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Abstract

We study which functions can be computed by efficient circuits whose gate con-
nections are very easy to compute. We give quasilinear-size circuits for sorting whose
connections can be computed by decision trees with depth logarithmic in the length of
the gate description. We also show that NL has NC2 circuits whose connections can
be computed with constant locality.
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1 Introduction and our results

There are two prominent ways in which circuits for computing a given function f : {0, 1}∗ →
{0, 1}∗ may be optimized. The first is to optimize parameters such as size and depth, a goal
which permeates complexity theory and (up to the translation between running time and
circuit size) algorithm research. The second is to make the circuits more uniform. That is,
we seek simpler and simpler algorithms that on input 1n produce the n-th circuit, which
computes the restriction fn of f to inputs of n bits. Popular uniformity conditions include
P-uniformity, L-uniformity, and Logtime-uniformity. Restricting our attention to circuits of
polynomial size, in the first case, we can output the n-th circuit in time poly(n). In the
second, we can output it in space O(log(n)). Equivalently, given the O(log n)-bit description
of a gate in the circuit we can compute its type and neighbors in linear space O(log n). In the
third, we can decide the type of a gate and whether a gate is input to another in linear time
in their O(log n)-bit description, on a Turing machine. There are several other uniformity
conditions. For these, and for background on uniformity we refer the reader e.g. to the
papers [Ruz81, All89, BIS90, BKLM12] and Vollmer’s book [Vol99].

Typically, uniformity notions ask for a single algorithm that outputs the n-th circuit in
the family. In this work we take a slightly different approach which is arguably also natural.
We ask that for every n the n-th circuit has a “simple” description, but we are not as
concerned with how this description changes from one n to another.

Definition 1. For a class D of functions (e.g., D = decision trees of depth O(log n)), we
call a family of circuits D-explicit if there is a function in D that given an index to a gate g
in the n-th circuit outputs the type of g and the indices of the children of g, for every n.

In all of our results, a description of the function in D for the n-th circuit is computable
in polynomial time from 1n.

The authors recently show in [JMV13] that any L-uniform circuit family has an equivalent
NC0-explicit circuit family. That is, given an index to a gate we can compute its type and
the indices of its children by a function with constant locality: each output bit depends on
O(1) input bits only.

However, making circuits uniform or explicit is typically obtained at the expense of size
or depth. For example, non-uniform or P-uniform circuits for approximate majority have
depth 3 [Ajt83, Vio09], whereas for Logtime-uniformity the depth is larger [Ajt93]. Also,
the above result in [JMV13] produces circuits of size at least 2s and depth at least t when
the machine describing the original circuit family uses space s and time t. In particular,
the result only guarantees polynomial size and depth, no matter the size and depth of the
original circuit.

In this work we suggest the study of simultaneously optimizing explicitness and efficiency.
That is we wish to make the circuits as explicit as possible, ideally NC0-explicit, while
keeping the size and/or the depth close to what is possible without uniformity restrictions.
While we do not know of a general result, we show next how to come close to achieving this
goal for two well-studied problems: sorting and directed connectivity. The notation Õ hides
polylogarithmic factors.

Theorem 2 (Succinct, explicit sorting circuits). For all m,n ∈ N, there is a D-explicit
sorting circuit C : ({0, 1}m)n → ({0, 1}m)n where
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1. |C| = Õ(mn) and D = decision trees of depth O(log log(mn)), or

2. |C| = Õ(mn) and D = circuits of size O(log(mn)) and depth O(log log(mn)), or

3. for any b ≤ log(mn) we can have |C| = Õ(mn) · (log(mn)/b)O(b) and D = decision
trees of depth O(log(log(mn)/b)).

Setting b = log(mn)/t in Item 3 we obtain decision trees of depth O(log t) and circuits
of size (mn)log t/t. In particular, for any ϵ > 0 we obtain NC0-explicit sorting circuits of size
(mn)1+ϵ.

Independently of our work, Kowalski and Van Melkebeek proved a result similar to Item
1 in Theorem 2 with AC0 circuits of size poly(log(mn)) instead of decision trees of depth
O(log log(mn)) (personal communication).

Theorem 3 (Succinct, explicit STCONN circuits). For all n ∈ N, there is an NC0-explicit
NC2 circuit C : {0, 1}n2 → {0, 1} deciding directed connectivity in n-vertex graphs.

The sorting circuits from items 1 and 2 in Theorem 2 are within a poly-logarithmic factor
of the trivial lower bound of nm. For directed connectivity, the fan-in-2 circuits of smallest
depth have depth O(log2 n) which is matched by the circuits from Theorem 3. For sorting,
it is an open problem to make the circuits NC0-explicit while maintaining small size.

Because directed connectivity is complete for non-deterministic logarithmic space (NL),
Theorem 3 has the following corollary.

Corollary 4. Every language in NL is computable by an NC0-explicit NC2 circuit.

Our original motivation for Theorem 2 was to obtain an explicit reduction of non-
deterministic time to 3SAT, following Van Melkebeek’s version which uses sorting circuits
[vM06, §2.3.1], cf. [NEU12]. This was indeed achieved in a prequel to [JMV13]. Shortly
afterwards however it was realized that for this reduction to 3SAT it is easier and more
efficient to use switching networks instead of sorting, see [JMV13]. Indeed, with switching
networks a constant-locality result was obtained whereas, again, it is an open problem to
improve Item 1 in Theorem 2 to NC0-explicitness. Still, the reduction using sorting does
not use extra non-determinism, which may turn out to be useful.

Other than this, we do not have a specific application for our results. But the questions
appear natural to us.

