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Abstract

We study the complexity of arithmetic in finite fields of characteristic two, F2n . We
concentrate on the following two problems:

• Iterated Multiplication: Given α1, α2, . . . , αt ∈ F2n , compute α1 · α2 · · ·αt ∈ F2n .

• Exponentiation: Given α ∈ F2n and a t-bit integer k, compute αk ∈ F2n .

First, we consider the explicit realization of the field F2n as F2[x]/(x2·3l
+x3l

+1) ≃ F2n ,
where n = 2·3l. In this setting, we exhibit Dlogtime-uniform poly(n, t)-size TC0 circuits
computing exponentiation. To the best of our knowledge, prior to this work it was not
even known how to compute exponentiation in logarithmic space, i.e. space O(log(n +
t)), over any finite field of size 2Ω(n). We also exhibit, for every ǫ > 0, Dlogtime-
uniform poly(n, 2tǫ)-size AC0[mod 2] circuits computing iterated multiplication and
exponentiation, which we prove is optimal.

Second, we consider arbitrary realizations of F2n as F2[x]/(f(x)), for an irreducible
f(x) ∈ F2[x] that is given as part of the input. In this setting, we exhibit, for every
ǫ > 0, Dlogtime-uniform poly(n, 2tǫ)-size AC0[mod 2] circuits computing iterated mul-
tiplication, which is again tight. We also exhibit Dlogtime-uniform poly(n, 2t)-size
AC0[mod 2] circuits computing exponentiation.

Our results over F2[x]/(x2·3l
+ x3l

+ 1) have several consequences:
We prove that Dlogtime-uniform TC0 equals the class AE of functions computable

by certain arithmetic expressions. This answers a question raised by Frandsen, Valence
and Barrington (Mathematical Systems Theory ’94). We also show how certain optimal
constructions of k-wise independent and ǫ-biased generators are explicitly computable
in Dlogtime-uniform AC0[⊕] and TC0. This addresses a question raised by Gutfreund
and Viola (RANDOM ’04).
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1 Introduction

Finite fields have a wide variety of applications in computer science, ranging from Coding
Theory to Cryptography to Complexity Theory. In this work we study the complexity of
arithmetic operations in finite fields.

When considering the complexity of finite field arithmetic, there are two distinct problems
one must consider. The first is the problem of actually constructing the desired finite field,
F; for example, one must find a prime p in order to realize the field Fp as Z/pZ. The second
is the problem of performing arithmetic operations, such as addition, multiplication and
exponentiation in the field F. In this work, we focus on this second problem, and restrict
our attention to fields F where a realization of the field can be found very easily, or where a
realization of F is given as part of the input.

Specifically, we will focus on finite fields of characteristic two; that is, finite fields F2n

having 2n elements. In particular, the question we address is: To what extent can basic
field operations (e.g., multiplication, exponentiation) in F2n be computed by constant-depth
circuits? In our work, we consider three natural classes of unbounded fan-in constant-
depth circuits: circuits over the bases {∧,∨} (i.e., AC0), {∧,∨,Parity} (i.e., AC0[⊕]), and
{∧,∨,Majority} (i.e., TC0). Moreover, we will focus on uniform constant-depth circuits,
although we defer the discussion of uniformity until the paragraph “Uniformity” later in
this section. Recall that, for polynomial-size circuits, AC0 ( AC0[⊕] ( TC0 ⊆ logarithmic
space, where the last inclusion holds under logarithmic-space uniformity and the separations
follow from works by Furst et al. [FSS] and Razborov [Raz], respectively (and hold even for
non-uniform circuits).

Field Operations. Recall that the finite field F2n of characteristic two is generally realized
as F2[x]/(f(x)) where f(x) ∈ F2[x] is an irreducible polynomial of degree n. Thus, field
elements are polynomials of degree at most n − 1 over F2, addition of two field elements is
addition in F2[x] and multiplication of field elements is carried out modulo the irreducible
polynomial f(x). Throughout, we identify a field element α = an−1x

n−1+· · ·+a1x+a0 ∈ F2n

with the n-dimensional bit-vector (a0, a1, . . . , an−1) ∈ {0, 1}n, and we assume that all field
elements that are given as inputs or returned as outputs of some computation are of this
form.

In such a realization of F2n , addition of two field elements is just component-wise XOR
and therefore trivial, even for AC0 circuits. It is also easy to establish the complexity of
Iterated Addition, i.e. given α1, α2, . . . , αt ∈ F2n , computing α1 + α2 + · · · + αt ∈ F2n .
This is easily seen to be computable by AC0[⊕] circuits of size poly(n, t). On the other
hand, since parity is a special case of Iterated Addition, the latter requires AC0 circuits of
size poly(n, 2tǫ) (see e.g. [H̊as]). Thus, we concentrate on the following multiplicative field
operations:

• Iterated Multiplication: Given α1, α2, . . . , αt ∈ F2n , compute α1 · α2 · · ·αt ∈ F2n .

• Exponentiation: Given α ∈ F2n , and a t-bit integer k, compute αk ∈ F2n .

The goal is to compute these functions as efficiently as possible for given parameters n, t.
We note that these functions can be computed in time poly(n, t) (using the repeated squaring
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algorithm for exponentiation). In this work we ask what the smallest constant-depth circuits
are for computing these functions. Note that computing Iterated Multiplication immediately
implies being able to compute the product of two given field elements. While solving this
latter problem is already non-trivial (for Dlogtime-, or even logspace-uniform constant-depth
circuits), we will not address it separately.

Our Results. We present two different types of results. The first concerns field operations
in a specific realization of F2n , which we denote F̃2n . The second type concerns field operations
in an arbitrary realization of F2n as F2[x]/(f(x)), where we assume that the irreducible
polynomial f(x) is given as part of the input. We describe both of these kinds of results in
more detail below. Then we discuss some applications of our results.

Results in the specific representation F̃2n : In this setting, we assume that n is of the form
n = 2 ·3l, for some non-negative integer l, and we employ the explicit realization of F2n given
by F2[x]/(f(x)) where f(x) is the irreducible polynomial x2·3l

+ x3l
+ 1 ∈ F2[x]. Our results

are summarized in Table 1.
We show that exponentiation can be computed by uniform TC0 circuits of size poly(n, t)

(i.e. what is achievable by standard unbounded-depth circuits). To the best of our knowledge,
prior to this work it was not even known how to compute exponentiation in logarithmic space,
i.e. space O(log(n + t)), over any finite field of size 2Ω(n). As a corollary, we improve upon
a theorem of Agrawal et al. [AAI+] concerning exponentiation in uniform AC0. In the case
of iterated multiplication of t field elements, results of Hesse et al. [HAB] imply that this
problem can be solved by uniform TC0 circuits of size poly(n, t).

We also show that, for every ǫ > 0, iterated multiplication and exponentiation can be
computed by uniform AC0[⊕] circuits of size poly(n, 2tǫ). Moreover, we show that this is
tight: neither iterated multiplication nor exponentiation can be computed by (nonuniform)

AC0[⊕] circuits of size poly(n, 2to(1)
).

Results in arbitrary representation F2[x]/(f(x)): In this setting we assume that the ir-
reducible polynomial f(x) is arbitrary, but is given to the circuit as part of the input. Our
results are summarized in Table 2.

