
Towards Polynomial Lower Bounds for Dynamic Problems

Mihai Pǎtraşcu
AT&T Labs

ABSTRACT
We consider a number of dynamic problems with no known
poly-logarithmic upper bounds, and show that they require
nΩ(1) time per operation, unless 3SUM has strongly sub-
quadratic algorithms. Our result is modular:

1. We describe a carefully-chosen dynamic version of set
disjointness (the multiphase problem), and conjecture that

it requires nΩ(1) time per operation. All our lower bounds
follow by easy reduction.

2. We reduce 3SUM to the multiphase problem. Ours
is the first nonalgebraic reduction from 3SUM, and allows
3SUM-hardness results for combinatorial problems. For in-
stance, it implies hardness of reporting all triangles in a
graph.

3. It is plausible that an unconditional lower bound for
the multiphase problem can be established via a number-on-
forehead communication game.

Categories and Subject Descriptors
F.1.3 [Complexity Measures and Classes]: Reducibility
and completeness; E.1 [Data]: Data Structures

General Terms
Algorithms, Performance, Theory

Keywords
3SUM, dynamic data structures, lower bounds

1. INTRODUCTION

1.1 Dynamic Problems
Consider the following problems in the field of dynamic

data structures:

dynamic reachability [7, 11, 12, 17, 18]
Maintain a directed graph G under:

• insertions and deletions of edges;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’10, June 5–8, 2010, Cambridge, Massachusetts, USA.
Copyright 2010 ACM 978-1-4503-0050-6/10/06 ...$10.00.

• reachability queries (is there a directed path from
u to v?).

dynamic shortest paths [6, 21]
Maintain an undirected graph G, under:

• insertions and deletions of edges;

• queries for the length of the shortest path from u
to v.

subgraph connectivity [4, 5]
Preprocess an undirected graph G, and support:

• node updates: turn a node on/off;

• connectivity queries (is there a path of on nodes
from u to v?).

Langerman’s problem. Maintain an array A[1 . . n] of in-
tegers under:

• value updates, A[i] = x;

• searching for a zero partial sum (is there a k such

that
∑k
i=1 A[i] = 0 ?).

Pagh’s problem. Motivated by information retrieval ap-
plications that employ set intersection queries on in-
verted lists, this problem asks to preprocess a family
of sets X1, X2, · · · ⊆ [n] and support:

• create a new set Xnew = Xi ∩Xj , where Xi and
Xj remain intact;

• a query whether some element z belongs to some
set Xi.

Erickson’s problem. Preprocess a matrix of integers, and
support:

• increment all values in a specified row or column;

• queries for the maximum value in the matrix.

(The last problems were communicated to us by Stefan
Langerman, Rasmus Pagh, and Jeff Erickson, respectively.)

For the sake of uniformity, let N denote the number of
bits needed to describe the current state, in all problems.
These problems do not currently have solutions running in
time polylog(N) per operation, with N ·polylog(N) prepro-
cessing (where appropriate). In some cases, it is generally
accepted that polylogarithmic solutions are impossible, and
we would like lower bounds to formally prove it. In others,
polylogarithmic solutions remain an intriguing open ques-
tion.

Unfortunately, the current state of the art in dynamic
lower bounds means that that any progress on these prob-
lems can only come from the upper bound side. Indeed, the

highest known dynamic lower bound in the cell-probe model
remains Ω(lgN), for any explicit problem [16].

1.2 The Multiphase Problem
Our first contribution is an easy criterion for arguing that

a problem may not admit solutions in polylogarithmic time.
Let us define the following multiphase problem, which is es-
sentially a dynamic version of set disjointness:

Phase I. We are given k sets, S1, . . . , Sk ⊂ [n]. We may
preprocess the sets in time O(nk · τ).

Phase II. We are given another set T ⊆ [n], and have time
O(n ·τ) to read and update memory locations from the
data structure constructed in Phase I.

Phase III. Finally, we are given an index i ∈ [k] and must,
in time O(τ), answer whether Si is disjoint from T .

Observe that the sizes of the sets are not prescribed (ex-
cept that |Si|, |T | ≤ n). The input in Phase I consists of
O(n · k) bits, the input of Phase II of O(n) bits, and the in-
put of Phase III of O(lgn) bits (one word in the Word RAM
model). Thus, the running time allowed in each phase is
proportional to the maximum input size in that phase, with
τ as the proportionality factor. We set forth the following
conjecture about the hardness of the multiphase problem,
expressed in terms of our unifying parameter τ .

Conjecture 1. There exist constants γ > 1 and δ > 0
such that the following holds. If k = Θ(nγ), any solution
to the multiphase problem in the Word RAM model requires
τ = Ω(nδ).

We briefly motivate the setting of parameters in the con-
jecture. Certainly, τ ≤ n, since Phase III can simply exam-
ine all the elements of Si and T . Furthermore, it seems some-
what questionable to assume anything beyond τ = Ω(

√
n),

since the conjecture would fail for random sets (as sets of
density much higher than

√
n intersect with high probabil-

ity). We only assume τ = Ω(nδ) for generality.
The conjecture is safer for k � n · τ . Indeed, Phase II

can try to compute the intersection of T with all sets Si (a
boolean vector of k entries), making Phase III trivial. This
is achieved naively in time O(k ·n), but faster algorithms are
possible via fast matrix multiplication. However, if Phase II
only has time n · τ � k, it cannot hope to output a vector
of size k with all answers.

