
Special Topics in Complexity Theory, Fall 2017. Instructor: Emanuele Viola

1 Lectures 4-5, Scribe: Matthew Dippel

These lectures cover some basics of small-bias distributions, and then a more
recent pseudorandom generator for read-once CNF [GMR+12].

2 Small bias distributions

Definition 1.[Small bias distributions] A distribution D over {0, 1}n has
bias ε if no parity function can distinguish it from uniformly random strings
with probability greater than ε. More formally, we have:

∀S ⊆ [n], S 6= ∅,

∣∣∣∣∣Px∈D
[⊕
i∈S

xi = 1

]
− 1/2

∣∣∣∣∣ ≤ ε.

In this definition, the 1/2 is simply the probability of a parity test being
1 or 0 over the uniform distribution. We also note that whether we change
the definition to have the probability of the parity test being 0 or 1 doesn’t
matter. If a test has probability 1/2 + ε of being equal to 1, then it has
probability 1− (1/2 + ε) = 1/2− ε of being 0, so the bias is independent of
this choice.

This can be viewed as a distribution which fools tests T that are restricted
to computing parity functions on a subset of bits.

Before we answer the important question of how to construct and ef-
ficiently sample from such a distribution, we will provide one interesting
application of small bias sets to expander graphs.

Theorem 2.[Expander construction from a small bias set] Let D be a dis-
tribution over {0, 1}n with bias ε. Define G = (V,E) as the following graph:

V = {0, 1}n, E = {(x, y)|x⊕ y ∈ support(D)}.

Then, when we take the eigenvalues of the random walk matrix of G in
descending order λ1, λ2, ...λ2n , we have that:

max{|λ2|, |λ2n|} ≤ ε.
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Thus, small-bias sets yields expander graphs. Small-bias sets also turn out
to be equivalent to constructing good linear codes. Although all these ques-
tions have been studied much before the definition of small-bias sets [NN90],
the computational perspective has been quite useful, even in answering old
questions. For example Ta-Shma used this perspective to construct better
codes [Ta-17].

3 Constructions of small bias distributions

Just like our construction of bounded-wise independent distributions from the
previous lecture, we will construct small-bias distributions using polynomials
over finite fields.

Theorem 1.[Small bias construction] Let F be a finite field of size 2`, with
elements represented as bit strings of length `. We define the generator
G : F2 → {0, 1}n as the following:

G(a, b)i =
〈
ai, b

〉
=
∑
j≤`

(ai)jbj mod 2.

In this notation, a subscript of j indicates taking the jth bit of the rep-
resentation. Then the output of G(a, b) over uniform a and b has bias n/2`.

Proof. Consider some parity test induced by a subset S ⊂ [n]. Then when
applied to the output of G, it simplifies as:

∑
i∈S

G(a, b)i =
∑
i∈S

〈
ai, b

〉
=

〈∑
i∈S

ai, b

〉
.

Note that
∑

i∈S a
i is the evaluation of the polynomial PS(x) :=

∑
i∈S x

i

at the point a. We note that if PS(a) 6= 0, then the value of 〈PS(a), b〉 is
equally likely to be 0 or 1 over the probability of a uniformly random b. This
follows from the fact that the inner product of any non-zero bit string with
a uniformly random bit string is equally likely to be 0 or 1. Hence in this
case, our generator has no bias.
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In the case where PS(a) = 0, then the inner product will always be 0,
independent of the value of b. In these situations, the bias is 1/2, but this is
conditioned on the event that PS(a) = 0.

We claim that this event has probability ≤ n/2`. Indeed, for non empty
S, PS(a) is a polynomial of degree ≤ n. Hence it has at most n roots. But
we are selecting a from a field of size 2`. Hence the probability of picking
one root is ≤ n/2`.

Hence overall the bias is at most n/2`. �

To make use of the generator, we need to pick a specific `. Note that the
seed length will be |a|+ |b| = 2`. If we want to achieve bias ε, then we must
have ` = log

(
n
ε

)
. Al the logarithms in this lecture are in base 2. This gives

us a seed length of 2 log
(
n
ε

)
.

Small-bias are so important that a lot of attention has been devote to opti-
mizing the constant “2” above. A lower bound of log n+(2−o(1)) log(1/ε) on
the seed length was known. Ta-Shma recently [Ta-17] gave a nearly matching
construction with seed length log n+ (2 + o(1)) log(1/ε).

We next give a sense of how to obtain different tradeoffs between n and ε in
the seed length. We specifically focus on getting a nearly optimal dependence
on n, because the construction is a simple, interesting “derandomization” of
the above one.