We show (with a more complicated proof than in the specific representation case) that
iterated multiplication can be computed by uniform AC0[⊕] circuits of size poly(n, 2tǫ), and
this is again tight. We show that exponentiation can be computed by uniform AC0[⊕] circuits
of size poly(n, 2t), but we do not know how to match the size poly(n, 2tǫ) achieved in the spe-
cific representation case. More dramatically, we do not know if there exist poly(n, 2o(t))-size
TC0 circuits for exponentiation. While we cannot establish a lower bound for exponentia-
tion, we observe that testing whether a given F2[x] polynomial of degree n is irreducible can
be AC0[⊕] reduced to computing exponentiation in a given representation of F2n , for expo-
nents with t = n bits. Specifically, a modification of Rabin’s irreducibility test [Rab, MS]
gives a TC0 reduction; we show a finer analysis that gives a AC0[⊕] reduction. Thus, any
improvement on our results for exponentiation modulo a given (irreducible) polynomial of
degree at most n would yield an upper bound on the complexity of testing irreducibility of
a given F2[x] polynomial. Some lower bounds for the latter problem are given in the recent
work of Allender et. al. [ABD+]. However, it is still open whether irreducibility of a given
degree-n polynomial in F2[x] can be decided by AC0[⊕] circuits of size poly(n).
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AC0 AC0[⊕] TC0

Addition: poly(n) poly(n) poly(n)

α, β ∈ F̃2n → α + β ∈ F̃2n [Folklore] [Folklore] [Folklore]

Iterated Addition: poly(n, 2tǫ) poly(n, t) poly(n, t)

α1, . . . , αt ∈ F̃2n →
∑

i≤t αi ∈ F̃2n [Folklore] [Folklore] [Folklore]

Multiplication: poly(2nǫ
) poly(n) poly(n)

α, β ∈ F̃2n → α · β ∈ F̃2n [Cor. 6 (1)] [Thm. 4 (1)] [HAB]

Iterated Multiplication: poly(2nǫ
, 2tǫ) poly(n, 2tǫ) poly(n, t)

α1, . . . , αt ∈ F̃2n →
∏

i≤t αi ∈ F̃2n [Cor. 6 (1)] [Thm. 4 (1)] [HAB]

Exponentiation: poly(2nǫ
, 2tǫ) poly(n, 2tǫ) poly(n, t)

α ∈ F̃2n , t-bit k ∈ Z → αk ∈ F̃2n [Cor. 6 (2)] [Thm. 4 (2)] [Thm. 3 (2)]

In the above, ǫ > 0 is arbitrary, but the circuits have depth O(1/ǫ).

Table 1: Complexity of Operations in F̃2n ≡ F2[x]/(x2·3l
+ x3l

+ 1).

AC0 AC0[⊕] TC0

Addition: poly(n) poly(n) poly(n)

α, β ∈ F2n → α + β ∈ F2n [Folklore] [Folklore] [Folklore]

Iterated Addition: poly(n, 2tǫ) poly(n, t) poly(n, t)

α1, . . . , αt ∈ F2n →
∑

i≤t αi ∈ F2n [Folklore] [Folklore] [Folklore]

Multiplication: poly(2nǫ
) poly(n) poly(n)

α, β ∈ F2n → α · β ∈ F2n Cor. to [HAB] [Thm. 7 (1)] [HAB]

Iterated Multiplication: poly(2nǫ
, 2tǫ) poly(n, 2tǫ) poly(n, t)

α1, . . . , αt ∈ F2n →
∏

i≤t αi ∈ F2n Cor. to [HAB] [Thm. 7 (1)] [HAB]

Exponentiation: poly(2nǫ
, 22ǫt

) poly(n, 2t) poly(n, 2t)

α ∈ F2n , t-bit k ∈ Z → αk ∈ F2n Cor. to [HAB] [Thm. 7 (2)] [HAB]

In the above, ǫ > 0 is arbitrary, but the circuits have depth O(1/ǫ).

Table 2: Complexity of Operations in F2n ≡ F2[x]/(f(x)) for given f(x) of degree n.
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We now discuss several applications of our results in the specific representation F̃2n .
AE = Dlogtime-uniform TC0: Frandsen, Valence and Barrington [FVB] study the rela-

tionship between uniform TC0 and the class AE of functions computable by certain arith-
metic expressions (defined in Section 2.3). Remarkably, they show that Dlogtime-uniform
TC0 is contained in AE. Conversely, they show that AE is contained in P -uniform TC0, but
they leave open whether the inclusion holds under Dlogtime uniformity. We show that AE
is in fact contained in Dlogtime-uniform TC0, thus proving that AE = Dlogtime-uniform
TC0. (See paragraph “Uniformity” for a discussion of Dlogtime-uniformity.)

“Pseudorandom” Generators: We implement certain “pseudorandom” generators in Dlogtime-
uniform constant-depth circuits. Specifically, we show how a construction of k-wise inde-
pendent generators from [CG, ABI] can be implemented in uniform AC0[⊕], and how a con-
struction of ǫ-biased generators from [AGHP] can be implemented in uniform TC0. These
constructions address a problem posed by Gutfreund and Viola [GV].

Overview of Techniques. Our results for the specific representation F̃2n = F2[x]/(x2·3l
+

x3l
+ 1) exploit the special structure of the irreducible polynomial x2·3l

+ x3l
+ 1 ∈ F2[x].

The crucial observation (Fact 17) is that the order of x modulo x2·3l
+ x3l

+ 1 is small and is
easily computed, namely it is 3l+1. Thus, we are able to compute large powers of the element
x ∈ F̃2n by considering the exponent k modulo the order of x. To better illustrate this idea
we now sketch a proof of the fact that exponentiation over F̃2n can be computed by uniform
TC0 circuits of size poly(n, t). Let α ∈ F̃2n and an exponent 0 ≤ k < 2t be given. We think
of α as a polynomial α(x) ∈ F2[x]. Writing k in binary as k = kt−1kt−2 · · · k0 =

∑

i<t ki2
i

where ki ∈ {0, 1}, we have:

α(x)k = α(x)

P
i<t

ki2
i

=
∏

i<t

α(x)ki2
i

=
∏

i<t

α
(

x2i
)ki

where the last equality follows from the fact that we are working in characteristic 2. Using
the fact that the iterated product of t field elements is computable by uniform TC0 circuits
of size poly(n, t) (which follows from results in [HAB]), all that is left to do is to show how
to compute α(x2i

)ki . Since ki ∈ {0, 1}, the only hard step of this is computing x2i
which

can be done using the fact, discussed above, that the order of x is 3l+1. Specifically, first we
reduce 2i mod 3l+1 using results about the complexity of integer arithmetic by Hesse et. al.
[HAB]. After the exponent is reduced, we show that computing the corresponding power of
x is easy.

To prove that AE = Dlogtime-uniform TC0 we also show that F̃2n has an easily com-
putable dual basis (as a vector-space over F2).

The other techniques we use are based on existing algorithms in the literature, e.g.
[Kun, Sie, Rei, Ebe]. Our main contribution here is noticing that for some settings of
parameters they can be implemented in AC0[⊕] and moreover that they give tight results
for AC0[⊕]. We now describe these techniques in more detail.

In the case of arbitrary realizations of F2n as F2[x]/(f(x)), the main technical challenge
is reducing polynomials modulo f(x). Previous work has addressed this problem and shown
how (over arbitrary fields) this can be solved by uniform log-depth circuits (of fan-in 2)
[Rei, Ebe], and even by uniform TC0 circuits [HAB]. The approach that is usually taken
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is to give a parallel implementation of the Kung-Sievking algorithm [Kun, Sie] to reduce
polynomial division to the problem of computing small powers of polynomials. However,
this reduction requires summations of poly(n) polynomials, which is why previous results
only give implementations in log-depth or by TC0 circuits. We take the same approach in our
Lemma 20; however, we observe that in our setting we may compute these large summations
using parity gates. This allows us to implement polynomial division over F2[x] in AC0[⊕].

Both in our results for F̃2n and for arbitrary realizations of F2n , we make use of the
Discrete Fourier Transform (DFT). This allows us to reduce the problem of multiplication or
exponentiation of polynomials to the problem of multiplying or exponentiating field elements
in fields of size poly(n) (and these problems are feasible for AC0 circuits). Eberly [Ebe] and
Reif [Rei] have also employed the DFT in their works on performing polynomial arithmetic
in log-depth circuits. However, as with polynomial division in F2[x], the fact that we are
working with polynomials over F2 allows us to compute the DFT and inverse DFT in uniform
AC0[⊕] (and not just in log-depth or TC0).

Other Related Work: Works by Reif [Rei] and Eberly [Ebe] show how basic field arith-
metic can be computed by log-depth circuits, and the results of Hesse, Allender and Barring-
ton [HAB] imply that some field arithmetic can be accomplished by uniform TC0. Indeed,
the main result of [HAB] states that integer division can be computed by (uniform) TC0

circuits, and hence addition and multiplication in the field Fp ≃ Z/pZ can be accomplished
(in TC0) by adding or multiplying elements as integers and then reducing the result mod-
ulo p using the division result. Other results from [HAB] imply that uniform TC0 circuits
can compute iterated multiplication in (arbitrary realizations of) F2n . Some results on the
complexity of arithmetic in finite fields of unbounded characteristic are given in [SF].

