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Abstract, I t  has long been known that increasing the number of tapes used by a Turing 
machine does not provide the abili ty to compute any new functions. On the other hand, the 
use of extra tapes does make it possible to speed up the computation of certain functions. I t  is 
known that  a square factor is sometimes required for a one-tape machine to behave as a two- 
t ape  machine and that a square factor is always sufficient. 

The purpose of this paper is to show that,  if a given function requires computation time T 
for  a k-tape realization, then i t  requires at most computation time T log T for a two-tape 
realization.  The proof of this fact is constructive; given any k-tape machine, i t  is shown how 
to  design an equivalent two-tape machine tha t  operates within the stated time bounds. In 
~ddition to being interesting in its own right, the tr~de-off relation between number of tapes 
and speed of computation can be used in a diagonalization argument to show tha t  if T(n) and 
U(n) are two time functions such that  

T(n) log T(n) 
inf U(n) - 0 

then there exists a function that  can be computed within the time bound U(n) but not within 
t he  time bound T(n). 

1. Introduction 

The study of computability by computer-like devices was initiated by Turing 
[1], who postulated that the functions that c~n be mechanically evMuated are pre- 
cisely those functions that can be computed by a finite-state device with a single 
unbounded read-write tape. Such a device is commonly called a Turing machine. 
When slight variations ia input-output procedure are used, Turing machines may 
be applied to other problems such as generating sequences or recognizing sets. 
Thus functions, sequences and sets can be classified as "computable" or "noncom- 
putable" depending on whether or not they can be defined by an appropriate 
Turing machine. 

..... With the advent of the modern high-speed computer, interest in computabiliW 
has spread to questions concerning the '  difficulty" or "complexity" of a calculation. 
One fruitful measure of the complexity of a computation is the number of time 
units needed to carry out that computation. For any function T(n) of integers into 
integers, we say that a given function, sequence or set is T(n)-computable if and 
only if there is some (~ppropriately modified) Turing machine which, depending on 
the context, either computes the nth term of ~ sequence in T(n) operations or proc- 
esses an input sequence of length n within T(n) operations. Three modifications of 

* Depar tment  of Electrical  Engineering 
Research and Development  Center 

533 

Journal of the Association for Computing Machlnery, Vol. 13, No. 4 (October~ 1966), pp. 533-546 



534 F . C .  t I E N N I E  AND R.  E .  S T E A R N S  

the Turing machine for which this complexity criterion has been studiect ~tre dis- 
cussed later. The common feature of these models is that  they all contain a Yinite- 
state device which controls one or more unbounded tapes. The use of more them o~e 
tape does not give a machine any extra power, but  it does enable some caicul~tions 
to be completed in fewer operations, and is ~ step toward making the Tm'ing ma- 
chine model more like present computers. 

A central problem in the theory of computational complexity is to determine 
how much faster a problem can be done on a k~-tape machine than on a k2-tupe ma- 
chine. Not  only is this problem interesting in its own right, but  certain proofs based 
on Cantor diagonal techniques depend on the speed with which one is able to simu- 
late a sequence of machines with arbitrary numbers of tapes by a single machine 
that  must have a fixed number of tapes. Such applications are discussed in later 
sections where the specific models are discussed. 

Hartmanis and Stearns [2] have shown that  any k-tape machine can be simu- 
lated by a one4ape machine whose computation time is no greater than the square 
of the computation time of the k-tape machine. Hennie [3] has shown that  there 
are cases in which reducing the number of tapes from two to one actually requires a 
squaring of the computation time. Thus more efficient simulation techniques can 
only be obtained by using more than one tape. 

The object of this paper is to describe a scheme whereby n operations of a many- 
tape Turing machine can be simulated by n log n operations of a two-tape Turing 
machine. This improvement over the one-tape case allows a corresponding improve- 
ment in results proved by diagonal techniques. These applications are discussed in 
later sections. 

2. Preliminary Considerations 

The purpose of this section is to describe our obiectives more explicitly. However. 
the definitions and proofs must of necessity be somewhat informal because a com- 
pletely rigorous treatment would require a prohibitive amount of space and would 
obscure the simple principles upon which the construction is based. 

