
Special Topics in Complexity Theory, Fall 2017. Instructor: Emanuele Viola

1 Lecture 10, Scribe: Biswaroop Maiti

This is a guest lecture by Justin Thaler regarding lower bounds on approxi-
mate degree [BKT17, BT15, BT17]. We will sketch some details of the lower
bound on the approximate degree of AND ◦ OR, SURJ and some intuition
about the techniques used. Recall the definition of SURJ from the previous
lecture as below:

Definition 1. The surjectivity function SURJ :
(
{−1, 1}logR

)N → {−1, 1},
takes input x = (x1, . . . , xN) where each xi ∈ {−1, 1}logR is interpreted as
an element of [R]. SURJ(x) has value −1 if and only if ∀j ∈ [R],∃i : xi = j.

Recall from the last lecture that ANDR ◦ ORN : {−1, 1}R×N → {−1, 1}
is the block-wise composition of the AND function on R bits and the OR
function on N bits. In general, we will denote the block-wise composition of
two functions f , and g, where f is defined on R bits and g is defined on N
bits, by fR ◦ gN . Here, the outputs of R copies of g are fed into f (with the
inputs to each copy of g being pairwise disjoint). The total number of inputs
to fR ◦ gN is R ·N .

1.1 Lower Bound of d1/3(SURJ) via lower bound of d1/3(AND-
OR)

Claim 2. d1/3(SURJ) = Θ̃(n3/4).

We will look at only the lower bound in the claim. We interpret the input
as a list of N numbers from [R] := {1, 2, · · ·R}. As presented in [BKT17],
the proof for the lower bound proceeds in the following steps.

1. Show that to approximate SURJ, it is necessary to approximate the
block-composition ANDR ◦ORN on inputs of Hamming weight at most
N . i.e., show that d1/3(surj) ≥ d≤N1/3 (ANDR ◦ ORN).

Step 1 was covered in the previous lecture, but we briefly recall a bit
of intuition for why the claim in this step is reasonable. The intuition
comes from the fact that the converse of the claim is easy to establish,

1

http://www.ccs.neu.edu/home/viola/classes/spepf17.html
http://www.ccs.neu.edu/home/viola/


i.e., it is easy to show that in order to approximate SURJ, it is sufficient
to approximate ANDR ◦ORN on inputs of Hamming weight exactly N .

This is because SURJ can be expressed as an ANDR (over all range
items r ∈ [R]) of the ORN (over all inputs i ∈ [N ]) of “Is input xi equal
to r”? Each predicate of the form in quotes is computed exactly by a
polynomial of degree logR, since it depends on only logR of the input
bits, and exactly N of the predicates (one for each i ∈ [N ]) evaluates
to TRUE.

Step 1 of the lower bound proof for SURJ in [BKT17] shows a con-
verse, namely that the only way to approximate SURJ is to approximate
ANDR ◦ ORN on inputs of Hamming weight at most N .

2. Show that d≤N1/3 (ANDR ◦ ORN) = Ω̃(n3/4), i.e., the degree required to
approximate ANDR ◦ORN on inputs of Hamming weight at most N is
at least D = Ω̃(n3/4).

Step 2 itself proceeds via two substeps:

(a) Give a dual witness Φ for ANDR ·ORN that has places little mass
(namely, total mass less then (R·N ·D)−2D) on inputs of hamming
weight ≥ N .

(b) By modifying Φ, give a dual witness Φ′ for ANDR ·ORN that places
zero mass on inputs of Hamming weight ≥ N .

In [BKT17], both Substeps 2a and 2b proceed entirely in the dual world
(i.e., they explicitly manipulate dual witnesses Φ and Φ′). The main goal of
this section of the lecture notes is to explain how to replace Step 2b of the
argument of [BKT17] with a wholly “primal” argument.

The intuition of the primal version of Step 2b that we’ll cover is as follows.
First, we will show that a polynomial p : {−1, 1}R·N → {−1, 1} of degree D
that is bounded on the low Hamming Weight inputs, cannot be too big on
the high Hamming weight inputs. In particular, we will prove the following
claim.