3.1 An improved small bias distribution via bootstrap-
ping

We will show another construction of small bias distributions that achieves
seed length (1 + o(1)) log n + O(log(1/ε)). It will make use of the previous
construction and proof.

The intuition is the following: the only time we used that b was uniform
was in asserting that if PS(a) 6= 0, then 〈PS(a), b〉 is uniform. But we don’t
need b to be uniform for that. What do we need from b? We need that it
has small-bias!

Our new generator isG(a,G′(a′, b′)) whereG andG′ are as before but with
different parameters. For G, we pick a of length ` = log n/ε, whereas G′ just
needs to be an ε-biased generator on ` bits, which can be done as we just saw
with O(log `/ε) bits. This gives a seed length of log n+log log n+O(log 1/ε),
as promised.

We can of course repeat the argument but the returns diminish.
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4 Connecting small bias to k-wise indepen-

dence

We will show that using our small bias generators, we can create distribu-
tions which are almost k-wise independent. That is, they are very close to
a k-wise independent distribution in statistical distance, while having a sub-
stantially shorter seed length than what is required for k-wise independence.
In particular, we will show two results:

• Small bias distributions are themselves close to k-wise independent.

• We can improve the parameters of the above by feeding a small bias
distribution to the generator for k-wise independence from the previous
lectures. This will improve the seed length of simply using a small bias
distribution.

Before we can show these, we’ll have to take a quick aside into some
fundamental theorems of Fourier analysis of boolean functions.

4.1 Fourier analysis of boolean functions 101

Let f : {−1, 1}n → {−1, 1}. Here the switch between {0, 1} and {−1, 1} is
common, but you can think of them as being isomorphic. One way to think
of f is as being a vector in {−1, 1}2n

. The xth entry of f indicates the value
of f(x). If we let 1S be the indicator function returning 1 iff x = S, but once
again written as a vector like f is, then any function f can be written over
the basis of the 1S vectors, as:

f =
∑
S

f(s)1S.

This is the “standard” basis.
Fourier analysis simply is a different basis in which to write functions,

which is sometimes more useful. The basis functions are χS(x) : {−1, 1}n →
{−1, 1} =

∏
i∈S xi. Then any boolean function f can be expressed as:

f(x) =
∑
S⊆[n]

f̂(S)χS(x),
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where the f̂(S), called the “Fourier coefficients,” can be derived as:

f̂(S) = Ex Un [f(x)χS(x)] ,

where the expectation is over uniformly random x.

Claim 1. For any function f with range {−1, 1}, its Fourier coefficients
satisfy: ∑

S⊆[n]

f̂(S)2 = 1.

Proof. We know that E[f(x)2] = 1, as squaring the function makes it 1. We
can re-express this expectation as:

E[f(x)f(x)] = E

[∑
S

f̂(s)χS(x) ·
∑
T

f̂(T )χT (x)

]
= E

[∑
S,T

f̂(s)χS(x)f̂(T )χT (x)

]
.

We make use of the following fact: if S 6= T , then E[χS(x)χT (x)] =
E[χS⊕T (x)] = 0. If they equal each other, then their difference is the empty
set and this function is 1.

Overall, this implies that the above expectation can be simply rewritten
as: ∑

S=T

f̂(S)f̂(T ) =
∑
S

f̂(S)2.

Since we already decided that the expectation is 1, the claim follows. �

5 Small bias distributions are close to k-wise

independent

Before we can prove our claim, we formally introduce what we mean for two
distributions to be close. We use the most common definition of statistical
difference, which we repeat here:

Definition 1. Let D1, D2 be two distributions over the same domain H.
Then we denote their statistical distance SD(D1, D2), and sometimes written
as ∆(D1, D2), as

∆(D1, D2) = max
T⊆H
|P [D1 ∈ T ]− P [D2 ∈ T ]| .
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Note that the probabilities are with respect to the individual distributions
D1 and D2. We may also say that D1 is ε-close to D2 if ∆(D1, D2) ≤ ε.

We can now show our result, which is known as Vazirani’s XOR Lemma:

Theorem 2. If a distribution D over {0, 1}n has bias ε, then D is ε2n/2 close
to the uniform distribution.

Proof. Let T be a test. To fit the above notation, we can think of T as being
defined as the set of inputs for which T (x) = 1. Then we want to bound:

|E[T (D)]− E[T (U)]|.
Expanding T in Fourier basis we rewrite this as

|E[
∑
S

T̂SχS(D)]− E[
∑
S

T̂SχS(U)]| = |
∑
S

T̂S (E[χS(D)]− E[χS(U)]) |.

