
Special Topics in Complexity Theory, Fall 2017. Instructor: Emanuele Viola

1 Part 1: Explicit, almost optimal ε-biased

sets. Lecturer: Matthew Dippel; Scribe:

Willy Quach

In this lecture we discuss explicit construction of ε-biased sets with almost
optimal support size.

Definition 1. ε-biased sets. A set S ⊆ {0, 1}n is ε-biased if for all linear
test a: ∣∣∣∣Pr

x∈S
[〈a, x〉 = 1]− Pr

x∈S
[〈a, x〉 = 0]

∣∣∣∣ ≤ ε.

In this lecture, we will focus on proving the following theorem:

Theorem 2. There is an explicit construction of an ε-biased set S ⊆ {0, 1}n
such that |S| = O

(
n

ε2+d

)
where d = o(1).

Note that we saw in class a construction an ε-biased set S with |S| =

O
(
n
ε2

)
. Also, the size of any ε-biased set is lower bounded by Ω

(
n

ε2 log 1/ε

)
.

The basic idea is the following fact:

Claim 3. If S is ε-biased, then for all k ≥ 1, the sum of k i.i.d samples from
S is εk-biased.

This is not enough to give an explicit construction by itself, as the support
size grows roughly exponentially with k.

The idea is to leverage this fact, but using pseudorandomness for the
samples. More precisely, we will start with some ε0-biased set S for some
constant ε0, and map the elements of S onto the nodes of an expander graph
(recall that taking a somewhat short random walk over an expander graph
leads to a distribution close to uniform over the vertices of the graph). Then,
we hope that the sum of the elements seen while randomly walking through
the graph is a good ε-biased set.

More precisely, (long) random walks on expanders are good parity sam-
plers: for any linear test a, define Ba = {v ∈ V | 〈a, v〉 = 1}. Then:

|Pr[ The walk hits Ba an odd number of times ]− 1/2| ≤ ε
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.
Note that this is better than drawing t-wise independent samples (where

t is the length of the random walk). Indeed, setting such a v such that∑t
i=0 vi = 0 implies that

∑t
i=0〈a, vi〉 = 0 for all linear test a (and therefore

fails the parity test).

The main idea is the following: take G to be an expander graph, such
that we map the elements of S onto its vertices. If its degree is too large,
then sampling a random walk on G costs too much. Instead, we consider
another expander H whose vertices correspond to edges connected to a fixed
vertex in G; in other words, the number of vertices in H is the degree of G,
and each vertex of H corresponds to a next edge to take for the walk in G.
Therefore, a random walk on H induces a random walk on G as well (again,
where the vertex reached on H defines the next step to take on G). If the
degree of H is much less than the degree of G, this allows to have a much
smaller support; and one can hope that if H is an expander, then the random
on G actually achieves the desired properties.

More formally, we consider an expander G = (N1, D1, λ1) (where N1 is
the number of vertices, D1 the degree, and λ1 = max{λ2(G), λn(G)}), and
H = (N2, D2, λ2) where N2 = Ds

1 for some parameter s (think of s as a
large constant). In particular, each vertex of H can be viewed as a list of
s elements in [D1]. Then, any random walk on H induces a deterministic
walk on G in the following way: to take the `th step, take a step on G where
the edge is determined by the ` mod s-th element of the current edge in H
(again, this element is an element in [D1], so it defines an edge going out the
current vertex in G), and then take a step on H. Intuitively, this corresponds
to apply the procedure described above, with s parallel copies of H.

Such a construction allows to get the following parameters(on input n,

ε): Take d = Θ

((
log log 1/ε
log 1/ε

)1/3)
, and H such that s = 1/d, D2 = s4s (for

instance H can be taken to be the Cayley Graph over Zlog |D2|
2 ; the initial

distribution is an ε0-biased distribution with support size O(n/ε20), with ε0 =
1/D2. Take G to be a Ramanujan expander with D1 = O(1/λ21), N1 ≈ |S|.
Then it suffices to consider a random walk of length t, where t is the smallest
integer such that λ

(1−4d)(1−d)t
2 ≤ ε (and in particular t ≥ 1/d2).