Claim 3. If p : {−1, 1}M → R is a degreeD polynomial that satisfies |p(x)| ≤
4/3 on all inputs of x of Hamming weight at most D, then |p(x)| ≤ (4/3) ·
D ·MD for all inputs x.
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Second, we will explain that the dual witness Φ constructed in Step 2a
has the following “primal” implication:

Claim 4. For D ≈ N3/4, any polynomial p of degree D satisfying |p(x) −
(ANDR ◦ ORN) (x)| ≤ 1/4 for all inputs x of Hamming weight at most N
must satisfy |p(x)| > (4/3) ·D · (R ·N)D for some input x ∈ {−1, 1}R·N .

Combining Claims 3 and 4, we conclude that no polynomial p of degree
D ≈ N3/4 can satisfy

|p(x)−(ANDR◦ORN)(x)| ≤ 1/4 for all inputs x of Hamming weight at most N,
(1)

which is exactly the desired conclusion of Step 2. This is because any poly-
nomial p satisfying Equation (1) also satisfies |p(x)| ≤ 5/4 ≤ 4/3 for all x of
Hamming weight of most N , and hence Claim 3 implies that

|p(x)| ≤ 4

3
·D · (R ·N)D for all inputs x ∈ {−1, 1}R·N . (2)

But Claim 4 states that any polynomial satisfying both Equations (1) and
(2) requires degree strictly larger than D.

In the remainder of this section, we prove Claims 3 and 4.

1.2 Proof of Claim 3

Proof of Claim 3. For notational simplicity, let us prove this claim for poly-
nomials on domain {0, 1}M , rather than {−1, 1}M .

Proof in the case that p is symmetric. Let us assume first that p is
symmetric, i.e., p is only a function of the Hamming weight |x| of its input
x. Then p(x) = g(|x|) for some degree D univariate polynomial g (this is a
direct consequence of Minsky-Papert symmetrization, which we have seen in
the lectures before). We can express g as below in the same spirit of Lagrange
interpolation.

g(t) =
D−1∑
k=0

g(k) ·
D−1∏
i=0

t− i
k − i

.

Here, the first term, g(k) ,is bounded in magnitude by |g(k)| ≤ 4/3, and
|
∏D−1

i=0
t−i
k−i | ≤MD. Therefore, we get the final bound:

|g(t)| ≤ (4/3) ·D ·MD.
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Proof for general p. Let us now consider the case of general (not necessarily
symmetric) polynomials p. Fix any input x ∈ {0, 1}M . The goal is to show
that |p(x)| ≤ 4

3
D ·MD.

Let us consider a polynomial p̂x : {0, 1}|x| → {0, 1} of degree D obtained
from p by restricting each input i such that xi = 0 to have the value 0. For
example, if M = 4 and x = (0, 1, 1, 0), then p̂x(y2, y3) = p(0, y2, y3, 0). We
will exploit three properties of p̂x:

Property 1. deg(p̂x) ≤ deg(p) ≤ D.

Property 2. Since |p(x)| ≤ 4/3 for all inputs with |x| ≤ D, p̂x(y) satisfies the
analogous property: |p̂x(y)| ≤ 4/3 for all inputs with |y| ≤ D.

Property 3. If 1|x| denotes the all-1s vector of length |x|, then p̂x(1x) = p(x).

Property 3 means that our goal is to show that |p̂(1x)| ≤ 4
3
·D ·MD.

