
Special Topics in Complexity Theory, Fall 2017. Instructor: Emanuele Viola

1 Lectures 2-3, Scribe: Tanay Mehta

In these lectures we conclude the proof that bounded independence fools the
AND function, and look at the more recent result that bounded independence
fools the circuit class AC0.

1.1 Bounded Independence Fools AND

We state again the theorem from last time.

Theorem 1. Let (X1, . . . , Xn) be a distribution over {0, 1}n such that any
k Xi are independent (but not necessarily uniform). Then, we have that∣∣∣∣∣Pr

[
n∧
i=1

Xi = 1

]
−

n∏
i=1

Pr[Xi = 1]

∣∣∣∣∣ ≤ 2−Ω(k)

Proof. Let D be the distribution of (X1, . . . , Xn). Let B be the n-wise in-
dependent distribution (Y1, . . . , Yn) such that Pr[Yi = 1] = Pr[Xi = 1] for
all i ∈ [n] and the Yi are independent. The theorem is equivalent to the
following statement.

| Pr
X←D

[
n∧
i=1

Xi = 1

]
− Pr

X←B

[
n∧
i=1

Xi = 1

]
| ≤ 2−Ω(k)

We will prove the above statement by the following version of the Inclusion-
Exclusion principle.

1.1.1 Inclusion-Exclusion Principle

Let V be any distribution over {0, 1}n. Note that by De Morgan’s laws, we
have

Pr
[∧

Vi = 1
]

= 1− Pr
[∨

Vi = 0
]
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Let Ei be the event that Vi = 0. We want to bound the quantity Pr [
⋃
Ei].

By looking at the Venn diagram of the events Ei, we can see that

Pr
[⋃

Ei

]
≤ Pr[E1] + · · ·+ Pr[En] =

∑
i

Pr[Ei]

Pr
[⋃

Ei

]
≥
∑
i

Pr[Ei]−
∑
i,j

Pr[Ei ∩ Ej]

Pr
[⋃

Ei

]
≤
∑
i

Pr[Ei] −
∑

S⊆[n],|S|=2

Pr

[⋂
i∈S

Ei

]
+

∑
S⊆[n],|S|=3

Pr

[⋂
i∈S

Ei

]
,

and so on. In general, we have the following. Define

Tj :=
∑

S⊆[n],|S|=j

Pr

[⋂
i∈S

Ei

]

Sh :=
h∑
i=1

(−1)i+1Ti

Then, we have the bounds Pr [
⋃
Ei] ≤ Sj for odd j, and Pr [

⋃
Ei] ≥ Sj for

even j. This fact holds for any distribution.
Let us return to the proof. Note that the Sh are the same for D and B

up to h = k because they only involve sums of ANDs of at most k events.
Hence, we have that∣∣∣Pr

D

[∧
Xi = 1

]
− Pr

B

[∧
Xi = 1

]∣∣∣ ≤ |Sk − Sk−1| = |Tk|

where the last equality comes from the definition of Sk. Therefore, we are
done if |Tk| ≤ 2−Ω(k). We have that

Tk =
∑

S⊆[n],|S|=k

Pr

[⋂
i∈S

Ei

]
=

(
n

k

)
ES⊆[n],|S|=k

[∏
i∈S

Pi

]

where Pi := Pr[Ei] = 1 − Pr[Xi = 1]. To bound the expectation we recall a
useful inequality.
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1.1.2 A Useful Inequality

Let Q1, . . . , Qn be non-negative real numbers. Then, by the AM-GM inequal-
ity, we have that ∑

iQi

n
≥

(∏
i

Qi

)1/n

.

Consider the following more general statement,

ES⊆[n],|S|=1

[∏
i∈S

Qi

]
≥ ES⊆[n],|S|=2

[∏
i∈S

Qi

]1/2

≥ . . .

· · · ≥ ES⊆[n],|S|=k

[∏
i∈S

Qi

]1/k

≥ · · · ≥ ES⊆[n],|S|=n

[∏
i∈S

Qi

]1/n

and note that the left most term is equal to
∑

i Qi

n
, while the right most term

is equal to (
∏

iQi)
1/n

Applying the above inequality to Tk and a common approximation for the
binomial coefficient, we have that

Tk =

(
n

k

)
ES⊆[n],|S|=k

[∏
i∈S

Pi

]
≤
(
n

k

) n∑
i=1

(
Pi
n

)k
≤
(en
k

)k (∑Pi
n

)k
=

(
e
∑
Pi

k

)k
.