Let us show how such a random walk allows to reduce the bias, even in
the case when we do not use an outer graph H. The main idea is to express
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the bias of the resulting distribution using linear algebra.
We start with a ε0-biased distribution overG (say, that ε0 is a constant, for

simplicity). Suppose N1 is such that N1 ∈ [(1−β)n, n] or N1 ∈ [(1−β)2n, 2n]
for some small constant β. We sample a random walk of length t. Let α be
a best linear distinguisher for the resulting distribution, and define:

Sb = {v ∈ N1 | 〈α, v〉 = b}, and Πb to be the projection on Sb, where
b ∈ {0, 1}. Let Π = Π0 − Π1. Let Υ be the resulting distribution of the
random walk. Let peven(S1) (respectively podd(S1)) be the probability that
the random walk visits S1 an even (respectively odd) number of times. Let
1 be the unit vector colinear with (1, . . . , 1).

Theorem 4.
We have:

1. Bias(Υ) = |peven(S1)− podd(S1)|;

2. peven(S1)− podd(S1) =
∑

b0...bt∈{0,1}(−1)
∑
bi1TΠbtG · · ·Πb1GΠb01;

3. peven(S1)− podd(S1) = 1T (ΠG)tΠ1;

4. ‖(ΠG)2‖ ≤ ε0 + 2β + 2λ;

5. Bias(Υ) ≤ (ε0 + 2β + 2λ)bt/2c.

We prove item 4: if v is of norm 1, we can write v = v|| + v⊥ along
Span(1) and its orthogonal, such that Gv|| = v|| = ‖v||‖1. Then:

‖(ΠG)2‖ ≤ ‖(ΠG)2v‖ ≤ ‖(ΠG)2v||‖+ ‖(ΠG)2v⊥‖,
≤ ‖v||‖‖ΠGΠ1‖+ ‖PiGΠ‖‖Gv⊥‖,
≤ ‖ΠG(Π1)||‖+ ‖ΠG(Π1)⊥‖+ ‖Gv⊥‖,
≤ ‖Π1||‖+ 2λ.

Then, note that ‖Π1||‖ = |〈Π1,1〉| =
∣∣∣ |S0|−|S1|

N1

∣∣∣. As the initial distribution

Υ0 is ε0 biased and we removed at most βn elements we have:

||S0| − |S1|| ≤
1 + ε0

2
n− (

1− ε0
2

n− βn) ≤ (ε0 + 2β)N1.
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2 Part 2: Quadratic Time Hardness of the

Longest Common Subsequence Problem. Lec-

turer: Tanay Mehta

Let us focus on Fine-Grained Complexity, which mainly establishes lower
bounds on the hardness of problems in P (assuming the hardness of a few
problems).

The main conjectured hard problems in fine-grained complexity are the
following:

• 3SUM: given a set in S ⊂ [−n3, n3] of size n, find three elements a, b, c
such that a+ b = c. Its conjectured hardness is n2−o(1) time.

• APSP (All Pairs Shortest Paths): given a weighted graph G, compute
the (weighted) distance between all pairs of vertices. Its conjectured
hardness is n3−o(1) time.

• OV (Orthogonal Vectors): given two sets U, V of vectors in {0, 1}d,
decide if there exists u ∈ U, v ∈ V such that 〈u, v〉 = 0. Its conjectured
hardness is n2−o(1) time for d = ω(log n) (and is in general ≈ n2d).

Interestngly, the hardness of OV is implied by the Strong Exponential
Time Hypothesis (SETH).

Definition 1. The Strong Exponential Time Hypothesis states that:

∀ε > 0, ∃k, k-SAT requires 2(1−ε)n time.

Claim 2. Assuming SETH, OV requires Ω(n2d) time to solve.