The basic multitape Turing machine model we are trying to simulate may be de- 
scribed as a computing device that  has a finite automaton as a control unit. At- 
tached to this control unit is a fixed number of tapes which are linear, unbounded 
at both ends and ruled into an infinite sequence of squares. The control unit has one 
reading head assigned to each tape, and each head rests on a single square of the 
assigned tape. There are a finite number of distinct symbols which can appear on the 
tape squares. Each combination of symbols under the reading heads, together with 
the state of the control unit, determines a unique machine operation. A machine 
operation consists of overprinting ~ symbol on each tape square under the heads, 
shifting each tape independently either one square left, one square right or no 
squares and changing the state of the control unit. The machine is then ready to 
perform its next operation as determined by the tapes and control state. I f  a given 
operation does not call for any tape shift, change of tape symbol or change of state, 
then the machine is said to have stopped. 

In order to use a machine for calculations, one must add some means of supply- 
ing input data  to the machine and obtaining output  data from it. In  later sections 
several ways of doing this are considered. However, for the purposes of simulation, 
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the particular input output convention used is irrelevant; only the basic machine 
operations are important. Thus the first concern is with the simulation of the basic 
model; the problem of supplying input data and obtaining output data is ignored. 
As usual, by "simulation" we mean simply a process of imitating, one after the other, 
the operations performed by a given machine. 

3. The Simulati(~n Method 

The Approach Used. The purpose of this section is to describe a fast method of 
simulating the behavior of a given k-tape machine M~ with au appropriate two- 
tape machine M~. The basic unit of the simulation prceess, called a step, consists 
in imitating the actions that Mk performs during a single move. At the beginning of 
each step in its simulation, M2 must have on its tapes an up-to-date record of the 
patterns currently appearing on Mk's tapes, and of the locations of these patterns 
with respect to Mk's reading heads. During the course of a typical step, M2 must 
not only update its record of M~'s tape pattern, but in general it must also re- 
arrange its record of these patterns so as to provide easy access to the symbols 
that Mk will scan next. 

One of M~'s tapes will be called the storage tape. We imagine that this tape is 
divided lengthwise into k tracks, one for each of M~'s tapes. Each track is in turn 
divided into an upper and lower level, as shown in Figure 1. Each of the resulting 
small squares may contain any one of M~'s tape symbols, together with some special 
"marking symbols." The head that scans the storage tape is assumed to read all 
the squares in one column in one operation. This specialized way of viewing the 
storage tape is in keeping with the traditional Turing machine model, for the vector 
of symbols that appears in a given column of this tape may be regarded as a single 
symbol in an expanded tape alphabet. 

One column of the storage tape is designated the home column. The columns to 
the left and right of the home column are grouped into a number of storage areas, 
as indicated in Figure 1. The ith storage area on each side of the home column con- 
sists of exactly 2 ~-1 columns. Thus the number of columns in the ith left (or right) 
storage area is exactly one greater than the total number of columns in the first 
i - 1  left (or right) storage areas. At the beginning of a simulation the boundaries 
of the storage areas are not marked in any way; special symbols marking these 
boundaries are supplied by M2 as needed during the course of the simulation. 

Although this organization of the storage tape may appear strange at first, it 
provides a framework within which the behavior of M, can be simulated efficiently. 
The lower level of each track serves as the primary means of storing the symbols 
that appear on Mk's tapes. In particular, at the beginning of a simulation, all of 
Mk's tape symbols are recorded in the lower levels of Mg's storage tracks, with the 
initially scanned symbols appearing in the home column. After each step in its 
simulation, M2 realigns its recorded patterns so that the next symbols to be scanned 
by Mk are placed in the home column. This realignment is accomplished by copying 
the symbols in question onto M2's second tape, and then copying them back into 
the desired locations on the storage tape. 

If M2 were to shift all of the symbols in each of its patterns at each step in the 
simulation, the time needed to simulate n steps of M,'s computation might be as 
large as n 2. In order for the simulation time to be decreased, M2 will be designed s~ 
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that during a typical step in the simulation it leaves the bulk of each recorded pat- 
tern in place and shifts only a small segment near the home column. Such limited 
shifts would require that certain shifted segments of the tape be placed on top of 
certain unshifted segments. These excess symbols are accommodated in the upper 
level of the track in question until such time as they can be reincorporated into the 
lower level by a more extensive realignment. For each segment of excess symbols, 
there must also be a corresponding gap on the other side of the home square. These 
gaps remain until refilled by a more extensive realignment. 