On the other hand, we do not want k to be too high: we
ask that k ≈ nγ , since we want a polynomial lower bound in
terms of the total input size (that is, we need nδ = (kn)Ω(1)).

Implications. The value of this conjecture lies in the easy
reductions from it to the problems listed in Section 1.1. In
particular, we obtain:

Theorem 2. If the multiphase problem is hard (in the
sense of Conjecture 1), then for every problem listed in §1.1,
there exists a constant ε > 0 such that the problem cannot
be solved with o(Nε) time per operation and o(N1+ε) pre-
processing time.

Proof sketch. The proof appears in Appendix A. Here,
we briefly illustrate the ease of these reductions by proving
the hardness of Erickson’s problem.

Assume we have a fast data structure for this problem. To
construct a solution for the multiphase problem, each phase
runs as follows:

I. The data structure is asked to preprocess a matrix M
of k × n boolean values, where M [i][j] = 1 iff j ∈ Si.

II. For each element j ∈ T , increment column j in M .

III. Given the index i, increment row i in M , and then ask
for the maximum value in the matrix. Report that Si
intersects T iff the maximum value is 3.

Observe that a maximum value of M [i][j] = 3 can only
happen if: (1) the element was originally one, meaning j ∈
Si; (2) the column was incremented in Phase II, meaning
j ∈ T ; (3) the row was incremented in Phase III, indicating
Si was the set of interest. Thus, M [i][j] = 3 iff Si ∩ T 6= ∅.

The input size for Erickson’s problem is O(nk) bits. If
the preprocessing is done in O((nk)1+ε) and each operation
is supported in O((nk)ε) time, then the running time in
the multiphase problem will be: O((nk)1+ε) for Phase I;
O(n · (nk)ε) in Phase II; and O((nk)ε) in Phase III. Thus,
we have a solution with τ = (nk)ε.

This contradicts Conjecture 1 for (γ + 1)ε < δ. Thus, we

have shown a lower bound of Ω
(
(nk)δ/(γ+1)

)
= Ω(Nδ/(γ+1))

for Erickson’s problem.

1.3 On 3SUM-Hardness
The 3SUM problem asks, given a set S of n numbers, to

find distinct x, y, z ∈ S such that x + y = z. The problem
can be solved easily in O(n2) time, and it is a long-standing
conjecture that this is essentially the best possible (see be-
low).

Just like progress on dynamic cell-probe lower bounds has
been too slow to impact many natural dynamic problems,
progress on lower bounds for offline algorithms (or, in partic-
ular, circuit lower bounds) is unlikely to answer many of our
pressing questions very soon. Instead, it would be of great
interest to argue, based on some widely-believed hardness
assumption, that natural algorithmic problems like finding
maximum flow or computing the edit distance require su-
perlinear time.

The 3SUM conjecture is perhaps the best proposal for this
hardness assumption, since it is accepted quite broadly, and
it gives a rather sharp lower bound for a very simple problem
in the low regime of polynomial time. Unfortunately, the
hope of using 3SUM appears too optimistic when contrasted
with the current state of 3SUM reductions.

Gajentaan and Overmars [10] were the first to use 3SUM
hardness to argue Ω(n2) lower bounds in computational ge-
ometry, for problems such as finding 3 collinear points, min-
imum area triangle, separating n line segments by a line,
determining whether n rectangles cover a given rectangle,
etc. Subsequently, further problems such as polygon con-
tainment [3] or testing whether a dihedral rotation will cause
a chain to self-intersect [20] were also shown to be 3SUM-
hard.

All these reductions talk about transforming the condi-
tion x + y = z into some geometric condition on, e.g., the
collinearity of points. Formally, such reductions work even
in an algebraic model, morphing the 3SUM instance into an
instance of the other problem by common arithmetic. By
contrast, we would like reductions to purely combinatorial
questions, talking about graphs, strings, etc. Such problems

may not even have numbers in them, so the reductions must
be nonalgebraic. In this paper, we give the first examples of
such nonalgebraic reductions, which use hashing (and thus,
must assume finite precision numbers, i.e. the Word RAM
model).

Most interestingly, we prove that the multiphase conjec-
ture is implied by the hardness of 3SUM, which can be con-
sidered as very significant evidence in favor of our new con-
jecture. The following is shown in Section 2:

Theorem 3. Under the 3SUM conjecture, the multiphase
problem with k = Θ(n2.5) requires τ ≥ n0.5−o(1) on the Word
RAM.

Combining this with Theorem 2, one can shortcut our
multiphase conjecture entirely, and obtain conclusions of the
form: “solving Erickson’s problem in O(N1/7−ε) time per
operation is 3SUM-hard.” Pending an unconditional proof
of the multiphase conjecture, we believe 3SUM-hardness is
a very satisfactory indication of hardness for our dynamic
problems.