1.1 Techniques

The proof of our theorems proceed in two stages (in fact the proof of Theorem 3 is more
streamlined than described here). First we show how to compute connections by a poly-time
algorithm that operates in place: given a gate label g and a bit b ∈ {0, 1} specifying one
of g’s children, the algorithm overwrites g with the child’s label using only O(log |g|) extra
space. We note that this is a different notion from low-space computation. In the latter,
the input is read-only and each output bit may be computed by reading all of the input. By
contrast, we work with in-place algorithms that during the computation overwrite the input
with the output. Further, note that the standard definition of log-space uniform circuits
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entails label-computing algorithms that use O(|g|) extra space, i.e. linear in the length of a
label, while we use O(log |g|) extra space.

In the second stage, we turn in-place computation into the models in Theorems 2 and 3.
We now give more details.

Computing connections in place. Our first technical contribution is to define a labeling
of bit-length t + O(log t) = log Õ(T ) for comparators in the odd-even mergesort network

[Bat68] of size Õ(2t) (and depth t2) that sorts T = 2t elements. We then show that given
a label one can compute the labels of its children by an efficient algorithm that operates
in place. We were not able to obtain this result with the naive matrix labeling where the
label is (x, y) for x ≤ log2 T, y ≤ T . Instead, our labels include the paths in the recursion
trees arising from the algorithm. We show that viewed this way, one can compute children
by performing the following operations on labels: comparison, addition/subtraction by 1,
bit-shift, and bit-reversal. Each of these operations can be performed in time polynomial
in the label size, and in place. We note that there are many other networks that sort T
elements in size Õ(T ). But we have not been able to easily compute children in any other

network. To mention one, it is not clear to us how to perform the arithmetic in Õ(T )-size
Shellsort variants, see e.g. [Sed96].

For directed connectivity, a similar labeling (specifically one using the paths in trees
arising from the algorithm) can be defined for the standard NC2 circuit that uses repeated
squaring to compute the nth power of an n-vertex graph. The operations needed to compute
connections for this labeling are a subset of those needed for the odd-even mergesort network.

These results are sufficient to obtain AC0-explicit circuits (i.e. ones whose connections
are computable in AC0) for either sorting or directed connectivity, because the operations
mentioned above can be computed in that class. But for more restricted classes one needs
another idea. Indeed, decision trees require maximum depth to compare two strings, or to
add 1 to a binary number.

Making in-place computation local. We employ a general technique called spreading
computation from [JMV13], which permits a tradeoff between the size and depth of a circuit
and the complexity of computing its connections. In [JMV13] this technique is applied to
any log-space uniform circuit C to obtain an equivalent circuit C ′ of size |C ′| = poly(|C|)
whose connections can be computed by a local (a.k.a. NC0) algorithm. In contrast, here
we use it to show that any circuit C whose connections can be computed efficiently and in
place has an equivalent circuit C ′ of quasilinear size |C ′| = Õ(|C|) whose connections can be
computed by small-depth decision trees.

The main idea of spreading computation is simply to let the gates of C ′ represent con-
figurations of the algorithm computing children in C. Then computing a child amounts to
performing one step of the in-place algorithm, (each bit of) which can be done by a decision
tree of depth O(log h) where h is the label size. Basically, this tree just reads the register
variables of the algorithm, and reads/updates the indexed memory bit. This completes the
overview of Item 1 in Theorem 2, of Theorem 3, and of Corollary 4.

For Item 2 of Theorem 2, we construct a linear-size log-depth circuit that computes one
step of the in-place algorithm. Finally, Item 3 of Theorem 2 requires a technical variant of
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the notion of in-place algorithm. Specifically, we break the label of h := t+O(log t) bits into
b blocks each of size h/b, and reserve extra O(log h/b) bits per block as “control bits” (or
state) for that block (and for a fraction of x). Each pointer of the in-place algorithm is then
simulated by b pointers, each ranging over a block. We then show that the computation of
one step of the algorithm can be done in polynomial time by passing information between
control bits of adjacent blocks.

Organization. In §2 we construct the NC0-explicit circuits for directed connectivity, and
prove Theorem 3 and Corollary 4. In §3 we prove our results on the odd-even mergesort net-
work. Finally in §4 we apply the “spreading computation” technique to in-place algorithms,
and give the proof of Theorem 2.

2 NL in NC0-explicit NC2

In this section we study explicit circuits for the directed connectivity problem STCONN.
Recall this is the problem of determining, given a directed graph G with designated vertices
s and t, whether there is a path from s to t. It is well-known that STCONN is solvable in
NC2 and that it is complete for the class NL of non-deterministic, log-space algorithms.

We show that STCONN has NC0-explicit NC2 circuits, i.e. polynomial-size O(log2 n)-
depth circuits whose connections are computable with constant locality. In fact, we show
that connections in the standard graph-powering circuit (reviewed below) can be computed
with this complexity.

Theorem 3 (Succinct, explicit STCONN circuits). For all n ∈ N, there is an NC0-explicit
NC2 circuit C : {0, 1}n2 → {0, 1} deciding directed connectivity in n-vertex graphs.

Because STCONN is NL-complete under a simple reduction, we also obtain the following
corollary which is proved afterwards.

Corollary 4. Every language in NL is computable by an NC0-explicit NC2 circuit.

Proof of Theorem 3. Consider the circuit C ′ : {0, 1}n2 → {0, 1}n2
that, on input the n × n

adjacency matrix M of a directed graph G, outputs the adjacency matrix M ′ of the graph
G2. (Recall that Gr has an edge (u, v) iff there is a path of length ≤ r from u to v in G.) C ′

has depth log n + 1 and size poly(n) as shown by the following formula. (We assume that
Mii = 1 for all 0 ≤ i ≤ n− 1.)