Uniformity. In the previous discussion we refer to uniform circuits for the various problems
we consider. When working with restricted circuit classes, such as AC0, AC0[⊕] and TC0,
one must be careful not to allow the machine constructing the circuits to be more powerful
than the circuits themselves. Indeed, one of the significant technical contributions of [HAB]
is showing that integer division is in uniform TC0 under a very strong notion of uniformity,
namely Dlogtime-uniformity [BIS]. Dlogtime-uniformity, which is described briefly in section
3, has become the generally-accepted convention for uniformity in constant-depth circuits
[BIS, FVB, HAB]. One reason for this is that Dlogtime-uniform constant-depth circuits have
several elegant characterizations (see, e.g., [BIS]); in fact, our results will prove yet another
such characterization, namely Dlogtime-uniform TC0 = AE. Unless otherwise specified, in
this work “uniform” always means “Dlogtime-uniform”.

If one is willing to relax the uniformity condition to polynomial-time-uniformity, then
some of our results on arithmetic in F̃2n can be proved more easily. For instance, the expo-
nentiation result requires computing x2i

∈ F̃2n for a given i. Instead of actually computing
x2i

in the circuit, these values could be computed in polynomial time and then hardwired
into the circuit. In contrast, in the case of our results in arbitrary realizations of F2n , we
do not know how to improve any of our results, even if we allow non-uniform circuits. If on
the other hand, one allows non-uniformity that depends on the irreducible polynomial f(x),
then one can simplify some the proofs, and can actually improve the exponentiation result to
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match the parameters that we achieve in F̃2n (by hardwiring the values x2i
into the circuit,

as above).

Organization. This paper is organized as follows. In Section 2 we formally state our
results. In Section 3 we discuss some preliminaries. In Sections 4-7 we give the proofs of our
results. In Section 8 we discuss some open problems.

2 Our Results

In this section we formally state our results. In Section 2.1 we discuss our results in the
specific case where n is of the form n = 2 · 3l, and F2n is realized as F2[x]/(x2·3l

+ x3l
+ 1),

i.e. using the explicit irreducible polynomial x2·3l
+x3l

+1 ∈ F2[x]. In Section 2.2 we discuss
our results in realizations of F2n as F2[x]/(f(x)) for an arbitrary irreducible polynomial
f(x) ∈ F2[x] that is given as part of the input. Then we discuss applications of our results. In
Section 2.3 we prove that uniform TC0 = AE. In Section 2.4 we exhibit k-wise independent
and ǫ-biased generators explicitly computable in uniform AC0[⊕] and TC0.

2.1 Field Arithmetic in F̃2n

Below we summarize our main results concerning arithmetic in the field F̃2n , defined below.

Fact 1 ([vL], Theorem 1.1.28). For all integers l ≥ 0, the polynomial x2·3l
+ x3l

+ 1 ∈ F2[x]
is irreducible.

Definition 2. For n of the form n = 2 · 3l, we define F̃2n to be the specific realization of F2n

given by

F̃2n
def
= F2[x]/(x2·3l

+ x3l

+ 1).

The next theorem states our results about field arithmetic over F̃2n in uniform TC0. The
first item follows from results of Hesse, Allender and Barrington [HAB]; nonetheless, we
state it for the sake of comparison with our other results.

Theorem 3. Let n = 2 · 3l. There exist uniform TC0 circuits of size poly(n, t) that perform
the following:

1. [HAB] Given α1, α2, . . . , αt ∈ F̃2n, compute α1 · α2 · · ·αt ∈ F̃2n.

2. Given α ∈ F̃2n and a t-bit integer k, compute αk ∈ F̃2n.

In particular, uniform TC0 circuits of polynomial size are capable of performing iterated
multiplication and exponentiation in F̃2n that match the parameters that can be achieved
by standard unbounded-depth circuits.

The next theorem states our results about field arithmetic over F̃2n in uniform AC0[⊕].

Theorem 4. Let n = 2 · 3l. Then, for every constant ǫ > 0, there exist uniform AC0[⊕]
circuits of size poly(n, 2tǫ) that perform the following:
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1. Given α1, α2, . . . , αt ∈ F̃2n, compute α1 · α2 · · ·αt ∈ F̃2n.

2. Given α ∈ F̃2n and a t-bit integer k, compute αk ∈ F̃2n.

While these parameters are considerably worse than for TC0 circuits, they are tight:

Theorem 5. For every constant d there is ǫ > 0 such that, for sufficiently large t and
n = 2 · 3l, the following cannot be computed by (nonuniform) AC0[⊕] circuits of depth d and
size 22ǫn

· 2tǫ:

1. Given α1, α2, . . . , αt ∈ F̃2n, compute α1 · α2 · · ·αt ∈ F̃2n.

2. Given α ∈ F̃2n and a t-bit integer k, compute αk ∈ F̃2n.

In fact, Item (1) in the above negative result holds for any sufficiently large field (i.e.
not only F̃2n); and Item (2) holds for fields of a variety of different sizes. Both of these
generalizations will be apparent from the proof.

By “scaling down” Theorem 3 (as described in Section 3) we obtain the following:

Corollary 6. Let n = 2·3l. Then, for every constant ǫ > 0, there exist uniform AC0 circuits
of size poly(2nǫ

, 2tǫ) that perform the following:

1. Given α1, α2, . . . , αt ∈ F̃2n, compute α1 · α2 · · ·αt ∈ F̃2n.

2. Given α ∈ F̃2n and a t-bit integer k, compute αk ∈ F̃2n.

This improves upon a theorem of Agrawal et al. [AAI+] showing that field exponentiation
is computable by uniform AC0 circuits of size poly(2n, 2t) (as opposed to poly(2nǫ

, 2tǫ) in
our result). Corollary 6 is also tight for many settings of parameters (see Theorem 5).

2.2 Field Arithmetic in Arbitrary Realizations of F2n

As noted above, one of the advantages of working with the field F̃2n is that we achieve tight
results for TC0, AC0[⊕] and AC0. However, the use of F̃2n requires that n = 2 · 3l, and thus
does not allow for the construction of F2n for all n; moreover some applications may require
field computations in a specific field F2[x]/(f(x)) for some given irreducible polynomial f(x)
other than x2·3l

+ x3l
+ 1. Thus we are led to study the complexity of arithmetic in the ring

F2[x]/(f(x)) where the polynomial f(x) ∈ F2[x] is given as part of the input. If, in addition,
we have the promise that f(x) is irreducible, then this corresponds to arithmetic in the field
F2n ≃ F2[x]/(f(x)).

Theorem 7.

1. For every constant ǫ > 0, there exist uniform AC0[⊕] circuits of size poly(n, 2tǫ)
that perform the following: Given f(x) ∈ F2[x] of degree n and α1, α2, . . . , αt ∈
F2[x]/(f(x)), compute α1 · α2 · · ·αt ∈ F2[x]/(f(x)).

2. There exist uniform AC0[⊕] circuits of size poly(n, 2t) that perform the following:
Given f(x) ∈ F2[x] of degree n, α ∈ F2[x]/(f(x)) and a t-bit integer k, compute
αk ∈ F2[x]/(f(x)).
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Since Item 1 of Theorem 5 actually holds for any realization of F2n , and not just for F̃2n

(as noted in the proof), Item 1 of Theorem 7 is tight.
Unlike Item 2 in Theorem 4, Exponentiation now requires size poly(n, 2t), instead of

poly(n, 2tǫ). We do not know how to improve this to size poly(n, 2o(t)), even for TC0 circuits.
On the other hand, we show that testing irreducibility of a given F2[x] polynomial is AC0[⊕]
reducible to computing exponentiation modulo a given irreducible polynomial.

Theorem 8. The problem of determining whether a given polynomial f(x) ∈ F2[x] of de-
gree n is irreducible, is poly(n)-size AC0[⊕]-reducible to the following problem: Given an
irreducible polynomial f(x) ∈ F2[x] of degree n, compute the conjugates x, x2, x22

, . . . , x2n−1

(mod f(x)).

2.3 AE = Dlogtime uniform TC0

Frandsen, Valence and Barrington [FVB] study the relationship between uniform TC0 and
the class AE of functions computable by certain arithmetic expressions (defined below).
Remarkably, they show that Dlogtime-uniform TC0 is contained in AE. Conversely, they
show that AE is contained in P -uniform TC0, but they leave open whether the inclusion
holds for Dlogtime uniformity. We show that AE is in fact contained in Dlogtime-uniform
TC0, thus proving that AE = Dlogtime-uniform TC0. (All these inclusions between classes
hold in a certain technical sense that is made clear below.)