Let psymm
x : {0, 1}M → R denote the symmetrized version of p̂x, i.e.,

psymm
x (y) = Eσ[p̂x(σ(y))], where the expectation is over a random permu-

tation σ of {1, . . . , |x|}, and σ(y) = (yσ(1), . . . , yσ(|x|)). Since σ(1|x|) = 1|x| for
all permutations σ, psymm

x (1|x|) = p̂x(1|x|) = p(x). But psymm
x is symmetric,

so Properties 1 and 2 together mean that the analysis from the first part of
the proof implies that |psymm

x (y)| ≤ 4
3
·D ·MD for all inputs y. In particular,

letting y = 1|x|, we conclude that |p(x)| ≤ 4
3
·D ·MD as desired. �

Discussion. One may try to simplify the analysis of the general case in
the proof Claim 3 by considering the polynomial psymm : {0, 1}M → R defined
via psymm(x) = Eσ[p(σ(x))], where the expectation is over permutations σ of
{1, . . . ,M}. psymm is a symmetric polynomial, so the analysis for symmetric
polynomials immediately implies that |psymm(x)| ≤ 4

3
·D ·MD. Unfortunately,

this does not mean that |p(x)| ≤ 4
3
·D ·MD.

This is because the symmetrized polynomial psymm is averaging the values
of p over all those inputs of a given Hamming weight. So, a bound on this
averaging polynomial does not preclude the case where p is massively positive
on some inputs of a given Hamming weight, and massively negative on other
inputs of the same Hamming weight, and these values cancel out to obtain a
small average value. That is, it is not enough to conclude that on the average
over inputs of any given Hamming weight, the magnitude of p is not too big.

Thus, we needed to make sure that when we symmetrize p̂x to psymx , such
large cancellations don’t happen, and a bound of the average value of p̂ on a
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given Hamming weight really gives us a bound on p on the input x itself. We
defined p̂x so that p̂x(1M) = p(x). Since there is only one input in {0, 1}M of
Hamming weight M , psymm

x (1M) does not average p̂x’s values on many inputs,
meaning we don’t need to worry about massive cancellations.

A note on the history of Claim 3. Claim 3 was implicit in [RS10].
They explicitly showed a similar bound for symmetric polynomials using
primal view and (implicitly) gave a different (dual) proof of the case for
general polynomials.

1.3 Proof of Claim 4

1.3.1 Interlude Part 1: Method of Dual Polynomials [BT17]

A dual polynomial is a dual solution to a certain linear program that cap-
tures the approximate degree of any given function f : {−1, 1}n → {−1, 1}.
These polynomials act as certificates of the high approximate degree of f .
The notion of strong LP duality implies that the technique is lossless, in com-
parison to symmetrization techniques which we saw before. For any function
f and any ε, there is always some dual polynomial Ψ that witnesses a tight
ε-approximate degree lower bound for f . A dual polynomial that witnesses
the fact that dε(f) ≥ d is a function Ψ: {−1, 1}n → {−1, 1} satisfying three
properties:

• Correlation analysis: ∑
x∈{−1,1}n

Ψ(x) · f(x) > ε.

If Ψ satisfies this condition, it is said to be well-correlated with f .

• Pure high degree: For all polynomials p : {−1, 1}n → R of degree
less than d, we have ∑

x∈{−1,1}n
p(x) ·Ψ(x) = 0.

If Ψ satisfies this condition, it is said to have pure high degree at least
d.
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• `1 norm: ∑
x∈{−1,1}n

|Ψ(x)| = 1.

1.3.2 Interlude Part 2: Applying The Method of Dual Polynomi-
als To Block-Composed Functions

For any function f : {−1, 1}n → {−1, 1}, we can write an LP capturing the
approximate degree of f . We can prove lower bounds on the approximate
degree of f by proving lower bounds on the value of feasible solution of this
LP. One way to do this is by writing down the Dual of the LP, and exhibiting
a feasible solution to the dual, thereby giving an upper bound on the value
of the Dual. By the principle of LP duality, an upper bound on the Dual LP
will be a lower bound of the Primal LP. Therefore, exhibiting such a feasible
solution, which we call a dual witness, suffices to prove an approximate degree
lower bound for f .

However, for any given dual witness, some work will be required to verify
that the witness indeed meets the criteria imposed by the Dual constraints.