The number of symbols to be shifted at each step is determined by the sizes of 
the storage areas and by the mm~ber and locations of the excess symbols currently 
being stored in the upper level. The sizes of the stor'tge areas have been chosen 
so that the ith upper storage area will just hold the overflow resulting from a re- 
alignment of the symbols in the first i-- 1 storage areas. In this way the nmnber of 
steps needed to perform each realignment is kept to a minimmn, and the simulation 
can be accomplished quite etticiently. In particular, it will be shown that n opera- 
tions of Mk's computation require at most n log n operations to simulate on M,2. 

Description of the Simulation. At the beginning of each step in the simulatiott 
the current tape patterns of Mk am to be arranged within their respective tracks 
on the storage tape of M2 so that the symbols currently scanned by Mk are all 
within the home colunm. Tiros M2 needs only to examine the home column to make 
all the symbol changes required by the current step in the simulation, and to deter- 
mine the directions in which Mk will move its various tapes. To prepare for the fol- 
lowing step in the simulation, however, M2 must rearrange its recorded tape p~tt- 
terns so that the next symbols to be scanned by Mk are all in the home column. 
This rearrangement lies at the heart of the simulation procedure, and will be dis- 
cussed in considerable detail. Because the process is basically the same for each of 
the k-tape patterns, the discussion that follows is restricted to one of Mk's tapes and 
to the corresponding track on M2's storage tape. 

At any given time, only some of the squares within a typical track will be used to 
store symbols from the corresponding tape pattern of M~. Squares that do store 
symbols from Mk's tape pattern will be calledfuU; squares that do not will be called 
empty. At the beginning of each step in a simulation, each of Mk's tape patterns is 
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to be recorded within the corresponding track on the storage tape of M2 in accord- 
ance with the following rules. 

1. Within any given level of any given storage area, either every square is full 
or every square is empty. Note that a distinction must be made between empty 
squares and squares that are being used to store blanks from Mk's tape. If the tapes 
of Mk are initially blank, then M2's storage tape is also initially blank, but these 
blanks must represent the situation in which the lower level of each track stores 
blanks from M~'s tapes, while the upper level of each track is empty. 

2. Within any given track, if the upper level of the ith left (right) storage 
area is full, then the lower level of the same area must also be full, and both levels 
of the ith right (left) area must be empty. Conversely, if the lower level of the ith 
left (right) area is empty, then the upper levei of the same area must also be empty, 
and both levels of the ith right (left) area must be full The upper level of tile home 
column is always empty; the lower level, hereafter referred to as the home square, 
is always full. At the beginning of a simulation, the upper level of every area will 
be empty, and the lower level of every area will be full. 

8. The symbols stored within any given track must be arranged in such a way 
that the corresponding pattern on Mk's tape can be obtained as follows. Starting 
with the leftmost nonblank symbol in the given track, read through the various 
storage areas from left to right, ignoring empty areas. To the left of the home square, 
all the symbols stored in the lower levei of a given area are to be read before those 
in the upper level. To the right of the home square this order is reversed. 

As an example, Figure 2a shows a typical configuration of symbols that might 
appear within one track of the storage tape. Here the letters represent symbols 
from Mk's tape alphabet, while blanks represent empty squares. The reader may 
verify that this configuration satisfies rules I and 2. According to rule 3, it represents 
the p a t t e r n . . ,  t h e q u i e k g r a y f o x j u m p . . .  on M~'s tape, with the sym- 
bol "y" under M~'s reading head. 

Suppose that at the beginning of some step in its simulation, one of the tracks on 
M2's storage tape contains the configuration of symbols shown in Figure 2a, and 
that during its next move Mk overprints its scanned symbol with an "m" and shifts 
the tape in question to the right. In order to imitate this action, M2 must change the 
symbol in the home square to an "m" and then rearrange the entire configuration 
of symbols so that the symbol "a" appears in the home square and rules 1 through 3 
are satisfied. This can be done quickly by simply shifting the symbol "a" into the 
home square and putting the displaced symbol "m" in the upper level of the first~ 
right-hand storage area, as shown in Figure 2b. 