∀i, j ∈ {0, ..., n− 1} : M ′
ij =

n−1∨
k=0

(Mik ∧Mkj) (1)

By concatenating log n copies of C ′ we get a polynomial-size circuit C of depth O(log2 n)
that outputs the adjacency matrix of G2logn

= Gn. Thus for designated vertices s and t, the
(s, t)-th output bit of C solves STCONN because Gn has an edge (s, t) iff G has a path from
s to t. We now define a labeling of C’s gates and show how to compute connections between
them in NC0.
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A label ℓ = (w,m, h, g) ∈ {0, 1}O(logn) has four fields. The 2-bit field w designates the
type of the gate which is either OR, AND, or INPUT. For INPUT gates, the next 2 log n
bits are its index (i.e. (i, j) for some 0 ≤ i, j ≤ n− 1) and the remaining bits are 0. For OR
and AND gates, the fields m,h, g are used as follows.

• m ∈ {0, 1}2 log logn designates which copy of C ′ the gate lies in. Recall that C is
composed of log n copies of C ′ each computing the square of a given graph. To allow
m to be incremented in NC0, we use the following redundant representation which
explicitly specifies the carry bits arising from addition. View m as a sequence of pairs

((clog logn, blog logn), . . . , (c1, b1)) ∈ {0, 1}2 log logn.

Then to increment by 1 we simultaneously set c1 ← b1, b1 ← b1 ⊕ 1, and ci ← bi ∧ ci−1

and bi ← bi⊕ci−1 for all i > 1. To allow an NC0 circuit to check if m is at its maximum
value, our convention is that this maximum is reached when the most-significant bit is
1, which happens after log n+ log log n− 1 increments. (Thus C technically computes
the graph G(n logn)/2, but Gr = Gn for all r ≥ n when G has n vertices.)

• h = (i, j) ∈ {0, 1}2 logn designates a tree in a copy of C ′. Recall that C ′ has n2 trees
(defined by equation (1)) computing the n2 bits of an n× n adjacency matrix.

• g ∈ {0, 1}2 logn designates a gate in the tree specified by m and h. For an OR gate,
the first log n bits p contain a path in the OR tree starting from its top gate, and the
second log n bits p′ have the form 1r0(logn)−r (for 0 ≤ r ≤ log n) indicating that the
path in p has length r. For an AND gate, the first log n bits are its index, i.e. the value
of k in equation (1), and the remaining bits are unused.

Given a label ℓ of a gate in C and a bit b, we can compute the label of the b-th child of
ℓ in NC0 as follows.

Suppose ℓ = (w,m, h, g) designates an OR gate in a tree defined by equation (1). By
construction it is not at the bottom level of this tree, so first we extend the path encoded in
g = (p, p′) by one step in the direction corresponding to b, i.e. we set

pi ←

{
b if p′i = 0 ∧ p′i−1 = 1

pi otherwise
and p′i ←

{
1 if p′i = 0 ∧ p′i−1 = 1

p′i otherwise

for each 1 ≤ i ≤ log n (for convienience we define p′0 = 1). Note that this is computable in
NC0. If now p′logn = 0 then the child is not at the bottom of the tree, so it is an OR gate
and we are done. If instead p′logn = 1 then the child is an AND gate at the bottom of the
tree, so we change the type w to AND; no further changes are needed because in this case
the new path p is equal to (the binary representation of) the index k of the AND gate.

Now suppose ℓ = (w,m, h, g) designates an AND gate. Then h = (i, j) designates a tree
in the m-th copy of C ′ and the first log n bits of g are the value of k in equation (1). Both
of ℓ’s children are output gates from the (m+ 1)-th copy of C ′, unless m is at its maximum
value in which case both children are input gates to C. Thus if m is not at its maximum
value, we set the type w to OR, increment m, set h to either (i, k) or (k, j) according to b,
and set g to all 0. If instead m is at its maximum value, we set the type w to INPUT, and
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the index of the relevant input bit is again either (i, k) or (k, j). Note that all operations are
computable in NC0, including those on m as discussed above.

Finally we show that because STCONN is complete for NL, we can obtain NC0-explicit
NC2 circuits for all of NL. We use the following lemma from [JMV13] which converts
logspace-uniform circuits to NC0-explicit circuits. ([JMV13, Thm. 5] does not explicitly
note the depth blowup, but the proof shows that it is proportional to the running time of
the logspace TM.)

Lemma 5 ([JMV13]). Let f : {0, 1}n → {0, 1} be a function computable by a family of
D-explicit polynomial-size circuits {Cn}n for D = TMs running in space O(log n) and time
t(n) ≤ nO(1). Then f is also computable by a family of polynomial-size NC0-explicit circuits
{C ′

n}n such that Depth(C ′
n) ≤ O(t(n)) · Depth(Cn).

The specific TM model used in Lemma 5 is the following. There is a single tape of
length O(log n) that initially contains an O(log n)-bit gate label, n written in binary, and
a bit indicating which child label to compute. The tape head moves sequentially (i.e. one
cell left or right in each step), and at the end the tape contains the type and label of the
child gate. What we require in the following proof is that such a TM can, in time O(log2 n),
check whether two O(log n)-bit configurations of another non-deterministic logspace TM are
adjacent. This can be done in a straightforward manner (details omitted). In fact the time
for this step can be reduced to O(log n) by interleaving the two configurations on the tape,
though this does not improve the overall result.

Proof of Corollary 4. Let f ∈ NL be a language decided by a log-space NTMM . Recall that
the standard reduction from f to STCONN produces, on input x ∈ {0, 1}n, the nO(1)×nO(1)

adjacency matrix of M(x)’s configuration graph, i.e. where the (i, j)-th bit is 1 iff the j-th
configuration is reachable from the i-th configuration in one step on input x.