We know that EU [χS(x)] = 0 for all non empty S, and 1 when S is the empty
set. We also know that ED[χS(x)] ≤ ε for all non empty S, and is 1 when S
is the empty set. So the above can be bounded as:

≤
∑
S 6=∅

|T̂S||ED[χS(x)]− EU [χS(x)]| ≤
∑
S

|T̂S|ε = ε
∑
S

|T̂S|.

Lemma 3.
∑

S |T̂S| ≤ 2n/2

Proof. By Cauchy Schwartz:

∑
|T̂S| ≤ 2n/2

√∑
T̂S

2
≤ 2n/2

Where the last simplification follows from Claim 1. �

Using the above lemma completes the upper bound and the proof of the
theorem. �

Corollary 4. Any k bits of an ε biased distribution are ε2k/2 close to uniform.

Using the corollary above, we see that we can get ε close to a k-wise
independent distribution (in the sense of the corollary) by taking a small bias
distribution with ε′ = ε/2k/2. This requires seed length ` = O(log(n/ε′) =
O(log(2k/2n/ε) = O(log(n) + k + log(1/ε)). Recall that for exact k-wise we
required seed length k log n.
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5.1 An improved construction

Theorem 5. Let G : {0, 1}k logn → {0, 1}n be the generator previously
described that samples a k-wise independent distribution (or any linear G).
If we replace the input to G with a small bias distribution of ε′ = ε/2k, then
the output of G is ε-close to being k-wise independent.

Proof. Consider any parity test S on k bits on the output of G. It can be
shown that G is a linear map, that is, G simply takes its seed and it multiplies
it by a matrix over the field GF(2) with two elements. Hence, S corresponds
to a test S ′ on the input of G, on possibly many bits. The test S ′ is not empty
because G is k-wise independent. Since we fool S ′ with error ε′, we also fool
S with error ε, and the theorem follows by Vazirani’s XOR lemma. �

Using the seed lengths we saw we get the following.

Corollary 6. There is a generator for almost k-wise independent distribu-
tions with seed length O(log log n+ log(1/ε) + k).

6 Tribes Functions and the GMRTV Gener-

ator

We now move to a more recent result. Consider the Tribes function, which
is a read-once CNF on k · w bits, given by the And of k terms, each on w
bits. You should think of n = k · w where w ≈ log n and k ≈ n/ log n.

We’d like a generator for this class with seed length O(log n/ε). This is
still open! (This is just a single function, for which a generator is trivial, but
one can make this challenge precise for example by asking to fool the Tribes
function for any possible negation of the input variables. These are 2n tests
and a generator with seed length O(log n/ε) is unknown.)

The result we saw earlier about fooling And gives a generator with seed
length O(log n), however the dependence on ε is poor. Achieving a good
dependence on ε has proved to be a challenge. We now describe a recent
generator [GMR+12] which gives seed length O(log n/ε)(log log n)O(1). This
is incomparable with the previous O(log n), and in particular the dependence
on n is always suboptimal. However, when ε = 1/n the generator [GMR+12]
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gives seed length O(log n) log log n which is better than previously available
constructions.

The high-level technique for doing this is based on iteratively restricting
variables, and goes back about 30 years [AW89]. This technique seems to
have been abandoned for a while, possibly due to the spectacular successes
of Nisan [Nis91, Nis92]. It was revived in [GMR+12] (see also [GLS12]) with
an emphasis on a good dependence on ε.

A main tool is this claim, showing that small-bias distributions fool prod-
ucts of functions with small variance. Critically, we work with non-boolean
functions (which later will be certain averages of boolean functions).

Claim 1. Let f1, f2, ..., fk : {0, 1}w → [0, 1] be a series of boolean functions.
Further, let D = (v1, v2, ..., vk) be an ε-biased distribution over wk bits, where
each vi is w bits long. Then

ED[
∏
i

fi(vi)]−
∏
i

EU [fi(U)] ≤

(∑
i

var(fi)

)d

+ (k2w)dε,

where var(f) := E[f 2] − E2[f ] is variance of f with respect to the uniform
distribution.

This claim has emerged from a series of works, and this statement is
from a work in progress with Chin Ho Lee. For intuition, note that constant
functions have variance 0, in which case the claim gives good bounds (and
indeed any distribution fools constant functions). By contrast, for balanced
functions the variance is constant, and the sum of the variances is about
k, and the claim gives nothing. Indeed, you can write Inner Product as a
product of nearly balanced functions, and it is known that small-bias does
not fool it. For this claim to kick in, we need each variance to be at most
1/k.

In the tribes function, the And fucntions have variance 2−w, and the sum
of the variances is about 1 and the claim gives nothing. However, if you
perturb the Ands with a little noise, the variance drops polynomially, and
the claim is useful.