Now suppose that the next step in M2s computation requires overprinting the 
scanned symbol with an "i" and shifting the tape one more square to the right. 
In this ease, the rearrangement of the symbols on M~'s tape is not quite so simple. 
The symbol that. must be moved into the home square currently appears in the 
upper level of the third left-hand storage area. It is not possible simply to shift. 
this symbol into the home square and leave the rest of the third storage area intact, 
for each level of a storage area must be either completely full or completely empty 
(rule 1). The quickest way to restore proper order is to remove all of the symbols. 
from the upper level of the third storage area and relocate them in the lower levels 
of the first and second left-hand storage areas. Because of the way in which the 
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lengths of the storage areas have been chosen, three of these symbols will just fill 
up the first and second areas, leaving the fourth wmbol "r" for tile home square. 

In order to satisfy rule 2, the upper levels of the flint two right-hand storage areas 
must now be emptied out and the lower level of the third right-hand storage area 
must be filled in. Fortunately, the mzmber of symbols that appears in the upper level 
of the first two areas, together with the symbol "i" displaced from the honm square, 
just matches the mzmber of available squares in the lower level of the third right- 
hand storage az,!a. Thus the symbols can be reshuffled as shown in Figure 2c to 
create a new pattern that satisfies rules 1 and 2 and accurately reflects M2s new 
tape pattx.,,rn. 

With the examples of Figure 2 in mind, we shall now state general rules for re- 
arranging symbols within one of M2's storage tracks. If it is a~umed that the appro- 
priate overprinting has alrealy been done, and that M= is to imitate a shift of Mk's 
tape toward the right, the procedure ks as follows. 

4. Search to the left h'om the home square until the first notmmpty square is 
found. Let i be tile number of the left-hand storage area that contains this square. 

5. If the upper track of the ith left*hand storage area is full, collect all the 
symbols in that level and relocate them (in the proper order) in the lower levels 
of the first i - 1  left-hand storage areas, with the rightmost symbol going in the 
home square. If the upper level of the ith left-hand storage area is empty, collect 
the symbols in the lower level and relocate them in the same way. 

6. Collect all the symbols in both levels of the first i - 1  right-hand storage 
areas, together with the one symbol displaced from the home square, ~md relocate 
them (in the proper order) in the lower levels of the first i--1 right-hand storage 
areas, with the excess symbols going in the ith storage area. The lower level of this 
area is to be used if it is available; otherwise the upper level is to be used. 

If M, should shift its tape to the left instead of to the right, it is only necessary to 
interchange the words "left" and "right" in these three rules. In either case the 
process of rearranging the symbols will be referred to as a cleanup of order i. The 
transition from Figure 2b to Figure 2c represented a third-order cleanup. In this 
ease, the upper level of the third left-hand storage area was full, so the first part of 
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order, it must have some way of identifying the ends of the various storage areas. 
As will be seen, the boundaries of the first i - 1  storage areas on each side of the 
home square must ah'eady have been marked as the result, of previous lower order 
cleanups. Once the contents of the first i - 1  right-hand storage areas have been 
placed on the copy tape, M2 proceeds to transfer them back into tile lower levels 
of the first i - 1  right-hand storage areas, and into the appropriate level of the it h 
area. Tile machine can identify the i th  area as being the first one that  has an empty 
upper level. When all the symbols have been transferred, tile right-hand end of the 
ith storage area will have been reached, and M2 marks that  point if it has not al- 
ready been marked. Note that  at the end of the ith-order cleanup Ms is guaranteed 
to have the ends of the ith storage area marked. Since an ith-order cleanup must 
always be preceded by cleanups of all smaller orders (see Lemma 2), the corm- 
sponding area end markers required to locate the lesser storage areas must already 
be on the tape, and so the transfers can indeed be carried out as advertised. 

M2 now returns to the home square and erases the marks from its copy tape. The 
cleanup has :been completed, and the machine can go on to clean up the next tape 
traekl or to begin the next step in the simulation. Note that in the process of per- 
forming a single ith-order cleanup, M2 need not visit any tape squares outside the 
ith storage areas. Furthermore, the entire process consists of making a small, 
fixed number of passes over eaeh of the storage areas involved, and over an equiv- 
alent segment of the copy tape. Therefore, the number of moves needed to perform 
an ith-order cleanup is proportional to the number of squares contained within the 
first i storage areas on each side of the home square. 