Therefore, we are done if
∑
Pi ≤ k

2e
. Recall that Pi = Pr[Ei] = 1 −

Pr[Xi = 1]. So if Pi is small then Pr[Xi = 1] is close to 1.
It remains to handle the case that

∑
Pi ≥ k

2e
. Pick n′ such that

n′∑
i=1

Pi =
k

2e
± 1.

By the previous argument, the AND of the first n′ is the same up to 2−Ω(k)

for D and B. Also, for every distribution the probability of that the And of
n bits is 1 is at most the probability that the And of n′ bits is 1. And also,

3



for the n-wise independent distribution B we have

Pr
B

[
n′∧
i=1

Xi = 1

]
=

n′∏
i=1

Pr[Xi = 1]

=
n′∏
i=1

(1− Pi)

≤

(∑n′

i=1(1− Pi)
n′

)n′

by the AM-GM inequality

≤
(
n′ − k/2e

n′

)n′

≤ (1− k/2en′)n′ ≤ e−Ω(k).

The combination of these facts concludes this case. To summarize, in this
case we showed that

Pr
D

[
n∧
i=1

Xi = 1] ≤ Pr
D

[
n′∧
i=1

Xi = 1].

as well as

Pr
B

[
n∧
i=1

Xi = 1] ≤ Pr
B

[
n′∧
i=1

Xi = 1] ≤ 2−Ω(k).

By the choice of n′ and the previous argument, we also know that |PrD[
∧n′

i=1Xi =

1] − PrB[
∧n′

i=1 Xi = 1]| ≤ 2−Ω(k) and so we are done, as all quantities above
are at most 2−Ω(k) (and at least 0). �

Remark 2. The bound is tight up to Ω(.)

Proof. Let D be the distribution over {0, 1}k+1 as follows: D1,...,k = Uk and
Dk+1 = D1 + · · · + Dk mod 2. Then, D is k-wise independent. However, if
k is even, then

Pr[
k+1∧
i=1

Di = 1] = 0.

Yet, we have that

Pr[
k+1∧
i=1

Ui = 1] = 2−(k+1).

�
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1.2 Bounded Independence Fools AC0

Acknowledgement. This section is based on Amnon Ta-Shma’s notes for
the class 0368.4159 Expanders, Pseudorandomness and Derandomization CS
dept, Tel-Aviv University, Fall 2016.

Note that a DNF on n bits can be modeled as a depth two circuit where
the top layer is an OR-gate whose inputs are AND-gates, which take inputs
X1, . . . , Xn and their negations. The circuit class AC0 can be viewed as
a generalization of this to higher (but constant) depth circuits. That is,
AC0 consists of circuits using AND-gates, OR-gates, NOT-gates, and input
registers. Each of the gates have unbounded fan-in (i.e. the number of input
wires). The size of the circuit is defined to be the number of gates.

AC0 is one of the most studied classes in complexity theory. AC0 circuits
of polynomial size can do many things, including adding and subtracting
n-bit integers.

Conjecture 3.[Linial-Nisan[LN90]] logO(d) s-wise independence fools AC0

circuits of depth d and size s.

The conjecture was open for a long time, even for in the special case d = 2.
In 2007 a breakthrough work by Bazzi [Baz09] proved it for d = 2. Shortly
afterwards, Razborov presented a simpler proof of Bazzi’s result [Raz09], and

Braverman proved the conjecture for any d with logd
2

s-wise independence
[Bra10]. Tal improved the result to logO(d) s [Tal17].

Interestingly, the progress on the conjecture does not use ideas that were
not around since the time of its formulation. Bottom line: if a problem is
open for a long time, you should immediately attack it with existing tools.

The high-level intuition why such a result should be true is the following:

1. AC0 is approximated by polylog degree polynomials.

2. k-wise independence fools degree-k polynomials.

Proof of (2). Let x = (x1, . . . , xn) ∈ {0, 1}n. Let p(x1, . . . , xn) be a degree k
polynomial over R. Write p as

p(x1, . . . , xn) =
∑

M⊆[n],|M |≤k

cM · xM .
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If D is a k-wise independent distribution on {0, 1}n, then by linearity of
expectation

ED[P ] =
∑

M⊆[n],|M |≤k

cMED[xM ] =
∑

M⊆[n],|M |≤k

cMEU [xM ] = EU [P ].

�

There are several notions of approximating AC0 by low-degree polynomi-
als. We now review two of them, explaining why neither of them is sufficient.
Braverman showed how to cleverly combine the two methods to prove a ver-
sion of (1) that’s strong enough.

1.2.1 Approximation 1

Theorem 4. For all AC0 circuits C(x1, . . . , xn) of size s and depth d, for all
distributions D over {0, 1}n, for all ε, there exists a polynomial p(x1, . . . , xn)
of degree logO(d) s/ε such that

Pr
x←D

[p(x) = C(x)] ≥ 1− ε.

