
Models of Computation
Jeff Erickson

January 4, 2015

http://www.cs.illinois.edu/~jeffe/teaching/algorithms/

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cs.illinois.edu/~jeffe/teaching/algorithms/

© Copyright 2014 Jeff Erickson. Last update January 4, 2015.

This work may be freely copied and distributed in any medium.
It may not be sold for more than the actual cost of reproduction, storage, or transmittal.

This work is available under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
For license details, see http://creativecommons.org/licenses/by-nc-sa/4.0/.

For the most recent edition, see http://www.cs.illinois.edu/~jeffe/teaching/algorithms/.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cs.illinois.edu/~jeffe/teaching/algorithms/

I’m writing a book.
I’ve got the page numbers done,
so now I just have to fill in the rest.

— Stephen Wright

About These Notes

These are lecture notes that I wrote for the course “Algorithms and Models of Computation”
at the University of Illinois, Urbana-Champaign for the first time in Fall 2014. This course is a
broad introduction to theoretical computer science, aimed at third-year computer science and
computer engineering majors, that covers both fundamental topics in algorithms, for which I
already have copious notes, and fundamental topics on formal languages and automata, for
which I wrote the notes you are reading now.

The most recent revision of these notes (or nearly so) is available online at http://www.cs.
illinois.edu/~jeffe/teaching/algorithms/, along with my algorithms notes and a near-complete
archive of past homeworks and exams from all my theoretical computer science classes. I plan to
revise and reorganize these whenever I teach this material, so you may find more recent versions
on the web page of whatever course I am currently teaching.

About the Exercises

Each note ends with several exercises, many of which I used in homeworks, discussion sections,
or exams. ?Stars indicate more challenging problems (which I have not used in homeworks,
discussion sections, or exams). Many of these exercises were contributed by my amazing teaching
assistants:

Alex Steiger, Chao Xu, Connor Clark, Gail Steitz, Grant Czajkowski, Hsien-Chih
Chang, Junqing Deng, Nick Bachmair, and Tana Wattanawaroon

Please do not ask me for solutions to the exercises. If you are a student, seeing the solution
will rob you of the experience of solving the problem yourself, which is the only way to learn the
material. If you are an instructor, you shouldn’t ask your students to solve problems that you
can’t solve yourself. (I don’t always follow my own advice, so I’m sure some of the problems are
buggy.)

Caveat Lector!

These notes are best viewed as an unfinished first draft. You should assume the notes
contain several major errors, in addition to the usual unending supply of typos, fencepost errors,
off-by-one errors, and brain farts. Before Fall 2014, I had not taught this material in more than
two decades. Moreover, the course itself is still very new—Lenny Pitt and I developed the
course and offered the first pilot in Spring 2014 (with Lenny presenting the formal language
material)—so even the choice of which material to emphasize, sketch, or exclude is still very
much in flux.

I would sincerely appreciate feedback of any kind, especially bug reports.

Thanks, and enjoy!

— Jeff

http://www.cs.illinois.edu/~jeffe/teaching/algorithms/
http://www.cs.illinois.edu/~jeffe/teaching/algorithms/

ii

Contents

1 Strings . 1

2 Regular Languages . 11

3 Finite-State Machines . 19

4 Nondeterministic Automata . 39

5 Context-Free Languages . 55

6 Turing Machines . 71

7 Universal Models . 89

8 Undecidability . 97

9 Nondeterministic Turing Machines . 115

iii

Models of Computation Lecture 1: Strings [Fa’14]

THOMAS GODFREY, a self-taught mathematician, great in his way, and afterward inventor of what is
now called Hadley’s Quadrant. But he knew little out of his way, and was not a pleasing companion;
as, like most great mathematicians I have met with, he expected universal precision in everything
said, or was forever denying or distinguishing upon trifles, to the disturbance of all conversation.
He soon left us.

— Benjamin Franklin, Memoirs, Part 1 (1771)
describing one of the founding members of the Junto

I hope the reader sees that the alphabet can be understood by any intelligent being who has any
one of the five senses left him,—by all rational men, that is, excepting the few eyeless deaf persons
who have lost both taste and smell in some complete paralysis. . . . Whales in the sea can telegraph
as well as senators on land, if they will only note the difference between long spoutings and short
ones. . . . A tired listener at church, by properly varying his long yawns and his short ones, may
express his opinion of the sermon to the opposite gallery before the sermon is done.

— Edward Everett Hale, “The Dot and Line Alphabet”, Altlantic Monthy (October 1858)

If indeed, as Hilbert asserted, mathematics is a meaningless game played with meaningless marks
on paper, the only mathematical experience to which we can refer is the making of marks on paper.

— Eric Temple Bell, The Queen of the Sciences (1931)

1 Strings

Throughout this course, we will discuss dozens of algorithms and computational models that
manipulate sequences: one-dimensional arrays, linked lists, blocks of text, walks in graphs,
sequences of executed instructions, and so on. Ultimately the input and output of any algorithm
must be representable as a finite string of symbols—the raw contents of some contiguous portion
of the computer’s memory. Reasoning about computation requires reasoning about strings.

This note lists several formal definitions and formal induction proofs related to strings. These
definitions and proofs are intentionally much more detailed than normally used in practice—most
people’s intuition about strings is fairly accurate—but the extra precision is necessary for any
sort of formal proof. It may be helpful to think of this material as part of the “assembly language”
of theoretical computer science. We normally think about computation at a much higher level
of abstraction, but ultimately every argument must “compile” down to these (and similar)
definitions.

1.1 Definitions

Fix an arbitrary finite set Σ called the alphabet; the elements of Σ are called symbols or
characters. As a notational convention, I will always use lower-case letters near the start of
the English alphabet (a, b, c, . . .) as symbol variables, and never as explicit symbols. For explicit
symbols, I will always use fixed-width upper-case letters (A, B, C, . . .), digits (0, 1, 2, . . .), or
other symbols (�, $, #, •, . . .) that are clearly distinguishable from variables.

A string (or word) over Σ is a finite sequence of zero or more symbols from Σ. Formally, a
string w over Σ is defined recursively as either

• the empty string, denoted by the Greek letter ε (epsilon),or

• an ordered pair (a, x), where a is a symbol in Σ and x is a string over Σ.

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

1

Models of Computation Lecture 1: Strings [Fa’14]

We normally write either a · x or simply ax to denote the ordered pair (a, x). Similarly, we
normally write explicit strings as sequences of symbols instead of nested ordered pairs; for
example, STRING is convenient shorthand for the formal expression (S, (T, (R, (I, (N, (G,ε)))))).
As a notational convention, I will always use lower-case letters near the end of the alphabet
(. . . , w, x , y, z) to represent unknown strings, and SHOUTY�MONOSPACED�TEXT to represent explicit
symbols and (non-empty) strings.

The set of all strings over Σ is denoted Σ∗ (pronounced “sigma star”). It is very important to
remember that every element of Σ∗ is a finite string, although Σ∗ itself is an infinite set containing
strings of every possible finite length.

The length |w | of a string w is the number of symbols in w, defined formally as follows:

|w| :=
¨

0 if w= ε,
1+ |x | if w= ax .

For example, the string SEVEN has length 5. Although they are formally different objects, we do
not normally distinguish between symbols and strings of length 1.

The concatenation of two strings x and y, denoted either x • y or simply x y , is the
unique string containing the characters of x in order, followed by the characters in y in order.
For example, the string NOWHERE is the concatenation of the strings NOW and HERE; that is,
NOW • HERE= NOWHERE. (On the other hand, HERE • NOW= HERENOW.) Formally, concatenation is
defined recusively as follows:

w • z :=

¨
z if w= ε
a · (x • z) if w= ax

(Here I’m using a larger dot • to formally distinguish the operator that concatenates two arbitrary
strings from from the operator · that builds a string from a single character and a string.)

When we describe the concatenation of more than two strings, we normally omit all dots
and parentheses, writing wx yz instead of (w • (x • y)) • z, for example. This simplification is
justified by the fact (which we will prove shortly) that • is associative.

1.2 Induction on Strings

Induction is the standard technique for proving statements about recursively defined objects.
Hopefully you are already comfortable proving statements about natural numbers via induction,
but induction actually a far more general technique. Several different variants of induction
can be used to prove statements about more general structures; here I describe the variant
that I recommend (and actually use in practice). This variant follows two primary design
considerations:

• The case structure of the proof should mirror the case structure of the recursive defi-
nition. For example, if you are proving something about all strings, your proof should have
two cases: Either w= ε, or w= ax for some symbol a and string x .

• The inductive hypothesis should be as strong as possible. The (strong) inductive hypoth-
esis for statements about natural numbers is always “Assume there is no counterexample k
such that k < n.” I recommend adopting a similar inductive hypothesis for strings: “Assume
there is no counterexample x such that |x | < |w|.” Then for the case w = ax , we have
|x |= |w| − 1< |w| by definition of |w|, so the inductive hypothesis applies to x .

2

Models of Computation Lecture 1: Strings [Fa’14]

Thus, string-induction proofs have the following boilerplate structure. Suppose we want to prove
that every string is perfectly cromulent, whatever that means. The white boxes hide additional
proof details that, among other things, depend on the precise definition of “perfectly cromulent”.

Proof: Let w be an arbitrary string.

Assume, for every string x such that |x |< |w|, that x is perfectly cromulent.

There are two cases to consider.

• Suppose w= ε.

Therefore, w is perfectly cromulent.

• Suppose w= ax for some symbol a and string x .
The induction hypothesis implies that x is perfectly cromulent.

Therefore, w is perfectly cromulent.

In both cases, we conclude that w is perfectly cromulent. �

Here are three canonical examples of this proof structure. When developing proofs in this
style, I strongly recommend first mindlessly writing the green text (the boilerplate) with lots of
space for each case, then filling in the red text (the actual theorem and the induction hypothesis),
and only then starting to actually think.

Lemma 1.1. For every string w, we have w • ε = w.

Proof: Let w be an arbitrary string. Assume that x •ε = x for every string x such that |x |< |w|.
There are two cases to consider:

• Suppose w= ε.

w • ε = ε • ε because w= ε,

= ε by definition of concatenation,

= w because w= ε.

• Suppose w= ax for some symbol a and string x .

w • ε = (a · x) • ε because w= ax ,

= a · (x • ε) by definition of concatenation,

= a · x by the inductive hypothesis,

= w because w= ax .

In both cases, we conclude that w • ε = w. �

Lemma 1.2. Concatenation adds length: |w • x |= |w|+ |x | for all strings w and x .

Proof: Let w and x be arbitrary strings. Assume that |y • x |= |y|+ |x | for every string y such
that |y|< |w|. (Notice that we are using induction only on w, not on x .) There are two cases to
consider:

3

Models of Computation Lecture 1: Strings [Fa’14]

• Suppose w= ε.

|w • x |= |ε • x | because w= ε

= |x | by definition of | |
= |ε|+ |x | |e|= 0 by definition of | |
= |w|+ |x | because w= ε

• Suppose w= a y for some symbol a and string y .

|w • x |= |a y • x | because w= a y

= |a · (y • x)| by definition of •

= 1+ |y • x | by definition of | |
= 1+ |y|+ |x | by the inductive hypothesis

= |a y|+ |x | by definition of | |
= |w|+ |x | because w= a y

In both cases, we conclude that |w • x |= |w|+ |x |. �

Lemma 1.3. Concatenation is associative: (w • x) • y = w • (x • y) for all strings w, x , and y .

Proof: Let w, x , and y be arbitrary strings. Assume that (z • x)• y = w• (x • y) for every string
z such that |z|< |w|. (Again, we are using induction only on w.) There are two cases to consider.

• Suppose w= ε.

(w • x) • y = (ε • x) • y because w= ε

= x • y by definition of •

= ε • (x • y) by definition of •

= w • (x • y) because w= ε

• Suppose w= az for some symbol a and some string z.

(w • x) • y = (az • x) • y because w= az

= (a · (z • x)) • y by definition of •

= a · ((z • x) • y) by definition of •

= a · (z • (x • y)) by the inductive hypothesis

= az • (x • y) by definition of •

= w • (x • y) because w= az

In both cases, we conclude that (w • x) • y = w • (x • y). �

This is not the only boilerplate that one can use for induction proofs on strings. For example,
we can modify the inductive case analysis using the following observation: A non-empty string w
is either a single symbol or the concatenation of two non-empty strings, which (by Lemma 1.2)
must be shorter than w. Here is a proof of Lemma 1.3 that uses this alternative recursive structure:

4

Models of Computation Lecture 1: Strings [Fa’14]

Proof: Let w, x , and y be arbitrary strings. Assume that (z • x ′)• y ′ = z • (x ′ • y ′) for all strings
x ′, y ′, and z such that |z| < |w|. (We need a stronger induction hypothesis here than in the
previous proofs!) There are three cases to consider.

• Suppose w= ε.

(w • x) • y = (ε • x) • y because w= ε

= x • y by definition of •

= ε • (x • y) by definition of •

= w • (x • y) because w= ε

• Suppose w is equal to some symbol a.

(w • x) • y = (a • x) • y because w= a

= (a · x) • y because a • z = a · z by definition of •

= a · (x • y) by definition of •

= a • (x • y) because a • z = a · z by definition of •

= w • (x • y) because w= a

• Suppose w= uv for some nonempty strings u and v.

(w • x) • y = ((u • v) • x) • y because w= uv

= (u • (v • x)) • y by the inductive hypothesis, because |u|< |w|
= u • ((v • x) • y) by the inductive hypothesis, because |u|< |w|
= u • (v • (x • y)) by the inductive hypothesis, because |v|< |w|
= (u • v) • (x • y) by the inductive hypothesis, because |u|< |w|
= w • (x • y) because w= uv

In both cases, we conclude that (w • x) • y = w • (x • y). �

1.3 Indices, Substrings, and Subsequences

For any string w and any integer 1 ≤ i ≤ |w|, the expression wi denotes the ith symbol in w,
counting from left to right. More formally, wi is recursively defined as follows:

wi :=

(
a if w= ax and i = 1

x i−1 if w= ax and i > 1

As one might reasonably expect, wi is formally undefined if i < 1 or w = ε, and therefore (by
induction) if i > |w|. The integer i is called the index of wi .

We sometimes write strings as a concatenation of their constituent symbols using this
subscript notation: w= w1w2 · · ·w|w|. While standard, this notation is slightly misleading, since
it incorrectly suggests that the string w contains at least three symbols, when in fact w could be a
single symbol or even the empty string.

In actual code, subscripts are usually expressed using the bracket notation w [i]. Brackets
were introduced as a typographical convention over a hundred years ago because subscripts and

5

Models of Computation Lecture 1: Strings [Fa’14]

superscripts¹ were difficult or impossible to type.² We sometimes write strings as explicit arrays
w[1 .. n], with the understanding that n = |w|. Again, this notation is potentially misleading;
always remember that n might be zero; the string/array could be empty.

