
Special Topics in Complexity Theory, Fall 2017. Instructor: Emanuele Viola

1 Lecture 8-9, Scribe: Xuangui Huang

In these lectures, we finish the proof of the approximate degree lower bound
for AND-OR function, then we move to the surjectivity function SURJ. Fi-
nally we discuss quasirandom groups.

1.1 Lower Bound of d1/3(AND-OR)

Recall from the last lecture that AND-OR: {0, 1}R×N → {0, 1} is the com-
position of the AND function on R bits and the OR function on N bits. We
also proved the following lemma.

Lemma 1. Suppose that distributions A0, A1 over {0, 1}nA are kA-wise indis-
tinguishable distributions; and distributions B0, B1 over {0, 1}nB are kB-wise
indistinguishable distributions. Define C0, C1 over {0, 1}nA·nB as follows:

Cb: draw a sample x ∈ {0, 1}nA from Ab, and replace each bit xi by a
sample of Bxi (independently).

Then C0 and C1 are kA · kB-wise indistinguishable.

To finish the proof of the lower bound on the approximate degree of
the AND-OR function, it remains to see that AND-OR can distinguish well
the distributions C0 and C1. For this, we begin with observing that we
can assume without loss of generality that the distributions have disjoint
supports.

Claim 2. For any function f , and for any k-wise indistinguishable distribu-
tions A0 and A1, if f can distinguish A0 and A1 with probability ε then there
are distributions B0 and B1 with the same properties (k-wise indistinguisha-
bility yet distinguishable by f) and also with disjoint supports. (By disjoint
support we mean for any x either Pr[B0 = x] = 0 or Pr[B1 = x] = 0.)

Proof. Let distribution C be the “common part” of A0 and A1. That is
to say, we define C such that Pr[C = x] := min{Pr[A0 = x],Pr[A1 = x]}
multiplied by some constant that normalize C into a distribution.
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Then we can write A0 and A1 as

A0 = pC + (1− p)B0 ,

A1 = pC + (1− p)B1 ,

where p ∈ [0, 1], B0 and B1 are two distributions. Clearly B0 and B1 have
disjoint supports.

Then we have

E[f(A0)]− E[f(A1)] = pE[f(C)] + (1− p)E[f(B0)]

− pE[f(C)]− (1− p)E[f(B1)]

= (1− p)
(
E[f(B0)]− E[f(B1)]

)
≤ E[f(B0)]− E[f(B1)] .

Therefore if f can distinguish A0 and A1 with probability ε then it can also
distinguish B0 and B1 with such probability.

Similarly, for all S 6= ∅ such that |S| ≤ k, we have

0 = E[χS(A0)]− E[χS(A1)] = (1− p)
(
E[χS(B0)]− E[χS(B1)]

)
= 0 .

Hence, B0 and B1 are k-wise indistinguishable. �

Equipped with the above lemma and claim, we can finally prove the
following lower bound on the approximate degree of AND-OR.

Theorem 3. d1/3(AND-OR) = Ω(
√
RN).

Proof. Let A0, A1 be Ω(
√
R)-wise indistinguishable distributions for AND

with advantage 0.99, i.e. Pr[AND(A1) = 1] > Pr[AND(A0) = 1] + 0.99. Let
B0, B1 be Ω(

√
N)-wise indistinguishable distributions for OR with advantage

0.99. By the above claim, we can assume that A0, A1 have disjoint supports,
and the same for B0, B1. Compose them by the lemma, getting Ω(

√
RN)-

wise indistinguishable distributions C0, C1. We now show that AND-OR can
distinguish C0, C1:

• C0: First sample A0. As there exists a unique x = 1R such that
AND(x) = 1, Pr[A1 = 1R] > 0. Thus by disjointness of support
Pr[A0 = 1R] = 0. Therefore when sampling A0 we always get a string
with at least one “0”. But then “0” is replaced with sample from B0.
We have Pr[B0 = 0N ] ≥ 0.99, and when B0 = 0N , AND-OR= 0.
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• C1: First sample A1, and we know that A1 = 1R with probability at
least 0.99. Each bit “1” is replaced by a sample from B1, and we know
that Pr[B1 = 0N ] = 0 by disjointness of support. Then AND-OR= 1.

Therefore we have d1/3(AND-OR) = Ω(
√
RN). �

1.2 Lower Bound of d1/3(SURJ)

In this subsection we discuss the approximate degree of the surjectivity func-
tion. This function is defined as follows.

Definition 4. The surjectivity function SURJ:
(
{0, 1}log R

)N → {0, 1},
which takes input (x1, . . . , xN) where xi ∈ [R] for all i, has value 1 if and
only if ∀j ∈ [R],∃i : xi = j.