The important features of this approximation are that it works under any
distribution, and when the polynomial is correct it outputs a boolean value.

Similar approximations appear in many papers, going back to Razborov’s
paper [Raz87] (who considers polynomials modulo 2) which uses ideas from
earlier still work.

Note that the polynomial p depends on the circuit C chosen, and on the
distribution. This theorem is not a good enough approximation because on
the ε fraction of inputs where the polynomial and circuit are unequal, the
value of the polynomial can (and does) explode to be much greater than 1/ε.
This prevents us from bounding the average of the polynomial.

Nevertheless, let us prove the above theorem.

Proof. Consider one OR-gate of fan-in s. We construct a distribution of
polynomials that compute any input with high probability. This implies
that there is a fixed polynomial that computes the circuit on a large fraction
of the inputs by an averaging argument.
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For i = 1, 2, . . . , log s. let Si be a random subset of [s] where every element
is included with probability 1/2i, independently.

Suppose x has Hamming weight 2j. Then, E[
∑

n∈Sj
xn] = 1. And the

sum can be shown to equal 1 with constant probability.
Define the approximation polynomial p to be

p(x) := 1−
log s∏
i=1

(1−
∑
h∈Si

xh)

Note that if x has weight w > 0, then p(x) = 0 with constant probability. If
w = 0, then p(x) = 1 with probability 1. We can adjust the error probability
to ε by repeating each term in the product log(1/ε) times.

Thus, we can approximate one gate with the above polynomial of degree
O(log(s) · log(1/ε)). Construct polynomials as p above for each gate, with
error parameter ε/s. The probability that any of them is wrong is at most
ε by a union bound. To obtain the approximating polynomial for the whole
circuit compose all the polynomials together. Since the circuit is of depth
d, the final degree of the approximating polynomial is (log(s) · log(s/ε))d, as
desired.

As mentioned at the beginning, this is a distribution on polynomials that
computes correctly any input with probability at least 1 − ε. By averaging,
there exists a fixed polynomial that computes correctly a 1 − ε fraction of
inputs. �

It can be verified that the value of the polynomial can be larger than 1/ε.
The polynomial for the gates closest to the input can be as large as s. Then
at the next level it can be as large as slog s/ε, which is already much larger
than 1/ε.

1.3 Approximation 2

Theorem 5. For all circuits C of size s and depth d, for all error values ε,
there exists a polynomial p(x1, . . . , xn) of degree O(log(s)d−1 log(1/ε)) such
that

Ex←Un [(C(x)− p(x))2] ≤ ε.
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The important feature of this approximation is that it bounds the average,
but only under the uniform distribution. Because it does not provide any
guarantee on other distributions, including k-wise independent distributions,
it cannot be used directly for our aims.

Remark 6. Approximation 2 is proved via the switching lemma, an influen-
tial lemma first proved in the early 80’s by Ajtai [Ajt83] and by Furst, Saxe,
and Sipser [FSS84]. The idea is to randomly set a subset of the variables to
simplify the circuit. You can do this repeatedly to simplify the circuit even
further, but it only works on the uniform distribution. Hastad [H̊as87] gave
a much tighter analysis of the switching lemma, and the paper [LMN93] used
it to prove a version of Approximation 2 with a slightly worse dependence
on the error. Recently, a refinement of the switching lemma was proved
in [H̊as14, IMP12]. Based on that, Tal [Tal17] obtained the corresponding
refinement of Approximation 2 where the parameters are as stated above.
(The polynomial is simply obtained from the Fourier expansion of the func-
tion computed by the circuit by removing all Fourier coefficients larger than
a certain threshold. The bound on the Fourier decay in [Tal17] implies the
desired approximation.)

1.4 Bounded Independence Fools AC0

Theorem 7. For all circuits C with unbounded fan-in of size s and depth d,
for all error values ε, for all k-wise independent distributions D on {0, 1}n,
we have that

|E[C(D)]− E[C(Un)]| ≤ ε

for k = log(s/ε)O(d).

Corollary 8. In particular, if s = poly(n), d = O(1), s = 1/poly(n), then
k = logO(1)(n) suffices.

The next claim is the ultimate polynomial approximation used to prove
the theorem.

Claim 9. For all circuits C with unbounded fan-in of size s and depth d,
for all error values ε, for all k-wise independent distributions D on {0, 1}n,
there is a set E of inputs, and a degree-k polynomial p such that:

1. E is ’rare’ under both D and Un:
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Prx←Un [E(x) = 1] ≤ ε, and Prx←D[E(x) = 1] ≤ ε. Here we write E(x)
for the indicator function of the event x ∈ E.