When the function f is a block-wise composition of two functions, say h
and g, then we can try to construct a good dual witness for f by looking at
dual witnesses for each of h and g, and combining them carefully, to get the
dual witness for h ◦ g.

The dual witness Φ constructed in Step 2a for AND ◦ OR is expressed
below in terms of the dual witness of the inner OR function viz. ΨOR and
the dual witness of the outer AND, viz. ΨAND.

Φ(x1 . . . xR) = ΨAND (· · · , sgn(ΨOR(xi)), · · · ) ·
R∏
i=1

|ΨOR(xi)|. (3)

This method of combining dual witnesses ΨAND for the “outer” function
AND and ΨOR for the “inner function” ΨOR is referred to in [BKT17, BT17]
as dual block composition.

1.3.3 Interlude Part 3: Hamming Weight Decay Conditions

Step 2a of the proof of the SURJ lower bound from [BKT17] gave a dual
witness Φ for ANDR ◦ ORN (with R = Θ(N)) that has:

pure high degree D = Ω̃(N3/4) (4)
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`1-norm equal to one, (5)

correlation .4 with ANDR ◦ ORN , (6)

and ∑
|x|>N

|Φ(x)| � (R ·N ·D)−2D. (7)

Equation (7) is a very strong “Hamming weight decay” condition: it
shows that the total mass that Ψ places on inputs of high Hamming weight
is very small. Hamming weight decay conditions play an essential role in
the lower bound analysis for SURJ from [BKT17]. In addition to Equation
(7) itself being a Hamming weight decay condition, [BKT17]’s proof that Φ
satisfies Equation (7) exploits the fact that the dual witness ΨOR for OR can
be chosen to simultaneously have pure high degree N1/4, and to satisfy the
following weaker Hamming weight decay condition:

Claim 5. There exist constants c1, c2 such that for all t = 0, · · ·N ,∑
|x|=t

ΨOR(x) ≤ c1 ·
1

(1 + t)2
· exp(−c2 · t/N1/4). (8)

(We will not prove Claim 5 in these notes, we simply state it to highlight
the importance of dual decay to the analysis of SURJ).

Dual witnesses satisfying various notions of Hamming weight decay have a
natural primal interpretation: they witness approximate degree lower bounds
for the target function (ANDR ◦ORN in the case of Equation (7), and ORN in
the case of Equation (8)) even when the approximation is allowed to be expo-
nentially large on inputs of high Hamming weight. This primal interpretation
of dual decay is formalized in the following claim.

Claim 6. Let L(t) be any function mapping {0, 1, . . . , n} to R+. Suppose Ψ
is a dual witness for f on n bits satisfying the following properties:

• (Correlation):
∑

x∈{−1,1}n Ψ(x) · f(x) > 1/3.

• (`1-norm):
∑

x∈{−1,1}n |Ψ(x)| = 1.

• (Pure high degree): Ψ has pure high degree D.

• (Dual decay):
∑n

t=0

∑
|x|=t |Ψ(x)| · L(t) ≤ 1/3 for all t = 0, 1, . . . , n.
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Then there is no degree D polynomial p such that for all t = 0, 1, . . . , n,

|p(x)− f(x)| ≤ L(t) for all |x| = t. (9)

Proof. Let p be any degree D polynomial. Since Ψ has pure high degree D,∑
x∈{−1,1}n p(x) ·Ψ(x) = 0.

We will now show that if p satisfies Equation (9), then the other two
properties satisfied by Ψ (correlation and dual decay) together imply that∑

x∈{−1,1}n p(x) ·Ψ(x) > 0, a contradiction.