Our new reduction technique from 3SUM also leads to a
few results outside the realm of data structures:

Theorem 4. In a weighted graph with m edges, finding
a triangle of prescribed weight in O(m1.5−ε) time is 3SUM-
hard.

Theorem 5. In a graph with m edges, reporting m tri-
angles in O(m4/3−ε) time is 3SUM-hard.

Theorem 4 is a direct improvement over a recent result of
Vassilevka and Williams [23], which showed that it is 3SUM-
hard to find a triangle of a given weight in O(n2.5−ε) time,
when m = Θ(n2). Our result implies O(n3−ε) for dense
graphs, thus ruling out the possibility of any improvement
via matrix multiplication. This improved result hinges on
the first innovation in our 3SUM reductions (a certain con-
volution version of 3SUM).

With regards to Theorem 5, we observe that testing whether

a graph contains a triangle can be done in Õ(m4/3) time, as-

suming Fast Matrix Multiplication in Õ(n2) time. (While
such an algorithm for matrix multiplication is not known
at present, it seems unlikely that 3SUM-hardness could be
used to rule it out.) It would be very interesting to extend
the lower bound of Theorem 5 to the computationally-easier
case of testing.

Clarification of the 3SUM conjecture. To formalize this
conjecture in the RAM model, which is of interest to us, we
assume the set S consists of n integers from {−u, . . . , u},
where the word size is O(lg u). In this model, the problem

can be solved in O(n2 · lg
2 lgn

lg2 n
) expected time [2]. (Note that

the model allows word-level parallelism on lgn bits, and the
algorithm essentially saves a factor of lg2 n, confirming the
quadratic nature of 3SUM.)

For maximal generality, we will assume that 3SUM re-
quires n2−o(1) time. One may also choose to assume an
n2/ lgO(1) n lower bound, with corresponding improvements
in the lower bounds that 3SUM-hardness implies. Since
our reductions will be randomized, we must assume that
3SUM requires n2−o(1) expected running time for zero-error
algorithms. It is also possible to build a theory based on

bounded-error hardness, with minor technical complications
in the proofs.

For a bounded universe u, 3SUM may also be solved in
O(u lg u) time by the Fast Fourier Transform, so the conjec-
ture can only hold for large enough u. Using the techniques
of [2], one can show that for u � n3, it is possible to hash
down the universe to O(n3), while maintaining the expected
running time. (This only applies to the version where a so-
lution must be reported, but the search version is equivalent
to the decision version up to a logarithm.) Thus, the Word
RAM version of the 3SUM conjecture need only talk about
a universe of u = O(n3).

We say obtaining a specified time bound for a problem is
“3SUM-hard” if doing so would violate the following:

Conjecture 6 (3SUM-hardness). In the Word RAM
model with words of O(lgn) bits, any algorithm requires

n2−o(1) time in expectation to determine whether a set S ⊂
{−n3, . . . , n3} of |S| = n integers contains a triple of dis-
tinct x, y, z ∈ S with x+ y = z.

While this conjecture appears to be widely accepted, for-
mal evidence in its favor is circumstantial. Erickson [9]
showed that 3SUM requires Ω(n2) time in a restricted class
of algebraic decision trees; see also [1] for improvements in
this model. Recently, [15] showed that the d-SUM problem

requires time nΩ(d), unless k-SAT can be solved in 2o(n) time
for any constant k. While this result does not imply any-
thing for 3SUM, it demonstrates that the complexity must
eventually grow as d-SUM-hardness would predict.

1.4 An Attack on the Multiphase Conjecture
The statement of the multiphase problem meets three in-

dependent goals: (1) it is easy give reductions to most dy-
namic problems; (2) hardness can be proved conditionally,
based on 3SUM-hardness; (3) there is a plausible attack on
an unconditional proof of the conjecture. We now give de-
tails on the final goal: we describe a 3-party number-on-
forehead communication game, the analysis of which would
lead to a lower bound for the multiphase problem.

The three players have the following information on their
foreheads (i.e. they can see the information on the foreheads
of the other players, but not their own):

Alice: an index i ∈ [k].

Bob: a family of sets S1, . . . , Sk ⊆ [n].

Carmen: a set T ⊆ [n].

The goal of the communication is to decide whether Si ∩
T = ∅. The communication proceeds as follows. First, Alice
sends a message of n ·M bits privately to Bob; thereafter,
Alice is silent. Bob and Carmen engage in bidirectional com-
munication, taking a total of M bits, and announce the an-
swer at the end.

Conjecture 7. There exist constants γ > 1 and δ > 0
such that the following holds. For k = Θ(nγ), any solution
to the 3-party communication problem requires M = Ω(nδ).

Observe that it is essential that Alice’s message is sent
privately to Bob. As the message contains more than n
bits, it could describe the entire set T . If Carmen saw it,

she would know the entire input, and could announce the
result with no further communication.

One must also ensure that γ > 1 + δ. Otherwise, Alice’s
message would have n·M ≥ k bits, and could include a k-bit
vector specifying whether Si intersects T , for all i. Then,
Bob could immediately announce the answer.