2. For all x, p(x) ≤ C(x) ∨ E(x). Here ∨ is the logical Or.

3. E[p(Un)] = E[C(Un)]± ε.

We only need (1) under D, but (1) under U is used to prove (3).

Proof of Theorem 7 from Claim 9.

E[C(D)] = E[C(D) ∨ E(D)]± ε, by Claim.(1)

≥ E[p(D)]± ε, by Claim.(2)

= E[p(Un)]± ε, because p has degree k and D is k-wise independent

= E[C(Un)]± ε, by Claim.(3)

For the other direction, repeat the argument for ‘not C’. �

We can construct the polynomial approximation from Claim 9 by us-
ing a combination of Approximation 1 and 2. First we need a little more
information about Approximation 1.

Claim 10. Two properties of approximation 1:

1. For all x, p(x) ≤ 2log(s/ε)O(d)
.

2. The ’bad’ set E is computable by a circuit of size poly(s), and depth
d+O(1).

Proof of Claim 10 part 2. Consider a single OR gate with input gates g1, . . . , gs.
This is represented in the approximating polynomial by the term

1−
polylog(s/ε)∏

i=1

(1−
∑
j∈Si

gj).

Note that the term is incorrect exactly when the input g1, . . . , gs has weight
> 0 but all the sets Si intersect 0 or ≥ 2 ones. This can be checked in AC0,
in parallel for all gates in the circuit. �
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Proof of Claim 9. Run approximation 1 for the distribution D+U
2

, yielding
the polynomial pc and the set E. This already proves the first part of the
claim for both D and U , because if E has probability ε under D it has
probability ≥ ε/2 under (D+U)/2, and the same for U . Use Claim 10 part
2, and run approximation 2 on E. Call the resulting polynomial pE, which
has degree log(s/δ)O(d) with error bound δ.

The idea in the ultimate approximating polynomial is to “check if there
is a mistake, and if so, output 0. Otherwise, output C”. Formally:

p(x) := 1− (1− pc(1− pE))2

Claim 9 part 2 can be shown as follows. p(x) ≤ 1 by definition. So, if
C(x) ∨ E(x) = 1, then we are done. Otherwise, C(x) ∨ E(x) = 0. So there
is no mistake, and C = 0. Hence, by the properties of Approximation 1,
pc(x) = 0. This implies p(x) = 0.

It only remains to show Claim 9 part 3:

EU [p(x)] = EU [C(x)]± ε.

By part 1 of Claim 9,

EU [C(x)− p(x)] = EU [C(x) ∨ E(x)− p(x)]± ε.

We can show that this equals

EU

[
(C(x) ∨ E(x)− pc(x)(1− pE(x)))2]± ε

by the following argument: If C(x)∨E(x) = 1 then 1−p(x) = (1−pc(x)(1−
pE(x)))2 by definition. If C(x) ∨ E(x) = 0, then there is no mistake, and
C(x) = 0. This implies that pc(x)(1− pE(x)) = p(x) = 0.

Let us rewrite the above expression in terms of the expectation `2 norm.

||C ∨ E − pc(1− pE)||22.

Recall the triangle inequality, which states: ||u−v||2 ≤ ||u−w||2 + ||w−v||2.
Therefore, letting w = pc(1− E) we have that the above quantity is

≤ (||pc(1− E)− pc(1− pE)||2 + ||pc(1− E)− C ∨ E||2)2

≤ O(||pc(1− E)− pc(1− pE)||22 + ||pc(1− E)− C ∨ E||22).
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To conclude, we will show that each of the above terms are ≤ ε. Note that

||pc(1− E)− pc(1− pE)||22 ≤ max
x
|pc(x)|2||(1− E)− (1− pE)||22.

By Claim 10 part 1 and Approximation 2, this is at most

2log(s/ε)O(d) · ||E − pE||22 ≤ 2log(s/ε)O(d) · δ.

For this quantity to be at most ε we set δ = ε ·2− log(s/ε)O(d)
. Here we critically

set the error in Approximation 2 much lower, to cancel the large values
arising from Approximation 1. By Theorem 5, the polynomial arising from
approximation 2 has degree O(log(s)d−1 log(1/δ)) = log(s/ε)O(d).

Finally, let us bound the other term, ||pc(1−E)−C ∨E||22. If E(x) = 0,
then the distance is 0. If E(x) = 1, then the distance is ≤ 1. Therefore, this
term is at most PrU [E(x) = 1], which we know to be at most ε. �
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