∑
x∈{−1,1}n

Ψ(x) · p(x) =
∑

x∈{−1,1}n
Ψ(x) · f(x)−

∑
x∈{−1,1}n

Ψ(x) · (p(x)− f(x))

≥ 1/3−
∑

x∈{−1,1}n
|Ψ(x)| · |p(x)− f(x)|

≥ 1/3−
n∑
t=0

∑
|x|=t

|Ψ(x)| · L(t) > 0

Here, Line 2 exploited that Ψ has correlation at least 1/3 with f , Line 3
exploited the assumption that p satisfies Equation (9), and Line 4 exploited
the dual decay condition that Ψ is assumed to satisfy. �

1.3.4 Proof of Claim 4

Proof. Let Φ be the dual witness for f = ANDR ◦ ORN constructed in Step
2a of the argument from [BKT17] (which satisfies Equations (4)-(7)). Claim
4 follows so long as we can apply Claim 6 to Φ and f , with

L(t) =

{
1/4 if t ≤ N

(R ·N ·D)D if t > N.

So we need to show that Φ satisfies the four properties required to apply
Claim 6. The first three properties are immediate from Equations (4)-(6).
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The fourth property holds via the following derivation:

R·N∑
t=0

∑
|x|=t

|Φ(x)| · L(t) ≤

N∑
t=0

∑
|x|=t

|Φ(x)| · L(t) +
R·N∑

t=N+1

∑
|x|=t

|Φ(x)| · L(t) ≤

1/4 +
R·N∑

t=N+1

∑
|x|=t

|Φ(x)| · (R ·N ·D)D < 1/3.

Here, the second inequality holds because Φ has `1-norm equal to 1, and
the final inequality holds by Equation (7). �

2 Generalizing the analysis for SURJ to prove

a nearly linear approximate degree lower

bound for AC0

Now we take a look at how to extend this kind of analysis for SURJ to obtain
even stronger approximate degree lower bounds for other functions in AC0.
Recall that SURJ can be expressed as an ANDR (over all range items r ∈ [R])
of the ORN (over all inputs i ∈ [N ]) of “Is input xi equal to r”? That is,
SURJ simply evaluates ANDR ◦ ORN on the inputs (. . . , yj,i, . . . ) where yj,i
indicates whether or not input xi is equal to range item j ∈ [R].

Our analysis for SURJ can be viewed as follows: It is a way to turn

the AND function on R bits (which has approximate degree Θ
(√
R
)

) into

a function on close to R bits, with polynomially larger approximate degree
(i.e. SURJ is defined on N logR bits where, say, the value of N is 100R, i.e.,
it is a function on 100R logR bits). So, this function is on not much more
than R bits, but has approximate degree Ω̃(R3/4), polynomially larger than
the approximate degree of ANDR.

Hence, the lower bound for SURJ can be seen as a hardness amplification
result. We turn the AND function on R bits to a function on slightly more
bits, but the approximate degree of the new function is significantly larger.

From this perspective, the lower bound proof for SURJ showed that in
order to approximate SURJ, we need to not only approximate the ANDR
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function, but, additionally, instead of feeding the inputs directly to AND
gate itself, we are further driving up the degree by feeding the input through
ORN gates. The intuition is that we cannot do much better than merely
approximate the AND function and then approximating the block composed
ORN gates. This additional approximation of the OR gates give us the extra
exponent in the approximate degree expression.

We will see two issues that come in the way of naive attempts at gen-
eralizing our hardness amplification technique from ANDR to more general
functions.

2.1 Interlude: Grover’s Algorithm

Grover’s algorithm [Gro96] is a quantum algorithm that finds with high
probability the unique input to a black box function that produces a given
output, using O(

√
N) queries on the function, where N is the size of the the

domain of the function. It is originally devised as a database search algorithm
that searches an unsorted database of size N and determines whether or not
there is a record in the database that satisfies a given property in O(

√
N)

queries. This is strictly better compared to deterministic and randomized
query algorithms because they will take Ω(N) queries in the worst case and
in expectation respectively. Grover’s algorithm is optimal up to a constant
factor, for the quantum world.

2.2 Issues: Why a dummy range item is necessary

In general, let us consider the problem of taking any function f that does not
have maximal approximate degree (say, with approximate degree n1−Ω(1)),
and turning it into a function on roughly the same number of bits, but with
polynomially larger approximate degree.