The Time Required for Simulation. We shall now turn to the problem of de- 
termining the amount of time that  M2 needs in order to simulate the first n moves 
in a computation performed by Me.  In particular, it will be shown that  this time 
is proportional to n log n. This will be done through a series of easy lemmas, each 
of which refers to the cleanup operations performed on a single track. 

LEMMA 1. The number of operations of M2 needed to perform an i-th-order cleanup 
is less than ~2 ~, where ~ is a constant independent of i. 

PaOOF. I t  was noted earlier that  the number of operations needed to perform 
an ith-order cleanup is at most proportional to the number of squares contained 
within the first i storage areas oa both sides of the home square. But  this number of 
squares is just 

1 + 2 ~ - - ~ . 2 J  = 2 ~ + 2 -  1 < 4 . 2  ~, 
i = 1  

and the total time is thus proportional to 2q 
LEMMA 2. Prior to the first cleanup of order greater than i, and between any two 

cleanups of order greater than i, there must be at least one cleanup of order i. 
PaOOF. Any cleanup of order greater than i must empty out the upper levels of 

each of the two ith storage areas. These areas will also be empty at  the beginning 
of a simulation. Before a subsequent eleanup of order greater than i can oeeur, the 
upper level of one of the two ith areas must be full, for otherwise a cleanup of order 
i or less would be performed according to rules 4 and 2. But  the upper level of an 
i th storage area can only be filled by a cleanup of order i. 

L~MMA 3. Prior to the first cleanup of order greater than i, and between any two 
cleanups of order greater than i, there must be at least 2 ~ - ' -  1 cleanups of order less. 
than or equal to i. 
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P[¢OOF. The  proof is by  induction oll i. I f  i = 1, the s tatement  of the leillma is 
trivially true. Assume, therefore, tha t  the s ta tement  is true for all i less than some 
integer m. Then  consider two cleanups c, and c2 of order greater than  m. By  L e m m a  
2, there mus t  be at least one ruth-order cleanup c3 between c~ and c.2. But  by ~s- 
sumption t h e ~  are at  least 2 "~-2 - 1 clea[mps between c, and c:~ , and at least 
2 ~-2 - 1 cleanups between c~ and c2. Thus  the total m n-nber of cleanups between 
c~ and c2 (exclusive) is at  least 2 "-~ - 1. Since a similar a rgument  applies if c~ 
is the first cleanup of order greater than m, the lemma follows by induction. 

LEMM* 4. Let n~ denote the number oj" cleanups oj order i pe~:formed in the process 
of simulating the first n steps of the computation of Mk . Th~n ni ~ n/2 ~-~. 

PROOF. Pr ior  to the first cleamlp of order i, and between airy two successive 
cleanups of order i, there are by Lemma 3 at least 2 ~-2 - 1 cleanups of lesser order. 
Therefore, at  most  one cleanup out of any 2 ~-2 consecutive cleanups can be of order 
i, and out  of n consecutive cleanups at most n/2 ~-2 can be of order i. 

LE)JMAS. nl = 0 j b r ~  > 2 + log2 n. 
PROOF. I f  i > 2 + log2 n, then by Leinnl~ 4 

n ~T~ 

nl < ~ < 21og2n- I. 

Because ni must be an integer, n~ = O. 
LEMMA 6. The total number of operations that M~ needs to pe~J~'rm all the cleanups 

on a single traclc in the process of simulating the first n operations of Me is at most 
4~n(2 + logs n). 

PROOF. The  time in question is equal to T = ~ ] ~  t~'n,~, where t~ is the time 
required for nn i th-order cleanup. But  according to Lemma 5, the summation need 
0nly be extended to i = log: n + 2. Then  applying Lemmas  1 and 4, one hits 

Iogn+2 logn+2 logn+2 ~i7~ 

= t3.~ n~ g ~ ]  [3 ~ = 4/3n(log u -t- 2), 
i=1 i=1 i=1 

which completes the proof. 
Finally, considering the cleanups performed on all tracks, we have: 
THEO~¢~ 1. The number of operations of M~ needed to simulate n operations of 

M~ is at most an log: n for n > 1, where a is a constant independent of n. 
PROOF. Mult iplying the maximum number  of operations needed for each track 

by the total number  of tracks gives 

4flkn(log~ n + 2) < 122kn logs n = an log~ n. 