Let C be the NC0-explicit NC2 circuit from Theorem 3 that decides STCONN. Next we
show that for every pair of configurations i, j of M , there is an NC0-explicit NC2 circuit
Cij : {0, 1}n → {0, 1} such that

(a) Cij(x) = 1 iff M(x) can reach configuration j in one step from configuration i, and

(b) the label of Cij’s output gate can be computed in NC0 from i, j.

Given such Cij, we modify C by replacing its (i, j)-th input gate with the output gate of
Cij. The resulting NC2 circuit (on input x) decides f(x) due to (a) and the correctness of
the reduction. Further, it is NC0-explicit because C and all Cij are, and we can go from
the (i, j)-th input gate label of C to the output gate label of Cij in NC0 by (b). We now
construct the circuits Cij.

A configuration of M contains the (log n)-bit input tape head position (i.e. an index into
x) and O(log n) bits representing the work tape (including the state and work tape head).
For configurations i and j, let p denote i’s input tape head position. Then Cij is an OR
of two ANDs, where for b ∈ {0, 1} the b-th AND checks that xp = b and that j follows
from i assuming xp = b. The latter check is completely determined by i, j, and b, so the
inputs to each AND are the gate outputting xp (possibly negated) and a constant gate. The
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label for the gate outputting xp can be easily computed because wlog p is stored in i at a
fixed location. The label for the constant gate can be computed by a TM of the type in
Lemma 5 running in time O(log2 n), because as noted above such TMs can check whether
the O(log n)-bit configurations i and j are adjacent (given the input bit read by i). Thus
we can take Cij to be a (time O(log2 n))-explicit NC0 circuit, and by applying Lemma 5 we
can take it to be an NC0-explicit NC2 circuit.

We conclude this section with a remark about “invalid” gate labels in the above NC0-
explicit circuits for STCONN and NL. Following [JMV13], any string that can be obtained
by starting with the output gate label and repeatedly applying the connection-computing
algorithm is a valid label, and all other strings of the same length are invalid labels. Such
invalid labels are problematic if they contain a cycle with an odd number of NOT gates,
as then the computation is not well-defined. However the circuits constructed above are
monotonic, i.e. there are no NOT gates except for those that negate a bit of the input x in
the proof of Corollary 4, and thus no such cycles can exist.

3 Explicit odd-even mergesort

In this section we describe our encoding of the odd-even mergesort network, and then we
prove that given an index to a comparator and a bit b ∈ {0, 1}, one can compute the child
b of the comparator with an algorithm that operates in place and runs in polynomial time
in the length of the index. Recall that an in-place algorithm for a function that maps
say {0, 1}n → {0, 1}n is one that is computable using a constant number of variables that
each hold O(log n) bits, and no additional space (using the standard RAM arithmetic and
indexing).

First we recall the odd-even mergesort algorithm, which is just like Mergesort except that
the (input-dependent) merge subroutine is replaced with a subroutine whose comparisons
do not depend on the input. In the rest of this section we abbreviate Odd-Even by OE.

Algorithm 2, OE-MERGE, merges the two already sorted halves of the sequence A =
[a0, a1, . . . , a2t−1], resulting in a sorted output sequence. It uses an operation CMP-EX(A, i, j)
that compares values at indices i < j of the sequence A and exchanges them if and only
if ai > aj. (CMP-EX is short for Compare-Exchange.) Algorithm 1, OE-MERGESORT,
uses OE-MERGE as a subroutine. The proof of correctness is standard and short; for an
exposition see e.g. [NEU12].

Algorithm 1: OE-MERGESORT(A)

input : Sequence A = [a0, . . . , a2t−1].
output: The sequence A in sorted order.

1 if t ≥ 1
2 OE-MERGESORT([a0, a1, . . . , a2t−1−1]) /* first half */

3 OE-MERGESORT([a2t−1 , a2t−1+1 . . . , a2t−1]) /* second half */

4 OE-MERGE(A)
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Algorithm 2: OE-MERGE(A)

input : Sequence A = [a0, . . . , a2t−1] of length 2t ≥ 2, such that [a0, a1, . . . , a2t−1−1]
and [a2t−1 , a2t−1+1, . . . , a2t−1] are each sorted.

output: The sequence A in sorted order.

1 if |A| = 2
2 CMP-EX(A, 0, 1)
3 else
4 OE-MERGE([a0, a2, . . . , a2t−2]) /* the even subsequence */

5 OE-MERGE([a1, a3, . . . , a2t−1]) /* the odd subsequence */

6 for i ∈ {1, 3, 5, . . . , 2t − 3}
7 CMP-EX(A, i, i+ 1)

The mergesort label format. Consider Algorithm 1 on an input of length T = 2t. We
can see that it is a complete depth-(t − 1) binary tree of OE-MERGE operations. An OE-
MERGE operation at depth i = t − k in this tree (0 ≤ i ≤ t − 1) merges two sorted lists,
each of size 2k−1, into a sorted list of size 2k. The inputs of an OE-MERGE operation in this
tree are the outputs of its two children, except for the leaves which take their input from the
initial list of configurations (i.e. the algorithm’s input). So, the first part of a comparator’s
label is a binary string p of length i ≤ t− 1, specifying a path through (and thus a node of)
this tree.