A substring of a string w is another string obtained from w by deleting zero or more symbols
from the beginning and from the end. Formally, a string y is a substring of w if and only if
there are strings x and z such that w= x yz. Extending the array notation for strings, we write
w [i .. j] to denote the substring of w starting at wi and ending at w j . More formally, we define

w[i .. j] :=

¨
ε if j < i,

wi ·w[i + 1 .. j] otherwise.

A proper substring of w is any substring other than w itself. For example, LAUGH is a proper
substring of SLAUGHTER. Whenever y is a (proper) substring of w, we also call w a (proper)
superstring of y .

A prefix of w[1 .. n] is any substring of the form w[1 .. j]. Equivalently, a string p is a prefix
of another string w if and only if there is a string x such that px = w. A proper prefix of w is
any prefix except w itself. For example, DIE is a proper prefix of DIET.

Similarly, a suffix of w[1 .. n] is any substring of the form w[i .. n]. Equivalently, a string s is a
suffix of a string w if and only if there is a string x such that xs = w. A proper suffix of w is any
suffix except w itself. For example, YES is a proper suffix of EYES, and HE is both a proper prefix
and a proper suffix of HEADACHE.

A subsequence of a string w is a strong obtained by deleting zero or more symbols from
anywhere in w. More formally, z is a subsequence of w if and only if

• z = ε, or

• w= ax for some symbol a and some string x such that z is a subsequence of x .

• w= ax and z = a y for some symbol a and some strings x and y , and y is a subsequence
of x .

A proper subsequence of w is any subsequence of w other than w itself. Whenever z is a (proper)
subsequence of w, we also call w a (proper) supersequence of z.

¹The same bracket notation is also used for bibliographic references, instead of the traditional footnote/endnote
superscripts, for exactly the same reasons.

²A typewriter is an obsolete mechanical device loosely resembling a computer keyboard. Pressing a key on a
typewriter moves a lever (called a “typebar”) that strikes a cloth ribbon full of ink against a piece of paper, leaving the
image of a single character. Many historians believe that the ordering of letters on modern keyboards (QWERTYUIOP)
evolved in the late 1800s, reaching its modern form on the 1874 Sholes & Glidden Type-WriterTM, in part to separate
many common letter pairs, to prevent typebars from jamming against each other; this is also why the keys on most
modern keyboards are arranged in a slanted grid. (The common folk theory that the ordering was deliberately
intended to slow down typists doesn’t withstand careful scrutiny.) A more recent theory suggests that the ordering
was influenced by telegraph³ operators, who found older alphabetic arrangements confusing, in part because of
ambiguities in American Morse Code.

³A telegraph is an obsolete electromechanical communication device consisting of an electrical circuit with a
switch at one end and an electromagnet at the other. The sending operator would press and release a key, closing and
opening the circuit, originally causing the electromagnet to push a stylus onto a moving paper tape, leaving marks
that could be decoded by the receiving operator. (Operators quickly discovered that they could directly decode the
clicking sounds made by the electromagnet, and so the paper tape became obsolete almost immediately.) The most
common scheme within the US to encode symbols, developed by Alfred Vail and Samuel Morse in 1837, used (mostly)
short (·) and long (−) marks—now called “dots” and “dashes”, or “dits” and “dahs”—separated by gaps of various
lengths. American Morse code (as it became known) was ambiguous; for example, the letter Z and the string SE were
both encoded by the sequence · · · · (“di-di-dit, dit”). This ambiguity has been blamed for the S key’s position on the

6

Models of Computation Lecture 1: Strings [Fa’14]

Substrings and subsequences are not the same objects; don’t confuse them! Every substring
of w is also a subsequence of w, but not every subsequence is a substring. For example, METAL is
a subsequence, but not a substring, of MEATBALL. To emphasize the distinction, we sometimes
redundantly refer to substrings of w as contiguous substrings, meaning all their symbols appear
together in w.

Exercises

Most of the following exercises ask for proofs of various claims about strings. For each claim, give
a complete, self-contained, formal proof by inductive definition-chasing, using the boilerplate
structure recommended in Section 1.2. You can use Lemmas 1.1, 1.2, and 1.3, but don’t assume
any other facts about strings that you have not actually proved. Do not use the words “obvious”
or “clearly” or “just”. Most of these claims are in fact obvious; the real exercise is understanding
why they’re obvious.

1. For any symbol a and any string w, let #(a, w) denote the number of occurrences of a in
w. For example, #(A,BANANA) = 3 and #(X,FLIBBERTIGIBBET) = 0.

(a) Give a formal recursive definition of the function #: Σ×Σ∗→ N.
(b) Prove that #(a, x y) = #(a, x) +#(a, y) for every symbol a and all strings x and y.

Your proof must rely on both your answer to part (a) and the formal recursive
definition of string concatenation.

2. Recursively define a set L of strings over the alphabet {0,1} as follows:

• The empty string ε is in L.

• For any two strings x and y in L, the string 0x1y0 is also in L.

• These are the only strings in L.

(a) Prove that the string 000010101010010100 is in L.

(b) Prove by induction that every string in L has exactly twice as many 0s as 1s. (You may
assume the identity #(a, x y) = #(a, x) +#(a, y) for any symbol a and any strings x
and y; see Exercise 1(b).)

(c) Give an example of a string with exactly twice as many 0s as 1s that is not in L.

3. For any string w and any non-negative integer n, let wn denote the string obtained by
concatenating n copies of w; more formally, we define

wn :=

(
ε if n= 0

w • wn−1 otherwise

For example, (BLAH)5 = BLAHBLAHBLAHBLAHBLAH and ε374 = ε.

Prove that wm • wn = wm+n for every string w and all integers non-negative integer n
and m.

typewriter keyboard near E and Z.
Vail and Morse were of course not the first people to propose encoding symbols as strings of bits. That honor

apparently falls to Francis Bacon, who devised a five-bit binary encoding of the alphabet (except for the letters J and U)
in 1605 as the basis for a steganographic code—a method or hiding secret message in otherwise normal text.

7

Models of Computation Lecture 1: Strings [Fa’14]

4. Let w be an arbitrary string, and let n= |w|. Prove each of the following statements.

(a) w has exactly n+ 1 prefixes.

(b) w has exactly n proper suffixes.

(c) w has at most n(n+ 1)/2 distinct substrings.

(d) w has at most 2n − 1 proper subsequences.

5. The reversal wR of a string w is defined recursively as follows:

wR :=

(
ε if w= ε

xR • a if w= a · x

(a) Prove that |wR|= |w| for every string w.

(b) Prove that (wx)R = xRwR for all strings w and x .

(c) Prove that (wR)n = (wn)R for every string w and every integer n≥ 0. (See Exercise 1.)

(d) Prove that (wR)R = w for every string w.

6. Let w be an arbitrary string, and let n= |w|. Prove the following statements for all indices
1≤ i ≤ j ≤ k ≤ n.

(a) |w[i .. j]|= j − i + 1

(b) w[i .. j] • w[j + 1 .. k] = w[i .. k]

(c) wR[i .. j] = (w[i′ .. j′])R where i′ = |w|+ 1− j and j′ = |w|+ 1− i.

7. A palindrome is a string that is equal to its reversal.

(a) Give a recursive definition of a palindrome over the alphabet Σ.

(b) Prove that any string p meets your recursive definition of a palindrome if and only if
p = pR.

8. A string w ∈ Σ∗ is called a shuffle of two strings x , y ∈ Σ∗ if at least one of the following
recursive conditions is satisfied:

• w= x = y = ε.

• w = aw′ and x = ax ′ and w′ is a shuffle of x ′ and y, for some a ∈ Σ and some
w′, x ′ ∈ Σ∗.

• w = aw′ and y = a y ′ and w′ is a shuffle of x and y ′, for some a ∈ Σ and some
w′, y ′ ∈ Σ∗.

For example, the string BANANANANASA is a shuffle of the strings BANANA and ANANAS.

(a) Prove that if w is a shuffle of x and y , then |w|= |x |+ |y|.
(b) Prove that if w is a shuffle of x and y , then wR is a shuffle of xR and yR.

8

Models of Computation Lecture 1: Strings [Fa’14]

9. Consider the following pair of mutually recursive functions on strings:

evens(w) :=

(
ε if w= ε

odds(x) if w= ax
odds(w) :=

(
ε if w= ε

a · evens(x) if w= ax

(a) Prove the following identity for all strings w and x:

evens(w • x) =

(
evens(w) • evens(x) if |w| is even,
evens(w) • odds(x) if |w| is odd.

(b) State and prove a similar identity for odds(w • x).

10. For any positive integer n, the Fibonacci string Fn is defined recursively as follows:

Fn =

0 if n= 1,

1 if n= 2,

Fn−2 • Fn−1 otherwise.

For example, F6 = 10101101 and F7 = 0110110101101.

(a) Prove that for every integer n ≥ 2, the string Fn can also be obtained from Fn−1 by
replacing every occurrence of 0 with 1 and replacing every occurrence of 1 with 01.
More formally, prove that Fn = Finc(Fn−1), where

Finc(w) =

ε if w= ε
1 · Finc(x) if w= 0x

01 • Finc(x) if w= 1x

[Hint: First prove that Finc(x • y) = Finc(x) • Finc(y).]

(b) Prove that 00 and 111 are not substrings of any Fibonacci string Fn.

11. Prove that the following three properties of strings are in fact identical.

• A string w ∈ {0,1}∗ is balanced if it satisfies one of the following conditions:

– w= ε,
– w= 0x1 for some balanced string x , or
– w= x y for some balanced strings x and y .

• A string w ∈ {0,1}∗ is erasable if it satisfies one of the following conditions:

– w= ε, or
– w= x01y for some strings x and y such that x y is erasable. (The strings x and

y are not necessarily erasable.)

• A string w ∈ {0,1}∗ is conservative if it satisfies both of the following conditions:

– w has an equal number of 0s and 1s, and
– no prefix of w has more 0s than 1s.

(a) Prove that every balanced string is erasable.

9

Models of Computation Lecture 1: Strings [Fa’14]

(b) Prove that every erasable string is conservative.

(c) Prove that every conservative string is balanced.

[Hint: To develop intuition, it may be helpful to think of 0s as left brackets and 1s as right
brackets, but don’t invoke this intuition in your proofs.]

12. A string w ∈ {0,1}∗ equitable if it has an equal number of 0s and 1s.

(a) Prove that a string w is equitable if and only if it satisfies one of the following
conditions:

• w= ε,
• w= 0x1 for some equitable string x ,
• w= 1x0 for some equitable string x , or
• w= x y for some equitable strings x and y .

(b) Prove that a string w is equitable if and only if it satisfies one of the following
conditions:

• w= ε,
• w= x01y for some strings x and y such that x y is equitable, or
• w= x10y for some strings x and y such that x y is equitable.

In the last two cases, the individual strings x and y are not necessarily equitable.

(c) Prove that a string w is equitable if and only if it satisfies one of the following
conditions:

• w= ε,
• w= x y for some balanced string x and some equitable string y , or
• w= xR y for some for some balanced string x and some equitable string y .

(See the previous exercise for the definition of “balanced”.)

10

Models of Computation Lecture 2: Regular Languages [Fa’14]

Caveat lector: This is the first edition of this lecture note. Please send bug reports and
suggestions to jeffe@illinois.edu.

But the Lord came down to see the city and the tower the people were building. The Lord
said, “If as one people speaking the same language they have begun to do this, then nothing
they plan to do will be impossible for them. Come, let us go down and confuse their language
so they will not understand each other.”

— Genesis 11:6–7 (New International Version)

Soyez réglé dans votre vie et ordinaire comme un bourgeois,
afin d’être violent et original dans vos œuvres.

[Be regular and orderly in your life like a bourgeois,
so that you may be violent and original in your work.]

— Gustave Flaubert, in a letter to Gertrude Tennant (December 25, 1876)

Some people, when confronted with a problem, think "I know, I’ll use regular expressions."
Now they have two problems.

— Jamie Zawinski, alt.religion.emacs (August 12, 1997)

I define UNIX as 30 definitions of regular expressions living under one roof.

— Donald Knuth, Digital Typography (1999)

2 Regular Languages

2.1 Languages

A formal language (or just a language) is a set of strings over some finite alphabet Σ, or
equivalently, an arbitrary subset of Σ∗. For example, each of the following sets is a language:

• The empty set ∅.¹
• The set {ε}.
• The set {0,1}∗.
• The set {THE,OXFORD,ENGLISH,DICTIONARY}.
• The set of all subsequences of THE�OXFORD�ENGLISH�DICTIONARY.
• The set of all words in The Oxford English Dictionary.

• The set of all strings in {0,1}∗ with an odd number of 1s.

• The set of all strings in {0,1}∗ that represent a prime number in base 13.

• The set of all sequences of turns that solve the Rubik’s cube (starting in some fixed
configuration)

• The set of all python programs that print “Hello World!”

As a notational convention, I will always use italic upper-case letters (usually L, but also A, B, C ,
and so on) to represent languages.

¹The empty set symbol ∅ derives from the Norwegian letter Ø, pronounced like a sound of disgust or a German ö,
and not from the Greek letter φ. Calling the empty set “fie” or “fee” makes the baby Jesus cry.

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

1

Models of Computation Lecture 2: Regular Languages [Fa’14]

Formal languages are not “languages” in the same sense that English, Klingon, and Python are
“languages”. Strings in a formal language do not necessarily carry any “meaning”, nor are they
necessarily assembled into larger units (“sentences” or “paragraphs” or “packages”) according to
some “grammar”.

It is very important to distinguish between three “empty” objects. Many beginning students
have trouble keeping these straight.

• ∅ is the empty language, which is a set containing zero strings. ∅ is not a string.

• {ε} is a language containing exactly one string, which has length zero. {ε} is not empty,
and it is not a string.

• ε is the empty string, which is a sequence of length zero. ε is not a language.

2.2 Building Languages

Languages can be combined and manipulated just like any other sets. Thus, if A and B are
languages over Σ, then their union A∪ B, intersection A∩ B, difference A \ B, and symmetric
difference A⊕ B are also languages over Σ, as is the complement A := Σ∗ \A. However, there are
two more useful operators that are specific to sets of strings.

The concatenation of two languages A and B, again denoted A • B or just AB, is the set of
all strings obtained by concatenating an arbitrary string in A with an arbitrary string in B:

A• B := {x y | x ∈ A and y ∈ B}.
For example, if A= {HOCUS,ABRACA} and B = {POCUS,DABRA}, then

A• B = {HOCUSPOCUS,ABRACAPOCUS,HOCUSDABRA,ABRACADABRA}.
In particular, for every language A, we have

∅ • A= A•∅=∅ and {ε} • A= A• {ε}= A.