We now briefly review the definition of AE and then state our results.

Definition 9 ([FVB]). Let I be an infinite set of formal indices. The set of formal arithmetic
expressions is defined as follows. The basic expressions are x (we think of this as the field
element x), and Input (we think of this as the input field element). If e, e′ are expressions
(possibly containing the unbound index i ∈ I), then we may form new composite expressions
∑u

i=1 e,
∏u

i=1 e, e + e′, e · e′, e2i
, where i ∈ I and u is either an index, i.e. u ∈ I, or is any

polynomial in n (we think of n as the input length).
An arithmetic expression is well-formed if all indices are bound and they are bound in a

semantically sound way (we omit details).
We associate to every well-formed arithmetic expression e a family of functions f e

n :
F̃2n → F̃2n, for every n of the form n = 2 · 3l (note that all computations are performed over
the field F̃2n).

The complexity class AE consists of those families of functions fn : F̃2n → F̃2n that are
described by arithmetic expressions (for every n of the form n = 2 · 3l).

For example, the trace function, tr : F̃2n → F2 ⊆ F̃2n , defined by tr(Input)
def
=

∑n−1
i=0 Input2i

,
is in AE.

Theorem 10. AE = Dlogtime−uniform TC0 in the following sense:
Let f : {0, 1}n → {0, 1}n be in Dlogtime-uniform TC0. Then there is f ′ : F̃2n → F̃2n in

AE such that for every n of the form 2 · 3l, and for every x of length n, f(x) = f ′(x).
Conversely, let f : F̃2n → F̃2n be in AE. Then there is f ′ : {0, 1}n → {0, 1}n in

Dlogtime-uniform TC0 such that for every n of the form 2 · 3l, and for every x of length n,
f(x) = f ′(x).

8



Remark 11. Our definition of arithmetic expressions is slightly different from the definition
in [FVB], which we denote [FVB]-arithmetic expressions. We now argue that our definition
only makes our results hold in a sense that is stronger than that in [FVB]. From a syntactical
point of view, [FVB]-arithmetic expressions may use a special element g, which intuitively
corresponds to our x. Then, from a semantical point of view, to define the class of functions
[FVB]-AE computed by [FVB]-arithmetic expressions, they fix a certain representation of
finite fields, which in particular fixes the element g. Their inclusion “uniform TC0 is con-
tained in [FVB]-AE” only holds after a particular representation has been fixed. Roughly,
the representation fixes g such that g, g2, g4, . . . , g2n−1

is a self-dual normal basis for the field.
We note that computing such a g requires a lot of machinery, and it is not known (to the
best of our knowledge) how to do it in, say, Dlogtime-uniform TC0. On the other hand, in
our results we work over the standard representation of finite fields modulo the irreducible
polynomial x2·3l

+x3l
+1, and we set g = x; it is easy to see that our representation is easily

computable.

Remark 12. It is perhaps unsatisfactory that Theorem 10 only holds for certain input
lengths. However, even the results in [FVB] only hold for certain input lengths, though
they are more “dense” than ours.

2.4 k-wise and ǫ-biased generators

We use our results on computing field operations to give constant-depth implementations
of certain “pseudorandom” generators, namely k-wise independent and ǫ-biased generators.
The complexity of these generators is also studied by Gutfreund and Viola [GV]. Our results
will complement some of the results in [GV] (see the remark at the end of this section).

We now give some definitions and then we state our results. We say a generator G :
{0, 1}s → {0, 1}m is explicitly computable in uniform TC0 (resp., AC0[⊕]) if there is a uniform
TC0 (resp., AC0[⊕]) circuit of size poly(s, log m) that, given x ∈ {0, 1}s and i ≤ m, computes
the i-th output bit of G(x). We now define k-wise independent and ǫ-biased generators. We
refer the reader to the works [CG, ABI, NN, AGHP] and the book by Goldreich [Gol] for
background and discussion of these generators. Denote the set {1, . . . ,m} by [m]. For
I ⊆ [m] and G(x) ∈ {0, 1}m we denote by G(x)|I ∈ {0, 1}|I| the projection of G(x) on the
bits specified by I.

Definition 13. Let G : {0, 1}s → {0, 1}m be a generator.

• G is k-wise independent if for every M : {0, 1}k → {0, 1} and I ⊆ [m] such that
|I| = k: Pry∈{0,1}k [M(y) = 1] = Prx∈{0,1}s [M(G(x)|I) = 1].

• G is ǫ-biased if for every ∅ 6= I ⊆ [m]:
∣
∣
∣ Prx∈{0,1}s [

⊕

i∈I G(x)i = 0] − 1
2

∣
∣
∣ ≤ ǫ.

Using our results on field operations we obtain the following results. Note both construc-
tions are optimal up to constant factors (cf. [CGH+, AGHP]).

Theorem 14.
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1. For every k and m there is a k-wise independent generator G : {0, 1}s → {0, 1}m,
with s = O(k log m) that is explicitly computable by uniform AC0[⊕] circuits of size
poly(s, log m) = poly(s).

2. For every ǫ and m, there is an ǫ-biased generator G : {0, 1}s → {0, 1}m with s =
O(log m+log(1/ǫ)) that is explicitly computable by uniform TC0 circuits of size poly(s, log m) =
poly(s).

Remark 15. A previous and different construction of k-wise independent generators in [GV]
matches (up to constant factors) Item 1 in Theorem 14 for the special case k = O(1). The
construction in Item 1 in Theorem 14 improves on the construction in [GV] for k = ω(1).
Also, in [GV] they exhibit a construction of ǫ-biased generators computable by uniform
AC0[⊕] circuits (while the construction in Item 2 in Theorem 14 uses TC0 circuits). How-
ever, the construction in [GV] has worse dependence on ǫ.

3 Background

In this section we give some background about constant-depth circuits.

Constant-Depth Circuits: The three main complexity classes that we study in this work
are as follows:

• AC0 : The class of circuits having AND and OR gates of unbounded fan-in, NOT
gates and depth O(1).

• AC0[⊕] : The class of circuits having AND, OR and XOR gates of unbounded fan-in,
NOT gates and depth O(1).

• TC0 : The class of circuits having AND, OR and MAJORITY gates of unbounded
fan-in, NOT gates and depth O(1).

We will routinely abuse language and refer to functions f that can be computed by AC0

(respectively AC0[⊕] and TC0) circuits (of a certain size s); by this we simply mean that,
given x and i ≤ |x|, computing the i-th bit of f(x) can be performed by AC0 (resp. AC0[⊕]
and TC0) circuits (of size s).

Uniformity: When referring to the uniformity of a family of circuits, we mean the com-
plexity of the uniform algorithm that “constructs” the n-th circuit, given input n. As
mentioned in the introduction, when working with constant-depth circuits, the issue of uni-
formity can be a delicate one. Nonetheless, there is a single notion of uniformity that is
generally accepted to be the most appropriate for these classes, namely Dlogtime-uniformity.
A detailed description of Dlogtime-uniformity can be found in [BIS] (see also [Vol]); below
we give a more informal description.

A family of circuits {Cn}
∞
n=1 of size s(n) is said to be Dlogtime-uniform if there exists a

random-access Turing machine that:
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• On input n and i ≤ s determines in time O(log n+log i) the type of gate i (e.g., AND,
OR, NOT, XOR, MAJ) in the circuit Cn.

• On input n and i, j ≤ s decides in time O(log n + log i) whether the output of gate i
is joined to the input of gate j in the circuit Cn.

This restrictive notion of uniformity is more than adequate to ensure that the class of
functions computed by uniform poly(n)-size TC0 circuits is contained in logarithmic space.

Scaling Down TC0: It is well-known that uniform poly(n)-size AC0 circuits can compute
the MAJORITY function on polylog(n) bits. In particular, this means that any problem that
is solved by uniform poly(n)-size TC0 circuits on inputs of length n can, on inputs of length
polylog(n), be solved by uniform poly(n)-size AC0 circuits that simulate the MAJORITY
gates of the TC0 circuits. We will use these facts frequently and will often simply refer to
“scaling down” a given family of uniform TC0 circuits to obtain the appropriate uniform
AC0 circuits. For example, since both iterated integer multiplication of n n-bit numbers
and division of n-bit numbers are in uniform poly(n)-size TC0 [HAB], we have the following
lemma about performing these operations by uniform AC0 circuits.