Consider some OE-MERGE operation B at depth i = t− k, so with 2k outputs; we refer
to such B as a “2k-merge-block”. As can be seen from Algorithm 2, B is composed of two
parallel 2k−1-merge-blocks Beven and Bodd that respectively merge B’s even- and odd-indexed
inputs, followed by 2k−1 − 1 parallel comparators that produce the final sorted list. Beven

and Bodd are themselves recursively constructed in this way, and so we can view B itself as a
complete depth-(k−1) binary tree, where a node at depth ℓ (0 ≤ ℓ ≤ k−1) contains the 2k−ℓ−1

comparators at the output of a 2k−ℓ-merge-block inside B. For example, the root contains
the 2k−1 − 1 comparators at B’s output, its left child contains the 2k−2 − 1 comparators at
Beven’s output, and so on; in particular, the leaves (i.e. when |A| = 2 in Algorithm 2) are
the comparators sitting at the input of B. Thus, we can specify a comparator within B
with the following two items: a path p′ of length ℓ ≤ k − 1 through this binary tree, and a
number 1 ≤ m ≤ 2k−ℓ−1−1 identifying a comparator within the corresponding node. (When
ℓ = k − 1 there is no such m, but in this case p′ uniquely specifies the comparator.)

We want a label to encode p, p′, and m, where recall p specifies a path to a merge block
B, p′ specifies a path within B to an internal merge block B′, and m specifies a comparator
at the output of B′. Some care is required to ensure that each label has size t + o(t). For
example, p and p′ can have length up to t− 1, so we cannot afford to store them separately.
We exploit the following tradeoff: when p is a path of length i, then p′ is a path of length
ℓ ≤ t − i − 1, and the number of comparators at this level is 2t−i−ℓ−1 − 1. Thus for fixed i
and ℓ one can encode a label with i + ℓ + (t − i − ℓ − 1) = t − 1 bits. We also separately
encode i and ℓ, for a total encoding length of t+O(log t) bits.

Definition 6 (Odd-even mergesort labels). Our encoding of the odd-even mergesort network
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Figure 1: The recursive structure of a 2k-merge-block B and its connections.

on 2t inputs has labels of t−1+2 log t bits, as follows. First, we have a string z ∈ {0, 1}t−1 that
encodes the concatenation of p, p′, and the binary representation of m. Second, we have two
indices 0 ≤ i, i′ ≤ t− 1 that specify the “breakpoints” in the concatenation. More formally,
given (z, i, i′) ∈ {0, 1}t−1 × {0, . . . , t − 1} × {0, . . . , t − 1}, we parse the path p := z1 · · · zi,
the path p′ := zi+1 · · · zi′ , and m := (the number encoded in binary by) zi′+1 · · · zt−1.

Note that the length ℓ of p′ is equal to i′ − i; storing i′ rather than ℓ is more natural for
the following algorithm.

We observe that every triple (z, i, i′) ∈ {0, 1}t−1 × {0, . . . , t − 1} × {0, . . . , t − 1} is a
valid label of a comparator, except for the following two cases: (1) if i > i′; or (2) if
zi′+1 = · · · = zt−1 = 0, because we number comparators starting at 1.

Computing on the mergesort labels. We now describe an algorithm for computing
the labels of a comparator’s two children, given its label (z, i, i′). The complete algorithm
is in Algorithm 3. We will describe later why this algorithm may be executed in place; but
first we show that the topology induced by Algorithm 3 matches the circuit specified by
Algorithms 1 and 2.

For a given label, we need to compute the labels of its two children, i.e. the two com-
parators from which its inputs come. Each comparator has two inputs and two outputs; the
order of the inputs is unimportant because the comparator sorts them, but the order of the
outputs obviously matters. Thus for each child, we must specify both the comparator’s label
and one of its outputs. We refer to the two outputs of each comparator as less and more.

In describing the algorithm, it will be helpful to refer to the output wires of a given merge
block. For a merge block B with 2k output wires, we number these wires as 0, . . . , 2k − 1
(in contrast to the comparators which are numbered starting from 1). Referring to Figure
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Algorithm 3: Algorithm for computing child labels in the Odd-Even Mergesort circuit

input : (z, i, i′) ∈ {0, 1}t−1 × {0, . . . , t− 1} × {0, . . . , t− 1}
output: children ∈ {0, 1}t−1 × {0, . . . , t− 1} × {0, . . . , t− 1} × {less,more}

1 if i′ < t− 2 /* children in same merge block, not both at the bottom */

2 if zi′+1 = · · · = zt−2 = 0 and zt−1 = 1 /* m = 1 (first comparator) */

3 children =
(z1 · · · zi′ ◦ 0 ◦ zi′+2 · · · zt−1, i, i′ + 1, less)
(z1 · · · zi′ ◦ 1 ◦ 0t−i′−2, i, t− 1, less)

4 else if zi′+1 = · · · = zt−1 = 1 /* m = 2t−i′−1 − 1 (last comparator) */

5 children =
(z1 · · · zi′ ◦ 0 ◦ 1t−i′−2, i, t− 1, more)
(z1 · · · zi′ ◦ 1 ◦ zi′+2 · · · zt−1, i, i′ + 1, more)

6 else
7 if zt−1 = 0 /* m is even */

8 Let x := (t− i′ − 2)-bit representation of m/2

9 children =
(z1 · · · zi′ ◦ 0 ◦ x, i, i′ + 1, more)
(z1 · · · zi′ ◦ 1 ◦ x, i, i′ + 1, less)

10 else if zt−1 = 1 /* m is odd */

11 Let x := (t− i′ − 2)-bit representation of (m+ 1)/2
12 Let x′ := (t− i′ − 2)-bit representation of (m− 1)/2

13 children =
(z1 · · · zi′ ◦ 0 ◦ x, i, i′ + 1, less)
(z1 · · · zi′ ◦ 1 ◦ x′, i, i′ + 1, more)

14 else if i′ = t− 2 /* children at bottom level of same merge block */

15 children =
(z1 · · · zt−2 ◦ 0, i, t− 1, more)
(z1 · · · zt−2 ◦ 1, i, t− 1, less)