In analogy with how SURJ(x1, . . . , xN) equals ANDR ◦ ORN evaluated
on inputs (. . . , yji, . . . ), where yji indicates whether or not xi = j, we can
consider the block composition fR◦ORN evaluated on (. . . , yji, . . . ), and hope
that this function has polynomially larger approximate degree than fR itself.

Unfortunately, this does not work. Consider for example the case fR =
ORR. The function ORR◦ORN = ORR·N evaluates to 1 on all possible vectors
(. . . , yji, . . . , ), since all such vectors of Hamming weight exactly N > 0.

One way to try to address this is to introduce a dummy range item, all
occurrences of which are simply ignored by the function. That is, we can
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consider the (hopefully harder) function G to interpret its input as a list
of N numbers from the range [R]0 := {0, 1, . . . , R}, rather than range [R],
and define G = fR ◦ ORN(y1,1, . . . , yR,N) (note that variables y0,1, . . . , y0,N ,
which indicate whether or not each input xi equals range item 0, are simply
ignored).

In fact, in the previous lecture we already used this technique of intro-
ducing a “dummy” range item, to ease the lower bound analysis for SURJ
itself. Last lecture we covered Step 1 of the lower bound proof for SURJ,
and we let z0 =

∑N
i=1 y0,i denote the frequency of the dummy range item,

0. The introduction of this dummy range item let us replace the condition∑R
j=0 zj = N (i.e., the sum of the frequencies of all the range items is exactly

N) by the condition
∑R

j=1 zj ≤ N (i.e., the sum of the frequencies of all the
range items is at most N).

2.3 A dummy range item is not sufficient on its own

Unfortunately, introducing a dummy range item is not sufficient on its own.
That is, even when the range is is [R]0 rather than [R], the function G = fR ◦
ORN(y1,1, . . . , yR,N) may have approximate degree that is not polynomially
larger than that of fR itself. An example of this is (once again) fR = ORR.
With a dummy range item, ORR ◦ORN(y1,1, . . . , yR,N) evaluates to TRUE if
and only if at least one of the N inputs is not equal to the dummy range
item 0. This problem has approximate degree O(N1/2) (it can be solved
using Grover search).

Therefore, the most naive approach at general hardness amplification,
even with a dummy range item, does not work.

2.4 The approach that works

The approach that succeeds is to consider the block composition f◦ANDlogR◦
ORN (i.e., apply the naive approach with a dummy range item not to fR itself,
but to fR ◦ ANDlogR). As pointed out in Section 2.3, the ANDlogR gates are
crucial here for the analysis to go through.

It is instructive to look at where exactly the lower bound proof for SURJ
breaks down if we try to adapt it to the function ORR◦ORN = ORR·N (rather
than the function ANDR ◦ORN which we analyzed to prove the lower bound
for SURJ). Then we can see why the introduction of the ANDlogR gates fixes
the issue.

11



When analyzing the more naively defined functionG = (ORR ◦ ORN) (y1,1, . . . , yR,N)
(with a dummy range item), Step 1 of the lower bound analysis for SURJ
does work unmodified to imply that in order to approximate G, it is neces-
sary to approximate block composition of ORR ◦ORN on inputs of Hamming
weight at most N . But Step 2 of the analysis breaks down: one can approxi-
mate ORR ◦ORN on inputs of Hamming weight at most N using degree just
O(N1/2).

Why does the Step 2 analysis break down for ORR ◦ORN? If one tries to
construct a dual witness Φ for ORR◦ORN by applying dual block composition
(cf. Equation (3), but with the dual witness ΨAND for ANDR replaced by a
dual witness for ORR), Φ will not be well-correlated with ORR ◦ ORN .