TheKleene closure orKleene star² of a language L, denoted L∗, is the set of all strings obtained
by concatenating a sequence of zero or more strings from L. For example, {0,11}∗ = {ε,0,00,11,
000,011,110,0000,0011,0110,1100,1111,00000,00011,00110, . . . ,011110011011, . . .}. More
formally, L∗ is defined recursively as the set of all strings w such that either

• w= ε, or

• w= x y , for some strings x ∈ L and y ∈ L∗.

This definition immediately implies that

∅∗ = {ε}∗ = {ε}.
For any other language L, the Kleene closure L∗ is infinite and contains arbitrarily long (but
finite!) strings. Equivalently, L∗ can also be defined as the smallest superset of L that contains
the empty string ε and is closed under concatenation (hence “closure”). The set of all strings
Σ∗ is, just as the notation suggests, the Kleene closure of the alphabet Σ (where each symbol is
viewed as a string of length 1).

²after Stephen Kleene, who pronounced his last name “clay-knee”, not “clean” or “cleanie” or “claynuh” or
“dimaggio”.

2

Models of Computation Lecture 2: Regular Languages [Fa’14]

A useful variant of the Kleene closure operator is the Kleene plus, defined as L+ := L • L∗.
Thus, L+ is the set of all strings obtained by concatenating a sequence of one or more strings
from L.

The following identities, which we state here without (easy) proofs, are useful for designing,
simplifying, and understanding languages.

Lemma 2.1. The following identities hold for all languages A, B, and C:
(a) ∅A= A∅=∅.
(b) εA= Aε = A.
(c) A+ B = B + A.
(d) (A+ B) + C = A+ (B + C).
(e) (AB)C = A(BC).
(f) A(B + C) = AB + AC .

Lemma 2.2. The following identities hold for every language L:
(a) L∗ = ε + L+ = L∗L∗ = (L + ε)∗ = (L \ ε)∗ = ε + L + L+L+.
(b) L+ = L∗ \ ε = LL∗ = L∗L = L+L∗ = L∗L+ = L + L+L+.
(c) L+ = L∗ if and only if ε ∈ L.

Lemma 2.3 (Arden’s Rule). For any languages A, B, and L such that L = AL + B, we have
A∗B ⊆ L. Moreover, if A does not contain the empty string, then L = AL+ B if and only if L = A∗B.

2.3 Regular Languages and Regular Expressions

A language L is regular if and only if it satisfies one of the following (recursive) conditions:

• L is empty;

• L contains a single string (which could be the empty string ε);

• L is the union of two regular languages;

• L is the concatenation of two regular languages; or

• L is the Kleene closure of a regular language.

Regular languages are normally described using more compact notation, which omits braces
around one-string sets, uses + to represent union instead of ∪, and juxtaposes subexpressions to
represent concatenation instead of using an explicit operator •; the resulting string of symbols is
called a regular expression. By convention, in the absence of parentheses, the ∗ operator has
highest precedence, followed by the (implicit) concatenation operator, followed by +. Thus, for
example, the regular expression 10∗ is shorthand for the language {1} • {0}∗ (containing all
strings consisting of a 1 followed by zero or more 0s), and not the language {10}∗ (containing all
strings of even length that start with 1 and alternate between 1 and 0). As a larger example, the
regular expression

0+ 0∗1(10∗1+ 01∗0)∗10∗

represents the language

{0} ∪ �{0}∗ • {1} • �({1} • {0}∗ • {1})∪ ({0} • {1}∗ • {0}) �∗ • {1} • {0}∗� .

Here are a few more examples of regular expressions and the languages they represent.

• 0∗ — the set of all strings of 0s, including the empty string.

3

Models of Computation Lecture 2: Regular Languages [Fa’14]

• 00000∗ — the set of all strings consisting of at least four 0s.

• (00000)∗ — the set of all strings of 0s whose length is a multiple of 5.

• (ε + 1)(01)∗(ε + 0)— the set of all strings of alternating 0s and 1s, or equivalently, the set
of all binary strings that do not contain the substrings 00 or 11.

• ((ε+ 0+ 00+ 000)1)∗(ε+ 0+ 00+ 000)— the set of all binary strings that do not contain
the substring 0000.

• ((0+ 1)(0+ 1))∗ — the set of all binary strings whose length is even.

• 1∗(01∗01∗)∗ — the set of all binary strings with an even number of 0s.

• 0+ 1(0+ 1)∗00 — the set of all non-negative binary numerals divisible by 4 and with no
redundant leading 0s.

• 0 + 0∗1(10∗1 + 01∗0)∗10∗ — the set of all non-negative binary numerals divisible by 3,
possibly with redundant leading 0s.

The last example should not be obvious. It is straightforward, but rather tedious, to prove
by induction that every string in 0 + 0∗1(10∗1 + 01∗0)∗10∗ is the binary representation of a
non-negative multiple of 3. It is similarly straightforward, and similarly tedious, to prove that the
binary representation of every non-negative multiple of 3 matches this regular expression. In a
later note, we will see a systematic method for deriving regular expressions for some languages
that avoids (or more accurately, automates) this tedium.

Most of the time we do not distinguish between regular expressions and the languages they
represent, for the same reason that we do not normally distinguish between the arithmetic
expression “2+2” and the integer 4, or the symbol π and the area of the unit circle. However, we
sometimes need to refer to regular expressions themselves as strings. In those circumstances, we
write L(R) to denote the language represented by the regular expression R. String w matches
regular expression R if and only if w ∈ L(R). Two regular expressions R and R′ are equivalent if
they describe the same language; for example, the regular expressions (0+ 1)∗ and (1+ 0)∗ are
equivalent, because the union operator is commutative.

Almost every regular language can be represented by infinitely many distinct but equivalent
regular expressions, even if we ignore ultimately trivial equivalences like L = (L∅)∗Lε +∅.

2.4 Things What Ain’t Regular Expressions

Many computing environments and programming languages support patterns called regexen
(singular regex, pluralized like ox) that are considerably more general and powerful than regular
expressions. Regexen include special symbols representing negation, character classes (for
example, upper-case letters, or digits), contiguous ranges of characters, line and word boundaries,
limited repetition (as opposed to the unlimited repetition allowed by ∗), back-references to earlier
subexpressions, and even local variables. Despite its obvious etymology, a regex is not necessarily
a regular expression, and it does not necessarily describe a regular language!³

Another type of pattern that is often confused with regular expression are globs, which
are patterns used in most Unix shells and some scripting languages to represent sets file
names. Globs include symbols for arbitrary single characters (?), single characters from a

³However, regexen are not all-powerful, either; see http://stackoverflow.com/a/1732454/775369.

4

Models of Computation Lecture 2: Regular Languages [Fa’14]

specified range ([a-z]), arbitrary substrings (*), and substrings from a specified finite set
({foo,ba{r,z}}). Globs are significantly less powerful than regular expressions.

2.5 Not Every Language is Regular

You may be tempted to conjecture that all languages are regular, but in fact, the following
cardinality argument almost all languages are not regular. To make the argument concrete, let’s
consider languages over the single-symbol alphabet {�}.

• Every regular expression over the one-symbol alphabet {�} is itself a string over the 7-symbol
alphabet {�,+,(,),*, 3,Ø}. By interpreting these symbols as the digits 1 through 7, we can
interpret any string over this larger alphabet as the base-8 representation of some unique
integer. Thus, the set of all regular expressions over {�} is at most as large as the set of
integers, and is therefore countably infinite. It follows that the set of all regular languages
over {�} is also countably infinite.

• On the other hand, for any real number 0≤ α < 1, we can define a corresponding language

Lα =
��n

�� α2n mod 1≥ 1/2
	

.

In other words, Lα contains the string �n if and only if the (n + 1)th bit in the binary
representation of α is equal to 1. For any distinct real numbers α 6= β , the binary
representations of α and β must differ in some bit, so Lα 6= Lβ . We conclude that the set
of all languages over {�} is at least as large as the set of real numbers between 0 and 1,
and is therefore uncountably infinite.

We will see several explicit examples of non-regular languages in future lectures. For example,
the set of all regular expressions over {0,1} is not itself a regular language!

5

Models of Computation Lecture 2: Regular Languages [Fa’14]

2.6 Parsing Regular Expressions

ÆÆÆ Most algorithms for regular expressions require them in the form of regular expression
trees, rather than as raw strings. A regular expression tree is one of the following:

• A leaf node labeled ∅.
• A leaf node labeled with a string in Σ∗.
• A node labeled + with two children, each the root of an expression tree.
• A node labeled ∗ with one child, which is the root of an expression tree.
• A node labeled • with two children, each the root of an expression tree.

In other words, a regular expression tree directly encodes a sequence of alternation,
concatenation and Kleene closure operations that defines a regular language. Similarly, when
we want to prove things about regular expressions or regular languages, it is more natural to
think of subexpressions as subtrees rather than as substrings.

0+0∗1(10∗1+01∗0)∗10∗+

0 •

0

* •

1 •

+

* •

1

0

*

•

1 •

0

* 1

•

0 •

1

* 0

Given any regular expression of length n, we can parse it into an equivalent regular
expression tree in O(n) time. Thus, when we see an algorithmic problem that starts “Given a
regular expression. . . ”, we can assume without loss of generality that we’re actually given a
regular expression tree.

We’ll see more on this topic later.

Exercises

1. (a) Prove that {ε} • L = L • {ε}= L, for any language L.

(b) Prove that ∅ • L = L •∅=∅, for any language L.

(c) Prove that (A• B) • C = A• (B • C), for all languages A, B, and C .

(d) Prove that |A•B|= |A| · |B|, for all languages A and B. (The second · is multiplication!)

(e) Prove that L∗ is finite if and only if L =∅ or L = {ε}.
(f) Prove that AB = BC implies A∗B = BC∗ = A∗BC∗, for all languages A, B, and C .

2. Recall that the reversal wR of a string w is defined recursively as follows:

wR :=

(
ε if w= ε

xR • a if w= a · x

6

Models of Computation Lecture 2: Regular Languages [Fa’14]

The reversal LR of any language L is the set of reversals of all strings in L:

LR := {wR | w ∈ L}.

(a) Prove that (AB)R = BRAR for all languages A and B.

(b) Prove that (LR)R = L for every language L.

(c) Prove that (L∗)R = (LR)∗ for every language L.

3. Prove that each of the following regular expressions is equivalent to (0+ 1)∗.

(a) ε + 0(0+ 1)∗ + 1(1+ 0)∗

(b) 0∗ + 0∗1(0+ 1)∗

(c) ((ε + 0)(ε + 1))∗

(d) 0∗(10∗)∗

(e) (1∗0)∗(0∗1)∗

4. For each of the following languages in {0,1}∗, describe an equivalent regular expression.
There are infinitely many correct answers for each language. (This problem will become
significantly simpler after we’ve seen finite-state machines, in the next lecture note.)

(a) Strings that end with the suffix 09 = 000000000.

(b) All strings except 010.

(c) Strings that contain the substring 010.

(d) Strings that contain the subsequence 010.

(e) Strings that do not contain the substring 010.

(f) Strings that do not contain the subsequence 010.

(g) Strings that contain an even number of occurrences of the substring 010.
?(h) Strings that contain an even number of occurrences of the substring 000.

(i) Strings in which every occurrence of the substring 00 appears before every occurrence
of the substring 11.

(j) Strings w such that in every prefix of w, the number of 0s and the number of 1s differ
by at most 1.

?(k) Strings w such that in every prefix of w, the number of 0s and the number of 1s differ
by at most 2.

?(l) Strings in which the number of 0s and the number of 1s differ by a multiple of 3.
?(m) Strings that contain an even number of 1s and an odd number of 0s.
Æ(n) Strings that represent a number divisible by 5 in binary.

5. Prove that for any regular expression R such that L(R) is nonempty, there is a regular
expression equivalent to R that does not use the empty-set symbol ∅.

7

Models of Computation Lecture 2: Regular Languages [Fa’14]

6. Prove that if L is a regular language, then LR is also a regular language. [Hint: How do
you reverse a regular expression?]

7. (a) Describe and analyze an efficient algorithm to determine, given a regular expression R,
whether L(R) is empty.

(b) Describe and analyze an efficient algorithm to determine, given a regular expression R,
whether L(R) is infinite.

In each problem, assume you are given R as a regular expression tree, not just a raw string.

8

Models of Computation Lecture 3: Finite-State Machines [Fa’14]

Caveat lector! This is the first edition of this lecture note. A few topics are missing, and
there are almost certainly a few serious errors. Please send bug reports and suggestions to
jeffe@illinois.edu.

Life only avails, not the having lived. Power ceases in the instant of repose;
it resides in the moment of transition from a past to a new state,
in the shooting of the gulf, in the darting to an aim.

— Ralph Waldo Emerson, “Self Reliance”, Essays, First Series (1841)

O Marvelous! what new configuration will come next?
I am bewildered with multiplicity.

— William Carlos Williams, “At Dawn” (1914)

3 Finite-State Machines

3.1 Intuition

Suppose we want to determine whether a given string w[1 .. n] of bits represents a multiple of 5
in binary. After a bit of thought, you might realize that you can read the bits in w one at a time,
from left to right, keeping track of the value modulo 5 of the prefix you have read so far.

MultipleOf5(w[1 .. n]):
rem← 0
for i← 1 to n

rem← (2 · rem+w[i])mod 5
if rem= 0

return True
else

return False

Aside from the loop index i, which we need just to read the entire input string, this algorithm
has a single local variable rem, which has only four different values (0, 1, 2, 3, or 4).

This algorithm already runs in O(n) time, which is the best we can hope for—after all, we
have to read every bit in the input—but we can speed up the algorithm in practice. Let’s define a
change or transition function δ : {0, 1, 2, 3, 4} × {0,1} → {0, 1,2, 3,4} as follows:

δ(q, a) = (2q+ a)mod 5.

(Here I’m implicitly converting the symbols 0 and 1 to the corresponding integers 0 and 1.) Since
we already know all values of the transition function, we can store them in a precomputed table,
and then replace the computation in the main loop of MultipleOf5 with a simple array lookup.

We can also modify the return condition to check for different values modulo 5. To be
completely general, we replace the final if-then-else lines with another array lookup, using an
array A[0 .. 4] of booleans describing which final mod-5 values are “acceptable”.