16 else if i′ = t− 1 /* children not in same merge block */

17 if zi+1 = · · · = zt−1 = 0 /* bottom-left-most comparator */

18 children =
(z1 · · · zi ◦ 0 ◦ 0t−i−2, i+ 1, t− 1, less)
(z1 · · · zi ◦ 1 ◦ 0t−i−2, i+ 1, t− 1, less)

19 else if zi+1 = · · · = zt−1 = 1 /* bottom-right-most comparator */

20 children =
(z1 · · · zi ◦ 0 ◦ 1t−i−2, i+ 1, t− 1, more)
(z1 · · · zi ◦ 1 ◦ 1t−i−2, i+ 1, t− 1, more)

21 else
22 Let m := integer represented by zt−1zt−2 · · · zi+1

23 if zi+1 = 0 /* m is even */

24 Let x := (t− i− 2)-bit representation of m/2

25 children =
(z1 · · · zi ◦ 0 ◦ x, i+ 1, i+ 1, more)
(z1 · · · zi ◦ 1 ◦ x, i+ 1, i+ 1, more)

26 else if zi+1 = 1 /* m is odd */

27 Let x := (t− i− 2)-bit representation of (m+ 1)/2

28 children =
(z1 · · · zi ◦ 0 ◦ x, i+ 1, i+ 1, less)
(z1 · · · zi ◦ 1 ◦ x, i+ 1, i+ 1, less)
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1, one sees that the mth wire when m is even is the more output of comparator m/2 at
the top level of B, and when m is odd it is the less output of comparator (m + 1)/2. The
only exceptions are the first and last wires, which bypass the comparators at B’s top level.
For these, the first wire is the less output of B’s bottom-left-most comparator (i.e. the one
with path p′ = 0k−1 in B) and the last wire is the more output of B’s bottom-right-most
comparator (the one with path p′ = 1k−1).

Note that there are two types of connections: those within a merge block, i.e. within a
group of comparators arising from a call to OE-MERGE by OE-MERGESORT, and those
between merge blocks. In the former the children have the same path p as their parent, while
in the latter the children’s path p is one bit longer than their parent’s (one child has p ◦ 0,
and the other has p ◦ 1).

We begin with the connections within a merge block, corresponding to lines 1-15 in
Algorithm 3. Let (z, i, i′) specify a comparator at the output of some 2k-merge-block B
(where k = (t − 1) − i′ > 0). B contains 2k−1 − 1 comparators at its output level, and
two recursively constructed 2k−1-merge-blocks Beven and Bodd below them (refer to Figure
1). B’s top-level comparators are connected to Beven and Bodd via the following rule: for
1 < m < 2k−1 − 1, the mth comparator takes as input the mth output wire from Beven and
the (m− 1)th output from Bodd. Thus, using the correspondence between output wires and
comparators mentioned above, the children of the mth comparator are computed as follows
(lines 7-13 of Algorithm 3). If m is even (line 7), then the children are the (m/2)-th output
comparators of Beven and Bodd. If m is odd (line 10), then the children are the ((m+1)/2)-th
output comparator of Beven and the ((m− 1)/2)-th output comparator of Bodd.

This accounts for all of B’s top-level comparators except the first (m = 1) and last
(m = 2k−1 − 1). For each of these, one of the input wires is either the first or last output of
Beven or Bodd, and as mentioned above these wires come from the bottom-level comparators.
For the first comparator (lines 2-3 of Algorithm 3), one child comes from the first top-level
comparator of Beven and the other from the bottom-left-most comparator of Bodd. For the
last comparator (lines 4-5), one child comes from the last top-level comparator of Bodd and
the other from the bottom-right-most comparator of Beven.

The only remaining special case for connections within a merge block is when both
children are at the bottom level of B (i.e. (z, i, i′) is one level above the bottom), which
is indicated by i′ = t − 2 (line 14 of Algorithm 3). In this case the children are uniquely
specified by their paths p, p′ and have no number m; they are obtained by setting i′ = t− 1
and setting the last bit of z to be 0 or 1.

We now describe the connections between merge blocks, i.e. how to compute the children
of the comparators at the bottom level of a merge block B, corresponding to lines 16-28 in
Algorithm 3.

Let B denote a 2k-merge-block at some depth i = t−k, and let B0 and B1 denote its two
children at depth i+1. Let (z, i, i′ = t− 1) be the label of a comparator at the bottom level
of B, which thus has one child in B0 and one in B1. The unique aspect of these connections
is the following. Because (z, i, i′) is at B’s bottom level, it has a path p of length i and a
path p′ of length t− i− 1, but no number m. In contrast, comparators at the top level of B0

and B1 have a path p and a number m, but no path p′. Thus, we must convert the parent’s
path p′ into the number m for each of its children.
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The way that this is done is reminiscent of the fast Fourier transform or butterfly network.
Consider the 2k wires that are input to B, and label them 0, . . . , 2k−1 (wires 0, . . . , 2k−1−1
are output by B0 and wires 2k−1, . . . , 2k− 1 are output by B1). We need to determine which
comparator at B’s bottom level each wire is input to. From lines 4-5 of Algorithm 2, we
can see that the wires are first partitioned into the even- and odd-indexed sets, then the
sets are recursively partioned again, and so on until each set in the partition contains two
wires which are then both input to a single comparator. Now view B’s 2k−1 bottom-level
comparators as the leaves of a complete depth-(k−1) binary tree; indeed, in our label format
this corresponds to the path p′. For a given input wire labeled by a k-bit binary number, we
find its comparator by routing it on this tree, reading its label from right to left and ignoring
the leftmost bit. This gives the correct comparator because reading the labels from right
to left corresponds to recursively partitioning the wires into the even- and odd-indexed sets,
and ignoring the last bit corresponds to stopping when the sets have size two.