Lemma 16 ([HAB], Theorem 5.1). For every constant c > 1, the following can be computed
by Dlogtime-uniform AC0 circuits of size poly(n):

• Given integers a1, a2, . . . , alogc n, each of length at most logc n bits, compute
∏

i≤logc n ai.

• Given integers a, b, each of length at most logc n bits, compute ⌊a/b⌋.

4 Arithmetic in F̃2n

In this section we prove our results about field arithmetic in the field F̃2n = F2[x]/(x2·3l
+

x3l
+ 1).
One useful property of F̃2n is that the order of x ∈ F̃2n is small, specifically it is 3l+1 =

O(n). (A priori, it could have been as large as 2n − 1.)

Fact 17. The order of x ∈ F̃2n is 3l+1.

Proof. First we show that x3l+1
≡ 1 (mod x2·3l

+ x3l
+ 1). This holds because

x3l+1

= x2·3l

· x3l

≡
(

x3l

+ 1
)

· x3l

=
(

x2·3l

+ x3l
)

≡ 1 (mod x2·3l

+ x3l

+ 1).

Thus the order of x has to divide 3l+1. Noting that x3l
6≡ 1 (mod x2·3l

+ x3l
+ 1), the result

follows.

One way in which Fact 17 is useful is that it allows us to easily reduce a given polynomial
modulo x2·3l

+ x3l
+ 1.

Lemma 18. Let n = 2 · 3l. Then there exist uniform AC0[⊕] circuits of size poly(n, d) that,
on input g(x) ∈ F2[x] of degree at most d, compute g(x) (mod x2·3l

+ x3l
+ 1).

11



We will ultimately prove a much more general statement (Lemma 20), namely that one
can reduce g(x) ∈ F2[x] modulo any given polynomial (and not only x2·3l

+x3l
+1). However,

the proof of this more general result is also much more complicated, and so we now give an
easier proof for the special case of reducing modulo x2·3l

+ x3l
+ 1.

Proof of Lemma 18. First we show that, given k ≤ d, we can compute xd ∈ F̃2n by uniform
AC0[⊕] circuits of size poly(n, d). The circuit will first use the fact that division of integers
of O(log n + log d) bits is computable by uniform AC0 circuits of size poly(n, d) (see Lemma
16) to reduce k modulo 3l+1 and obtain 0 ≤ k′ < 3l+1 such that k′ ≡ k (mod 3l+1). By Fact
17, xk′

≡ xk (mod x2·3l
+ x3l

+ 1). Clearly, if k′ < 2 · 3l, then the result is simply xk′

. On
the other hand, if 2 · 3l ≤ k′ < 3 · 3l, then xk′

≡ xk′−3l
+ xk′−2·3l

.
It follows that any given polynomial g(x) ∈ F2[x] of degree d can be reduced modulo

x2·3l
+ x3l

+ 1 by uniform AC0[⊕] circuits of size poly(n, d); indeed, the circuit needs only
reduce each term xi of g(x) modulo x2·3l

+ x3l
+ 1, and then compute the sum of all the

terms (using parities of d bits).

A crucial way in which Fact 17 is useful is that it allows us to compute high powers, αk,
of field elements α ∈ F̃2n , in the special case when k is a power of 2.

Lemma 19. Let n be of the form n = 2 · 3l. Then there exist uniform AC0[⊕] circuits of
size poly(n, i) that, on input α ∈ F̃2n, computes α2i

∈ F̃2n.

Proof. Since α2n
= α for all α ∈ F̃2n , we first reduce i modulo n. This can be accomplished

by uniform AC0 circuits of size poly(n, i) by Lemma 16. From this point on we assume
w.l.o.g. that i ≤ n.

Let α(x) ∈ F2[x] be the polynomial representing α. Thus, it suffices to compute α(x)2i
≡

α(x2i
) modulo x2·3l

+ x3l
+ 1. In particular, it suffices to compute xh·2i

in F̃2n for every
h, i ≤ n, since then we can then compute α(x2i

) by simply summing the appropriate terms.
We show that each xh·2i

∈ F̃2n can actually be computed in uniform AC0: Recall that
the order of x modulo f(x) = x2·3l

+ x3l
+ 1 is 3l+1 by Fact 17. Therefore it suffices to be

able to reduce h · 2i modulo 3l+1, and then we can apply Lemma 18. The only hard part
of this is reducing 2i modulo 3l+1, since we can then multiply the result by h and divide by
3l+1 using Lemma 16.

We now show how to reduce 2i modulo 3l+1. By the binomial theorem,

2i ≡ (3 − 1)i ≡
i∑

j=0

(
i

j

)

3j(−1)i−j mod 3l+1.

Noting that all the terms of this sum vanish for j ≥ l + 1 (thanks to the 3j factor), this
sum is actually congruent to

l∑

j=0

(
i

j

)

3j(−1)i−j mod 3l+1 ≡
l∑

j=0

i(i − 1) · · · (i − j + 1)

j(j − 1) · · · 1
· 3j(−1)i−j mod 3l+1.

Since l = O(log n) and |i| = O(log n), we can compute, for every j, i(i−1)···(i−j+1)
j(j−1)···1

by using

an iterated product (of O(log n) integers of O(log n) bits) for the numerator and denominator,
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and then performing a division of the results (i.e., of integers having polylog(n) bits); both
of these can be done by uniform AC0 circuits of size poly(n) by Lemma 16. Additionally,
the 3j term can be computed (using iterated multiplication, say), and the (−1)(i−j) is easy
to compute.

Finally, since l = O(log n), the sum can be computed by uniform AC0 circuits of size
poly(n) using an iterated sum of integers having polylog(n) bits. Clearly, the result only has
polylog(n) bits, and so we may reduce modulo 3l+1 one last time to find 2i (mod 3l+1).

We note that the above lemma is easier to prove if one is willing to settle for either TC0

circuits (as opposed to AC0[⊕]) or size poly(n, 2iǫ) (as opposed to poly(n, i)), which is all
that is needed for our other theorems. Nonetheless, we prefer to state and prove this single
more general result.

We now prove our main theorems about field operations in F̃2n . We repeat the theorem
statements for the reader’s convenience.

Theorem (3, restated). Let n = 2 · 3l. There exist uniform TC0 circuits of size poly(n, t)
that perform the following:

1. [HAB] Given α1, α2, . . . , αt ∈ F̃2n, compute α1 · α2 · · ·αt ∈ F̃2n.

2. Given α ∈ F̃2n and a t-bit integer k, compute αk ∈ F̃2n.

Proof of Theorem 3. (1) Each field element αi is represented by a polynomial αi(x) ∈ F2[x].
For the moment, we will actually consider the polynomials αi(x) as polynomials α′

i(x) over
the integers, i.e. as polynomials with coefficients in {0, 1} ⊂ Z. It is proved in [HAB] that
the product of t polynomials of degree n over Z can be computed by uniform TC0 circuits

of size poly(n, t). Thus, the product A′(x)
def
= α′

1(x) · · ·α′
t(x) can be computed by uniform

TC0 circuits of size poly(n, t). Clearly, A(x)
def
= α1(x) · · ·αt(x) ≡ A′(x) (mod 2), and so it

remains to reduce A(x) modulo x2·3l
+ x3l

+ 1; however, this follows from Lemma 18 (or by
results in [HAB]).

(2) We reduce the computation of αk to the computation of a product α1 · α2 · · ·αt and
apply Part (1). The integer k =

∑t−1
i=0 ki2

i is given in binary, as kt−1 · · · k1k0, ki ∈ {0, 1},
and thus

αk = α
P

i ki2
i

=
(

α20
)k0

·
(

α21
)k1

· · ·
(

α2t−1
)kt−1

.

Hence, to apply part(1), it suffices to show that each term
(

α2i
)ki

can be computed by TC0

circuits of size poly(n, t). Computing α2i
follows from Lemma 19 and, since ki ∈ {0, 1}, the

exponentiation by ki is easy.

Theorem (4, restated). Let n = 2 · 3l. Then, for every constant ǫ > 0, there exist uniform
AC0[⊕] circuits of size poly(n, 2tǫ) that perform the following:

1. Given α1, α2, . . . , αt ∈ F̃2n, compute α1 · α2 · · ·αt ∈ F̃2n.

2. Given α ∈ F̃2n and a t-bit integer k, compute αk ∈ F̃2n.
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Proof of Theorem 4. (1) The idea is to reduce the problem to computing iterated multipli-
cation over an exponentially smaller field F′ via the Discrete Fourier Transform. We can
compute iterated multiplication over F′ in uniform AC0 by scaling down the TC0 result
(Theorem 3, Item 1). Details follow.