First, some history. Aaronson first proved that the approximate degree
of SURJ and other functions on n bits including “the collision problem” is
nΩ(1). This was motivated by an application in quantum computing. Before
this result, even a lower bound of ω(1) had not been known. Later Shi
improved the lower bound to n2/3, see [AS04]. The instructor believes that
the quantum framework may have blocked some people from studying this
problem, though it may have very well attracted others. Recently Bun and
Thaler [BT17] reproved the n2/3 lower bound, but in a quantum-free paper,
and introducing some different intuition. Soon after, together with Kothari,
they proved [BKT17] that the approximate degree of SURJ is Θ(n3/4).

We shall now prove the Ω(n3/4) lower bound, though one piece is only
sketched. Again we present some things in a different way from the papers.

For the proof, we consider the AND-OR function under the promise that
the Hamming weight of the RN input bits is at mostN . Call the approximate
degree of AND-OR under this promise d≤N

1/3 (AND-OR). Then we can prove
the following theorems.

Theorem 5. d1/3(SURJ) ≥ d≤N
1/3 (AND-OR).

Theorem 6. d≤N
1/3 (AND-OR) ≥ Ω(N3/4) for some suitable R = Θ(N).

In our settings, we consider R = Θ(N). Theorem 5 shows surprisingly
that we can somehow “shrink” Θ(N2) bits of input into N logN bits while
maintaining the approximate degree of the function, under some promise.
Without this promise, we just showed in the last subsection that the ap-
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proximate degree of AND-OR is Ω(N) instead of Ω(N3/4) as in Theorem
6.

Proof of Theorem 5. Define an N × R matrix Y s.t. the 0/1 variable yij is
the entry in the i-th row j-th column, and yij = 1 iff xi = j. We can prove
this theorem in following steps:

1. d1/3(SURJ(x)) ≥ d1/3(AND-OR(y)) under the promise that each row
has weight 1;

2. let zj be the sum of the j-th column, then d1/3(AND-OR(y)) under the
promise that each row has weight 1, is at least d1/3(AND-OR(z)) under
the promise that

∑
j zj = N ;

3. d1/3(AND-OR(z)) under the promise that
∑

j zj = N , is at least d=N
1/3 (AND-

OR(y));

4. we can change “= N” into “≤ N”.

Now we prove this theorem step by step.

1. Let P (x1, . . . , xN) be a polynomial for SURJ, where xi = (xi)1, . . . , (xi)log R.
Then we have

(xi)k =
∑

j:k-th bit of j is 1

yij.

Then the polynomial P ′(y) for AND-OR(y) is the polynomial P (x) with
(xi)k replaced as above, thus the degree won’t increase. Correctness
follows by the promise.

2. This is the most extraordinary step, due to Ambainis [Amb05]. In this
notation, AND-OR becomes the indicator function of ∀j, zj 6= 0. Define

Q(z1, . . . , zR) := E
y: his rows have weight 1
and is consistent with z

P (y).

Clearly it is a good approximation of AND-OR(z). It remains to show
that it’s a polynomial of degree k in z’s if P is a polynomial of degree
k in y’s.
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Let’s look at one monomial of degree k in P : yi1j1yi2j2 · · · yikjk
. Observe

that all i`’s are distinct by the promise, and by u2 = u over {0, 1}. By
chain rule we have

E[yi1j1 · · · yikjk
] = E[yi1j1 ]E[yi2j2|yi1j1 = 1] · · ·E[yikjk

|yi1j1 = · · · = yik−1jk−1
= 1].

By symmetry we have E[yi1j1 ] =
zj1

N
, which is linear in z’s. To get

E[yi2j2|yi1j1 = 1], we know that every other entry in row i1 is 0, so we

give away row i1, average over y’s such that

{
yi1j1 = 1
yij = 0 j 6= j1

under

the promise and consistent with z’s. Therefore

E[yi2j2|yi1j1 = 1] =

{
zj2

N−1
j1 6= j2,

zj2
−1

N−1
j1 = j2.

In general we have

E[yikjk
|yi1j1 = · · · = yik−1jk−1

= 1] =
zjk
−#` < k : j` = jk
N − k + 1

,

which has degree 1 in z’s. Therefore the degree of Q is not larger than
that of P .

3. Note that ∀j, zj =
∑

i yij. Hence by replacing z’s by y’s, the degree
won’t increase.

4. We can add a “slack” variable z0, or equivalently y01, . . . , y0N ; then the
condition

∑R
j=0 zj = N actually means

∑R
j=1 zj ≤ N .

�

Proof idea for Theorem 6. First, by the duality argument we can verify that
d≤N

1/3 (f) ≥ d if and only if there exists d-wise indistinguishable distributions
A,B such that:

• f can distinguish A,B;

• A and B are supported on strings of weight ≤ N .
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Claim 7. d≤
√

N
1/3 (ORN) = Ω(N1/4).