After both of these modifications, our algorithm can be rewritten as follows, either iteratively
or recursively (with q = 0 in the initial call):

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

1

Models of Computation Lecture 3: Finite-State Machines [Fa’14]

DoSomethingCool(w[1 .. n]):
q← 0
for i← 1 to n

q← δ[q, w[i]]
return A[q]

DoSomethingCool(q, w):
if w= ε

return A[q]
else

decompose w= a · x
return DoSomethingCool(δ(q, a), x)

If we want to use our new DoSomethingCool algorithm to implement MultipleOf5, we simply
give the arrays δ and A the following hard-coded values:

q δ[q,0] δ[q,1] A[q]
0 0 1 True
1 2 3 False
2 4 0 False
3 1 2 False
4 3 4 False

We can also visualize the behavior of DoSomethingCool by drawing a directed graph, whose
vertices represent possible values of the variable q—the possible states of the algorithm—and
whose edges are labeled with input symbols to represent transitions between states. Specifically,
the graph includes the labeled directed edge p

a−→q if and only if δ(p, a) = q. To indicate the
proper return value, we draw the “acceptable” final states using doubled circles. Here is the
resulting graph for MultipleOf5:

0

1 1

1

0

2

3

41

1

0

0

0

0

1

State-transition graph for MultipleOf5

If we run the MultipleOf5 algorithm on the string 00101110110 (representing the number
374 in binary), the algorithm performs the following sequence of transitions:

0
0−→ 0

0−→ 0
1−→ 1

0−→ 2
1−→ 0

1−→ 1
1−→ 3

0−→ 1
1−→ 3

1−→ 2
0−→ 4

Because the final state is not the “acceptable” state 0, the algorithm correctly returns False.
We can also think of this sequence of transitions as a walk in the graph, which is completely
determined by the start state 0 and the sequence of edge labels; the algorithm returns True if
and only if this walk ends at an “acceptable” state.

3.2 Formal Definitions

The object we have just described is an example of a finite-state machine. A finite-state machine
is a formal model of any system/machine/algorithm that can exist in a finite number of states
and that transitions among those states based on sequence of input symbols.

Finite-state machines are also commonly called deterministic finite-state automata, abbre-
viated DFAs. The word “deterministic” means that the behavior of the machine is completely

2

Models of Computation Lecture 3: Finite-State Machines [Fa’14]

determined by the input string; we’ll discuss nondeterministic automata in the next lecture.
The word “automaton” (plural “automata”) comes from ancient Greek αυτoµατoς meaning
“self-acting”, from the roots αυτo- (“self”) and -µατoς (“thinking, willing”, the root of Latin
mentus).

Formally, every finite-state machine consists of five components:

• An arbitrary finite set Σ, called the input alphabet.

• Another arbitrary finite set Q, whose elements are called states.

• An arbitrary transition function δ : Q×Σ→Q.

• A start state s ∈Q.

• A subset A ⊆Q of accepting states.

The behavior of a finite-state machine is governed by an input string w, which is a finite
sequence of symbols from the input alphabet Σ. The machine reads the symbols in w one at a
time in order (from left to right). At all times, the machine has a current state q; initially q is
the machine’s start state s. Each time the machine reads a symbol a from the input string, its
current state transitions from q to δ(q, a). After all the characters have been read, the machine
accepts w if the current state is in A and rejects w otherwise. In other words, every finite state
machine runs the algorithm DoSomethingCool! The language of a finite state machine M ,
denoted L(M) is the set of all strings that M accepts.

More formally, we extend the transition function δ : Q×Σ∗→Q of any finite-state machine
to a function δ∗ : Q×Σ∗→Q that transitions on strings as follows:

δ∗(q, w) :=

(
q if w= ε,

δ∗(δ(q, a), x) if w= ax .

Finally, a finite-state machine accepts a string w if and only if δ∗(s, w) ∈ A, and rejects w
otherwise. (Compare this definition with the recursive formulation of DoSomethingCool!)

For example, our final MultipleOf5 algorithm is a DFA with the following components:

• input alphabet: Σ= {0,1}
• state set: Q = {0,1, 2,3, 4}
• transition function: δ(q, a) = (2q+ a)mod 5

• start state: s = 0

• accepting states: A= {0}
This machine rejects the string 00101110110, because

δ∗(0,00101110110) = δ∗(δ(0,0),0101110110)

= δ∗(0,0101110110) = δ∗(δ(0,0),101110110)

= δ∗(0,101110110) = δ∗(δ(0,1),01110110) = · · ·
...

· · ·= δ∗(1,110) = δ∗(δ(1,1),10)

= δ∗(3,10) = δ∗(δ(3,1),0)

= δ∗(2,0) = δ∗(δ(3,0),ε)

= δ∗(4,ε) = 4 6∈ A.

3

Models of Computation Lecture 3: Finite-State Machines [Fa’14]

We have already seen a more graphical representation of this entire sequence of transitions:

0
0−→ 0

0−→ 0
1−→ 1

0−→ 2
1−→ 0

1−→ 1
1−→ 3

0−→ 1
1−→ 3

1−→ 2
0−→ 4

The arrow notation is easier to read and write for specific examples, but surprisingly, most people
actually find the more formal functional notation easier to use in formal proofs. Try them both!

We can equivalently define a DFA as a directed graph whose vertices are the states Q, whose
edges are labeled with symbols from Σ, such that every vertex has exactly one outgoing edge
with each label. In our drawings of finite state machines, the start state s is always indicated
by an incoming arrow, and the accepting states A are always indicted by doubled circles. By
induction, for any string w ∈ Σ∗, this graph contains a unique walk that starts at s and whose
edges are labeled with the symbols in w in order. The machine accepts w if this walk ends at an
accepting state. This graphical formulation of DFAs is incredibly useful for developing intuition
and even designing DFAs. For proofs, it’s largely a matter of taste whether to write in terms of
extended transition functions or labeled graphs, but (as much as I wish otherwise) I actually find
it easier to write correct proofs using the functional formulation.

3.3 Another Example

The following drawing shows a finite-state machine with input alphabet Σ = {0,1}, state set
Q = {s, t}, start state s, a single accepting state t, and the transition function

δ(s,0) = s, δ(s,1) = t, δ(t,0) = t, δ(t,1) = s.

0 0

1

1

s t

A simple finite-state machine.

For example, the two-state machine M at the top of this page accepts the string 00101110100
after the following sequence of transitions:

s
0−→ s

0−→ s
1−→ t

0−→ t
1−→ s

1−→ t
1−→ s

0−→ s
1−→ t

0−→ t
0−→ t.

The same machine M rejects the string 11100101 after the following sequence of transitions:

s
1−→ t

1−→ s
1−→ t

0−→ t
0−→ s

1−→ t
0−→ t

1−→ s.

Finally, M rejects the empty string, because the start state s is not an accepting state.
From these examples and others, it is easy to conjecture that the language of M is the set of

all strings of 0s and 1s with an odd number of 1s. So let’s prove it!

Proof (tedious case analysis): Let #(a, w) denote the number of times symbol a appears in
string w. We will prove the following stronger claims, for any string w.

δ∗(s, w) =

¨
s if #(1, w) is even
t if #(1, w) is odd

and δ∗(t, w) =

¨
t if #(1, w) is even
s if #(1, w) is odd

Let w be an arbitrary string. Assume that for any string x that is shorter than w, we have
δ∗(s, x) = s and δ∗(t, x) = t if x has an even number of 1s, and δ∗(s, x) = t and δ∗(t, x) = s if
x has an odd number of 1s. There are five cases to consider.

4

Models of Computation Lecture 3: Finite-State Machines [Fa’14]

• If w = ε, then w contains an even number of 1s and δ∗(s, w) = s and δ∗(t, w) = t by
definition.

• Suppose w= 1x and #(1, w) is even. Then #(1, x) is odd, which implies

δ∗(s, w) = δ∗(δ(s,1), x) by definition of δ∗

= δ∗(t, x) by definition of δ

= s by the inductive hypothesis

δ∗(t, w) = δ∗(δ(t,1), x) by definition of δ∗

= δ∗(s, x) by definition of δ

= T by the inductive hypothesis

Since the remaining cases are similar, I’ll omit the line-by-line justification.

• If w= 1x and #(1, w) is odd, then #(1, x) is even, so the inductive hypothesis implies

δ∗(s, w) = δ∗(δ(s,1), x) = δ∗(t, x) = t

δ∗(t, w) = δ∗(δ(t,1), x) = δ∗(s, x) = s

• If w= 0x and #(1, w) is even, then #(1, x) is even, so the inductive hypothesis implies

δ∗(s, w) = δ∗(δ(s,0), x) = δ∗(s, x) = s

δ∗(t, w) = δ∗(δ(t,0), x) = δ∗(t, x) = t

• Finally, if w = 0x and #(1, w) is odd, then #(1, x) is odd, so the inductive hypothesis
implies

δ∗(s, w) = δ∗(δ(s,0), x) = δ∗(s, x) = t

δ∗(t, w) = δ∗(δ(t,0), x) = δ∗(t, x) = s �

Notice that this proof contains |Q|2 · |Σ|+ |Q| separate inductive arguments. For every pair of
states p and q, we must argue about the language so strings w such that δ∗(p, w) = q, and we
must consider each first symbol in w. We must also argue about δ(p,ε) for every state p. Each of
those arguments is typically straightforward, but it’s easy to get lost in the deluge of cases.

For this particular proof, however, we can reduce the number of cases by switching from tail
recursion to head recursion. The following identity holds for all strings x ∈ Σ∗ and symbols
a ∈ Σ:

δ∗(q, xa) = δ(δ∗(q, x), a)

We leave the inductive proof of this identity as a straightforward exercise (hint, hint).

Proof (clever renaming, head induction): Let’s rename the states 0 and 1 instead of s and t.
Then the transition function can be described concisely as δ(q , a) = (q + a)mod 2.

Now we claim that for every string w, we have δ∗(0, w) = #(1, w)mod 2. So let w be
an arbitrary string, and assume that for any string x that is shorter than w that δ∗(0, x) =
#(1, x)mod 2. There are only two cases to consider: either w is empty or it isn’t.

• If w= ε, then δ∗(0, w) = 0= #(1, w)mod 2 by definition.

5

Models of Computation Lecture 3: Finite-State Machines [Fa’14]

• Otherwise, w= xa for some string x and some symbol a, and we have

δ∗(0, w) = δ(δ∗(0, x), a)

= δ(#(1, x)mod 2, a) by the inductive hypothesis

= (#(1, x)mod 2+ a)mod 2 by definition of δ

= (#(1, x) + a)mod 2 by definition of mod 2

= (#(1, x) +#(1, a))mod 2 because #(1,0) = 0 and #(1,1) = 1

= (#(1, xa))mod 2 by definition of #

= (#(1, w))mod 2 because w= xa �

Hmmm. This “clever” proof is certainly shorter than the earlier brute-force proof, but is it really
“better”? “Simpler”? More intuitive? Easier to understand? I’m skeptical. Sometimes brute force
really is more effective.

3.4 Yet Another Example

As a more complex example, consider the Rubik’s cube, a well-known mechanical puzzle invented
independently by Ern Rubik in Hungary and Terutoshi Ishigi in Japan in the mid-1970s. This
puzzle has precisely 519,024,039,293,878,272,000 distinct configurations. In the unique solved
configuration, each of the six faces of the cube shows exactly one color. We can change the
configuration of the cube by rotating one of the six faces of the cube by 90 degrees, either clockwise
or counterclockwise. The cube has six faces (front, back, left, right, up, and down), so there
are exactly twelve possible turns, typically represented by the symbols R,L,F,B,U,D, R̄, L̄, F̄, B̄, Ū, D̄,
where the letter indicates which face to turn and the presence or absence of a bar over the letter
indicates turning counterclockwise or clockwise, respectively. Thus, we can represent a Rubik’s
cube as a finite-state machine with 519,024,039,293,878,272,000 states and an input alphabet
with 12 symbols; or equivalently, as a directed graph with 519,024,039,293,878,272,000 vertices,
each with 12 outgoing edges. In practice, the number of states is far too large for us to actually
draw the machine or explicitly specify its transition function; nevertheless, the number of states
is still finite. If we let the start state s and the sole accepting state be the solved state, then
the language of this finite state machine is the set of all move sequences that leave the cube
unchanged.

A complicated finite-state machine.

3.5 Building DFAs

This section describes a few examples of building DFAs that accept particular languages, thereby
proving that those languages are automatic. As usual in algorithm design, there is no purely

6

Models of Computation Lecture 3: Finite-State Machines [Fa’14]

mechanical recipe—no automatic method—no algorithm—for building DFAs in general. However,
the following examples show several useful design strategies.

3.5.1 Superstrings

Perhaps the simplest rule of thumb is to try to construct an algorithm that looks likeMultipleOf5:
A simple for-loop through the symbols, using a constant number of variables, where each variable
(except the loop index) has only a constant number of possible values. Here, “constant” means
an actual number that is not a function of the input size n. You should be able to compute the
number of possible values for each variable at compile time.

For example, the following algorithm determines whether a given string in Σ= {0,1} contains
the substring 11.

Contains11(w[1 .. n]):
found← False
for i← 1 to n

if i = 1
last2← w[1]

else
last2← w[1] ·w[2]

if last= 11
found← True

return found

Aside from the loop index, this algorithm has exactly two variables.

• A boolean flag found indicating whether we have seen the substring 11. This variable has
exactly two possible values: True and False.

• A string last2 containing the last (up to) three symbols we have read so far. This variable
has exactly 7 possible values: ε, 0, 1, 00, 01, 10, and 11.

Thus, altogether, the algorithm can be in at most 2× 7= 14 possible states, one for each possible
pair (found, last2). Thus, we can encode the behavior of Contains11 as a DFA with fourteen
states, where the start state is (False,ε) and the accepting states are all seven states of the form
(True,∗). The transition function is described in the following table (split into two parts to save
space):

q δ[q,0] δ[q,1]
(False,ε) (False,0) (False,1)
(False,0) (False,00) (False,01)
(False,1) (False,10) (True,11)
(False,00) (False,00) (False,01)
(False,01) (False,10) (True,11)
(False,10) (False,00) (False,01)
(False,11) (False,10) (True,11)

q δ[q,0] δ[q,1]
(True,ε) (True,0) (True,1)
(True,0) (True,00) (True,01)
(True,1) (True,10) (True,11)
(True,00) (True,00) (True,01)
(True,01) (True,10) (True,11)
(True,10) (True,00) (True,01)
(True,11) (True,10) (True,11)

For example, given the input string 1001011100, this DFA performs the following sequence of

7

Models of Computation Lecture 3: Finite-State Machines [Fa’14]

transitions and then accepts.

(False,ε)
1−→ (False,1)

0−→ (False,10)
0−→ (False,00)

1−→
(False,01)

0−→ (False,10)
1−→ (False,01)

1−→
(True,11)

1−→ (True,11)
0−→ (True,10)

0−→ (True,00)

3.5.2 Reducing states

You can probably guess that the brute-force DFA we just constructed has considerably more states
than necessary, especially after seeing its transition graph:

0 110

F,ε Τ,ε

F,0

F,1

Τ,0

Τ,1

F,00

F,10

F,01

F,11

Τ,00

Τ,10

Τ,01

Τ,11

1

1

1

1

1 1

0

1

10
0

0

0

0

1

0

0

0

1

0

0

0

01

Our brute-force DFA for strings containing the substring 11

For example, we don’t need actually to remember both of the last two symbols, but only the
penultimate symbol, because the last symbol is the one we’re currently reading. This observation
allows us to reduce the number of states from fourteen to only six. Once the flag part of the state
is set to True, we know the machine will eventually accept, so we might as well merge the two
accepting states together. Finally, and more subtly, because all transitions out of (False,ε) and
(False,0) are identical, we can merge those two states together as well. In the end, we obtain
the following DFA with just three states:

• The start state, which indicates that the machine has not read the substring 11 an did not
just read the symbol 1.