Consider an iterated multiplication instance (α1, . . . , αt). Recalling that F̃2n = F2[x]/(f(x))
(where f(x) = x2·3l

+ x3l
+ 1 is the irreducible polynomial) we may view each αi as a poly-

nomial αi(x) of degree at most n − 1 in F2[x]. To compute α1 · α2 · · ·αt ∈ F̃2n it will then

suffice to compute the polynomial product A(x)
def
= α1(x)α2(x) · · ·αt(x) ∈ F2[x], and then

apply Lemma 18 to reduce this polynomial modulo f(x).
Let m ∈ {log n + log t, . . . , 3(log n + log t)} be of the form m = 2 · 3l′ for some l′ (such

an m can be found by uniform AC0 circuits of size poly(2m) = poly(n, t)), and consider the
field F̃2m . To compute the polynomial product A(x) we will first evaluate each polynomial
αi(x) at every element γi, 1 ≤ i < 2m, of F̃×

2m . Next, we will compute A(γ1), . . . , A(γ2m−1) by
using iterated product over the field F̃2m to compute A(γi) = α1(γi) · · ·αt(γi). Then, since
A(x) has degree at most (n− 1) · t < 2log n+log t − 1, the values A(γ1), . . . , A(γ2m−1) uniquely
determine A(x), and we will show how to interpolate in uniform AC0[⊕] to recover A(x).

To accomplish these steps we will use the Discrete Fourier Transform matrix. That is, let
g ∈ F̃2m be a generator of F̃2m and note that such a generator can be found in uniform AC0 by
brute force (by computing exponentiation over F̃2m , which can be done by scaling down the
TC0 result, i.e. Theorem 3, Item 2. Alternatively, one can use Theorem 3.2 in [AAI+]). Now

define the matrix D = (di,j)0≤i,j≤2m−2, where di,j
def
= gi·j and note that D−1 = (d−1

i,j )0≤i,j≤2m−2.

If we view αi as a (2m −1)-dimensional vector ~αi = (α
(0)
i , . . . , α

(2m−2)
i ) ∈ F2m−1

2 , where α
(j)
i is

the coefficient of xj in αi(x) (either 0 or 1), then D~αi = (αi(g
0), αi(g

1), . . . , αi(g
2m−2)). The

matrix-vector product D~αi can be computed by uniform AC0[⊕] circuits of size poly(2m)
because it only involves computing parities (of fan-in 2m −1) and multiplications in the field
F̃2m , which we can do by uniform AC0 circuits of size poly(2m) by scaling down the TC0

result, i.e. Theorem 3, Item (1).
Once the matrix-vector products D ~α1, . . . , D ~αt have been computed, the resulting vectors

can be multiplied component-wise (using the scaled-down version of Theorem 3, item 1) to

obtain the vector Â = (A(g0), . . . , A(g2m−2)). Next, note that ~A = D−1Â can also be
computed in AC0[⊕], just as Dαi was computed above, allowing us to recover the product
polynomial A(x).

Finally, by Lemma 18, A(x) can be reduced modulo the irreducible polynomial f(x) to
obtain the field element A = α1 · · ·αt.

(2) As in the uniform TC0 case we can reduce this problem to the product of t field
elements. Specifically, the reduction in Item 3 in Theorem 3 needs to compute α2i

for i ≤ t.
These can be computed in uniform AC0[⊕] by Lemma 19. For the iterated product we use
the previous item.

Theorem (5, restated). For every constant d there is ǫ > 0 such that, for sufficiently large
t and n = 2 · 3l, the following cannot be computed by (nonuniform) AC0[⊕] circuits of depth
d and size 22ǫn

· 2tǫ:

1. Given α1, α2, . . . , αt ∈ F̃2n, compute α1 · α2 · · ·αt ∈ F̃2n.

2. Given α ∈ F̃2n and a t-bit integer k, compute αk ∈ F̃2n.
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Proof of Theorem 5. (1) We reduce MAJORITY on t bits to computing α1 · α2 · · ·αt for
given α1, α2, . . . , αt ∈ F̃2n , where n ∈ {log(t+1), . . . , 3 log(t+1)} is of the form n = 2 · 3l for
some l. Since by a result of Razborov [Raz] and Smolensky [Smo] we know that for every
constant d there is a constant ǫ > 0 such that MAJORITY on t bits cannot be computed by
AC0[⊕] circuits of depth d and size 2tǫ , the result follows. We now describe the reduction.
Let g ∈ F× be a generator. Given a MAJORITY instance x = w1, w2, . . . , wt, consider the

following instance of iterated multiplication: α1, α2, . . . , αt, where αi
def
= g ∈ F if wi = 1, and

αi
def
= 1 ∈ F if wi = 0. It is easy to see that α1 · α2 · · ·αt = gj ∈ F where j =

∑

i wi. We can
decide majority simply by checking whether j ≥ t/2; this last step can be accomplished by
a simple look-up in a (nonuniform) table of size poly(n, t).

(2) We reduce MAJORITY on t bits to computing αk ∈ F̃2n for |k| = O(t log t) and n =
O(log t). Since by a result of Razborov [Raz] and Smolensky [Smo] we know that for every
constant d there is a constant ǫ > 0 such that MAJORITY on t bits cannot be computed by

AC0[⊕] circuits of depth d and size 2tǫ , the result follows. Let l
def
= ⌈log3 log2(t+1)⌉ and m

def
=3l.

Set n
def
= 2 ·m and consider the field F̃2n . Note that since |F̃×

2n| = 2n − 1 = (2m − 1)(2m + 1),
there is an element α ∈ F̃2n of order (2m − 1).

The reduction works as follows. From the MAJORITY instance z = z0z1 . . . zt−1 con-
struct an integer k with binary representation

k = zt−1 00 · · · 0
︸ ︷︷ ︸

m−1 zeros

zt−2 00 · · · 0
︸ ︷︷ ︸

m−1 zeros

zt−3 . . . z1 00 · · · 0
︸ ︷︷ ︸

m−1 zeros

z0 =
t−1∑

i=0

zi(2
m)i.

Now observe that k =
∑

i zi(2
m)i ≡

∑

i zi (mod 2m − 1). Therefore αk = α
P

i zi ; since
t < 2m − 1, this uniquely determines

∑

i zi, and so MAJORITY can now be decided via
look-up in a (nonuniform) table of size poly(n, t).

5 Arithmetic in Other Realizations of F2n

In this section we prove Theorem 7. An important difference between this setting and the
case of field operations in F̃2n is that we must now be able to reduce a polynomial g(x) ∈ F2[x]
modulo an arbitrary given polynomial f(x) ∈ F2[x], and not only modulo x2·3l

+x3l
+1. The

next lemma states that polynomial division in F2[x] can be computed in uniform AC0[⊕].

Lemma 20. There exist uniform AC0[⊕] circuits of size poly(n, d) that, on input polyno-
mials f(x), g(x) ∈ F2[x] where deg(f) = n and deg(g) ≤ d, computes the unique polynomi-
als q(x), r(x) ∈ F2[x], such that g(x) = q(x)f(x) + r(x), where deg(q) = deg(g) − n and
deg(r) < n.

The approach for proving Lemma 20 is to implement, in constant-depth, the Kung-
Sieveking [Kun, Sie] algorithm, which reduces the problem of polynomial division to the
problem of computing small powers of polynomials. A similar approach has been employed
by Reif [Rei] and Eberly [Ebe] in constructing log-depth circuits for polynomial division. The
essential difference here is the observation that log-depth is only required to compute sums
of poly(n) polynomials and, in our setting, we may instead use parity gates to accomplish
such large summations in constant depth.
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Before proving Lemma 20, we show how to compute small powers of polynomials in
AC0[⊕], as this is an essential component of the proof.

Lemma 21. There exist uniform AC0[⊕] circuits of size poly(n, 2t) that, on input s(x) ∈
F2[x] of degree n and a t-bit integer k, compute the polynomial s(x)k.

Proof. As in the proof of Theorem 4, part 1, we also use the Discrete Fourier Transform to
compute s(x)k.