I t  can also be shown tha t  there is a constant  a '  such that, in the worst cuse, the 
number of operations of M~ needed to simulate n operations of M~ is at least a ' n  
logs n. Thus  the bound of Theorem 1 is the best tha t  c~m be obtained for the simu- 
lation method being considered here. The interested reader may  verify tha t  this 
worst-case si tuation occurs when some tape of M~ is shifted in the same direction 
at every step in the computat ion.  

4. Application to Sequence Generators 

A sequence generator is a basic mult i tape Turing machine that  has ou tpu t  values 
assigned to certain of the states in its control unit. I t  begins its computa t ion  in a 
. . . . . .  : . . . . . . . . . . .  ;+h ,ll i.~.~ ÷ur~o~ Ll~.nlc_ As a result of its subsequent 
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operations, it will from time to time visit states to which output values have been 
assigned. The (infinite) sequence of these output  values is called the sequence that  
the machine generates. A particular infinite sequence ¢o is called T(n)-computable 
if and only if there is some sequence generator M that  produces the nth  member of 

within T(n) or fewer operations. This maehi~m M is then said to operate within 
time T(n). 

THEOREM 2. I f  a sequence co can be generated by a k-tape machine within time 
T(n), and T(n) ~ n, then it can be generated by a two-tape machine within time 
T(n) log2 T(n). 

PaOOF. From Theorem 1 we know that  the given k-tape machine can be simu- 
lated by a two-tape machine M2 within time aT(n) log~ T(n), for an appropriately 
chosen constant a. Machine M2 can then be modified to form a new machine M~' 
that  in each operation performs a or more consecutive operations from the com- 
putation of M2. Such a speed-up construction is detailed by Hartmanis and Stearns 
[2], and leads to a computation time 

T'(n) ~_ max [n, T(n) log T(n)]. 

But if T(n) >_ n and n > 1, one has 

T'(n) <: T(n) log T (n ) ,  

which completes the proof. 
A function U(n) is called real-time countable [4] if and only if it is monotone in- 

creasing and there exists some sequence generator whose output on the j t h  opera- 
tion is 1 if j = U(i) for some integer i, and whose output is 0 otherwise. In other 
words, U(n) is real-time countable if its characteristic sequence is n-computable. 
I t  is now possible to state our first tape-independent result. 

THEOREM 3. [f U(n) is a real-time countable function and if T(n) is a computable 
function, then 

inf T(n) log T(n) = 0 
U(n) 

implies that there is a binary sequence ¢o that is U(n)-camputable but not T(n)-com- 
putable. 

PROOF. The proof is basically the same as the proof of Theorem 9 in Hartmanis  
and Stearns [2], except that  the "Square Law" used in that  theorem is now replaced 
by our Theorem 2. The basic idea is to generate the desired sequence c0 with a 
sequence generator that  operates within time U(n) and computes enough of each 
T(n)-computable binary sequence o~' to ensure that  at  least one symbol of ¢0 differs 
from the corresponding symbol of cJ. Only the key ideas of the construction are 
mentioned here. 

Let M~ denote the i th two-tape, binary-output sequence generator, according to 
some (computable) method of ordering all such Turing machines. I t  is then desired 
to design a "diagonal" sequence generator D whose operation really comprises 
three simultaneous computations. One of these computations consists of simulat- 
ing, one after the other, appropriate initial portions of the computations performed 
by M~, M : ,  • .. , and so on. The second computation consists of the generation, 
in real time, of the characteristic sequence of U(n). The third consists of the genera- 
tion, not necessarily in real time, of the characteristic sequence of T(n) log T(n). 

As D simulates any particular machine M~, it keeps track of the numbers of basic 
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operations that M¢ needs to generate its various output symbols. These numbers 
are compared with the computed values of T(n) log T(n) in order to check whether 
or not M~ has been operating within the time bound T(n) log T(n). The fact that 
this determination cannot in general keep up with the simulation of M~ is unimpor- 
tant. The important point is that each Ms that does not operate within the time 
T(n) log T(n) can eventually be identified and eliminated from further considera- 
tion. 

