
Theory of Computation, Spring 2012 Solutions to Problem Set 3

Problem 1: [Sipser] 1.21

part (a): Multiple solutions are possible, depending on the order in which states are elimi-
nated. Eliminating states 1 and 2 in order yields the following regular expression:

a
∗
b(a ∪ ba

∗
b)∗.

part (b): Multiple solutions are possible, depending on the order in which states are elimi-
nated. Eliminating states 1, 2, and 3 in order yields the following regular expression:

ǫ ∪ (a ∪ b)a∗b
(

(b ∪ a(a ∪ b))a∗b
)∗
(ǫ ∪ a)

Problem 2: [Sipser] 1.29(b)

For the sake of contradiction, assume that the language is regular. The Pumping Lemma
must then apply; let k be the pumping length. Consider the string w = a

k
ba

k
ba

k
b ∈ A2.

Since |w| ≥ k, it must be possible to split w into three pieces xyz satisfying the conditions
of the Pumping Lemma. In any legal split xyz = w, it must be the case that |xy| ≤ k.
Therefore, y must contain only a symbols. Now consider the string xyyz. The string xyyz is
of the form a

k+|y|
ba

k
ba

k
b, and since |y| > 0, this string is no longer an element of A2. Thus,

the Pumping Lemma is violated, and the language in question cannot be regular.

Problem 3: Use the pumping lemma for regular languages to show that the fol-
lowing language is not regular: L = {ai bj | i > 3j}.

For the sake of contradiction, assume that the language is regular. The Pumping Lemma
must then apply; let k be the pumping length. Consider the string w = a

3k+1
b
k ∈ L. Since

|w| ≥ k, it must be possible to split w into three pieces xyz satisfying the conditions of the
Pumping Lemma. In any legal split xyz = w, it must be the case that |xy| ≤ k. Therefore,
y must contain only a symbols. Now consider the string xz, which is obtained by pumping
down, i.e. setting i = 0 in the statement of the Pumping Lemma. The string xz is of the form
a
3k+1−|y|

b
k, and since |y| > 0, this string is no longer an element of L. Thus, the Pumping

Lemma is violated, and the language in question cannot be regular.



Problem 4: [Sipser] 2.4 (b), (c), (e)

part (b): A valid regular expression for this language is (0Σ∗0) ∪ (1Σ∗1) ∪ ε. We can
construct a context-free grammar for this language as follows.

S → 0A0 | 1A1 | ε ⊲ Generates (0Σ∗0) ∪ (1Σ∗1) ∪ ε.
A → 0A | 1A | ε ⊲ Generates Σ∗.

part (c): A valid regular expression for this language is (ΣΣ)∗Σ. We can construct a
context-free grammar for this language as follows.

S → AAS | A ⊲ Generates (ΣΣ)∗Σ.
A → 0 | 1 ⊲ Generates Σ.

part (e): All strings in this language are of the form xxR, x0xR, or x1xR for some string
x ∈ Σ∗. We can construct a context-free grammar for this language as follows.

S → 0S0 | 1S1 | 0 | 1 | ǫ

Problem 5: [Sipser] 2.9

All strings in this language are of the form a
n
b
n
c
∗ or a

∗
b
n
c
n for some n ≥ 0. We can

construct a context-free grammar for this language as follows.

S → EC | AD ⊲ Generates anbnc∗ ∪ a
∗
b
n
c
n.

E → aEb | ε ⊲ Generates anbn.
D → bDc | ε ⊲ Generates bncn.
C → cC | ε ⊲ Generates c∗.
A → aA | ε ⊲ Generates a∗.

This grammar is ambiguous because the string abc has two distinct leftmost derivations.

S → EC → aEbC → abC → abcC → abc

S → AD → aAD → aD → abDc → abc

In fact, one can show that the context-free language in question is inherently ambiguous, i.e.,
that there cannot exist an unambiguous grammar for this language.

Problem 6: Consider the following CFG grammar: S → aSaS | aSa | ε. Show that
the grammar is ambiguous.

This grammar is ambiguous because the string aa has two distinct leftmost derivations.

S → aSaS → aaS → aa

S → aSa → aa