In particular, let m ∈ {log n+t, . . . , 3(log n+t)} be of the form m = 2·3l′ for some l′ (such
an m can be found by uniform AC0 circuits of size poly(2m) = poly(n, 2t)), and consider the
field F̃2m . To compute the polynomial power s(x)k, we first evaluate the polynomial s(x)
at every element γi, 1 ≤ i < 2m, of F̃×

2m , just as in the proof of Theorem 4, part 1. Next,
we compute s(γ1)

k, . . . , s(γ2m−1)
k by using exponentiation in the field F̃2m (which follows

from part 2 of Corollary 6; alternatively, one can use Theorem 3.2 from [AAI+].) Then, by
the choice of m, the values s(γ1)

k, . . . , s(γ2m−1)
k uniquely determine s(x)k, and thus we can

interpolate in uniform AC0[⊕] to recover A(x), using the inverse Fourier Transform just as
in the proof of Theorem 4, part 1.

Proof of Lemma 20. Denote the degree of g(x) by m ≤ d, and throughout we write f(x) =
xn + an−1x

n−1 + · · ·+ a0 and g(x) = xm + bm−1x
n−1 + · · ·+ b0 for ai, bi ∈ F2. The algorithm

will proceed as follows:

(1) Construct fR(x)
def
= a0x

n + · · · + an−1x + 1 by reversing the coefficients of f(x).

(2) Construct gR(x)
def
= b0x

m + · · · + bm−1x + 1 by reversing the coefficients of g(x).

(3) Let f̃R(x)
def
= 1 + (1− fR(x)) + (1− fR(x))2 + · · ·+ (1− fR(x))m−n. (Note that f̃R(x) is

simply a truncation of the power series fR(x)−1 = 1+(1−fR(x))+(1−fR(x))2 + · · · .)

(4) Compute h(x)
def
= f̃R(x)gR(x) = c0 + c1x + c2x

2 + · · · , and then the coefficients of
q(x) = qm−nx

m−n + · · ·+ q1x + q0 can be read off as qi = cm−n−i, i.e. the reverse of the
lowest m − n + 1 coefficients of h(x).

(5) Once q(x) has been computed, r(x) can be found by computing r(x) = g(x)−q(x)f(x).

Before proving the correctness of the algorithm, let us see why it can be performed by
uniform AC0[⊕] circuits: Steps (1) and (2) are trivial. The computation of (1 − fR(x))k

for 0 ≤ k ≤ m − n follows from Lemma 21, and it is clear that the summation in step (3)
only requires (unbounded fan-in) parity gates. Step (4) is trivial. Step (5) only requires
polynomial multiplication which is easily seen to be in uniform AC0[⊕].

Now we establish the correctness of the algorithm. Note that fR(x) = xnf(1/x), gR(x) =
xmg(1/x) and define qR(x) = xm−nq(1/x) and rR(x) = xn−1r(1/x). Thus we have

g(x) = q(x)f(x) + r(x)

g(1/x) = q(1/x)f(1/x) + r(1/x)

gR(x) = qR(x)fR(x) + xm−n+1rR(x)
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Hence h(x)
def
= f̃R(x)gR(x) = qR(x)(f̃R(x)fR(x)) + xm−n+1f̃R(x)rR(x). Note, however, that

f̃R(x)fR(x) = f̃R(x)(1 − (1 − fR(x))) = 1 + (1 − fR(x))m−n+1,

and since the constant term of fR(x) is 0 (by the assumption that f has degree exactly n),
we have that

f̃R(x)fR(x) = 1 + xm−n+1t(x)

for some t(x) ∈ F2[x]. In particular,

h(x)
def
= f̃R(x)gR(x) = qR(x)(1 + xm−n+1t(x)) + xm−n+1f̃R(x)rR(x),

and it is clear that the lowest m − n coefficients of h(x) are the coefficients of qR(x) as
claimed.

Now we are prepared to prove Theorem 7. We restate the theorem for the reader’s
convenience.

Theorem (7, restated).

1. For every constant ǫ > 0, there exist uniform AC0[⊕] circuits of size poly(n, 2tǫ)
that perform the following: Given f(x) ∈ F2[x] of degree n and α1, α2, . . . , αt ∈
F2[x]/(f(x)), compute α1 · α2 · · ·αt ∈ F2[x]/(f(x)).

2. There exist uniform AC0[⊕] circuits of size poly(n, 2t) that perform the following:
Given f(x) ∈ F2[x] of degree n, α ∈ F2[x]/(f(x)) and a t-bit integer k, compute
αk ∈ F2[x]/(f(x)).

Proof of Theorem 7. (1) It suffices to replace the use of Lemma 18 in the proof of part 1 of
Theorem 4 with Lemma 20.

(2) Consider α ∈ F2[x]/(f(x)) as a polynomial α(x) ∈ F2[x] of degree at most n− 1. We
may apply Lemma 21 to compute α(x)k (which has degree at most k · (n− 1) ≤ poly(n, 2t))
by AC0[⊕] circuits of size poly(n, 2t), and then apply Lemma 20, to reduce it modulo f(x),
again by AC0[⊕] circuits of size poly(n, 2t).

Theorem (8, restated). The problem of determining whether a given polynomial f(x) ∈ F2[x]
of degree n is irreducible, is poly(n)-size AC0[⊕]-reducible to the following problem: Given an
irreducible polynomial f(x) ∈ F2[x] of degree n, compute the conjugates x, x2, x22

, . . . , x2n−1

(mod f(x)).

Proof. The reduction proceeds as follows on input f(x) ∈ F2[x] of degree n:

(i) Use the oracle to try to compute x, x2, x22
, . . . , x2n−1

(mod f(x)). Call the resulting
quantities a0, a1, . . . , an−1.

(ii) Check that a0 = x, that ai+1 ≡ a2
i (mod f(x)) for all 0 ≤ i ≤ n− 1 and that a2

n−1 ≡ x
(mod f(x)). Otherwise, return REDUCIBLE.
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(iii) If
∏

primes p|n

(

x2n/p

− x
)

≡ 0 (mod f(x))

then return REDUCIBLE, otherwise return IRREDUCIBLE.

First we argue the correctness of the reduction. Since the analysis is similar to the
approach from [Rab] and [MS], we will only give a sketch of the proof.

The proof will use the following basic facts from the theory of finite fields: (1) The roots
of x2n

− x are precisely the elements of the field F2n , each occurring with multiplicity 1. (2)
x2n

− x is divisible by an irreducible polynomial g(x) of degree m if and only if m divides n.
If f(x) is irreducible, then the oracle call in step (i) will succeed, returning ai ≡ x2i

(mod f(x)); step (ii) will succeed because of the assignment of the ai’s and because a2
n−1 ≡

(x2n−1
)2 = x2n

≡ x (mod f(x)) for any irreducible f(x) (since x2n
− x is divisible by every

irreducible polynomial of degree n); finally, step (iii) succeeds because an irreducible f(x) of
degree n cannot divide x2m

− x for any m < n.
On the other hand, if f(x) is reducible and steps (i) and (ii) succeed, then we know

that ai ≡ x2i
(mod f(x)), and moreover that x2n

≡ x (mod f(x)). This guarantees that
f(x) divides x2n

− x and therefore that f(x) is square-free and has all its roots in F2n . Let
f(x) = h1(x) · · ·hl(x) be the factorization of f into distinct irreducibles hi(x). To show that
step (iii) succeeds, it suffices, by the Chinese Remainder Theorem, to show that the product
∏

p|n(x2n/p
− x) is divisible by each hi(x). Fix an irreducible factor h(x) of f(x). The degree

of h(x) must divide n (since f(x) divides x2n
− x), and hence must divide some maximal

proper divisor n/p of n. Therefore, h(x) will divide (x2n/p
−x) for some prime p | n, and the

product in part (iii) will be divisible by h(x). This concludes the proof of correctness.
Next we argue that the reduction is computable by AC0[⊕] circuits of size poly(n):

Step (i) is simply an oracle query. Each check in step (ii) can be accomplished in parallel
using modular multiplication (which follows from the iterated product in Theorem 7 part 1,
together with Lemma 20). Each term in the product from step (iii) can be computed using

the oracle responses to compute x2n/p
; since there are at most O(log n) primes dividing n,

step (iii) is an iterated product of O(log n) polynomials which can be computed by AC0[⊕]
circuits of size poly(n) by Theorem 7, provided that the list of primes p dividing n is known.
This list of primes can either be hard-wired into the circuit (for a non-uniform reduction) or
can be shown to be computable in uniform AC0[⊕] by a more complicated proof, which we
omit. Finally, the answer can be reduced modulo f(x) using Lemma 20.