Since the machine D must operate within the time U(n), it will be designed to 
produce an output symbol coincident with each of the l 's in the characteristic se- 
quence of U(n). Two situations may arise at the time at which the j th  such 1 is 
generated. First, D may not yet have had time to determine the j th  output of the 
machine that it is currently simulating. In this case, D will produce some arbitrary 
output symbol, say 0. On the other hand, D may already have determined the j th  
output symbol of the machine that it is currently simulating. In this case, D will 
produce as its own output the complement of the symbol produced by the simu- 
lated machine. 

The simulation of each machine Mr is continued until one of the following situa- 
tions arises: 

(a) D determines that M~ does not operate within the time T(n) log T(n). 
(b) D is able to determine the j th  output of machine M~ at or before time U(j), 

where U(j) is measured from the very beginning of D's computation. 
Note that if M~ does operate within the bound T(n) log T(n), then situation (b) 

must eventually arise. For suppose that the simulation of machine Mr is begun 
after D has executed a total of B~ basic operations, and that at most C~ operations 
are required to simulate one of Mi's operations. Then because 

inf T(n) log T(n) 
U(n) = o, 

there must be a finite value of j for which 

B~ + C~T(j) log T(j) < U(j). 

Once either of the situations (a) or (b) arises, D stops its simulation of Mr and be- 
gins to simulate the computation of M~+I. 

Now let ~' be any binary sequence that can be generated within time T(n). 
By virtue of Theorem 2, ~' can be generated by some two-tape machine M within 
time T(n) log T(n). But in the course of its computation, D eventually simulates 
machine M and produces as its j th  output symbol the complement of the j th  symbol 
produced by M. Therefore, the sequence ~ produced by D differs in at least one 
symbol from the sequence d ,  and the proof is completed. 

5. Application to On-Line Turing Machines 

Like a sequence generator, an on-line Turing machine is a basic multitape Turing 
machine with output values assigned to certain of the states of its control unit. 
In addition, however, an on-line machine is provided with a special terminal at 
which input symbols can be supplied. Such a machine begins its computation in a 
designated starting state, with all of its tapes blank. Upon being supplied with an 
input symbol, it goes through a number of basic operations leading to a state to 
which an output symbol has been assigned. Once such a state is reached, the ma- 
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chine is ready for a new input symbol, at which point tile process is repeated. Any 
finite sequence of input symbols that leads the machine to a state with output 1 is 
said to be accepted by the machine. A set 12 of finite sequences is said to be T(n)- 

0 " r .  • recognizable (by an on-line machine) if and only if there is an n-hne I urmg machine 
M that processes any input sequence of length n within T(n) operations and such 
that R is precisely the set of finite sequences accepted by M. 

TttEORE~,I 4. I f  a set R can be recognized by a k-tape on-line Turing machine within 
time T(n), then it can be recognized by a two-tape on-line machine within time T(n) log 
T(n). 

P~OOF. The proof is substantially the same as that of Theorem 2. 
THEORE:~I 5. I f  U(n) is a real-time countable function and if T(n) is a computable 

function, then 

T(n) log T(n) 
in/ U(n) = 0 
n o c ~  

implies that there is a set R which is U(n)-reeognizable but not T(n)-reeognizable. 
PROOF. Let ~o be the infinite sequence of Theorem 3. Then define R to be the set 

of all input sequences of length n for all n such that the nth bit of w is one. R is 
obviously U(n) recognizable. I t  is easy to see that a T(n)-reeognizer for R could 
easily be converted into a sequence generator for ~, contrary to Theorem 3. 

6. Application to Off-Line Turing Machines 

An off-line Turing machine is a basic multitape Turing machine that has binary 
outputs associated with some of its states. In addition, one of the machine's tapes 
is designated as the input tape. The machine begins its computation in a specified 
starting state, and with a finite pattern of symbols written on its input tape. This 
pattern is surrounded by blank squares, and is positioned so that  its leftmost sym- 
bol is under the reading head. For any given input pattern, the ensuing machine 
operations are guaranteed to lead to a (stopping) state to which an output is 
assigned. The input pattern is said to be accepted if and only if this output value is 1. 
A set R of finite patterns is said to be T(n)-recognizable (by an off,line machine) 
if and only if there exists an off-line Turing machine that processes any input pat- 
tern of length n within T(n) operations and that  accepts precisely the members of R. 