Now notice that we can do this in the other direction as well: given the path p′ labeling a
comparator at the bottom level of B, the indices of the two wires that it inputs have binary
representations 0 ◦ reverse(p′) and 1 ◦ reverse(p′). In other words, its input wires are the mth
output wires of B0 and B1, where m := reverse(p′). Finally by the discussion above mapping
output wires to output comparators, we can compute the labels of (z, i, i′)’s children from
reverse(p′) = zt−1zt−2 · · · zi+1 using similar techniques as in the previous cases (and with
similar special cases corresponding to the first and last output wires of B0 and B1, handled
by lines 17-20 of Algorithm 3).

We have finished the proof of the following theorem.

Theorem 7. Algorithms 3 and 1 induce the same sorting network.

We now observe that this algorithm can be extended to also compute connections within
each comparator, and that the entire computation can be performed by an in-place algorithm.

Theorem 8. For every m,n ∈ N, there is a sorting circuit C : ({0, 1}m)n → ({0, 1}m)n
of size O(mn log2 n) whose gate connections are computable in place. That is, there is a
(log |C|)-bit labeling of C’s gates and a polynomial-time in-place algorithm L such that for
every gate label g and bit b ∈ {0, 1}, L(g, b) outputs the bth child of g.

Proof. Algorithm 3 is easily seen to be computable by an in-place algorithm. The operations
used are incrementing/decrementing a binary number by 1, dividing an even binary number
by 2 (which is just a shift), and reversing a binary string, all of which can be done in place.

A comparator on two m-bit numbers x, y ∈ {0, 1}m can be implemented by a circuit of
size O(m). Indeed, the crux is in determining whether x > y which can be represented by

t :=
m∨
i=1

(
(xi > yi) ∧

m∧
j=i+1

(xj = yj)

)
.

Then the ith bit of the comparator’s more output is given by (xi ∧ t) ∨ (yi ∧ ¬t), while the
ith bit of its less output is given by (xi ∧ ¬t) ∨ (yi ∧ t).

The regularity of these formulas permits an intuitive O(logm)-bit labeling for which
connections can be computed by an in-place algorithm; we omit the details. Concatenating
this labeling with the odd-even mergesort labeling above gives the required labeling of C.
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4 Spreading computation

In this section we show that the circuit C from Theorem 8 has an equivalent circuit C ′ of size
Õ(|C|) whose gate connections can be computed in more restricted computational models,
namely log-depth decision trees and log-depth linear-size circuits. This follows from a more
general result that any circuit whose connections are computable in place and in polynomial
time has an equivalent circuit whose connections are computable in these restricted models.

The idea is to use the spreading computation technique of [JMV13], and label the gates
of C ′ by configurations of the in-place algorithm L. Computing connections in C ′ then
corresponds to computing a single step of L, which can be done with more limited resources
than are required for an entire run of L. In practice, this corresponds to introducing a
chain of “copy” gates between each pair of connected gates (gparent, gchild) in C; the labels
of this chain encode L’s computation on input gparent with output gchild. The increase in

size and depth is proportional to L’s running time; since the latter is logO(1) |C|, we have

|C ′| = Õ(|C|).

Lemma 9 (In-place → small depth). Let L be a polynomial-time in-place algorithm that
computes connections between (h = log |C|)-bit labels of a fan-in-2 circuit C. Then there is

an equivalent D-explicit circuit C ′ of size |C ′| = Õ(|C|) for

1. D = decision trees of depth O(log h), or

2. D = circuits of size O(h) and depth O(log h).

Proof. The proof follows the ideas of [JMV13, Thm. 5]. The main difference is that they
start from a log-space algorithm, while we start from an in-place algorithm.

We model L as follows. L’s input is the label g ∈ {0, 1}h and child-selection bit b. L
uses a constant number of (log h)-bit variables p1, . . . , pk. At each step, L reads its variables
and the bit gp1 , and then updates gp1 and each of the variables. An (h + O(log h))-bit
configuration of L (a.k.a. a label in C ′) contains the following items: the current timestep
(O(log h) bits), the value of L’s variables (O(log h) bits), the child-selection bit b (1 bit), and
the current string g (h bits).

D computes as described in [JMV13, Thm. 5], namely by performing one step of L from
the configuration it is given as input. It remains to argue that D can be computed by
decision trees of depth O(log h) or by circuits of size O(h) and depth O(log h). For decision
trees this is immediate, because the timestep, the variables, the bit b, and the relevant bit
of g can all be read in depth O(log h).

For circuits, we construct Ch : {0, 1}log h → {0, 1}h of size O(h) and depth O(log h) such
that Ch(i) = 2i. Indeed, with such a circuit we can fetch a bit of g indexed by p ≤ h, by
computing the bit-wise AND of Ch(p) and g, and then computing OR. We can also update
the variables which are short and hence easy to compute with, and finally we can update
the label bits again by using the circuit Ch (we can XOR its output with the label).

Ch may be constructed from Ch/2 as follows: parse the input i = (i0, i
′) ∈ {0, 1} ×

{0, 1}log h−1; then compute zL ∈ {0, 1}h/2 by ANDing i0 to every bit of Ch/2(i
′), compute

zR ∈ {0, 1}h/2 by ANDing (i0⊕1) to every bit of Ch/2(i
′), and output zL◦zR. The correctness

follows because Ch shifts Ch/2(i
′) = 2i

′
by h/2 bits, i.e. multiplies by 2h/2, iff the most

significant bit of i is 1. The size and depth bounds follow by an inductive argument.
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Combining Theorem 8 and Lemma 9 proves parts 1-2 of Theorem 2.