Finally, it is essential that Alice only speak in the begin-
ning. Otherwise, Bob or Carmen could announce the O(lg k)
bits of input on Alice’s forehead, and Alice would immedi-
ately announce the result.

It is easy to see that a strong lower bound of this communi-
cation game would imply a strong version of the multiphase
conjecture:

Observation 8. Conjecture 7 implies Conjecture 1. This
holds even in the stronger cell-probe model, and even if Phase
I is allowed unbounded time.

Proof. We assume a solution for the multiphase con-
jecture, and obtain a communication protocol. Alice sees
S1, . . . , Sk and T , and thus can simulate the actions of Phase
I and Phase II. Her message describes all cells written dur-
ing Phase II, including their addresses and contents. This
takes n ·M = O(nτw) bits, where w is the word size.

Subsequently, Bob will execute the actions of the algo-
rithm in Phase III. For every cell read, he first tests whether
it was included in the message from Alice. If not, he com-
municates the address (w bits) to Carmen.

Carmen sees S1, . . . , Sk and can thus simulate Phase I.
Therefore, she knows that contents of all cells written during
Phase I, and can reply to Bob with the contents of all cells
he wants to read.

In total, Bob and Carmen communicate M = O(τw) bits.
Assuming w = O(lgn), an Ω(nδ) lower bound on M implies

an Ω(nδ
′
) lower bound on τ .

Relation to other communication problems. The formu-
lation of our communication game is inspired by the round
elimination lemma [13, 19]. In this two-player setting, Alice
receives S1, . . . , Sk and Bob receives T and i ∈ [k]. Alice be-
gins by sending a message of o(k) bits. Then, it is possible
to prove that the message can be eliminated, while fixing
i in a way that increases the error of the protocol by o(1).
The idea is that the message can be fixed a priori. Alice
will receive only the relevant Si, and she will manufacture
S1, . . . Si−1, Si+1, . . . , Sk in a way that makes the fixed mes-
sage be correct. This is possible with probability 1 − o(1),
as the message only contains o(1) bits of information about
Si.

Unfortunately, in our 3-party setting, the initial message
of o(k) bits may depend on both the inputs of Bob and
Carmen. Thus, Carmen cannot, by herself, manufacture a
vector of Sj ’s (j 6= i) that is consistent with the message.
However, the information theoretic intuition of the lemma
holds, and it is conceivable that the message of Alice can
be eliminated in a black-box fashion for any communication
problem of the appropriate direct-sum structure:

Conjecture 9. Consider a 3-party number-on-forehead
game in which Alice holds i ∈ [k], Bob holds y1, . . . , yk ∈ Y,
and Carmen holds x ∈ X . The goal is to compute f(x, yi),
for some arbitrary f : X × Y → {0, 1}.

If there is a protocol in which Alice begins with a private
message to Bob of o(k) bits, followed by M bits of bidirec-

tional communication between Bob and Carmen, then the
2-party communication complexity of f is O(M).

In general, number-on-forehead communication games are
considered difficult to analyze. In particular, the asymmetric
setup in our problem appears similar to a 3-party communi-
cation game proposed by Valiant [22, 14]. A strong enough
lower bound on Valiant’s game would rule out linear-size,
logarithmic-depth circuits for some explicit problems. For-
tunately, our game may be easier to analyze, since we are
satisfied with much weaker bounds (in Valiant’s setting, even
an Ω(n1−ε) lower bound would not suffice).

2. USING 3SUM HARDNESS

2.1 Convolution 3SUM
The first issue that we must overcome for effective use of

3SUM hardness is the following “gap” in the problem’s com-
binatorial structure: the test x+y = z must be iterated over(
n
3

)
triples, yet the (tight) lower bound is only quadratic.

We define the Convolution-3SUM problem as follows: given
an array A[1 . . n], determine whether there exist i 6= j with
A[i] + A[j] = A[i + j]. Observe that this problem has a
much more rigid structure, as the predicate is only evalu-
ated O(n2) times. Another way to highlight the additional
structure is to note that Convolution-3SUM obviously has
an O(n2) algorithm, whereas this is less obvious for 3SUM.

Theorem 10. If 3SUM requires Ω(n2/f(n)) expected time,
Convolution-3SUM requires Ω

(
n2/f2

(
n·f(n)

))
expected time.

In particular, if 3SUM requires n2−o(1) time, then so does
Convolution-3SUM. Furthermore, if 3SUM requires n/ lgO(1) n
time, so does Convolution-3SUM. As an immediate appli-
cation of this result, we mention that plugging it into the
reduction from [23] to finding a given-weight triangle, one
immediately obtains our improved bound from Theorem 4.

