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1 Separating information and communication,

Scribe: Biswaroop Maiti

This is a presentation by Willy Quach regarding separating information com-
plexity and communication complexity [GKR16]. This paper shows an expo-
nential gap between the distributional communication complexity and infor-
mation complexity. BR11 showed that information complexity and amortized
communication complexity are equal. Therefore, this also shows an exponen-
tial gap between distributional and amortized communication complexity.
This is an extension of [GKR14], where an exponential gap was shown for a
relation with large outputs, whereas, here, the separation is shown using a
partial boolean function with 1 bit output.

The fundamental question answered here is described as follows. There
are two parties Alice(A) and Bob(B), who have inputs x ∈ {0, 1}n, and
y ∈ {0, 1}n, respectively and they want to compute the function f(x, y). We
know that if either of them can communicate their input to the other, then
the receiving party can compute f and output with one bit. This would
require at most n + 1 bits of communication. However, this communication
need not be one sided, both the parties can interact in the process where one
party is trying to know the input of the other. If either of them decide to
merely transmit their input to the other, this would require exactly n bits.
However, the number of bits to compute f(x, y) need not always require
the same number of bits. In contrast, the information content of an input
X ∈ {0, 1}n distributed according to a given distribution will be given by its
Shannon entropy. One could ask whether, in an interactive setting, when A
is trying to communicate her input X to B, will she need to communicate
H(X) bits?

In this model, we consider the case where there are two parties Alice(A)
and Bob(B), who have inputs x, and y, drawn from a joint distribution µ,
publicly known and they want to compute the function f(x, y). A and B may
have both public and private randomness, though we may assume that they
have only private randomness, without loss of generality in our consideration.
The inputs, x, y may be correlated. We would define a protocol to compute
f(x, y), if it computes f correctly with probability 2/3 over the randomness

1

http://www.ccs.neu.edu/home/viola/classes/spepf17.html
http://www.ccs.neu.edu/home/viola/


of µ, the public random coins and private random coins of A and B. The
communication complexity will be defined as the length of the transcript Π.

CC(π) = |Π|

We will sketch some details of the separation between information com-
plexity and communication complexity in the distributional model. In par-
ticular, we will show the upper bound on information cost for an explicit
partial function called the bursting noise function. For this, we will use the
notion of divergence cost, formally defined in [BR14], that was also implicit
in [BBCR13].

1.1 Definitions

Definition 1. We define Shannon entropy of a discrete variable X that takes
values x ∈ Ω according to a probability distribution µ as

H(X) =
∑
x∈Ω

−µ(x) log(µ(x)).

Similarly, conditional entropy for a random variable X|Y (X conditioned on
Y ), that take values according to a joint distribution (X, Y ) ∼ µ(x, y) is
defined as

H(X|Y ) = εy[H(X)|y ∈ Y ],

where the expectation is defined with respect to the joint distribution of
X, Y .

Definition 2. Let µ1, µ2 : Ω → [0, 1] be two distributions, where Ω is
discrete (but not necessarily finite). The relative entropy between µ1, µ2,
denoted D(µ1||µ2), is defined as

D(µ1||µ2) =
∑
x∈Ω

µ1(x) log
µ1(x)

µ1(x)

We can extend the notion of Shannon entropy into the information cost
of a protocol as defined below.
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Definition 3. The information cost of a protocol π over random inputs
(X, Y ) that are drawn according to a joint distribution µ, is defined as

ICµ(π) = I(Π;X|Y ) + I(Π;Y |X),

where Π is a random variable which is the transcript of the protocol π with
respect to µ. That is, Π is the concatenation of all the messages exchanged
during the execution of π. The information cost of a computational task f
with respect to a distribution µ is defined as

ICµ(f, ε) = inf
π

ICµ(π),

where the infimum ranges over all protocols π that solve f with error at most
ε on inputs that are sampled according to µ.

To separate CC and IC, we need to exhibit a function f , computed with
respect to a joint distribution µ, such that the lower bound of CCµ(f, ε) and
the upper bound on ICµ(f) is large, in this case exponential in k, an input
parameter. In this case, the function is explicit but a partial function.

Claim 4.
CC(f, µ) > IC(f, µ)

In order to separate IC and CC, we should show a separation of lower
bound on CC and upper bound on IC.

Theorem 5. ∀(f, µ) such that IC(f, µ) = O(k), then there is a protocol π′

for computing f such that CC(π′) = 2O(k).

