
Special Topics in Complexity Theory, Fall 2017. Instructor: Emanuele Viola

1 Lecture 19, Guest lecture by Huacheng Yu,

Scribe: Matthew Dippel

Guest lecture by Huacheng Yu on dynamic data structure lower bounds, for
the 2D range query and 2D range parity problems. Thanks to Huacheng for
giving this lecture and for feedback on the write-up.

What is covered.

• Overview of Larsen’s lower bound for 2D range counting.

• Extending these techniques for Ω(log1.5 n/ log log3 n) for 2D range par-
ity.

2 Problem definitions

Definition 1. 2D range counting
Give a data structure D that maintains a weighted set of 2 dimensional

points with integer coordinates, that supports the following operations:

1. UPDATE: Add a (point, weight) tuple to the set.

2. QUERY: Given a query point (x, y), return the sum of weights of
points (x′, y′) in the set satisfying x′ ≤ x and y′ ≤ y.

Definition 2. 2D range parity
Give a data structure D that maintains an unweighted set of 2 dimen-

sional points with integer coefficients, that supports the following operations:

1. UPDATE: Add a point to the set.

2. QUERY: Given a query point (x, y), return the parity of the number
of points (x′, y′) in the set satisfying x′ ≤ x and y′ ≤ y.

Both of these definitions extend easily to the d-dimensional case, but we
state the 2D versions as we will mainly work with those.

1

http://www.ccs.neu.edu/home/viola/classes/spepf17.html
http://www.ccs.neu.edu/home/viola/

2.1 Known bounds

All upper bounds assume the RAM model with word size Θ(log n).
Upper bounds: Using range trees, we can create a data structure for 2D

range counting, with all update and query operations taking time O(logd n)
time. With extra tricks, we can make this work for 2D range parity with
operations running in time O((log n/ log log n)d).

Lower bounds. There are a series of works on lower bounds:

• Fredman, Saks ’89 - 1D range parity requires Ω(log n/ log log n).

• Patrascu, Demaine ’04 - 1D range counting requires Ω(log n).

• Larsen ’12 - 2D range counting requires Ω((log n/ log log n)2).

• Larsen, Weinstein, Yu ’17 - 2D range parity requires Ω(log1.5 n/ log log3 n).

This lecture presents the recent result of [Larsen ’12] and [Larsen, Wein-
stein, Yu ’17]. They both use the same general approach:

1. Show that, for an efficient approach to exist, the problem must demon-
strate some property.

2. Show that the problem doesn’t have that property.

3 Larsen’s technique

All lower bounds are in the cell probe model with word size Θ(log n).
We consider a general data structure problem, where we require a struc-

ture D that supports updates and queries of an unspecified nature. We
further assume that there exists an efficient solution with update and query
times o((log n/ log log n)2). We will restrict our attention to operation se-
quences of the form u1, u2, · · · , un, q. That is, a sequence of n updates fol-
lowed by a single query q. We fix a distribution over such sequences, and
show that the problem is still hard.

3.1 Chronogram method [?]

We divide the updates into r epochs, so that our sequence becomes:

Ur, Ur−1, · · · , U1, q

2

where |Ui| = βi and β = log5 n. The epochs are multiplicatively shrinking.
With this requirement, we have that r = Θ(log n/ log log n).

Let M be the set of all memory cells used by the data structure when
run on the sequence of updates. Further, let Ai be the set of memory cells
which are accessed by the structure at least once in Ui, and never again in a
further epoch.

Claim 1. The Ar, Ar−1, · · ·A1 are disjoint.

Claim 2. There exists an epoch i such that D probes o(log n/ log log n) cells
from Ai when answering the query at the end. Note that this is simply our
query time divided by the number of epochs. In other words, D can’t afford
to read Ω(log n/ log log n) cells from each Ai set without breaking its promise
on the query run time.

Claim 2 implies that there is an epoch i which has the smallest effect on
the final answer. We will call this the ”easy” epoch.

Idea. : The set Ai contains ”most” information about Ui among all
memory cells in M . Also, Ar, Ar−1, · · · , Ai+1 are not updated past epoch
i + 1, and hence should contain no information relative to the updates in
Ui. Epochs Ai−1, Ai−2, · · ·A1 are progressively shrinking, and so the total
touched cells in Ai during the query operation should be small.∑

j<i

|Aj| ≤ O(βi−1) · log2 n

3.2 Communication game

Having set up the framework for how to analyze the data structure, we
now introduce a communication game where two parties attempt to solve an
identical problem. We will show that, an efficient data structure implies an
efficient solution to this communication game. If the message is smaller than
the entropy of the updates of epoch i (conditioned on preceding epochs),
this gives an information theoretic contradiction. The trick is to find a way
for the encoder to exploit the small number of probed cells to send a short
message.

The game. The game consists of two players, Alice and Bob, who must
jointly compute a single query after a series of updates. The model is as
follows:

3

• Alice has all of the update epochs Ur, Ur−1, ...U1. She also has an index
i, which still corresponds to the ”easy” epoch as defined above.

• Bob has all update epochs EXCEPT for Ui. He also has a random
query q. He is aware of the index i.

• Communication can only occur in a single direction, from Alice to Bob.

• We assume some fixed input distribution D.

• They win this game if Bob successfully computes the correct answer
for the query q.

Then we will show the following generic theorem, relating this communi-
cation game to data structures for the corresponding problem:

Theorem 3. If there is a data structure with update time tu and probes t
cells from Ai in expectation when answering the final query q, then the com-
munication game has an efficient solution, with O(p|Ui|tu log n+βi−1tu log n)
communication cost, and success probability at least pt. This holds for any
choice of 0 < p < 1.