Proof. Our reduction from 3SUM to Convolution-3SUM
is the first point of departure from algebraic reductions: we
will use hashing. Conceptually, our idea is fairly simple.
Assume that we had some injective hash map h : S → [n],
which is linear in the sense h(x) + h(y) = h(z). Then,
we could simply place every 3SUM element x ∈ S into the
location A[h(x)]. If there exist x, y, z ∈ S with x + y = z,
then h(x) + h(y) = h(z) and therefore A[h(x)] + A[h(y)] =
A[h(x) + h(y)]. Thus, the triple will be discovered by the
Convolution-3SUM algorithm (no false negatives). On the
other hand, there are clearly no false positives, since the
array A is filled with elements from S, so any A[i] +A[j] =
A[k] is a valid answer to 3SUM.

Unfortunately, we do not have linear perfect hashing. In-
stead, we use a family of hash functions introduced by Di-
etzfelbinger [8]. The hash function is defined by picking
a random odd integer a on w bits, where w is the machine
word size. To obtain values in range {0, . . . , 2s−1}, the hash
function multiplies x by the random odd value a (modulo
2w) and keeps the high order s bits of the result as the hash
code. In C notation, the word x is mapped to (unsigned)

(a*x) >> (w-s).
This function was also used in the upper bound for 3SUM

[2], where the following crucial properties were shown:

almost linearity: For any x and y, either h(x) + h(y) =
h(x + y) (mod 2s), or h(x) + h(y) + 1 = h(x + y)

(mod 2s). This property follows because a · x+ a · y =
a · (x + y) (mod 2w), and chopping off the low order
w − s bits can at most generate an off-by-one error,
losing the carry.

few false positives: By the above, we declare that x+y =
z with good probability if they pass the test h(z) ∈
h(x)+h(y)+{0, 1} (mod 2s). The probability of pass-
ing the test for any x+ y 6= z is O(1/2s).

good load balancing: Assume that we place n items into
R = 2s buckets using a random function from the fam-
ily. The average load of a bucket is n/R. In expec-
tation, at most O(R) elements will reside in buckets
with load exceeding 3n

R
(buckets with three times the

expected load).

Let R = 2s = εn
f(n)

for a small enough constant ε > 0.

We place each value x from the 3SUM problem into bucket
h(x). By the load-balancing properties, at most O(R) el-
ements are expected to be in buckets with load exceeding
3n/R = O(f(n)). For each of these elements, we can, in
O(n) time, determine whether they participate in a solu-
tion to the 3SUM problem (see [2]). The expected running
time in dealing with high-load elements is thus O(εn

f(n)
· n),

which is less than half the time required by 3SUM, for small
enough ε.

It remains to deal with the buckets of load at most 3n/R =
O(f(n)). The idea is to formO(f3(n)) instances of Convolution-
3SUM on arrays of size O(R), which test all triplets of ele-
ments that may lead to a solution.

We iterate over all triples i, j, k ∈ {0, . . . , 3n/R}. For some
(i, j, k), we are looking for solutions x + y = z, where x is
the i-th element in its bucket, y the j-th element, and z the
k-th element. We map all elements to an array of size 8R.
From each bucket t ∈ [R], we map the i-th element to 8t+1,
the j-th element to 8t + 3, and the k-th element to 8t + 4.
The locations of the array that remain unfilled get the value
2(maxS) + 1, ensuring that they cannot participate in any
sum.

It is easy to check that the set of {1, 3, 4} has only one
solution to x+ y = z modulo 8. Thus, we cannot find false
positives involving a repeated element.

Unfortunately, we have some false-negative situations, stem-
ming from two sources. The first is modular arithmetic:
since Convolution-3SUM only checks for A[i] +A[j] = A[i+
j], it misses pairs where h(x) + h(y) ≥ R (a wrap-around
happens modulo R). To fix this, we double the array size,
including two identical copies. This simulates the wrap-
around effect.

The second reason we may miss a solution is the nonlin-
earity of the hash function: we miss triples x+ y = z which
nonetheless have h(z) = h(x) + h(y) + 1 (mod R). This is
easily fixed by, in addition to the above, trying instances
where h(x) is incremented by one. In other words, the i-th
element from bucket t is mapped to 8(t+ 1) + 1.

Overall, we run O(f3(n)) instances of Convolution-3SUM
on arrays of size O(n/f(n)). Since the lower bound on the
overall time is Ω(n2/f(n)), it follows that one cannot sup-

port such instances in o
((

n
f(n)

)2
/f2(n)

)
time.

2.2 Hardness of Reporting Triangles
We now describe the following reduction from Convolution-

3SUM to reporting triangles in a graph.

Lemma 11. Assume Convolution-3SUM requires Ω(n2/f(n))
expected time, and let R be:

ω
(√

n · f(n)
)
< R < o

(
n/f(n)

)
.

Then, Ω(n2/f(n)) expected time is needed to report O(n2/R)
triangles in a tripartite graph where:

• the three parts are A,B,C, of sizes |A| = |B| = R
√
n

and |C| = n;

• each vertex in A ∪B has O(n/R) neighbors in C;

• there are O(nR) edges in A×B.

This reduction is parametrized by R for the sake of our
later reduction to the multiphase problem. To derive hard-
ness of triangle reporting (Theorem 5), we simply assume

f(n) = no(1) as per the 3SUM conjecture, and set R =

n0.5+o(1). Our graph will have O(R
√
n) = n1+o(1) vertices,

m = O(nR + n
R
· R
√
n) = n1.5+o(1) edges, and O(n

2

R
) =

o(n1.5) triangles. We obtain a lower bound of n2−o(1) =

m4/3−o(1).

