‘ Theory of Computation, Spring 2012 Solutions to Problem Set 3 ‘

Problem 1: [Sipser] 1.21

part (a): Multiple solutions are possible, depending on the order in which states are elimi-
nated. Eliminating states 1 and 2 in order yields the following regular expression:

a*b(aUba™b)".

part (b): Multiple solutions are possible, depending on the order in which states are elimi-
nated. Eliminating states 1, 2, and 3 in order yields the following regular expression:

eU(aU b)a*b((b Ua(aU b))a*b)*(e Ua)

Problem 2: [Sipser] 1.29(b)

For the sake of contradiction, assume that the language is regular. The Pumping Lemma
must then apply; let k& be the pumping length. Consider the string w = a*ba*ba®b € A,.
Since |w| > k, it must be possible to split w into three pieces zyz satisfying the conditions
of the Pumping Lemma. In any legal split xyz = w, it must be the case that |zy| < k.
Therefore, y must contain only a symbols. Now consider the string xyyz. The string zyyz is
of the form a**'ba*ba’b, and since |y| > 0, this string is no longer an element of A,. Thus,
the Pumping Lemma is violated, and the language in question cannot be regular.

Problem 3: Use the pumping lemma for regular languages to show that the fol-
lowing language is not regular: L = {a’'b’ | i > 35}.

For the sake of contradiction, assume that the language is regular. The Pumping Lemma
must then apply; let k& be the pumping length. Consider the string w = a®**!'b* € L. Since
|w| > k, it must be possible to split w into three pieces zyz satisfying the conditions of the
Pumping Lemma. In any legal split xyz = w, it must be the case that |zy| < k. Therefore,
y must contain only a symbols. Now consider the string xz, which is obtained by pumping
down, i.e. setting ¢ = 0 in the statement of the Pumping Lemma. The string zz is of the form
a¥#+1-Wlbk and since |y| > 0, this string is no longer an element of L. Thus, the Pumping
Lemma is violated, and the language in question cannot be regular.

Problem 4: [Sipser] 2.4 (b), (c), (e)

part (b): A valid regular expression for this language is (0X*0) U (1¥*1) Ue. We can
construct a context-free grammar for this language as follows.

S — 0A0| 1Al ¢ > Generates (0X*0) U (1X*1) Ue.
A — 0A|1A]« > Generates X*.

part (c): A valid regular expression for this language is (XX)*¥X. We can construct a
context-free grammar for this language as follows.

S — AAS|A > Generates (XX)*X.
A — 0|1 > Generates X.

R R

part (e): All strings in this language are of the form xz®, x0z%, or x12® for some string
x € ¥*. We can construct a context-free grammar for this language as follows.

S —050[1S1|0|1]e€

Problem 5: [Sipser| 2.9

All strings in this language are of the form a"b"c* or a*b"c” for some n > 0. We can
construct a context-free grammar for this language as follows.

S — EC|AD > Generates a"b"c* U a*b"c".
E — aFb|e > Generates a"b".

D — bDc|e > Generates b"c".

C — cCle > Generates c*.

A — aAle > Generates a*.

This grammar is ambiguous because the string abc has two distinct leftmost derivations.
S — EC — abEbC — abC — abcC — abc

S —- AD — aAD — aD — abDc — abc

In fact, one can show that the context-free language in question is inherently ambiguous, i.e.,
that there cannot exist an unambiguous grammar for this language.

Problem 6: Consider the following CFG grammar: S — aSaS | aSa | . Show that
the grammar is ambiguous.

This grammar is ambiguous because the string aa has two distinct leftmost derivations.

S — aSaS — aaS — aa

S — aSa — aa