Before we prove the theorem, we consider specific parameters for our
problem. If we pick

p = 1/ log5 n, (1)

tu = log2 n, (2)

t = o(log n/ log log n), (3)

then, after plugging in the parameters, the communication cost is |Ui|/ log2 n.
Note that, we could always trivially achieve |Ui| by having Alice send Bob
all of Ui, so that he can compute the solution of the problem with no un-
certainty. The success probability is (log−5 n)o(log n/ log log n), which simplifies
to 2−o(log n) = 1/no(1). This is significantly better than 1/nO(1), which could
be achieved trivially by having Bob output a random answer to the query,
independent of the updates.

Proof. We assume we have a data structure D for the update / query prob-
lem. Then Alice and Bob will proceed as follows:

Alice’s steps.

4

1. Simulate D on Ur, Ur−1, ...U1. While doing so, keep track of memory
cell accesses and compute Ar, Ar−1, ...A1.

2. Sample a random subset C ⊂ Ai, such that |C| = p|Ai|.

3. Send C ∪ Ai−1 ∪ Ai−2 ∪ ...A1.

We note that in Alice’s Step 3, to send a cell, she sends a tuple holding the
cell ID and the cell state before the query was executed. Also note that, she
doesn’t distinguish to Bob which cells are in which sets of the union.

Bob’s steps.

1. Receive C ′ from Alice.

2. Simulate D on epochs Ur, Ur−1, ...Ui+1. Snapshot the current memory
state of the data structure as M .

3. Simulate the query algorithm. Every time q attempts to probe cell c,
Bob checks if c ∈ C ′. If it is, he lets D probe from C ′. Otherwise, he
lets D probe from M .

4. Bob returns the result from the query algorithm as his answer.

If the query algorithm does not query any cell in Ai − C, then Bob
succeeds, as he can exactly simulate the data structure query. Since the
query will check t cells in Ai, and Bob has a random subset of them of size
p|Ai|, then the probability that he got a subset the data structure will not
probe is at least pt. The communication cost is the cost of Alice sending the
cells to Bob, which is

(p|Ai|+
∑
j<i

|Ai|) ≤ (ptu + |Ui|+ βi−1tu) log n

�

4 Extension to 2D Range Parity

The extension to 2D range parity proceeds in nearly identical fashion, with
a similar theorem relating data structures to communication games.

Theorem 1. Consider an arbitrary data structure problem where queries
have 1-bit outputs. If there exists a data structure having:

5

• update time tu

• query time tq

• Probes t cells from Ai when answering the last query q

Then there exists a protocol for the communication game withO(p|Ui|ti log n+
tuβ

i−1 log n) bits of communication and success probability at least 1/2 +

2−O(
√

tqt(log(1/p)3), for any choice of 0 < p < 1. Again, we plug in the

parameters from 2D range parity. If we set

tu = tq = o(log1.5 n/(log log n)2), (4)

t = tq/r = o(log(1/2)n/ log log n), (5)

p = 1/ log5 n, (6)

then the cost is |Ui|/ log2 n, and the probability simplifies to 1/2 + 1/no(1).
We note that, if we had Q = nO(1) different queries, then randomly guess-

ing on all of them, with constant probability we could be correct on as many
as Q/2 ± O(

√
Q). In this case, the probability of being correct on a single

one, amortized, is 1/2 + 1/nΘ(1).

Proof. The communication protocol will be slightly adjusted. We assume an
a priori distribution on the updates and queries. Bob will then compute the
posterior distribution, based on what he knows and what Alice sends him.
He then computes the maximum likelihood answer to the query q. We thus
need to figure out what Alice can send, so that the answer to q is often biased
towards either 1 or 0.

We assume the existence of some public randomness available to both
Alice and Bob. Then we adjust the communication protocol as follows:

Alice’s modified steps.

• Alice samples, using the public randomness, a subset of ALL memory
cells M2, such that each cell is sampled with probability p. Alice sends
M2∩Ai to Bob. Since Bob can mimic the sampling, he gains additional
information about which cells are and aren’t in Ai.

Bob’s modified steps.

6

• Denote by S the set of memory cells probed by the data structure when
Bob simulates the query algorithm. That is, S is what Bob ”thinks” D
will probe during the query, as the actual set of cells may be different
if Bob had full knowledge of the updates, and the data structure may
use that information to determine what to probe. Bob will use S to
compute the posterior distribution.

Define the function f(z) : [2w]→ R to be the ”bias” when S takes on the
value z. In particular, this function is conditioned on C ′ that Bob receives
from Alice. We can then clarify the definition of f as

fC′(z) := (Pr[ans to q = 1|C ′, S ← z]− 1/2) ∗ Pr[S ← z|C ′] (7)

In particular, f has the following two properties:

1.
∑

z |f(z)| ≤ 1

2. EC′ [maxz |f(z)|] ≥ 1/2 · pt

In these statements, the expectation is over everything that Bob knows,
and the probabilities are also conditioned on everything that Bob knows.
The randomness comes from what he doesn’t know. We also note that when
the query probes no cells in Ai − C ′, then the bias is always 1/2, since the
a posterior distribution will put all its weight on the correct answer of the
query.

Finishing the proof requires the following lemma:

Lemma 2. For any f with the above two properties, there exists a Y ⊆ S
such that |Y | ≤ O(

√
|S| log 1/pt) and

∑
y∈Y

∣∣∣∣∣∣
∑
z|y

f(z)

∣∣∣∣∣∣ ≥ 2−O(
√
|S| log 1/pt). (8)

Note that the sum inside the absolute values is the bias when Y ← y. �

7

	Lecture 19, Guest lecture by Huacheng Yu, Scribe: Matthew Dippel
	Problem definitions
	Known bounds

	Larsen's technique
	Chronogram method FredmanS89
	Communication game

	Extension to 2D Range Parity