• An intermediate state, which indicates that the machine has not read the substring 11 but
just read the symbol 1.

• A unique accept state, which indicates that the machine has read the substring 11.

1
1

0

0,10

A minimal DFA for superstrings of 11

At the end of this note, I’ll describe an efficient algorithm to transform any given DFA into an
equivalent DFA with the fewest possible states. Given that this minimization algorithm exists,
there is very little incentive to optimize DFAs by hand. Clarity is infinitely more important than
brevity, especially in this class.

8

Models of Computation Lecture 3: Finite-State Machines [Fa’14]

3.5.3 Every this after that

Suppose we want to accept the set of strings in which every occurrence of the substring 00 occurs
after every occurrence of the substring 11. Equivalently, we want to reject every string in which
some 00 occurs before 11. Often the easiest way to design a DFA to check whether a string is not
in some set is first to build a DFA that is in that set and then invert which states in that machine
are accepting.

From the previous example, we know that there is a three-state DFA M11 that accepts the set
of strings with the substring 11 and a nearly identical DFA M00 that accepts the set of strings
containing the substring 00. By identifying the accept state of M00 with the start state of M11,
we obtain a five-state DFA that accepts the set of strings with 00 before 11. Finally, by inverting
which states are accepting, we obtain the DFA we want.

0
0

1

1
1

0

0

1 0,1

0
0

1

1
1

0

0

1 0,1

0
0

1

0,11

1
1

0

0,10

Building a DFA for the language of strings in which every 00 is after every 11.

3.5.4 Both This and That: The Product Construction

Now suppose we want to accept all strings that contain both 00 and 11 as substrings, in either
order. Intuitively, we’d like to run two of our earlier DFAs in parallel—the DFA M00 to detect
superstrings of 00 and the DFA M11 to detect superstrings of 11—and then accept the input
string if and only if both of these DFAs accept. In fact, we can encode precisely this “parallel
computation” into a single DFA, whose states are all ordered pairs (p, q), where p is a state in
M00 and q is a state in M11. The new “parallel” DFA includes the transition (p, q)

a−→ (p′, q′) if
and only if M00 contains the transition p

a−→ p′ and M11 contains the transition q
a−→ q′. Finally,

the state (p, q) is accepting if and only if p and q are accepting states in their respective machines.
The resulting nine-state DFA is shown on the next page.

More generally, let M1 = (Σ,Q1,δ1, s1, A1) be an arbitrary DFA that accepts some language
L1, and let M2 = (Σ,Q2,δ2, s2, A2) be an arbitrary DFA that accepts some language L2 (over the
same alphabet Σ). We can construct a third DFA M = (Σ,Q,δ, s, A) that accepts the intersection
language L1 ∩ L2 as follows.

Q :=Q1 ×Q2 =
�
(p, q)

�� p ∈Q1 and q ∈Q2

	

s := (s1, s2)

A := A1 × A2 =
�
(p, q)

�� p ∈ A1 and q ∈ A2

	

δ((p, q), a) :=
�
δ1(p, a), δ2(q, a)

�

9

Models of Computation Lecture 3: Finite-State Machines [Fa’14]

a

s

b

as b

s,s s,a s,b

a,s a,a a,b

b,s b,a b,b0,1

0,1

0,1

0

0

1

1

1
1

0

0

0

1

0 0 0

000

1 1

1 1 1

1
0
1

Building a DFA for the language of strings in which every 00 is after every 11.

To convince yourself that this product construction is actually correct, consider the extended
transition function δ∗ : (Q×Q′)×Σ∗ → (Q ×Q′), which acts on strings instead of individual
symbols. Recall that this function is defined recursively as follows:

δ∗
�
(p, q), w

�
:=

(
q if w= ε,

δ∗
�
δ((p, q), a), x

�
if w= ax .

Inductive definition-chasing gives us the identity δ∗((p, q), w) =
�
δ∗1(p, w), δ∗2(q, w)

�
for any

string w:

δ∗
�
(p, q),ε

�
= (p, q) by the definition of δ∗

=
�
δ∗1(p,ε), δ∗2(q,ε)

�
by the definitions of δ∗1 and δ∗2;

δ∗
�
(p, q), ax

�
= δ∗

�
δ((p, q), a), x

�
by the definition of δ∗

= δ∗
�
(δ1(p, a), δ2(q, a)), x

�
by the definition of δ

=
�
δ∗1((δ1(p, a), x), δ∗2(δ2(q, a), x)

�
by the induction hypothesis

=
�
δ∗1(p, ax), δ∗2(q, ax)

�
by the definitions of δ∗1 and δ∗2.

It now follows from this seemingly impenetrable wall of notation that for any string w, we have
δ∗(s, w) ∈ A if and only if both δ∗1(s1, w) ∈ A1 and δ∗2(s2, w) ∈ A2. In other words, M accepts w if
and only if both M1 and M2 accept w, as required.

As usual, this construction technique does not necessarily yield minimal DFAs. For example,
in our first example of a product DFA, illustrated above, the central state (a, a) cannot be reached
by any other state and is therefore redundant. Whatever.

Similar product constructions can be used to build DFAs that accept any other boolean
combination of languages; in fact, the only part of the construction that needs to be changed is
the choice of accepting states. For example:

• To accept the union L1 ∪ L2, define A=
�
(p, q)

�� p ∈ A1 or q ∈ A2

	
.

10

Models of Computation Lecture 3: Finite-State Machines [Fa’14]

• To accept the difference L1 \ L2, define A=
�
(p, q)

�� p ∈ A1 but not q 6∈ A2

	
.

• To accept the symmetric difference L1 ⊕ L2, define A=
�
(p, q)

�� p ∈ A1 xor q ∈ A2

	
.

Moreover, by cascading this product construction, we can construct DFAs that accept arbitrary
boolean combinations of arbitrary finite collections of regular languages.

3.6 Decision Algorithms

ÆÆÆ It’s unclear how much we can say here, since we haven’t yet talked about graph algorithms,
or even really about graphs. Perhaps this discussion should simply be moved to the graph-
traversal notes.

• Is w ∈ L(M)? Follow the unique path from q0 with label w. By definition, w ∈ L(M) if
and only if this path leads to an accepting state.

• Is L(M) empty? The language L(M) is empty if and only if no accepting state is
reachable from q0. This condition can be checked in O(n) time via whatever-first search,
where n is the number of states. Alternatively, but less usefully, L(M) =∅ if and only if
L(M) contains no string w such that |w|< n.

• Is L(M) finite? Remove all states unreachable from q0 (via whatever first search).
Then L(M) is finite if and only if the reduced DFA is a dag; this condition can be checked
by depth-first search. Alternatively, but less usefully, L(M) is finite if and only if L(M)
contains no string w such that n≤ |w|< 2n.

• Is L(M) = Σ∗? Remove all states unreachable from q0 (via whatever first search). Then
L(M) = Σ∗ if and only if every state in M is an accepting state.

• Is L(M) = L(M ′)? Build a DFA N such that L(N) = L(M) \ L(M ′) using a standard
product construction, and then check whether L(N) =∅.

3.7 Closure Properties

ÆÆÆ We haven’t yet proved that automatic languages are regular yet, so formally, for now, some
of these are closure properties of automatic languages.

• Complement (easy for DFAs, hard for regular expressions.)
• Concatenation (trivial for regular expressions, hard for DFAs)
• Union (trivial for regular expressions, easy for DFAs via product)
• Intersection (hard for regular expressions, easy for DFAs via product)
• Difference (hard for regular expressions, easy for DFAs via product)
• Kleene star: wait for NFAs (trivial for regular expression, hard for DFAs)
• Homomorphism: only mention in passing
• Inverse homomorphism: only mention in passing

3.8 Fooling Sets

Fix an arbitrary language L over an arbitrary alphabet Σ. For any strings x , y, z ∈ Σ∗, we say that
z distinguishes x from y if exactly one of the strings xz and yz is in L. If no string distinguishes
x and y , we say that x and y are L-equivalent and write x ≡L y . Thus,

x ≡L y ⇐⇒ For every string z ∈ Σ∗, we have xz ∈ L if and only if yz ∈ L.

11

Models of Computation Lecture 3: Finite-State Machines [Fa’14]

For example, let Leo denote the language of strings over {0,1} with an even number of 0s
and an odd number of 1s. Then the strings x = 01 and y = 0011 are distinguished by the string
z = 100, because

xz = 01 • 100= 01100 ∈ Leo

yz = 0011 • 100= 0011100 6∈ Leo.

On the other hand, it is quite easy to prove (hint, hint) that the strings 0001 and 1011 are
Leo-equivalent.

Let M be an arbitrary DFA for an arbitrary language L, and let x be y be arbitrary strings. If
x and y lead to the same state in M—that is, if δ∗(s, x) = δ∗(s, y)—then we have

δ∗(s, xz) = δ∗(δ∗(s, x), z) = δ∗(δ∗(s, y), z) = δ∗(s, yz)

for any string z. In particular, either M accepts both x and y, or M rejects both x and y, and
therefore x ≡L y. It follows that if x and y are not L-equivalent, then any DFA that accepts L
has at least two distinct states δ∗(s, x) 6= δ∗(s, y).

Finally, a fooling set for L is a set F of strings such that every pair of strings in F has a
distinguishing suffix. For example, F = {01,101,010,1010} is a fooling set for the language Leo
of strings with an even number of 0s and an odd number of 1s, because each pair of strings in F
has a distinguishing suffix:

• 0 distinguishes 01 and 101;

• 0 distinguishes 01 and 010;

• 0 distinguishes 01 and 1010;

• 10 distinguishes 101 and 010;

• 1 distinguishes 101 and 1010;

• 1 distinguishes 010 and 1010.

The pigeonhole principle now implies that for any integer k, if language L is accepted by a DFA
with k states, then every fooling set for L contains at most k strings. This simple observation has
two immediate corollaries.

First, for any integer k, if L has a fooling set of size k, then every DFA that accepts L has at
least k states. For example, the fooling set {01,101,010,1010} proves that any DFA for Leo has at
least four states. Thus, we can use fooling sets to prove that certain DFAs are as small as possible.

Second, and more interestingly, if a language L is accepted by any DFA, then every fooling set
for L must be finite. Equivalently:

If L has an infinite fooling set, then L is not accepted by any DFA.

This is arguably both the simplest and most powerful method for proving that a language is
non-regular. Here are a few canonical examples of the fooling-set technique in action.

Lemma 3.1. The language L = {0n1n | n≥ 0} is not regular.
Proof: Consider the set F = {0n | n ≥ 0}, or more simply F = 0∗. Let x and y be arbitrary
distinct strings in F . Then we must have x = 0i and y = 0 j for some integers i 6= j. The suffix
z = 1i distinguishes x and y , because xz = 0i1i ∈ L, but yz = 0i1 j 6∈ L. We conclude that F is a
fooling set for L. Because F is infinite, L cannot be regular. �

12

Models of Computation Lecture 3: Finite-State Machines [Fa’14]

Lemma 3.2. The language L = {wwR | w ∈ Σ∗} of even-length palindromes is not regular.

Proof: Let x and y be arbitrary distinct strings in 0∗1. Then we must have x = 0i1 and y = 0 j1

for some integers i 6= j. The suffix z = 10i distinguishes x and y , because xz = 0i110i ∈ L, but
yz = 0i110 j 6∈ L. We conclude that 0∗1 is a fooling set for L. Because 0∗1 is infinite, L cannot be
regular. �

Lemma 3.3. The language L = {02n | n≥ 0} is not regular.

Proof: Let x and y be arbitrary distinct strings in L. Then we must have x = 02i
and y = 02 j

for
some integers i 6= j. The suffix z = 02i

distinguishes x and y, because xz = 02i+2i
= 02i+1 ∈ L,

but yz = 02i+2 j 6∈ L. We conclude that L itself is a fooling set for L. Because L is infinite, L
cannot be regular. �

Lemma 3.4. The language L = {0p | p is prime} is not regular.

Proof: Again, we use 0∗ as our fooling set, but but the actual argument is somewhat more
complicated than in our earlier examples.

Let x and y be arbitrary distinct strings in 0∗. Then we must have x = 0i and y = 0 j for some
integers i 6= j. Without loss of generality, assume that i < j. Let p be any prime number larger
than i. Because p+ 0(j − i) is prime and p+ p(j − i)> p is not, there must be a positive integer
k ≤ p such that p + (k − 1)(j − i) is prime but p + k(j − i) is not. Then the suffix 0p+(k−1) j−ki

distinguishes x and y:

xz = 0i 0p+(k−1) j−ki = 0p+(k−1)(j−i) ∈ L because p+ (k− 1)(j − i) is prime;

yz = 0 j 0p+(k−1) j−ki = 0p+k(j−i) 6∈ L because p+ k(j − i) is not prime.

(Because i < j and i < p, the suffix 0p+(k−1) j−ki = 0(p−i)+(k−1)(j−i) has positive length and
therefore actually exists!) We conclude that 0∗ is indeed a fooling set for L, which implies that L
is not regular. �

One natural question that many students ask is “How did you come up with that fooling set?”
Perhaps the simplest rule of thumb is that for most languages L—in particular, for almost all
languages that students are asked to prove non-regular on homeworks or exams—either some
simple regular language like 0∗ or 10∗1 is a fooling set, or the language L itself is a fooling set.
(Of course, there are well-engineered counterexamples.)

3.9 The Myhill-Nerode Theorem?

The fooling set technique implies a necessary condition for a language to be accepted by a
DFA—the language must have no infinite fooling sets. In fact, this condition is also sufficient.
The following powerful theorem was first proved by Anil Nerode in 1958, strengthening a 1957
result of John Myhill.¹

The Myhill-Nerode Theorem. For any language L, the following are equal:

¹Myhill considered the finer equivalence relation x ∼L y, meaning wxz ∈ L if and only if wyz ∈ L for all strings
w and z, and proved that L is regular if and only if ∼L defines a finite number of equivalence classes. Like most
of Myhill’s early automata research, this result appears in an unpublished Air Force technical report. The modern
Myhill-Nerode theorem appears (in an even more general form) as a minor lemma in Nerode’s 1958 paper, which (not
surprisingly) does not cite Myhill.

13

Models of Computation Lecture 3: Finite-State Machines [Fa’14]

(a) the minimum number of states in a DFA that accepts L,
(b) the maximum size of a fooling set for L, and
(c) the number of equivalence classes of ≡L .
In particular, L is accepted by a DFA if and only if every fooling set for L is finite.