4.1 A locality vs. size tradeoff

In this section we show a tradeoff between the size and the locality of an in-place circuit-
labeling algorithm, proving part 3 of Theorem 2. To this end, we first give a formal definition
of in-place circuit-labeling algorithms which is essentially the same formalization used in the
proof of Lemma 9. Next, using a technical variant of the definition, we formalize and prove
the trade-off.

Definition 10. A label-processing Turing machine (LTM) L for a circuit C : {0, 1}n → {0, 1}
is a single-tape Turing machine defined as follows. The tape is read/write and initially
contains L’s input, a string g of length h = log |C| which is the label of a gate in C. L has
an additional bit c that specifies which of g’s children it should compute. At the end of the
computation, the label of the designated child gate is written on the tape.

L’s control consists of an O(1)-bit state and a constant number of pointers p1, p2, . . . , pk
that each have size log h. At each step in the computation L reads the state, all the pointers,
and the bit gp1 and then updates the state, gp1 , and the pointers (using standard arithmetic
operators).

It can be shown that the in-place circuit-labeling Algorithm 2 is computable by an LTM.
Observe that in order to compute each step of an LTM L given its current configuration,

one needs decision trees of depth Ω(log h) (e.g. to read the pointers p1). We now define a
modified version of an LTM, called a block-LTM, that allows each step to be computed by
decision trees of smaller depth, even as small as O(1). This machine is parameterized by
b ∈ N which allows for a tradeoff between configuration size and decision tree depth.

Definition 11. A b-block-LTM (b-LTM) L for a fan-in-2 circuit C : {0, 1}n → {0, 1} is an
LTM with the following modifications. The tape is divided into b blocks of h/b bits. L’s
control is also divided into b blocks; each block of the control consists of an O(1)-bit state
and a constant number of pointers p1, p2, . . . , pk that each have size log(h/b). Let [g]i denote
the ith block of the tape. At each step in the computation, for each i ≤ b in parallel, L
updates block i as follows. It first reads control blocks i − 1, i, and i + 1 and the bit [g]ip1
where p1 is the first pointer in control block i, and it then updates [g]ip1 and control block i.

We now show that b-LTMs are sufficiently powerful to compute our main algorithm.

Lemma 12. For every 1 ≤ b ≤ h, Algorithm 2 can be computed by a b-LTM.

Proof. The high-level idea is that the control blocks of a b-LTM can “pass” the state of an
LTM between themselves, and thus simulate the LTM’s computation. The main technical
difficulty in the construction is to simulate the use of a (log h)-bit pointer by a sequence of
b (log(h/b))-bit pointers. We now describe how such a set of b pointers can be used in a
distributed fashion to specify one of the LTM’s pointers.

To start, we recall the operations using (log h)-bit pointers that are needed in the algo-
rithm from Section 3, namely: (1) incrementing or decrementing a pointer by 1, (2) setting
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a pointer to a fixed value, (3) reading the bit of the tape specified by a pointer, and (4)
reading a string of bits from the tape into a pointer.

We store a (log h)-bit pointer 1 ≤ p ≤ h in a sequence p1, . . . , pb of (log(h/b) + 1)-bit
pointers, one per control block, as follows. The first bit of each pi is an “in-range” flag which
is set to 1 iff (i − 1) · h/b ≤ p < i · h/b. In this case the remaining bits store the binary
representation of p− (i− 1) · h/b; otherwise these bits are ignored. (Note that each control
block may have additional pointers that are not used in this way, e.g. to represent a marker
on some cell in that portion of the tape.)

Given this representation of (log h)-bit pointers, operations (1)-(4) in the above list may
be performed by “passing state” between adjacent control blocks. For example, Operation
(4) is performed as follows. First, a “distributed pointer” is initialized to 0, and the portion
of the tape containing the pointer to be read is copied bit by bit to a new location that
is designated for this purpose. (As the pointer has length log h, we can afford this extra
space in a configuration.) Next, the copy is repeatedly decremented by 1, and each time the
distributed pointer is incremented by 1, stopping when the copy is at 0 (at which point the
distributed pointer contains the desired value).

Using these techniques for simulating pointer operations, the rest of the LTM simulation
may be carried out.

We finally prove the main result of this subsection, which in combination with Lemma
12 gives part 3 of Theorem 2.

Theorem 13. Let L be a b-LTM that computes connections between (h = log |C|)-bit labels
of a fan-in-2 circuit C. Then there is an equivalent D-explicit circuit C ′ of size |C ′| =
2h+b·O(log(h/b)) = |C| · ((log |C|)/b)O(b) for D = decision trees of depth O(log(h/b)).

Proof. Observe that the total space needed for the control of a b-LTM is b ·O(log(h/b)) bits,
and thus a configuration of a b-LTM requires h+ b · O(log(h/b)) bits. Further observe that
given as input a configuration of a b-LTM, a decision tree of depth O(log(h/b)) can compute
each bit in the configuration that follows in one step: each bit depends on ≤ 3 control blocks
and ≤ 1 bit of each tape.

The only caveat in adapting Lemma 9 to this setting is in the use of timesteps in the
configurations. As in [JMV13, Thm. 5], the type of a gate in C ′ is copy iff the (O(log h)-
bit) timestep is less than its maximum value (otherwise the type matches the corresponding
gate in C). There are two issues when using decision trees of depth O(log(h/b)): how to
increment a timestep by 1, and how to check if the timestep is maximal. To handle both
of these we use the redundant representation of timesteps employed in [JMV13] and in the
proof of Theorem 3 above, which allows these operations to be computed in depth O(1) (see
the discussion there for details).
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