The reduction from k−SAT to OV is surprisingly simple: given a SAT
instance φ on n variables and m clauses, split the variables into two disjoint
sets A, B of size n/2, and define :

U = {~u ∈ {0, 1}m, ~ui = 0 if and only if the ith clause is satisfied by some
partial assignment a ∈ A},

V = {~v ∈ {0, 1}m, ~vi = 0 if and only if the ith clause is satisfied by some
partial assignment b ∈ B}.

4



Then φ is satisfiable if and only if there is a pair of orthogonal vectors
across U, V (were each contains 2n/2 vectors, one for each possible partial
assignment in A and B, respectively).

In the following, we will be more interested in an extension of the OV
problem:

Definition 3. The Most-OV problem consists in, given an integer r, and
two sets U, V ∈ ({0, 1}d)n of n vectors of dimension d, decide if there exists
u ∈ U, v ∈ V such that 〈u, v〉 ≤ r.

Recall that a subsequence of some string z = z1 . . . zn is a string zi1 . . . zik
where {ij}j is an increasing sequence of integers. In particular, a subsequence
does not necessarily consist in consecutive letters in the original string.

Definition 4. The Longest Common Subsequence (LCS) problem consists
in, given two strings P1, P2 of length n over some alphablet Σ, compute the
length of their Longest Common Subsequence.

We will prove the following theorem:

Theorem 5. If there exists some ε > 0 such that LCS over an alphabet
of size 7 can be solved in O(n2−ε) time, then Most-OV can be solved in
O(n2−εd) time.

We will next sketch the proof of the theorem.
Define Weighted LCS (WLCS) to be the LCS problem with weights on

the elements of the alphabet; the goal is then to maximize the weight of a
common subsequence. Note that WeightedLCS reduces to LCS: if α ∈ Σ has
weight w, simply define a morphism that maps α to αw.

Therefore, it suffices to reduce Most-OV to Weighted LCS.
Let {α}[n], {β}[n] be a Most-OV instance, and let Σ = {0, . . . , 6}.
Define the following Coordinate Gadgets:

CG1(α, i) =

{
5465 if αi = 0
545 otherwise

;

CG2(β, i) =

{
5645 if βi = 0
565 otherwise

,

and define weights w(5) = X := 100d, w(4) = w(6) = 1.

Note that: WLCS(CG1(α, i), CG2(β, i)) =

{
2X + 1 if αiβi = 0
2X otherwise

.
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Define now the following Vector Gadgets:

V G1(α) = 1 ◦ ◦di=1.CG1(α, i),

V G2(β) = ◦di=1.CG2(β, i) ◦ 1,

with weight w(1) = A := (r + 1)2X + (d− (r + 1))(2X + 1).

Claim 6. If 〈α, β〉 ≤ r, then:

WLCS(V G1(α), V G2(β)) ≥ A+ 1 = r · 2X + (d− r)(2X + 1).

The claim above follows directly from the construction.

Claim 7. If 〈α, β〉 > r, then:

WLCS(V G1(α), V G2(β)) = A.

To see this, note that 1 is a common subsequence, so that the WLCS is at

least A.
Furthermore, if 1 is not taken in the subsequence we can assume without

loss of generality that the 5’s map to each other as letters in the subsequences,
and at least r + 1 letters in between that match, with weight 1 each. The
inequality follows.

We can now build the sequences for the WLCS problem. Define:

P2 = 3◦
(
◦n−1i=1 (0 ◦ V G2(1

d) ◦ 2 ◦ 3)
)
◦
(
◦n−1i=1 (0 ◦ V G2(β

i) ◦ 2 ◦ 3)
)
◦
(
◦ni=1(0 ◦ V G2(1

d) ◦ 2 ◦ 3)
)

;

P1 := 3|P2| ◦ (◦ni=1(0 ◦ V G1(α
i) ◦ 2)) ◦ 3|P2|,

with weights w(3) = A2 and w(0) = w(2) = A4.
With some additional work, one can show that P1 and P2 have their

WLCS greater than n · (2A4 + A) + 2nA2 if and only if there are no vectors
in {α}[n], {β}[n] with inner product less than r.
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