Proof. We being by applying linear hashing to every
value in the Convolution-3SUM problem. Unlike our pre-
vious reduction, however, we now use a hash range [R] with
R � n. Thus, the linear hashing only acts as a filter. By
the filter property of the hash family, for any triple with
x + y 6= z, Pr[h(x) + h(y) = h(z) (mod R)] = O(1

R
). Since

Convolution-3SUM is concerned with O(n2) different triples
(of the form A[i], A[j], A[i+ j]), in expectation we will have
O(n2/R) false positives.

For some x ∈ {0, . . . , R − 1}, let the bucket of x be
B(x) = {i ∈ [n] | h(A[i]) = x}. By the load balancing
property of the hash family, the buckets with more than 3n

R
elements only contain a total of O(R) elements in expecta-
tion. For each such element z, run the linear-time algorithm
to test whether there exist x, y with x+y = z. The expected
running time is O(nR), a lower-order term.

From now on, we may assume that all buckets haveO(n/R)
elements. To solve Convolution-3SUM, proceed as follows:

1 for i = 1 to n
2 x = h(A[i])
3 for y = 0 to R− 1
4 T =

{
j − i | j ∈ B

(
(x+ y) mod R

)}
// shift B(x+ y) to left by i positions

5 T ′ =
{
j − i | j ∈ B

(
(x+ y + 1) mod R

)}
6 if B(y) ∩ T 6= ∅ or B(y) ∩ T ′ 6= ∅
7 for j ∈ B(y) // exhaustive search
8 if A[i] +A[j] = A[i+ j]

return Solution Found!
9 return No Solution!

Let us explain the condition in line 6. Say j ∈ B(y)∩T . On
the one hand, this implies h(A[j]) = y. On the other hand
i+ j ∈ B((x+ y) mod R), so h(A[i+ j]) = x+ y (mod R).
Thus, h(A[i]) + h(A[j]) = h(A[i + j]) (mod R), i.e. any in-
tersection found in line 5 indicates either a solution or a false
position to the test h(x) + h(y) = h(z) (mod R). Similarly,
j ∈ B(y) ∩ T ′ indicates h(A[i]) + h(A[j]) + 1 = h(A[i + j])
(mod R). Since the hash function is almost linear, any so-
lution with satisfy either h(A[i]) + h(A[j]) = h(A[i + j]) or
h(A[i]) + h(A[j]) + 1 = h(A[i + j]), so it will be found (no
false negative).

As noted above, the expected number of false positives
is O(n2/R). Each one will have a cost of O(n/R), given
by the exhaustive search in lines 7-8. Thus, the running
time of the algorithm, excluding the intersections in line 5,

is O(nR + n3

R2) in expectation. Since R = ω(
√
nf(n)) and

R = o(n/f(n)), this time is o(n2/f(n)).
However, we assumed the Convolution-3SUM requires time

Ω(n2/f(n)), implying that the total cost of the intersection
operations in line 6 must be Ω(n2/f(n)).

We now implement these intersections in terms of finding
triangles in a tripartite graph, obtaining the desired reduc-
tion. The goal is to get rid of the set-shift operations in lines
4-5. We accomplish this by breaking a shift by some i ∈ [n]
into a shift by i mod

√
n, and a shift by b i√

n
c ·
√
n.

Formally, let the parts in our graph be A = B = [R] ×
[
√
n], and C = [n]. We interpret an element (x, i) ∈ A as the

set B(x)− i. The edges from A to C represent the elements
of these sets: an edge exists from (x, i) to some j ∈ B iff
j ∈ B(x) − i. An element (x, i) ∈ B is interpreted as the
set B(x) + i ·

√
n. The edges from B to C represent the

elements of these sets: an edge exists from (x, i) to j ∈ B iff
j ∈ B(x) + i ·

√
n.

Finally, the edges from A to B represent the 2n · R in-
tersection questions that we ask in line 6. To ask whether
B(y) intersects B(x+y)− i, we ask whether B(y)+ b i√

n
c
√
n

intersects B(x+ y)− i mod
√
n.

For each triangle reported, we run the exhaustive search in
lines 7-8. We expect O(n2/R) triangles. If this expectation
is exceeded by a constant (the triangle reporting algorithm
reports too many elements), we rehash.

2.3 Reduction to the Multiphase Problem
In this final step, we reduce triangle reporting to the multi-

phase problem. Combined with Theorem 10 and Lemma 11,
this establishes the reduction from 3SUM to the multiphase
problem claimed in Theorem 3.

In the beginning, we take edges from A to C, and con-
struct k = R

√
n sets indicating the neighbors of each vertex

from A. These are the sets given in Phase I.
We then run R

√
n copies of Phase II. Each copy corre-

sponds to a vertex of B, and the set T represents the neigh-
bors of the vertex in C. Each execution of Phase II starts
with the memory state after Phase I. Any cells written dur-
ing Phase II are saved in a separate hash table for each
execution.