Proof: Let L be an arbitrary language.
We have already proved that the size of any fooling set for L is at most the number of states

in any DFA that accepts L, so (a)≤(b). It also follows directly from the definitions that F ⊆ Σ∗ is
a fooling set for L if and only if F contains at most one string in each equivalence class of ≡L;
thus, (b)=(c). We complete the proof by showing that (a)≥(c).

We have already proved that if ≡L has an infinite number of equivalence classes, there is no
DFA that accepts L, so assume that the number of equivalence classes is finite. For any string w,
let [w] denote its equivalence class. We define a DFA M≡ = (Σ,Q, s, A,δ) as follows:

Q :=
�
[w]

�� w ∈ Σ∗	

s := [ε]

A :=
�
[w]

�� w ∈ L
	

δ([w], a) := [w • a]

We claim that this DFA accepts the language L; this claim completes the proof of the theorem.
But before we can prove anything about this DFA, we first need to verify that it is actually

well-defined. Let x and y be two strings such that [x] = [y]. By definition of L-equivalence,
for any string z, we have xz ∈ L if and only if yz ∈ L. It immediately follows that for any
symbol a ∈ Σ and any string z′, we have xaz′ ∈ L if and only if yaz′ ∈ L. Thus, by definition of
L-equivalence, we have [xa] = [ya] for every symbol a ∈ Σ. We conclude that the function δ is
indeed well-defined.

An easy inductive proof implies that δ∗([ε], x) = [x] for every string x . Thus, M accepts
string x if and only if [x] = [w] for some string w ∈ L. But if [x] = [w], then by definition
(setting z = ε), we have x ∈ L if and only if w ∈ L. So M accepts x if and only if x ∈ L. In other
words, M accepts L, as claimed, so the proof is complete. �

3.10 Minimal Automata?

Given a DFA M = (Σ,Q, s, A,δ), suppose we want to find another DFA M ′ = (Σ,Q′, s′, A′,δ′) with
the fewest possible states that accepts the same language. In this final section, we describe
an efficient algorithm to minimize DFAs, first described (in slightly different form) by Edward
Moore in 1956. We analyze the running time of Moore’s in terms of two parameters: n= |Q| and
σ = |Σ|.

In the preprocessing phase, we find and remove any states that cannot be reached from the
start state s; this filtering can be performed in O(nσ) time using any graph traversal algorithm.
So from now on we assume that all states are reachable from s.

Now define two states p and q in the trimmed DFA to be distingusiable, written p 6∼ q , if at
least one of the following conditions holds:

• p ∈ A and q 6∈ A,

• p 6∈ A and q ∈ A, or

• δ(p, a) 6∼ δ(q, a) for some a ∈ Σ.

14

Models of Computation Lecture 3: Finite-State Machines [Fa’14]

Equivalently, p 6∼ q if and only if there is a string z such that exactly one of the states δ∗(p, z)
and δ∗(q, z) is accepting. (Sound familiar?) Intuitively, the main algorithm assumes that all
states are equivalent until proven otherwise, and then repeatedly looks for state pairs that can be
proved distinguishable.

The main algorithm maintains a two-dimensional table, indexed by the states, where
Dist[p, q] = True indicates that we have proved states p and q are distinguishable. Initially, for all
states p and q, we set Dist[p, q]← True if p ∈ A and q 6∈ A or vice versa, and Dist[p, q] = False
otherwise. Then we repeatedly consider each pair of states and each symbol to find more
distinguished pairs, until we make a complete pass through the table without modifying it. The
table-filling algorithm can be summarized as follows:²

MinDFATable(Σ,Q, s, A,δ):
for all p ∈Q

for all q ∈Q
if (p ∈ A and q 6∈ A) or (p 6∈ A and q ∈ A)

Dist[p, q]← True
else

Dist[p, q]← False
notdone← True
while notdone

notdone← False
for all p ∈Q

for all q ∈Q
if Dist[p, q] = False
for all a ∈ Σ

if Dist[δ(p, a),δ(q, a)]
Dist[p, q]← True
notdone← True

return Dist

The algorithm must eventually halt, because there are only a finite number of entries in the
table that can be marked. In fact, the main loop is guaranteed to terminate after at most n
iterations, which implies that the entire algorithm runs in O(σn3) time. Once the table is filled,
any two states p and q such that Dist(p, q) = False are equivalent and can be merged into a
single state. The remaining details of constructing the minimized DFA are straightforward.

ÆÆÆ Need to prove that the main loop terminates in at most n iterations.

With more care, Moore’s minimization algorithm can be modified to run in O(σn2) time. A
faster DFA minimization algorithm, due to John Hopcroft, runs in O(σn log n) time.

²More experienced readers should become queasy at the mere suggestion that any algorithm merely fills in a table,
as opposed to evaluating a recurrence. This algorithm is no exception. Consider the boolean function Dist(p, q, k),
which equals True if and only if p and q can be distinguished by some string of length at most k. This function obeys
the following recurrence:

Dist(p, q, k) =

(p ∈ A)⊕ (q ∈ A) if k = 0,

Dist(p, q, k− 1) ∨
∨
a∈Σ

Dist
�
δ(p, a),δ(q, a), k− 1

�
otherwise.

Moore’s “table-filling” algorithm is just a space-efficient dynamic programming algorithm to evaluate this recurrence.

15

Models of Computation Lecture 3: Finite-State Machines [Fa’14]

Example

To get a better idea how this algorithm works, let’s visualize the algorithm running on our
earlier brute-force DFA for strings containing the substring 11. This DFA has four unreachable
states: (False,11), (True,ε), (True,0), and (True,1). We remove these states, and relabel the
remaining states for easier reference. (In an actual implementation, the states would almost
certainly be represented by indices into an array anyway, not by mnemonic labels.)

0 110

0

1

2

3

5

4 6

8

7

9

1

1

1

1

1

0

01

0

0

0

1

0

0

01

Our brute-force DFA for strings containing the substring 11, after removing all four unreachable states

The main algorithm initializes (the bottom half of) a 10 × 10 table as follows. (In the
implementation, cells marked 6∼ have value True and blank cells have value False.)

0 1 2 3 4 5 6 7 8
1
2
3
4
5
6 6∼ 6∼ 6∼ 6∼ 6∼ 6∼
7 6∼ 6∼ 6∼ 6∼ 6∼ 6∼
8 6∼ 6∼ 6∼ 6∼ 6∼ 6∼
9 6∼ 6∼ 6∼ 6∼ 6∼ 6∼

In the first iteration of the main loop, the algorithm discovers several distinguishable pairs
of states. For example, the algorithm sets Dist[0,2] ← True because Dist[δ(0,1),δ(2,1)] =
Dist[2,9] = True. After the iteration ends, the table looks like this:

0 1 2 3 4 5 6 7 8
1
2 6∼ 6∼
3 6∼
4 6∼ 6∼ 6∼
5 6∼ 6∼
6 6∼ 6∼ 6∼ 6∼ 6∼ 6∼
7 6∼ 6∼ 6∼ 6∼ 6∼ 6∼
8 6∼ 6∼ 6∼ 6∼ 6∼ 6∼
9 6∼ 6∼ 6∼ 6∼ 6∼ 6∼

The second iteration of the while loop makes no further changes to the table—We got lucky!—so
the algorithm terminates.

16

Models of Computation Lecture 3: Finite-State Machines [Fa’14]

The final table implies that the states of our trimmed DFA fall into exactly three equivalence
classes: {0, 1,3, 5}, {2, 4}, and {6, 7, 8, 9}. Replacing each equivalence class with a single state
gives us the three-state DFA that we already discovered.

0 1

1

0

0

1

2

3

5

4 6

8

7

9

1

1

1

1

1

0

01

0

0

0

1

0

0

01

0

0

1

0,1

1

Equivalence classes of states in the trimmed DFA, and the resulting minimal equivalent DFA.

Exercises

1. For each of the following languages in {0,1}∗, describe a deterministic finite-state machine
that accepts that language. There are infinitely many correct answers for each language.
“Describe” does not necessarily mean “draw”.

(a) Only the string 0110.

(b) Every string except 0110.

(c) Strings that contain the substring 0110.

(d) Strings that do not contain the substring 0110.
?(e) Strings that contain an even number of occurrences of the substring 0110. (For

example, this language contains the strings 0110110 and 01011.)

(f) Strings that contain the subsequence 0110.

(g) Strings that do not contain the subsequence 0110.

(h) Strings that contain an even number of 1s and an odd number of 0s.

(i) Strings that represent a number divisible by 7 in binary.

(j) Strings whose reversals represent a number divisible by 7 in binary.

(k) Strings in which the substrings 01 and 10 appear the same number of times.

(l) Strings such that in every prefix, the number of 0s and the number of 1s differ by at
most 1.

(m) Strings such that in every prefix, the number of 0s and the number of 1s differ by at
most 4.

(n) Strings that end with 010 = 0000000000.

17

Models of Computation Lecture 3: Finite-State Machines [Fa’14]

(o) Strings in which the number of 1s is even, the number of 0s is divisible by 3, the
overall length is divisible by 5, the binary value is divisible by 7, the binary value of
the reversal is divisible by 11, and does not contain thirteen 1s in a row. [Hint: This
is more tedious than difficult.]

2. (a) Let L ⊆ 0∗ be an arbitrary unary language. Prove that L∗ is regular.
(b) Prove that there is a binary language L ⊆ (0+ 1)∗ such that L∗ is not regular.

3. Describe and analyze algorithms for the following problems. In each case, the input is a
DFA M over the alphabet Σ= {0,1}.

(a) Does M accept any string whose length is a multiple of 5?

(b) Does M accept every string that represents a number divisible by 7 in binary?

(c) Does M accept an infinite number of strings containing an odd number of 0s?

(d) Does M accept a finite number of strings that contain the substring 0110110 and
whose length is divisible by five?

(e) Does M accept only strings whose lengths are perfect squares?

(f) Does M accept any string whose length is composite?
?(g) Does M accept any string whose length is prime?

ÆÆÆ
Move these to the graph traversal notes?

4. Prove that each of the following languages cannot be accepted by a DFA.

(a)
�
0n2 �� n≥ 0

	

(b)
�
0n3 �� n≥ 0

	

(c)
�
0 f (n)

�� n≥ 0
	
, where f (n) is any fixed polynomial in n with degree at least 2.

(d)
�
0n
�� n is composite

	

(e)
�
0n10n

�� n≥ 0
	

(f)
�
0i1 j

�� i 6= j
	

(g)
�
0i1 j

�� i < 3 j
	

(h)
�
0i1 j

�� i and j are relatively prime
	

(i)
�
0i1 j

�� j − i is a perfect square
	

(j) {w#w | w ∈ (0+ 1)∗}
(k) {ww | w ∈ (0+ 1)∗}
(l)

�
w#0|w|

�� w ∈ (0+ 1)∗
	

(m)
�

w0|w|
�� w ∈ (0+ 1)∗

	

(n) {x y | w, x ∈ (0+ 1)∗ and |x |= |y| but x 6= y}
(o)

�
0m1n0m+n

�� m, n≥ 0
	

18

Models of Computation Lecture 3: Finite-State Machines [Fa’14]

(p) {0m1n0mn | m, n≥ 0}
(q) Strings in which the substrings 00 and 11 appear the same number of times.

(r) The set of all palindromes in (0+ 1)∗ whose length is divisible by 7.

(s) {w ∈ (0+ 1)∗ | w is the binary representation of a perfect square}
Æ(t) {w ∈ (0+ 1)∗ | w is the binary representation of a prime number}

5. For each of the following languages over the alphabet Σ = {0,1}, either describe a DFA
that accepts the language or prove that no such DFA exists. Recall that Σ+ denotes the
set of all nonempty strings over Σ. [Hint: Believe it or not, most of these languages can be
accepted by DFAs.]

(a)
�
0nw1n

�� w ∈ Σ∗ and n≥ 0
	

(b)
�
0n1nw

�� w ∈ Σ∗ and n≥ 0
	

(c)
�

w0n1n x
�� w, x ∈ Σ∗ and n≥ 0

	

(d)
�
0nw1n x

�� w, x ∈ Σ∗ and n≥ 0
	

(e)
�
0nw1x0n

�� w, x ∈ Σ∗ and n≥ 0
	

(f)
�

wxw
�� w, x ∈ Σ∗	

(g)
�

wxw
�� w, x ∈ Σ+	

(h)
�

wxwR
�� w, x ∈ Σ+	

(i)
�

wwx
�� w, x ∈ Σ+	

(j)
�

wwR x
�� w, x ∈ Σ+	

(k)
�

wxwy
�� w, x , y ∈ Σ+	

(l)
�

wxwR y
�� w, x , y ∈ Σ+	

(m)
�

xwwy
�� w, x , y ∈ Σ+	

(n)
�

xwwR y
�� w, x , y ∈ Σ+	

(o)
�

wx xw
�� w, x ∈ Σ+	

?(p)
�

wxwR x
�� w, x ∈ Σ+	

19

Models of Computation Lecture 4: Nondeterministic Automata [Fa’14]

Caveat lector! This is the first edition of this lecture note. Some topics are incomplete, and
there are almost certainly a few serious errors. Please send bug reports and suggestions to
jeffe@illinois.edu.

Nothing is better than simplicity
nothing can make up for excess or for the lack of definiteness.

— Walt Whitman, Preface to Leaves of Grass (1855)

Freedom of choice
Is what you got.
Freedom from choice
Is what you want.

— Devo, “Freedom of Choice”, Freedom of Choice (1980)

Nondeterminism means never having to say you are wrong.

— BSD 4.3 fortune(6) file (c.1985)

4 Nondeterminism

4.1 Nondeterministic State Machines

The following diagram shows something that looks like a finite-state machine over the alphabet
{0,1}, but on closer inspection, it is not consistent with our earlier definitions. On one hand,
there are two transitions out of s for each input symbol. On the other hand, states a and b are
each missing an outgoing transition.

0 0

1 1

1,0 1,0s

a

c

b
A nondeterministic finite-state automaton

Nevertheless, there is a sense in which this machine “accepts” the set of all strings that
contain either 00 or 11 as a substring. Imagine that when the machine reads a symbol in state
s, it makes a choice about which transition to follow. If the input string contains the substring
00, then it is possible for the machine to end in the accepting state c, by choosing to move into
state a when it reads a 0 immediately before another 0. Similarly, if the input string contains the
substring 11, it is possible for the machine to end in the accepting state c. On the other hand,
if the input string does not contain either 00 or 11—or in other words, if the input alternates
between 0 and 1—there are no choices that lead the machine to the accepting state. If the
machine incorrectly chooses to transition to state a and then reads a 1, or transitions to b and
then reads 0, it explodes; the only way to avoid an explosion is to stay in state s.