Theorem 6. ∀k, there exists (f, µ) such that

• There exists a protocol π such that IC(π) = O(k)

• For any protocol π, with CC(π) ≤ 2k, π fails with probability (1
2
− ε),

where ε = 2−k.

IC(f, µ) = O(k), then ∃π′ with CC(π′) = 2O(k).
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1.2 Bursting Noise Function

We will define the function f and the distribution µ below. Let x and y be the
inputs of the players A and B respectively. The bursting noise function is a
communication game with an integer parameter k ∈ N, here played between
A and B on a directed binary tree T of c · w layers, c = 24k

, w = 2100k,
which are partitioned into c multi-layers , each of width w. For every vertex
v ∈ V (T ), there are two labels xv, yv, that denote a bit from each of the
inputs i.e. x, y ∈ {0, 1}|V |. Therefore, the length of each input is doubly
exponential in k.

The tree has three kinds of multi-layers. There is one multi-layer i that
is picked uniformly at random. For all the vertices at layers < i, the bits are
equal at every vertex i.e. xv = yv, though the actual value is picked uniformly
at random. At the multi-layer i, the input bits are noisy i.e. xv, yv are bits
picked at random. For the multi-layers > i, vertices that lead to the good
paths, the bits are same, and for vertices on ”bad” paths, the input bits are
uniformly at random. Alice is said to own the odd layers, i.e. from root
onwards, and Bob owns the even layers, i.e. till the leaves.

Now, we precisely define the distribution µ on {0, 1}|V |×{0, 1}|V |, where
V is the set of vertices in T , as an algorithm.

1. Pick a multi-layer uniformly at random: i ∈$ [c] (We will make it
noisy).

2. For all v ∈ T :

(a) If the depth of d(v) < i · w, pick xv = yv
$←− {0, 1}.

(b) If in the i-th multi-layer, then pick xv
$←− {0, 1}, yv

$←− {0, 1}
(c) For the subtree rooted on vxy, do step (a).

(d) Else, do, (b).

(e) Pick a random bit b
$←− {0, 1}

(f) For every leaf: and set xv ← xv
⊕

b.

The goal of the players A,B is to retrieve the random bit b set at the last
step.
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1.3 Protocol π

The game of bursting noise function can proceed in a particular protocol
π, which we define now. The two parties A and B are assumed to have no
public randomness. Their respective inputs x, y are sampled according to a
joint distribution that is known to both the parties. Also, without loss of
generality, we assume that the protocol proceeds by the players alternately
communicating bit by bit i.e. A sends her first bit; B sends his first bit;
then, A sends her second bit, and so on. Therefore, in odd rounds, A sends
a bit; in even rounds, B sends a bit. This induces a tree, we denote by Tπ,
associated with the protocol π, in which every vertex v has two outgoing
directed edges to its children, labeled 0 and 1. If the v is in the odd layer,
the label corresponds to the situation when A sends the corresponding bit,
or we say A owns the layer. We assume a convention, that the left edge is
labeled by 0, and the right edge is labeled 1. The even layers correspond to
B, likewise.

Consider ` = 2100k. At any level, when ` or more bits have been trans-
mitted by A, the second player B looks back at the last ` of the vertices
corresponding to odd layers and checks if those of A’s inputs aka labels in
the path followed match with his own input bits. If and only if less than .8`
of those match, then B aborts the protocol.

For every vertex v, we define two sets of distributions Pv and Qv. We
define Pv at first. Recall, every vertex in T has labels xv, yv. For a non-leaf
vertex in an odd layer, if xv = 0, the A sends 0 with probability 0.9, and
1 with probability 0.1. We write it succinctly as Pv = (0.9, 0.1). Likewise,
if xv = 1, the A sends 1 with probability 0.9, and 0 with probability 0.1,
i.e. Pv = (0.1, 0.9). Similarly, for B. If v is in the even layer, if yv = 0,
then Pv = (0.9, 0.1) for B. So, associated with Tπ, for every vertex v, there is
Pv = (pv, 1− pv) associated, which says that the next bit to be transmitted
is 0, with probability pv.

Qv is the estimation of Pv by the opposite player i.e. if v is in the odd
layer, then the estimation is by B; otherwise, A. Therefore, associated with
the tree T , is the protocol tree Tπ, and they come with the distributions
{Pv}v∈V , {Qv}v∈V .

We will state without proof, the following lemma.