Finally, we run a query (Phase III) for each of the O(nR)
edges between A and B. For each such edge, we need to
test the intersection of the neighborhood of a vertex from A
with the neighborhood of a vertex from B. This is done by
running a Phase III with the index of the A vertex, on top
of the Phase II memory state corresponding to the B vertex.

By Lemma 11, we only need to deal with O(n2/R) trian-
gles in the graph. Whenever some Phase III query returns
an intersection, we enumerate the two sets of O(n/R) size
and find the intersection (and thus, a triangle). The total
running time of this search is O(n3/R2) = o(n2/f(n)).

Thus, the running time must be dominated by the mul-
tiphase problem, and we obtain an Ω(n2/f(n)) bound for
running Phase I, O(R

√
n) copies of Phase II, and O(nR)

copies of Phase III.
The final obstacle is the universe of the sets in the mul-

tiphase problem. Since the running time is assumed to be
O(U · τ), where each set comes from the universe [U], we

need to decrease the universe from the current U = n to get
a superconstant lower bound. Notice that our sets are very
sparse, each having O(n/R) values. This suggests that we
should hash each set by a universal function to a universe of
U = c · (n

R
)2, for large enough constant c.

By universality of the hash function, if two sets are dis-
joint, a false intersection is introduced with small constant
probability. We repeat the construction with O(lgn) hash
functions chosen independently. We only perform the ex-
haustive search if a query returns true in all the O(lgn)
instances. This means that the expected number of false
positives only increases by o(1), so the analysis of the run-
ning time is unchanged.

The total running time of each of the O(lgn) instances is
given by:

• Phase I, taking time O(k · Uτ) = O(R
√
n · n

2

R2 τ) =

O(n2.5τ/R).

• O(R
√
n) executions of Phase II, taking time R

√
n ·

O(Uτ) = O(n2.5τ/R).

• O(nR) executions of Phase III, taking time O(nRτ).

To balance the costs of O(n2.5τ/R) and O(nRτ), we set
R = n0.75, which is in the range permitted by Lemma 11.
This gives a lower bound of τ ≥ n0.25−o(1). To rephrase
the bound in the language of Theorem 3, observe that k =
R
√
n = n1.25 and N = O(n2/R2) = O(

√
n). Thus, k =

O(N2.5), and τ ≥ N0.5−o(1).

3. REFERENCES
[1] N. Ailon and B. Chazelle. Lower bounds for linear

degeneracy testing. In Proc. 36th ACM Symposium on
Theory of Computing (STOC), pages 554–560, 2004.

[2] I. Baran, E. D. Demaine, and M. Pǎtraşcu.
Subquadratic algorithms for 3SUM. Algorithmica,
50(4):584–596, 2008. See also WADS 2005.

[3] G. Barequet and S. Har-Peled. Polygon-containment
and translational min-Hausdorff-distance between
segment sets are 3SUM-hard. In Proc. 10th
ACM/SIAM Symposium on Discrete Algorithms

(SODA), page 862âĂŞ863, 1999.

[4] T. M. Chan. Dynamic subgraph connectivity with
geometric applications. In Proc. 34th ACM Symposium
on Theory of Computing (STOC), pages 7–13, 2002.

[5] T. M. Chan, M. Pǎtraşcu, and L. Roditty. Dynamic
connectivity: Connecting to networks and geometry.
In Proc. 49th IEEE Symposium on Foundations of
Computer Science (FOCS), pages 95–104, 2008.

[6] C. Demetrescu and G. F. Italiano. A new approach to
dynamic all pairs shortest paths. Journal of the ACM,
51(6):968–992, 2004. See also STOC’03.

[7] C. Demetrescu and G. F. Italiano. Trade-offs for fully
dynamic transitive closure on DAGs: breaking
through the O(n2) barrier. Journal of the ACM,
52(2):147–156, 2005. See also FOCS’00.

[8] M. Dietzfelbinger. Universal hashing and k-wise
independent random variables via integer arithmetic
without primes. In Proc. 13th Symposium on
Theoretical Aspects of Computer Science (STACS),
pages 569–580, 1996.

[9] J. Erickson. Bounds for linear satisfiability problems.
Chicago Journal of Theoretical Computer Science,
1999.

[10] A. Gajentaan and M. H. Overmars. On a class of
O(n2) problems in computational geometry.
Computational Geometry: Theory and Applications,
5:165–185, 1995.

[11] V. King. Fully dynamic algorithms for maintaining
all-pairs shortest paths and transitive closure in
digraphs. In Proc. 40th IEEE Symposium on
Foundations of Computer Science (FOCS), pages
81–91, 1999.

[12] V. King and G. Sagert. A fully dynamic algorithm for
maintaining the transitive closure. Journal of
Computer and System Sciences, 65(1):150–167, 2002.
See also STOC’99.

[13] P. B. Miltersen, N. Nisan, S. Safra, and A. Wigderson.
On data structures and asymmetric communication
complexity. Journal of Computer and System
Sciences, 57(1):37–49, 1998. See also STOC’95.