Claim 2. Let f be the AND function on w bits. Rewrite it as f(x, y), where
|x| = |y| = w/2. That is, we partition the input into two sets. Define g(x)
as:

g(x) = Ey[f(x, y)],
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where y is uniform. Then var(g) = Θ(2−3w/2).

Proof.

var(g) = E[g(x)2]− (E[g(x)])2 = Ex[Ey[f(x, y)]2]− (Ex[Ey[f(x, y)]])2 .

We know that (Ex[Ey[f(x, y)]]) is simply the expected value of f , and
since f is the AND function, this is 2−w, so the right term is 2−2w.

We reexpress the left term as Ex,y,y′ [f(x, y)f(x, y′)]. But we note that
this product is 1 iff x = y = y′ = 1. The probability of this happening is
(2−w/2)3 = 2−3w/2.

Thus the final difference is 2−3w/2(1− 2−w/2) = Θ(2−3w/2). �

We’ll actually apply this claim to the Or function, which has the same
variance as And by De Morgan’s laws.

We now present the main inductive step to fool tribes.

Claim 3. Let f be the tribes function, where the first t ≤ w bits of each of
the terms are fixed. Let w′ = w− t be the free bits per term, and k′ ≤ k the
number of terms that are non-constant (some term may have become 0 after
fixing the bits).

Reexpress f as f(x, y) =
∧
k′ (
∨

(xi, yi)), where each term’s input bits are
split in half, so |xi| = |yi| = w′/2.

Let D be a small bias distribution with bias εc (for a big enough c to be
set later). Then∣∣E(x,y)∈U2 [f(x, y)]− E(x,y)∈(D,U)[f(x, y)]

∣∣ ≤ ε.

That is, if we replace half of the free bits with a small bias distribu-
tion, then the resulting expectation of the function only changes by a small
amount.

To get the generator from this claim, we repeatedly apply Claim 3, re-
placing half of the bits of the input with another small bias distribution. We
repeat this until we have a small enough remaining amount of free bits that
replacing all of them with a small bias distribution causes an insignificant
change in the expectation of the output.

At each step, w is cut in half, so the required number of repetitions to
reduce w′ to constant is R = log(w) = log log(n). Actually, as explained
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below, we’ll stop when w = c′ log log 1/ε for a suitable constant c′ (this arises
from the error bound in the claim above, and we).

After each replacement, we incur an error of ε, and then we incur the final
error from replacing all bits with a small bias distribution. This final error
is negligible by a result which we haven’t seen, but which is close in spirit to
the proof we saw that bounded independence fools AND.

The total accumulated error is then ε′ = ε log log(n). If we wish to achieve
a specific error ε, we can run each small bias generator with ε/ log log(n).

At each iteration, our small bias distribution requires O(log(n/ε)) bits,
so our final seed length is O(log(n/ε))poly log log(n).

Proof of Claim 3. Define gi(x) = Ey[
∨
i(xi, yi)], and rewrite our target ex-

pression as:

Ex∈U

[∏
gi(xi)

]
− Ex∈D

[∏
gi(xi)

]
.

This is in the form of Claim 1. We also note that from Claim 2 that
var(gi) = 2−3w′/2.

We further assume that k′ ≤ 2w
′
log(1/ε). For if this is not true, then the

expectation over the first 2w
′
log(1/ε) terms is ≤ ε, because of the calculation

(1− 2−w
′
)2w′

log(1/ε) ≤ ε.

Then we can reason as in the proof that bounded independence fools AND
(i.e., we can run the argument just on the first 2w

′
log(1/ε) terms to show

that the products are close, and then use the fact that it is small under
uniform, and the fact that adding terms only decreases the probability under
any distribution).

Under the assumption, we can bound the sum of the variances of g as:∑
var(gi) ≤ k′2−3w′/2 ≤ 2−Ω(w′) log(1/ε).

If we assume that w′ ≥ c log log(1/ε) then this sum is ≤ 2−Ω(w′).
We can then plug this into the bound from Claim 1 to get

(2−Ω(w′))d + (k2w
′
)dεc = 2−Ω(dw′) + 2O(dw′)εc.

Now we set d so that Ω(dw′) = log(1/ε) + 1, and the bound becomes:

ε/2 + (1/ε)O(1)εc ≤ ε.

By making c large enough the claim is proved. �

10



In the original paper, they apply these ideas to read-once CNF formulas.
Interestingly, this extension is more complicated and uses additional ideas.
Roughly, the progress measure is going to be number of terms in the CNF (as
opposed to the width). A CNF is broken up into a small number of Tribes
functions, the above argument is applied to each Tribe, and then they are
put together using a general fact that they prove, that if f and g are fooled
by small-bias then also f ∧ g on disjoint inputs is fooled by small-bias.
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