THEOREM 6. I f  a set R can be recognized by a k-tape off-line Turing machine 
within time T(n), then it can be recognized by a two-tape o~-line machine within time 
T(n) log T(n). 

PROOF. Again the proof is substantially the same as that of Theorem 2. 
THEOREM 7. If U(n) is a real-time countable function, then there is a set of finite 

sequences R that is U(n)-recognizabIe by an off-line machine and is not T(n)-recogniz- 
able for any function T(n) such that 

inf T(n) log T(n) = O. 
U(n) 

PROOF. We shall describe the construction of an off-line machine D that has a 
binary input alphabet {0, 1} and recognizes the desired set R within time U(n). 
This machine interprets any input pattern with which i t  is presented as represent- 
ing the binary expansion of an integer, i, in the obvious manner. The major portion 
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of D's computation consists in simlflating the computation that the 'ith two-tape 
off-line Turing machine would perform when presented with the given input p~t- 
tern. For this purpose, two of D's tapes are set aside for use in recording the tape 
patterns of the simulated machines M~. 

Upon being presented with an input pattern, D first mea.sures off the length of 
that  pattern onto an auxiliaW tape. I t  then copies {he pattern, in suitably encoded 
form, onto the tape being used to record the input pattern of the simulated machine. 
I t  next examines the input pattern in detakt, and prepares itself to simulate the ma-. 
chine M~ which that pattern describes. Finally, it, proceeds to simulate the com- 
putation that, M~ would perform when presented with the given input pattern. 

As it is doing all of this, D simultaneoudy generates the characteristic sequm~ce 
of U(n), and matches the number of l 's in that. sequence against the Iength marked 
off' on the auxitiaw tape. As mon as the number of l 's  in the generated sequence 
equals the length of the given input pattern, D halts, thereby ensuring that it 
operates wi%in the time U(n). If at this time D has already simulated the enti~.' 
computation of M.~, and detc'rmined whether M~ accepts the given input pattern, 
it now produces an output complementary to %at of M~. If D has not yet com- 
pleted the simulation of M~'s computation (as would t:~ the case if M~ does not 
operate within the time U(n)), D now pr(×:luces some arbitraw output, say, 0. 

Because D is g~.laranteed to halt, regardless of its input pattern, it must recognize 
some set of input patterns--call it, R. By cm~stmction, R is U(n)orecognizable. It 
must now be shown that R is not T(n)-recognizable. Suppose that, to the contraw, 
R is T(n)-rc~cognizable by some rnultitape Taring machine. Accm~ling to Theorem 
6, it must then be T(n) log T('n)-recognizable by some two. tape machi~m Mk. If 
the integer k is represented in binary form within an input pattern of length n, 
and presented to the machine M~, the resulting computation will require at most 
T(n) log T(n) operations. 

Now consider the number of steps needed to simulate that same eomputation 
with machine D. Marking off %e length of the input pattern requires at, most n 
operations, and recoding the input pattern requires at. most am operations, where ¢~ 
is some constant. Let B~ denote the number of operations needed to prepare for the 
simulation proper, and let Ck denote the maximum mtml~.'r of operations needed 
to simulate one of Mk's operations. Then the total number of operations that, D 
woukt need to get. through all of the computation perfommd by Mk is 

n + ~n + B~ d- Ca:T(n) log T('n). 

Now D will actually complete the simulation only if this quar~t, ity is less than or 
.equal to U(n). But because of the assumed rdationship between T('n) and U(n), 
it is always possible to choose a value of n suffleiently large that 

n + an + .Bk + G/l'(n) log 7'(n) < U(n). 

An input, pattern whose length equals or e×ceeds this eritica.t value of n is easily 
obtained by adding a sufficient number of O's at the left, end of the binatT repre- 
sentation of k. The resulting pat~ern is one for which D and M~ behave diffeumtty; 
hence D and Mk cannot recognize the same set. This contradiction establishes the 
fact that R is not recognizable within the time T(n), and completes the proof. 

The import of Theorems 3, 5 and 7 can be summarized briefly as follows. As long 
as  the function T(n) is computable, and U(n) is real-time (ountable, and U(.n) 
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grows faster than some constant times T(n) log T(n), then there is some computing 
operation that can be carried out within the bound U(n) but not within the bound : 
T(n). 
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