Lemma 7. Let (x, y) ∈ supp(µ) be an input pair for the bursting noise
function. The protocol above π aborts with probability at most 2−10k on the
input (x, y).
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Now, we define the notion of Divergence cost, with which we will define
the divergence cost of Tπ, with respect to Qv, denoted by D(T Qv

π ).

Definition 8. Divergence Cost: Consider a binary tree T , whose root
is r, and distributions Pv = (pv, 1 − pv), Qv = (qv, 1 − qv) for every non-
leaf vertex v in the tree. We think of Pv and Qv as distributions over the
two children of the vertex v. We define the divergence cost of the tree T
recursively, as follows.

D(v ∈ T ) =

{
0 if v is a leaf

D(T ) = D(Pr||Qr) + εv∼Pr [D(Tv)] otherwise,

where for every vertex v, Tv is the subtree of T whose root is v.
An equivalent definition of the divergence cost of T is obtained as

D(T ) =
∑
v∈V

p̃v ·D(Pv||Qv)

where V is the vertex set of T , and for a vertex v ∈ V , p̃v is the probability
to reach v by following the distributions Pv, starting from the root. Formally,
if v is the root of the tree T , then p̃v = 1, otherwise

p̃v =

{
p̃u · pu if v is the left-hand child of u

p̃u · (1− pu) if v is the right-hand child of u

Set Q∗v := εx[Pv|y, πv].
Lemma 9. For every protocol π and distributions Qv known to a player
who doesn’t own v, as above, it holds that:

ε(D(T Q∗
v

π )) ≤ ε(D(T Qvπ))

Now, we are ready to sketch our final claim.

Theorem 10. π has information cost O(k). In other words,

D(Tπ) = O(k).
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Proof. Fix (x, y) ∈ supp(µi) for some i ∈ [c]. From previous lemma, D(Tπ) =∑
v p̃v ·D(Pv||Qv).
We need to bound the sum in the last expression separately, for odd and

even layers. We will leave it as an exercise to show that the cost for the even
layers will be O(w). We will skip the part for the even layers, and sketch
the part about the odd layers. A vertex in Tπ corresponds to a vertex in T .
Therefore, we look at the corresponding structure in T .

Let us consider a vertex v ∈ Tπ. If v corresponds to a non-noisy vertex in
Tπ, then we must have D(Pv||Qv) = 0. On the other hand, if v corresponds
to a vertex in the noisy multilayer i, then, D(Pv||Qv) ≤ 4. Now consider
the sum in the above expression of the divergence cost. The vertices above
the noisy multi-layer i add zero divergence cost. The vertices of the noisy
multi-layer together add O(w) divergence cost. At the end, we are left with
the vertices that are below the noisy multi-layer.

Now, let us assume i < c, which implies that there is at least one multi-
layer of vertices below the noisy multi-layer. Let v be in the layer i∗ + w of
the tree T . Now, if v is a typical vertex, i.e. it is on a good path, it does not
add to the divergence cost sum.

Therefore, the only case left is when v is in a layer below the noisy multi-
layer and is a non-typical vertex. As stated above state above, on the
non-typical vertices the protocol aborts after 4` rounds, in expectation. The
probability that v is a non-typical vertex with respect to multi-layer i, is
at most 2−1000k. Therefore, the divergence cost added by this case is ≤
2−1000k · 4` · 4 ≤ 1.

Finally, considering all these cases, we see that the cost for the even
vertices is O(k) = O(w). �

By the above claim, we can state the upper bound result as:

Theorem 11. There exists a randomized protocol πfor the bursting noise
function with parameter k, that errs with probability ≤ 2−k (over the input
distribution µ) which has

ICµ(π) = O(k)
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1.4 Lower Bound

The lower bound on the Communication Complexity is given by lower bound
on the distributional communication complexity of the bursting noise func-
tion using the relative discrepancy method defined as below.

Definition 12. Let ε ∈ (0, 1/2) and δ ∈ (0, 1). Let µ be a distribution over
{0, 1}n×{0, 1}n and let f : supp(µ)→ {0, 1} be a function. We say that (f, µ)
has the (ε, δ) relative discrepancy property if there exists a distribution ρ over
{0, 1}n×{0, 1}n such that for every rectangle R = A×B ⊆ {0, 1}n×{0, 1}n
with ρ(R) ≥ δ, the following two properties hold:

• µ(R ∪ f−1(0)) ≥ (1
2
− ε) · ρ(R),

• µ(R ∪ f−1(1)) ≥ (1
2
− ε) · ρ(R).
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