The proof needs a little more information about the weight distribution
of the indistinguishable distributions corresponding to this claim. Basically,
their expected weight is very small.

Now we combine these distributions with the usual ones for And using
the lemma mentioned at the beginning.

What remains to show is that the final distribution is supported on Ham-
ming weight ≤ N . Because by construction the R copies of the distributions
for Or are sampled independently, we can use concentration of measure to
prove a tail bound. This gives that all but an exponentially small measure of
the distribution is supported on strings of weight ≤ N . The final step of the
proof consists of slightly tweaking the distributions to make that measure
0. �

1.3 Groups

Groups have many applications in theoretical computer science. Barrington
[Bar89] used the permutation group S5 to prove a very surprising result,
which states that the majority function can be computed efficiently using
only constant bits of memory (something which was conjectured to be false).
More recently, catalytic computation [BCK+14] shows that if we have a lot
of memory, but it’s full with junk that cannot be erased, we can still compute
more than if we had little memory. We will see some interesting properties
of groups in the following.

Some famous groups used in computer science are:

• {0, 1}n with bit-wise addition;

• Zm with addition mod m ;

• Sn, which are permutations of n elements;

• Wreath product G := (Zm × Zm) o Z2 , whose elements are of the form
(a, b)z where z is a “flip bit”, with the following multiplication rules:

– (a, b)1 = 1(b, a) ;

– z · z′ := z + z′ in Z2 ;

– (a, b) · (a′, b′) := (a+ a′, b+ b′) is the Zm × Zm operation;
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An example is (5, 7)1 · (2, 1)1 = (5, 7)1 · 1(1, 2) = (6, 9)0 . Generally we
have

(a, b)z · (a′, b′)z′ =
{

(a+ a′, b+ b′)z + z′ z = 1 ,
(a+ b′, b+ a′)z + z′ z = 0 ;

• SL2(q) := {2×2 matrices over Fq with determinant 1}, in other words,

group of matrices

(
a b
c d

)
such that ad− bc = 1.

The group SL2(q) was invented by Galois. (If you haven’t, read his
biography on wikipedia.)

Quiz. Among these groups, which is the “least abelian”? The latter can
be defined in several ways. We focus on this: If we have two high-entropy
distributions X, Y over G, does X · Y has more entropy? For example, if
X and Y are uniform over some Ω(|G|) elements, is X · Y close to uniform
over G? By “close to” we mean that the statistical distance is less that a
small constant from the uniform distribution. For G = ({0, 1}n,+), if Y = X
uniform over {0}× {0, 1}n−1, then X · Y is the same, so there is not entropy
increase even though X and Y are uniform on half the elements.

Definition 8.[Measure of Entropy] For ‖A‖2 = (
∑

xA(x)2)
1
2 , we think of

‖A‖2
2 = 100 1

|G| for “high entropy”.

Note that ‖A‖2
2 is exactly the “collision probability”, i.e. Pr[A = A′].

We will consider the entropy of the uniform distribution U as very small, i.e.
‖U‖2

2 = 1
|G| ≈ ‖0‖

2
2. Then we have

‖A− U‖2
2 =

∑
x

(
A(x)− 1

|G|

)2

=
∑

x

A(x)2 − 2A(x)
1

|G|
+

1

|G|2

= ‖A‖2
2 −

1

|G|
= ‖A‖2

2 − ‖U‖2
2

≈ ‖A‖2
2 .

Theorem 9.[[Gow08], [BNP08]] If X, Y are independent over G, then

‖X · Y − U‖2 ≤ ‖X‖2‖Y ‖2

√
|G|
d
,
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where d is the minimum dimension of irreducible representation of G.

By this theorem, for high entropy distributions X and Y , we get ‖X ·Y −
U‖2 ≤ O(1)√

|G|d
, thus we have

‖X · Y − U‖1 ≤
√
|G|‖X · Y − U‖2 ≤

O(1)√
d
. (1)

If d is large, then X · Y is very close to uniform. The following table shows
the d’s for the groups we’ve introduced.

G {0, 1}n Zm (Zm × Zm) o Z2 An SL2(q)

d 1 1 should be very small log |G|
log log |G| |G|1/3

Here An is the alternating group of even permutations. We can see that
for the first groups, Equation (1) doesn’t give non-trivial bounds.

But for An we get a non-trivial bound, and for SL2(q) we get a strong
bound: we have ‖X · Y − U‖2 ≤ 1

|G|Ω(1) .
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[BNP08] László Babai, Nikolay Nikolov, and László Pyber. Product growth
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