This object is an example of a nondeterministic finite-state automaton, or NFA, so named
because its behavior is not uniquely determined by the input string. Formally, every NFA has five
components:

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

1

Models of Computation Lecture 4: Nondeterministic Automata [Fa’14]

• An arbitrary finite set Σ, called the input alphabet.

• Another arbitrary finite set Q, whose elements are called states.

• An arbitrary transition function δ : Q×Σ→ 2Q.

• A start state s ∈Q.

• A subset A ⊆Q of accepting states.

The only difference from the formal definition of deterministic finite-state automata is the domain
of the transition function. In a DFA, the transition function always returns a single state; in an
NFA, the transition function returns a set of states, which could be empty, or all of Q, or anything
in between.

Just like DFAs, the behavior of an NFA is governed by an input string w ∈ Σ∗, which the
machine reads one symbol at a time, from left to right. Unlike DFAs, however, an NFA does not
maintain a single current state, but rather a set of current states. Whenever the NFA reads a
symbol a, its set of current states changes from C to

⋃
q∈C δ(q, a). After all symbols have been

read, the NFA accepts w if its current state set contains at least one accepting state and rejects w
otherwise. In particular, if the set of current states ever becomes empty, it will stay empty forever,
and the NFA will reject.

More formally, we define the function δ∗ : Q×Σ∗→ 2Q that transitions on strings as follows:

δ∗(q, w) :=

{q} if w= ε,
⋃

r∈δ(q,a)

δ∗(r, x) if w= ax .

The NFA (Q,Σ,δ, s, A) accepts w ∈ Σ∗ if and only if δ∗(s, w)∩ A 6=∅.
We can equivalently define an NFA as a directed graph whose vertices are the states Q, whose

edges are labeled with symbols from Σ. We no longer require that every vertex has exactly one
outgoing edge with each label; it may have several such edges or none. An NFA accepts a string w
if the graph contains at least one walk from the start state to an accepting state whose label is w.

4.2 Intuition

There are at least three useful ways to think about non-determinism.

Clairvoyance. Whenever an NFA reads symbol a in state q, it chooses the next state from the
set δ(q, a), always magically choosing a state that leads to the NFA accepting the input string,
unless no such choice is possible. As the BSD fortune file put it, “Nondeterminism means never
having to say you’re wrong.”¹ Of course real machines can’t actually look into the future; that’s
why I used the word “magic”.

Parallel threads. An arguably more “realistic” view is that when an NFA reads symbol a in
state q, it spawns an independent execution thread for each state in δ(q, a). In particular, if
δ(q, a) is empty, the current thread simply dies. The NFA accepts if at least one thread is in an
accepting state after it reads the last input symbol.

Equivalently, we can imagine that when an NFA reads symbol a in state q, it branches into
several parallel universes, one for each state in δ(q, a). If δ(q, a) is empty, the NFA destroys the

¹This sentence is a riff on a horrible aphorism that was (sadly) popular in the US in the 70s and 80s. Fortunately,
everyone seems to have forgotten the original saying, except for that one time it was parodied on the Simpsons.

2

Models of Computation Lecture 4: Nondeterministic Automata [Fa’14]

universe (including itself). Similarly, if the NFA finds itself in a non-accepting state when the
input ends, the NFA destroys the universe. Thus, when the input is gone, only universes in which
the NFA somehow chose a path to an accept state still exist. One slight disadvantage of this
metaphor is that if an NFA reads a string that is not in its language, it destroys all universes.

Proofs/oracles. Finally, we can treat NFAs not as a mechanism for computing something, but
only as a mechanism for verifying proofs. If we want to prove that a string w contains one of the
suffixes 00 or 11, it suffices to demonstrate a single walk in our example NFA that starts at s and
ends at c, and whose edges are labeled with the symbols in w. Equivalently, whenever the NFA
faces a nontrivial choice, the prover can simply tell the NFA which state to move to next.

This intuition can be formalized as follows. Consider a deterministic finite state machine
whose input alphabet is the product Σ×Ω of an input alphabet Σ and an oracle alphabet Ω.
Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same
length: the input string w and the oracle string ω. In either formulation, the transition function
has the form δ : Q×Σ×Ω→Q. As usual, this DFA accepts the pair (w,ω) ∈ (Σ× Γ)∗ if and only
if δ∗(s, w,ω) ∈ A. Finally, M nondeterministically accepts the string w ∈ Σ∗ if there is an oracle
string ω ∈ Ω∗ with |ω|= |w| such that (w,ω) ∈ L(M).

4.3 ε-Transitions

It is fairly common for NFAs to include so-called ε-transitions, which allow the machine to
change state without reading an input symbol. An NFA with ε-transitions accepts a string w if

and only if there is a sequence of transitions s
a1−→ q1

a2−→ q2
a3−→ · · · a`−→ q` where the final state

q` is accepting, each ai is either ε or a symbol in Σ, and a1a2 · · · a` = w.
More formally, the transition function in an NFA with ε-transitions has a slightly larger domain

δ : Q× (Σ∪{ε})→ 2Q. The ε-reach of a state q ∈Q consists of all states r that satisfy one of the
following conditions:

• r = q

• r ∈ δ(q′,ε) for some state q′ in the ε-reach of q.

In other words, r is in the ε-reach of q if there is a (possibly empty) sequence of ε-transitions
leading from q to r. Now we redefine the extended transition function δ∗ : Q×Σ∗→ 2Q, which
transitions on arbitrary strings, as follows:

δ∗(q, w) :=

{q} if w= ε,

⋃
r∈ε-reach(q)

⋃
r ′∈δ(r,a)

δ∗(r ′, x) if w= ax .

As usual, the modified NFA accepts a string w if and only if δ∗(s, w)∩ A 6=∅.
Given an NFA M = (Σ,Q, s, A,δ) with ε-transitions, we can easily construct an equivalent

NFA M ′ = (Σ,Q′, s′, A′,δ′) without ε-transitions as follows:

Q′ :=Q

s′ = s

A′ =
�
q ∈Q

�� ε-reach(q)∩ A 6=∅	

δ′(q, a) =
⋃

r∈ε-reach(q)
δ(r, a)

3

Models of Computation Lecture 4: Nondeterministic Automata [Fa’14]

Straightforward definition-chasing implies that M and M ′ accept exactly the same language.
Thus, whenever we reason about or design NFAs, we are free to either allow or forbid ε-transitions,
whichever is more convenient for the task at hand.

4.4 Kleene’s Theorem

We are now finally in a position to prove the following fundamental fact, first observed by Steven
Kleene:

Theorem 4.1. A language L can be described by a regular expression if and only if L is the language
accepted by a DFA.

We will prove Kleene’s fundamental theorem in four stages:

• Every DFA can be transformed into an equivalent NFA.

• Every NFA can be transformed into an equivalent DFA.

• Every regular expression can be transformed into an NFA.

• Every NFA can be transformed into an equivalent regular expression.

The first of these four transformations is completely trivial; a DFA is just a special type of NFA
where the transition function always returns a single state. Unfortunately, the other three
transformations require a bit more work.

4.5 DFA from NFAs: The Subset Construction

In the parallel-thread model of NFA execution, an NFA does not have a single current state, but
rather a set of current states. The evolution of this set of states is determined by a modified
transition function δ′ : 2Q ×Σ→ 2Q, defined by setting δ′(P, a) :=

⋃
p∈P δ(p, a) for any set of

states P ⊆Q and any symbol a ∈ Σ. When the NFA finishes reading its input string, it accepts if
and only if the current set of states intersects the set A of accepting states.

This formulation makes the NFA completely deterministic! We have just shown that any NFA
M = (Σ,Q, s, A,δ) is equivalent to a DFA M ′ = (Σ,Q′, s′, A′,δ′) defined as follows:

Q′ := 2Q

s′ := {s}
A′ :=

�
S ⊆Q

�� S ∩ A 6=∅	

δ′(q′, a) :=
⋃
p∈q′
δ(p, a) for all q′ ⊆Q and a ∈ Σ.

Similarly, any NFA with ε-transitions is equivalent to a DFA with the transition function

δ′(q′, a) =
⋃
p∈q′

⋃
r∈ε-reach(p)

δ(r, a)

for all q′ ⊆Q and a ∈ Σ. This conversion from NFA to DFA is often called the subset construction,
but that name is somewhat misleading; it’s not a “construction” so much as a change in perspective.

One disadvantage of this “construction” is that it usually leads to DFAs with far more states
than necessary, in part because most of those states are unreachable. These unreachable states
can be avoided by constructing the DFA incrementally, essentially by performing a breadth-first
search of the DFA graph, starting at its start state.

To execute this algorithm by hand, we prepare a table with |Σ|+3 columns, with one row for
each DFA state we discover. In order, these columns record the following information:

4

Models of Computation Lecture 4: Nondeterministic Automata [Fa’14]

• The DFA state (as a subset of NFA states)

• The ε-reach of the corresponding subset of NFA states

• Whether the DFA state is accepting (that is, whether the ε-reach intersects A)

• The output of the transition function for each symbol in Σ.

We start with DFA-state s in the first row and first column. Whenever we discover an unexplored
state in one of the last |Σ| columns, we copy it to the left column in a new row.

For example, given the NFA on the first page of this note, this incremental algorithm produces
the following table, yielding a five-state DFA. For this example, the second column is redundant,
because the NFA has no ε-transitions, but we will see another example with ε-transitions in the
next subsection. To simplify notation, we write each set of states as a simple string, omitting
braces and commas.

q′ ε-reach(q′) q′ ∈ A′? δ′(q′,0) δ′(q′,1)
s s as bs
as as acs bs
bs bs as bcs
acs acs Ø acs bcs
bcs bcs Ø acs bcs

0 0

1 1

1,0 1,0s

a

c

b

0

0

1

1

1,0

0

s

as acs

bs

0 1

1bcs

1 0

Our example NFA, and the output of the incremental subset construction for that NFA.

4.6 NFAs from Regular Expressions: Thompson’s Algorithm

Lemma 4.2. Every regular language is accepted by a non-deterministic finite automaton.

Proof: In fact, we will prove the following stronger claim: Every regular language is accepted
by an NFA with exactly one accepting state, which is different from its start state. The following
construction was first described by Ken Thompson in 1968. Thompson’s algorithm actually proves
a stronger statement: For any regular language L, there is an NFA that accepts L that has exactly
one accepting state t, which is distinct from the starting state s.

Let R be an arbitrary regular expression over an arbitrary finite alphabet Σ. Assume that for
any sub-expression S of R, the language described by S is accepted by an NFA with one accepting
state distinct from its start state, which we denote pictorially by S . There are six cases
to consider—three base cases and three recursive cases—mirroring the recursive definition of a
regular expression.

• If R=∅, then L(R) =∅ is accepted by the empty NFA: .

5

Models of Computation Lecture 4: Nondeterministic Automata [Fa’14]

• If R= ε, then L(R) = {ε} is accepted by the NFA ε .

• If R = a for some symbol a ∈ Σ, then L(R) = {a} is accepted by the NFA a . (The
case where R is a single string with length greater than 1 reduces to the single-symbol case
by concatenation, as described in the next case.)

• Suppose R= ST for some regular expressions S and T . The inductive hypothesis implies
that the languages L(S) and L(T) are accepted by NFAs S and T , respectively.

Then L(R) = L(ST) = L(S) • L(T) is accepted by the NFA S T
ε , built by

connecting the two component NFAs in series.

• Suppose R = S + T for some regular expressions S and T . The inductive hypothesis
implies that the language L(S) and L(T) are accepted by NFAs S and T ,

respectively. Then L(R) = L(S + T) = L(S)∪ L(T) is accepted by the NFA
S

T

ε

ε

ε

ε
,

built by connecting the two component NFAs in parallel with new start and accept states.

• Finally, suppose R= S∗ for some regular expression S. The inductive hypothesis implies that
the language L(S) is accepted by an NFA S . Then the language L(R) = L(S∗) = L(S)∗

is accepted by the NFA S

ε

ε

ε ε .

In all cases, the language L(R) is accepted by an NFA with one accepting state, which is different
from its start state, as claimed. �

As an example, given the regular expression (0+10∗1)∗ of strings containing an even number
of 1s, Thompson’s algorithm produces a 14-state NFA shown on the next page. As this example
shows, Thompson’s algorithm tends to produce NFAs with many redundant states. Fortunately,
just as there are for DFAs, there are algorithms that can reduce any NFA to an equivalent NFA
with the smallest possible number of states.

e f0d ε gεb c1 ε h i1ε

a

j k

l

0

ε

ε ε

ε

mεs ε

ε

ε

ε

ε
The NFA constructed by Thompson’s algorithm for the regular expression (0+ 10∗1)∗.

The four non-ε-transitions are drawn with with bold red arrows for emphasis.

Interestingly, applying the incremental subset algorithm to Thompson’s NFA tends to yield a
DFA with relatively few states, in part because the states in Thompson’s NFA tend to have large
ε-reach, and in part because relatively few of those states are the targets of non-ε-transitions.
Starting with the NFA shown above, for example, the incremental subset construction yields a
DFA for the language (0+ 10∗1)∗ with just five states:

6

Models of Computation Lecture 4: Nondeterministic Automata [Fa’14]

q′ ε-reach(q′) q′ ∈ A′? δ′(q′,0) δ′(q′,1)
s sab jm Ø k c
k sab jklm Ø k c
c cdegh f i
f degh f i
i sab jilm Ø k c

1

0

1

1

0

0

1

1

0

0

fc i

k

s

The DFA computed by the incremental subset algorithm from Thompson’s NFA for (0+ 10∗1)∗.

This DFA can be further simplified to just two states, by observing that all three accepting
states are equivalent, and that both non-accepting states are equivalent. But still, five states is
pretty good, especially compared with the 213 = 8096 states that the naïve subset construction
would yield!

4.7 NFAs from Regular Expressions: Glushkov’s Algorithm?

Thompson’s algorithm is actually a modification of an earlier algorithm, which was independently
discovered by Robert McNaughton and Hisao Yamada in 1960 and by V. I. Glushkov in 1961. Given
a regular expression containing n symbols (not counting the parentheses and pluses and stars),
Glushkov’s algorithm produces an NFA with exactly n+ 1 states.

Glushkov’s algorithm combines six functions on regular expressions:

• index(R) is the regular expression obtained by replacing the symbols in R with the integers
1 through n, in order from left to right. For example, index((0+ 10∗1)∗) = (1+ 23∗4)∗.

• symbols(R) denotes the string obtained by removing all non-symbols from R. For example,
symbols((0+ 10∗1)∗) = 0101.

• has-ε(R) is True if ε ∈ L(R) and False otherwise.

• first(R) is the set of all initial symbols of strings in L(R).

• last(R) is the set of all final symbols of strings in L(R).

• middle(R) is the set of all pairs (a, b) such that ab is a substring of some string in L(R).