[14] N. Nisan and A. Wigderson. Rounds in
communication complexity revisited. SIAM Journal on
Computing, 22(1):211–219, 1993. See also STOC’91.

[15] M. Pǎtraşcu and R. Williams. On the possibility of
faster sat algorithms. In Proc. 21st ACM/SIAM
Symposium on Discrete Algorithms (SODA), 2010. To
appear.

[16] M. Pǎtraşcu and E. D. Demaine. Logarithmic lower
bounds in the cell-probe model. SIAM Journal on
Computing, 35(4):932–963, 2006. See also SODA’04
and STOC’04.

[17] L. Roditty and U. Zwick. A fully dynamic reachability
algorithm for directed graphs with an almost linear
update time. In Proc. 36th ACM Symposium on
Theory of Computing (STOC), pages 184–191, 2004.

[18] P. Sankowski. Dynamic transitive closure via dynamic
matrix inverse. In Proc. 45th IEEE Symposium on
Foundations of Computer Science (FOCS), pages
509–517, 2004.

[19] P. Sen and S. Venkatesh. Lower bounds for
predecessor searching in the cell probe model. Journal
of Computer and System Sciences, 74(3):364–385,
2008. See also ICALP’01, CCC’03.

[20] M. A. Soss, J. Erickson, and M. H. Overmars.
Preprocessing chains for fast dihedral rotations is hard
or even impossible. Computational Geometry,
26(3):235–246, 2003.

[21] M. Thorup. Worst-case update times for fully-dynamic
all-pairs shortest paths. In Proc. 37th ACM
Symposium on Theory of Computing (STOC), pages
112–119, 2005.

[22] L. G. Valiant. Graph-theoretic arguments in low-level
complexity. In Proc. 6th Mathematical Foundations of
Computer Science (MFCS), pages 162–176, 1977.

[23] V. Vassilevska and R. Williams. Finding, minimizing,
and counting weighted subgraphs. In Proc. 41st ACM
Symposium on Theory of Computing (STOC), pages
455–464, 2009.

APPENDIX
A. REDUCTIONS TO DYNAMIC PROBLEMS

Dynamic reachability. The vertex set consists of a vertex
for every set Si, a vertex for every element of [n], and a sink
v. In Phase I, we insert edges from Si to j whenever j ∈ Si.
This takes O(nk) updates. In Phase II, we insert edges from
j to the sink v whenever j ∈ T . This takes O(n) updates.
In Phase III, we query whether a directed path exists from
Si to v. This happens iff Si ∩ T 6= ∅.

We obtain that the update or query time must be Ω(nδ).

Dynamic shortest paths. The reduction is the same as
above, except that the edges are undirected. A path of
length 2 exists iff Si ∩ T 6= ∅.

Subgraph connectivity. As before, the vertex set contains
vertex for every set Si, a vertex for every element of [n], and
a sink v. The edge set is constructed during Phase I, and the
preprocessing algorithm is called on the graph. There will
be an edge from every Si to every j such that j ∈ Si, and
from all j to the sink v. Initially, all nodes are off, except
the sink.

In Phase II, we turn on all nodes from T . In Phase III,
we turn on the node Si, and query whether Si and v are
connected. Since only the T nodes are on, the only possible
path is an intersection between T and Si.

Langerman’s problem. We consider an array of 1 + n ·
(2k+ 2) elements. The first element is special; beyond this,
every block of k + 2 elements has the following structure:

• among the first and last element, one is 0 and one is
−2k. If i ∈ T , the first element in block is −2k and the
last in 0; otherwise, the values are swapped.

• elements on position 2j and 2j + 1 in block i indicate
whether i ∈ Sj . If i ∈ Sj , both elements are +1; other-
wise, the first is +2 and the second is 0.

Assume the first element is 2x+1. Every block has a total
sum of 0, so blocks behave “independently.” No block that
begins with 0 can have a partial sum equal to zero, since
one first increments the (already positive) partial sum, and
only in the last element subtract 2k. But if i ∈ T (the i-th
block begins with −2k) a zero partial sum is possible. The
partial sum after the block head is 2j+ 1− 2k. Each pair of
items increments this by 2. Then, the partial sum reaches
zero only if the (k − x)-th pair of items is +1,+1. If it is
0,+2, then the sum skips past zero, and then stay positive.
In other words, a zero partial sum exists iff i ∈ Sk−x, for
some i ∈ T . That is, a zero sum exists iff Sk−x ∩ T 6= ∅.

In Phase I, we update the O(nk) elements corresponding
to the sets Si. In Phase II, we update the O(n) elements
corresponding to the set T . In Phase III, we update the first
element, and run the query.

Pagh’s problem. In Phase I, we create n sets from a uni-
verse of [k]. Each set Xi contains all j such that i /∈ Sj . In
Phase II, create a new set X as the intersection of Xi for
all i ∈ T (this takes |T | − 1 updates). In Phase III, query
whether i ∈ X. If so, it means i ∈ Xj , for all j ∈ T . That is
equivalent to j /∈ Si, for all j ∈ T , i.e. Si and T are disjoint.