Roughly speaking, the correlation analysis thinks of each copy of the inner
dual witness ΨOR(xi) as consisting of a sign, sgn(ΨOR)(xi), and a magnitude
|ΨOR(xi)|, and the inner dual witness “makes an error” on xi if it outputs
the wrong sign, i.e., if sgn(ΨOR)(xi) 6= OR(xi). The correlation analysis
winds up performing a union bound over the probability (under the product
distribution

∏R
i=1 |ΨOR(xi)|) that any of the R copies of the inner dual witness

makes an error. Unfortunately, each copy of the inner dual witness makes
an error with constant probability under the distribution |ΨOR|. So at least
one of them makes an error under the product distribution with probability
very close to 1. This means that the correlation of the dual-block-composed
dual witness Φ with ORR ◦ ORN is poor.

But if we look at ORR ◦ (ANDlogR ◦ ORN), the correlation analysis does
go through. That is, we can give a dual witness Ψin for ANDlogR ◦ORN and a
dual witness Ψout for ORR such that the the dual-block-composition of Ψout

and Ψin is well-correlated with ORR ◦ (ANDlogR ◦ ORN).
This is because [BT15] showed that for ε = 1−1/(3R), dε (ANDlogR ◦ ORN) =

Ω(N1/2). This means that (ANDlogR ◦ ORN) has a dual witness Ψin that
“makes an error” with probability just 1/(3R). This probability of making
an error is so low that a union bound over all R copies of Ψin appearing in
the dual-block-composition of Ψout and Ψin implies that with probability at
least 1/3, none of the copies of Ψin make an error.

In summary, the key difference between ORN and ANDlogR ◦ ORN that
allows the lower bound analysis to go through for the latter but not the former
is that the latter has ε-approximate degree Ω(N1/2) for ε = 1−1/(3R), while
the former only has ε-approximate degree Ω(N1/2) if ε is a constant bounded
away from 1.

To summarize, the SURJ lower bound can be seen as a way to turn the
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function fR = ANDR into a harder function G = SURJ, meaning that G
has polynomially larger approximate degree than fR. The right approach to
generalize the technique for arbitrary fR is to (a) introduce a dummy range
item, all occurrences of which are effectively ignored by the harder functionG,
and (b) rather than considering the “inner” function ORN , consider the inner
function ANDlogR ◦ORN , i.e., let G = fR ◦ANDlogR ◦ORN(y1,1 . . . , yR logR,N).
The ANDlogR gates are essential to make sure that the error in the correlation
of the inner dual witness is very small, and hence the correlation analysis for
the dual-block-composed dual witness goes through. Note that G can be
interpreted as follows: it breaks the range [R logR]0 up into R blocks, each
of length logR, (the dummy range item is excluded from all of the blocks),
and for each block it computes a bit indicating whether or not every range
item in the block has frequency at least 1. It then feeds these bits into fR.

By recursively applying this construction, starting with fR = ANDR,
we get a function in AC0 with approximate degree Ω(n1−δ) for any desired
constant δ > 0.

2.5 k−distinctness

The above mentioned very same issue also arises in [BKT17]’s proof of a
lower bound on the approximate degree of the k-distinctness function. Step
1 of the lower bound analysis for SURJ reduced analyzing k-distinctness to
analyzing OR ◦ THkN (restricted to inputs of Hamming weight at most N),
where THkN is the function that evaluates to TRUE if and only if its input
has Hamming weight at least k. The lower bound proved in [BKT17] for
k-distinctness is Ω(n3/4−1/(2k)). OR is the TH1 function. So, ORR ◦ THk is
“close” to ORR◦ORN . And we’ve seen that the correlation analysis of the dual
witness obtained via dual-block-composition breaks down for ORR ◦ ORN .

To overcome this issue, we have to show that THkN is harder to approxi-
mate than ORN itself, but we have to give up some small factor in the process.
We will lose some quantity compared to the Ω(n3/4) lower bound for SURJ.
It may seem that this loss factor is just a technical issue and not intrinsic, but
this is not so. In fact, this bound is almost tight. There is an upper bound
from a complicated quantum algorithm [BL11, Bel12] for k-distinctness that
makes O(n3/4−1/(2k+2−4)) = n3/4−Ω(1) that we won’t elaborate on here.
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