6 Proof of AE = Dlogtime uniform TC0

In this section we prove that AE = Dlogtime uniform TC0. First we exhibit a dual basis for

F̃2n . Recall that the trace function tr : F2n → F2 is defined by tr(α)
def
=

∑n−1
i=0 α2i

. Also recall
that two bases (α0, α1, . . . , αn−1) and (β0, β1, . . . , βn−1) are dual if for every i, j we have that
tr(αi · βj) = 1 when i = j, while tr(αi · βj) = 0 when i 6= j.

Lemma 22. Let n be of the form n = 2 · 3l. Let (α0, α1, . . . , αn−1) = (1, x, . . . , xn−1) be the
standard basis for F̃2n. Then (β0, β1, . . . , βn−1) = (x3l

, x3l−1, . . . , x3l−(n−1)) is the dual basis
of (α0, α1, . . . , αn−1).

18



The proof of this lemma follows immediately from the next lemma.

Lemma 23. Let x ∈ F̃2n be a root of x2·3l
+ x3l

+ 1. Then, for any 0 ≤ i < 3l+1, we have
tr(xi) = 1 if i = 3l or i = 2 · 3l, and tr(xi) = 0 otherwise.

Proof. Recall that tr(xi) =
∑2·3l−1

k=0 xi·2k
. Thus, if i = 0, then tr(xi) = tr(1) =

∑2·3l−1
k=0 12k

=
(2 · 3l) · 1 ≡ 0 mod 2.

Now suppose that 0 < i < 3l+1, and let 3m be the largest power of 3 dividing i. We will
show that tr(xi) = 1 if m = l and tr(xi) = 0 otherwise.

Since 2 is a generator of Z×
3t for any integer t > 0 (e.g., [vL] Lemma 1.1.27), and since x

has order 3l+1 by Fact 17, we know that the exponent, i · 2k, of x will take on every value
in the multiset 3mZ×

3l+1 (with multiplicities) as k ranges from 0 to ϕ(3l+1) − 1 = 2 · 3l − 1.
Therefore, we have

tr(xi) ≡
3l+1−1∑

r=0
(r,3)=1

x3m·r =
3l+1−1∑

r=0

x3m·r −
3l−1∑

r=0

x3m+1·r =
1 − (x3m

)3l+1

1 − x3m −
3l−1∑

r=0

x3m+1·r ≡
3l−1∑

r=0

x3m+1·r,

where we use that the denominator is non-zero because m < l + 1 and x has order 3l+1.
If m = l, then every term of the sum is 1, and so this is 3l ≡ 1 mod 2. On the other

hand, if m < l, then
3l−1∑

r=0

x3m+1·r =
1 − (x3m+1

)3l+1

1 − x3m+1 = 0.

Theorem (10, restated). AE = Dlogtime−uniform TC0 in the following sense:
Let f : {0, 1}n → {0, 1}n be in Dlogtime-uniform TC0. Then there is f ′ : F̃2n → F̃2n in

AE such that for every n of the form 2 · 3l, and for every x of length n, f(x) = f ′(x).
Conversely, let f : F̃2n → F̃2n be in AE. Then there is f ′ : {0, 1}n → {0, 1}n in

Dlogtime-uniform TC0 such that for every n of the form 2 · 3l, and for every x of length n,
f(x) = f ′(x).

Proof of Theorem 10. We use the following result from [FVB]: AE is equivalent to the
class of functions computed by Dlogtime-uniform arithmetic circuits of polynomial size and
constant-depth. Where an arithmetic circuit is a circuit with gates for the constant field
element x, unbounded fan-in sum, unbounded fan-in product, and single input conjugation
(this gate computes α → α2j

for 0 ≤ j ≤ n). We refer the reader to Definition 2.1 in [FVB]
for more on arithmetic circuits. (While their equivalence is proved for a slightly different
notion of AE and arithmetic circuit, it can be verified that it also applies to ours.)

AE ⊆ Dlogtime−uniform TC0: By the equivalence above, it is enough to show that
any function computed by a Dlogtime−uniform arithmetic circuits of polynomial size and
constant-depth is computable in Dlogtime−uniform TC0. This follows by replacing the gates
of the uniform circuits with the corresponding circuits as given by Theorem 3 (the iterated
sum is not stated in the theorem but can be easily computed with XOR gates).

Dlogtime−uniform TC0 ⊆ AE: To understand the proof of this inclusion, we first need
to discuss an issue about interpretations of bit strings as field elements. Throughout the
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paper, and in particular in the statement of the theorem we are proving, we have interpreted
a n-bit string as a field element in a field of size 2n. Let us call this interpretation (1).
Another possible interpretation, which we denote (2), is to interpret a n-bit string as a
tuple of n field elements, the i-th field element being 0 or 1 according to the i-th bit in
the string. Lemma 2.2 in [FVB] proves the inclusion Dlogtime−uniform TC0 ⊆ AE under
interpretation (2) (to make sense of this one extends in the natural way the definition of AE
to include functions mapping tuples of field elements to tuples of field elements). To prove
the inclusion under interpretation (1), and thus concluding the proof of the theorem, we
show how to convert back and forth between interpretations (1) and (2) in AE. Converting
from (2) to (1) is relatively simple, and we omit the details that can be found in [FVB].
To convert from (1) to (2), following [BFS, FVB], we use a dual basis for F̃2n . Specifically,
let (α0, α1, . . . , αn−1) = (1, x, . . . , xn−1) be the standard basis for F̃2n . In other words we
view an input (c0, c1, . . . , cn−1) ∈ {0, 1}n as the field element γ =

∑

i ciαi ∈ F̃2n . Now let

(β0, β1, . . . , βn−1) = (x3l
, x3l−1, . . . , x3l−(n−1)) be the dual basis of (α0, α1, . . . , αn−1) as given

by Lemma 22. It follows from the definition of dual basis that ci = tr(βi · γ). Therefore to
convert from interpretation (1) to (2) is enough to note that tr(βi · γ) can be computed by a
Dlogtime-uniform arithmetic circuit, and thus is in AE by the result from [FVB] mentioned
at the beginning of this proof.

7 Proof of k-wise and ǫ-biased generator constructions

Theorem (14, restated).

1. For every k and m there is a k-wise independent generator G : {0, 1}s → {0, 1}m,
with s = O(k log m) that is explicitly computable by uniform AC0[⊕] circuits of size
poly(s, log m) = poly(s).

2. For every ǫ and m, there is an ǫ-biased generator G : {0, 1}s → {0, 1}m with s =
O(log m+log(1/ǫ)) that is explicitly computable by uniform TC0 circuits of size poly(s, log m) =
poly(s).

Proof of Theorem 14. (1) We use the following construction from [CG, ABI]. Let h =
O(log m) be the smallest integer bigger than log(m) of the form h = 2 · 3l for some l.
The generator G : {0, 1}s → {0, 1}m is defined as

G(α0, α1, . . . , αk−1)i
def
=

∑

j<k

αj · i
j, where α0, α1, . . . , αk−1, i ∈ F̃2h ,

is a k-wise independent generator. This generator is computable by uniform AC0[⊕] circuits
of size poly(s, log m) by Theorem 4.

(2) We use the following construction from [AGHP]. Let h = O(log m + log(2/ǫ)) be
the smallest integer bigger than log(m) + log(2/ǫ) of the form h = 2 · 3l for some l. The
generator G : {0, 1}s → {0, 1}m defined as

G(α, β)i
def
= 〈αi, β〉 where α, β ∈ F̃2h ,

is an ǫ-biased generator. (Where 〈·, ·〉 denotes inner product mod 2.) This generator is
computable by uniform TC0 circuits of size poly(s, log m) by Item 2 in Theorem 3.
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8 Open Problems

Given α ∈ F̃2n , can α−1 be computed by uniform AC0[⊕] circuits of size poly(n)?
Given an irreducible polynomial f(x) of degree n and α ∈ F2[x]/(f(x)), is it possible to

compute α2i
for any i = ω(log n) by uniform TC0 circuits of size poly(n)? (cf. Lemma 19)?

This is what limits our results about exponentiation in F2[x]/(f(x)).
Both of the above problems are also open for nonuniform circuits.
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