ∈ A5, ℓ : (A5)
t → {0, 1}k log t, and A : {0, 1}k log t → L be the choices

that violate Definition 5.2. Let ℓ′1, . . . , ℓ
′
tk ∈ L be all possible circuits that A could output.

Let ℓ′′ : (A5)
t → {0, 1}2k log t be the following procedure. On input x ∈ (A5)

t: first
compute ℓ(x), then select ℓ′ := ℓ′ℓ(x) (identifying ℓ(x) ∈ {0, 1}k log t with the natural number

it represents), and finally output (ℓ(x), ℓ′(x)). Clearly ℓ′′ is computable by a TC0 circuit of
size tO(k), and by assumption we have ∆(ℓ′′(Dα), ℓ

′′(U(A5)t)) ≥ t−k which contradicts Theorem
3.9.

5.1.3 AC0

The proof of the following theorem is essentially identical to the previous proof.

Theorem 5.6. For every 0 < δ < 1 and every integer d > 0, there is a constant ǫ > 0 such
that the following holds. Let L be the class of unbounded-fanin circuits C : (A5)

t → {0, 1}tδ

of depth ≤ d and size ≤ 2ǫ·t
(1−δ)/d

. Then, L is 2-adaptive 2−ǫ·t
(1−δ)/d

-fooled by (A5)
t.

Proof. Assume that L is not 2-adaptive 2−ǫ·t
(1−δ)/d

-fooled by (A5)
t, and let α ∈ A5, ℓ ∈ L,

and A : {0, 1}tδ → L be the choices that violate Definition 5.2. Let ℓ′1, . . . , ℓ
′

2tδ
∈ L be all

possible circuits that A could output.
Let ℓ′′ : (A5)

t → {0, 1}2tδ be the following procedure. On input x ∈ (A5)
t: first compute

ℓ(x), then select ℓ′ := ℓ′ℓ(x), and finally output (ℓ(x), ℓ′(x)). Clearly ℓ′′ is computable by an

AC0 circuit of depth 2d + O(1) and size 2 · 2ǫ·t(1−δ)/d
+ 2t

δ
+ O(1) = 2ǫ

′·t(1−δ′)/(2d+O(1))
for an

appropriate ǫ′ and δ′, which contradicts Theorem 3.11.

5.1.4 AC0 with symmetric gates

Recall that in §3.4, it was shown that (A5)
t t−Ω(log t)-fools the class of unbounded-fan-in

constant-depth circuits that contain tO(log t) And/Or/Not gates and O(log2 t) arbitrary sym-
metric gates and output t0.1 bits. To apply the technique from the two preceding proofs to
this class, one needs to restrict the output length to O(1) to ensure that the circuit ℓ′′ still
contains only O(log2 t) symmetric gates. However, by a more careful extension of Theorem
3.12 we can improve the output length to Ω(log2 t). In the following, we focus mainly on the
necessary changes to the proof of Theorem 3.12.

Theorem 5.7. For every d, there is an ǫ > 0 such that the following holds for every t.
Let L be the set of functions ℓ : (A5)

t → {0, 1}ǫ log2 t where each output bit of ℓ is com-
putable by an unbounded-fan-in circuit of depth ≤ d that contains ≤ tǫ log t And/Or/Not gates
and ≤ ǫ log2 t arbitrary symmetric gates.

Then, L is 2-adaptive t−ǫ log t-fooled by (A5)
t.

28



Proof. Assume that L is not 2-adaptive t−ǫ log t-fooled by (A5)
t, and let α ∈ A5, ℓ0 ∈ L, and

A : {0, 1}ǫ log2 t → L be the choices that violate Definition 5.2. Let ℓ1, . . . , ℓtǫ log t ∈ L be all
possible circuits that A could output.

For an appropriate n = Ω(
√
t/ log t) and for each i = 0, . . . , tǫ log t, let ℓ′i : {0, 1}n

2·0.3 logn →
{0, 1}ǫ log2 t be the corresponding function given by Lemma 3.14. These functions have the
property that the distribution (ℓ′0(x), ℓ

′
ℓ′0(x)

(x)) when x← PAP−1(1) has statistical distance

≥ n−ǫ
′ logn from the corresponding distribution when x← PAP−1(0), for ǫ′ = ǫ′(ǫ) > 0.

Let R be the distribution on random restrictions ρ given in the proof of Theorem 3.12.
Say that ρ is good if PAP |ρ = GIP (i.e. PAP |ρ has exactly 1 input restricted per bottom
⊕ gate) and for every i ≤ tǫ log t and j ≤ ǫ log2 t, ℓ′i,j|ρ is computable by a (0.3 logn)-party

protocol exchanging log5 n bits (where ℓ′i,j denotes the jth output bit of ℓ′i.) Because the

number of ℓ′i,j is ǫ log2 t · (tǫ log t + 1) and because t = nO(1), when ǫ is sufficiently small we
obtain

Pr
ρ←R

[ρ is good] ≥ 1− nΩ(log n)

by combining [Vio07, Claim 11 & Lemma 12] with a union bound.
For any ρ that is good, let Pρ : {0, 1}n·0.3 logn → {0, 1} be the following (0.3 logn)-party

protocol exchanging 2ǫ log2 t log5 n+1 = logO(1) n bits. On input y, the parties first compute
each of the ǫ log2 t output bits of ℓ′0|ρ(y), exchanging a total of ǫ log2 t log5 n bits. Then, each
party chooses ℓ′i := ℓ′ℓ′0|ρ(y)

with no communication. Then, the parties compute each of the

ǫ log2 t output bits of ℓ′i|ρ(y) again exchanging ǫ log2 t log5 n bits. Finally, the parties use one
additional bit of communication to output 1 iff (ℓ′0|ρ(y), ℓ′i|ρ(y)) ∈ S for the appropriate set
S corresponding to (8) in Theorem 3.12.

The rest of the proof follows the same argument as Theorem 3.12.
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