The last four functions obey the following recurrences:

7

Models of Computation Lecture 4: Nondeterministic Automata [Fa’14]

has-ε(∅) =∅

has-ε(w) =

¨
True if w= ε
False otherwise

has-ε(S + T) = has-ε(S)∨ has-ε(T)
has-ε(ST) = has-ε(S)∧ has-ε(T)
has-ε(S∗) = True

first(∅) =∅ last(∅) =∅

first(w) =

¨
∅ if w= ε
{a} if w= ax

last(w) =

¨
∅ if w= ε
{a} if w= xa

first(S + T) = first(S)∪ first(T) last(S + T) = last(S)∪ last(T)

first(ST) =

¨
first(S)∪ first(T) if has-ε(S)
first(T) otherwise

last(ST) =

¨
last(S)∪ last(T) if has-ε(T)
last(T) otherwise

first(S∗) = first(S) last(S∗) = last(S)

middle(∅) =∅

middle(w) =

¨
∅ if |w| ≤ 1

{(a, b)} ∪middle(bx) if w= abx

middle(S + T) =middle(S)∪middle(T)

middle(ST) =middle(S)∪ (last(S)× first(T))∪middle(T)

middle(S∗) =middle(S)∪ (last(S)× first(S))

For example, the set middle((1+ 23∗4)∗) can be computed recursively as follows. If we’re doing
this by hand, we can skip many of the steps in this derivation, because we know what the
functions first, middle, last, and has-ε actually mean, but a mechanical recursive evaluation would
necessarily evaluate every step.

middle((1+ 23∗4)∗)

= middle(1+ 23∗4) ∪ � last(1+ 23∗4) × first(1+ 23∗4)
�

= middle(1) ∪ middle(23∗4) ∪ �
last(1+ 23∗4) × first(1+ 23∗4)

�

=∅∪ middle(23∗4) ∪ �
last(1+ 23∗4) × first(1+ 23∗4)

�

= middle(2) ∪ � last(2) × first(3∗4)
�∪ middle(3∗4) ∪ �

last(1+ 23∗4) × first(1+ 23∗4)
�

=∅∪ �{2} × first(3∗4)
� ∪ middle(3∗4) ∪ �

last(1+ 23∗4) × first(1+ 23∗4)
�

=
�{2} × � first(3∗) ∪ first(4)

�� ∪ middle(3∗4) ∪ �
last(1+ 23∗4) × first(1+ 23∗4)

�

=
�{2} × � first(3) ∪ first(4)

�� ∪ middle(3∗4) ∪ �
last(1+ 23∗4) × first(1+ 23∗4)

�

=
�{2} × {3,4}� ∪ middle(3∗4) ∪ �

last(1+ 23∗4) × first(1+ 23∗4)
�

=
�
(2,3), (3,4)

	 ∪ middle(3∗4) ∪ �
last(1+ 23∗4) × first(1+ 23∗4)

�
...

=
�
(1,1), (1,2), (2,3), (2,4), (3, 3), (3,4), (4,1), (4,2)

	

8

Models of Computation Lecture 4: Nondeterministic Automata [Fa’14]

Finally, given any regular expression R, Glushkov’s algorithm constructs the NFA MR =
(Σ,Q, s, A,δ) that accepts exactly the language L(R) as follows:

Q =
�
0,1, . . . , |symbols(R)|	

s = 0

A=

(
{0} ∪ last(index(R)) if has-ε(R)

last(index(R)) otherwise

δ(0, a) =
�

j ∈ first(index(R))
�� a = symbols(R)[j]

	

δ(i, a) =
�

j
�� (i, j) ∈middle(index(R)) and a = symbols(R)[j]

	

There are a few natural ways to think about Glushkov’s algorithm that are somewhat less
impenetrable than the previous wall of definitions. One viewpoint is that Glushkov’s algorithm
first computes a DFA for the indexed regular expression index(R)—in fact, a DFA with the
fewest possible states, except for an extra start state—and then replaces each index with the
corresponding symbol in symbols(R) to get an NFA for the original expression R. Another useful
observation is that Glushkov’s NFA is identical to the result of removing all ε-transitions from
Thompson’s NFA for the same regular expression.

For example, given the regular expression R= (0+ 10∗1)∗, Glushkov’s algorithm computes

index(R) = (1+ 23∗4)∗

symbols(R) = 0101

has-ε(R) = True

first(index(R)) = {1, 2}
last(index(R)) = {1, 4}

middle(index(R)) =
�
(1,1), (1,2), (2, 3), (2, 4), (3,3), (3,4), (4,1), (4,2)

	

and then constructs the following five-state NFA.

1

0

1

1

0

0

1

1

0

0

32 4

1

02

3
2

4

1

1

2

4

3

1

32 4

1

0

Glushkov’s DFA for the index expression (1+ 23∗4)∗ and Glushkov’s NFA for the regular expression (0+ 10∗1)∗.

Hey, look, Glushkov’s algorithm actually gave us a DFA! In fact, it gave us precisely the same
DFA that we constructed earlier by sending Thompson’s NFA through the incremental subset
algorithm! Unfortunately, that’s just a coincidence; in general the output of Glushkov’s algorithm
is not deterministic. We’ll see a more typical example in the next section.

9

Models of Computation Lecture 4: Nondeterministic Automata [Fa’14]

4.8 Another Example

Here is another example of all the algorithms we’ve seen so far, starting with the regular
expression (0+ 1)∗(00+ 11)(0+ 1)∗, which describes the language accepted by our very first
example NFA. Thompson’s algorithm constructs the following 26-state monster:

ε ε

ε ε

ε ε

ε

b c0

d e1

a
ε

fs ε gε

i j0 kε l0

m n1 oε p1

ε

ε
hε

ε

ε
q ε

ε ε

ε

u v0

w x1

t
ε
yr ε zε

Thompson’s NFA for the regular expression (0+ 1)∗(00+ 11)(0+ 1)∗

Given this NFA as input, the incremental subset construction computes the following table,
leading to a DFA with just nine states. Yeah, the ε-reaches get a bit ridiculous; unfortunately, this
is typical for Thompson’s NFA.

q′ ε-reach(q′) q′ ∈ A′? δ′(q′,0) δ′(q′,1)
s sabd ghim c j en
c j sabd f ghi jkm c jl en
en sabd f ghmno c j enp
c jl sabd f ghi jklmqr tuwz Ø c jl v enx
enp sabd f ghmnopqr tuwz Ø c jv enpx
c jl v sabd f ghi jklmqr tuvwyz Ø c jl v enx
enx sabd f ghmnopqr tuwx yz Ø c jv enpx
c jv sabd f ghi jkmr tuvwyz Ø c jl v enx

enpx sabd f ghmnopqr tuwx yz Ø c jv enpx

cj

en

cjl

enp

cjlv

enpx

cjv

enx

s

0

1

0

10

1

1

0

0

1

0

0

1

0

0

1

10

The DFA computed by the incremental subset algorithm from Thompson’s NFA for (0+ 1)∗(00+ 11)(0+ 1)∗.

This DFA has far more states that necessary, intuitively because it keeps looking for 00 and
11 substrings even after it’s already found one. After all, when Thompson’s NFA finds a00 and
11 substring, it doesn’t kill all the other parallel threads, because it can’t. NFAs often have
significantly fewer states than equivalent DFAs, but that efficiency also makes them kind of
stupid.

Glushkov’s algorithm recursively computes the following values for the same regular expression

10

Models of Computation Lecture 4: Nondeterministic Automata [Fa’14]

R= (0+ 1)∗(00+ 11)(0+ 1)∗:

index(R) = (1+ 2)∗(34+ 56)(7+ 8)∗

symbols(R) = 01001101

has-ε(R) = False

first(index(R)) = {1,2, 3,5}
last(index(R)) = {4,6, 7,8}

middle(index(R)) =
�
(1, 1), (1, 2), (2, 1), (2, 2), (1, 3), (1, 5), (2, 3), (2, 5), (3, 4),

(5, 6), (4,7), (4,8), (6,7), (6, 8), (7, 7), (7, 8), (8,7), (8,8)
	

These values imply the nine-state NFA shown below. Careful readers should confirm that running
the incremental subset construction on this NFA yields exactly the same DFA (with different state
names) as it did for Thompson’s NFA.

0

1

00

110

000

0 0

110 0

1

11

1

1

1

1

2

3

5

4

6 8

7

0

Glushkov’s NFA for (0+ 1)∗(00+ 11)(0+ 1)∗

4.9 Regular Expressions from NFAs: Han and Wood’s Algorithm?

The only component of Kleene’s theorem we still have to prove is that every language accepted
by a DFA or NFA is regular. As usual, it is actually easier to prove a stronger result. We consider a
more general class of finite-state machines called expression automata, introduced by Yo-Sub
Han and Derick Wood in 2005.² Formally, an expression automaton consists of the following
components:

• A finite set Σ called the input alphabet

• Another finite set Q whose elements are called states

• A start state s ∈Q

• A single terminal state t ∈Q \ {s}
• A transition function R: (Q \ {t})× (Q \ {s})→ Reg(Σ), where Reg(Σ) is the set of regular

expressions over Σ

Less formally, an expression automaton is a directed graph that includes a directed edge p�q
labeled with a regular expression R(p�q), from every vertex p to every vertex q (including q = p),
where by convention, we require that R(q�s) = R(t�q) =∅ for every vertex q.

²Yo-Sub Han* and Derick Wood. The generalization of generalized automata: Expression automata. International
Journal of Foundations of Computer Science 16(3):499–510, 2005.

11

Models of Computation Lecture 4: Nondeterministic Automata [Fa’14]

We say that string w matches a transition p�q if w matches the regular expression R(p�q). In
particular, if R(p�q) =∅, then no string matches p�q. More generally, w matches a sequence of
states q0�q1� · · ·�qk if w matches the regular expression R(q0�q1)•R(q1�q2)•· · ·•R(qk−1�qk).
Equivalently, w matches the sequence q0�q1� · · ·�qk if either

• w= ε and the sequence has only one state (k = 0), or

• w= x y for some string x that matches the regular expression R(q0�q1) and some string
y that matches the remaining sequence q1� · · ·�qk.

An expression automaton accepts any string that matches at least one sequence of states that
starts at s and ends at t. The language of an expression automaton E is the set of all strings that
E accepts.

Expression automata are nondeterministic. A single string could match several (even infinitely
many) state sequences that start with s, and it could match each of those state sequences in
several different ways. A string is accepted if at least one of the state sequences it matches ends
at t. Conversely, a string might match no state sequences; all such strings are rejected.

Two special cases of expression automata are already familiar. First, every regular language
is clearly the language of an expression automaton with exactly two states. Second, with only
minor modifications, any DFA or NFA can be converted into an expression automaton with
trivial transition expressions. Thompson’s algorithm can be used to transform any expression
automaton into an NFA, by recursively expanding any nontrivial transition. To complete the
proof of Kleene’s theorem, we show how to convert any expression automaton into a regular
expression by repeatedly deleting vertices.

Lemma 4.3. Every expression automaton accepts a regular language.

Proof: Let E = (Q,Σ, R, s, t) be an arbitrary expression automaton. Assume that any expression
automaton with fewer states than E accepts a regular language. There are two cases to consider,
depending on the number of states in Q:

• If Q = {s, t}, then trivially, E accepts the regular language R(s�t).

• On the other hand, suppose there is a state q ∈Q \ {s, a}. We can modify the expression
automaton so that state q is redundant and can be removed. Define a new transition
function R′ : Q×Q→ Reg(Σ) by setting

R′(p�r) := R(p�r) + R(p�q)R(q�q)∗ R(q�r).

With this modified transition function in place, any string w that matches the sequence
p�q�q� · · ·�q�r with any number of q’s also matches the single transition p�r. Thus,
by induction, if w matches a sequence of states, it also matches the subsequence obtained
by removing all q’s. Let E′ be the expression automaton with states Q′ =Q \ {q} that uses
this modified transition function R′. This new automaton accepts exactly the same strings
as the original automaton E. Because E′ has fewer states than E, the inductive hypothesis
implies E′ accepts a regular language.

In both cases, we conclude that E accepts a regular language. �

This proof can be mechanically translated into an algorithm to convert any NFA—in particular,
any DFA—into an equivalent regular expression. Given an NFA with n states (including s and

12

Models of Computation Lecture 4: Nondeterministic Automata [Fa’14]

a), the algorithm iteratively removes n− 2 states, updating O(n2) transition expressions in each
iteration. If the concatenation and Kleene star operations could be performed in constant time,
the resulting algorithm would run in O(n3) time. However, in each iteration, the transition
expressions grows in length by roughly a factor of 4 in the worst case, so the final expression
has length Θ(4n). If we insist on representing the expressions as explicit strings, the worst-case
running time is actually Θ(4n).

A figure on the next page shows this conversion algorithm in action for a simple DFA. First
we convert the DFA into an expression automaton by adding new start and accept states and
merging two transitions, and then we remove each of the three original states, updating the
transition expressions between any remaining states at each iteration. For the sake of clarity,
edges p�q with R(p�q) =∅ are omitted from the figures.

a

0,1 1

1 0 0

a

bc

1((0+1)(1+00)*01)*(0+1)(1+00)*s t

0 0

ε

0+1 1

1

bc

s t

ε

0+1
1+00

bc

s t
ε1

01

c

s t
1 (0+1)(1+00)*
(0+1)(1+00)*01

Converting a DFA into an equivalent regular expression.

Exercises

1. For each of the following NFAs, describe an equivalent DFA. (“Describe” does not necessarily
mean “draw”!)

ÆÆÆ
Half a dozen examples.

2. For each of the following regular expressions, draw an equivalent NFA.

ÆÆÆ
Half a dozen examples.

13

Models of Computation Lecture 4: Nondeterministic Automata [Fa’14]

3. For each of the following regular expressions, describe an equivalent DFA. (“Describe” does
not necessarily mean “draw”!)

ÆÆÆ
Half a dozen examples.

4. Let L ⊆ Σ∗ be an arbitrary regular language. Prove that the following languages are
regular.

(a) ones(L) :=
�

w ∈ 1∗
�� |w|= |x | for some x ∈ L

	

(b) reverse(L) :=
�

w ∈ Σ∗
�� wR ∈ L

	
. (Recall that wR denotes the reversal of string w.)

(c) prefix(L) := {x ∈ Σ∗ | x y ∈ L for some y ∈ Σ∗}
(d) suffix(L) := {y ∈ Σ∗ | x y ∈ L for some x ∈ Σ∗}
(e) substring(L) := {y ∈ Σ∗ | x yz ∈ L for some x , z ∈ Σ∗}
(f) cycle(L) := {x y | x , y ∈ Σ∗ and y x ∈ L}
(g) prefmax(L) := {x ∈ L | x y ∈ L ⇐⇒ y = ε}.
(h) sufmin(L) := {x y ∈ L | y ∈ L ⇐⇒ x = ε}.
(i) everyother(L) := {everyother(w) | w ∈ L}, where everyother(w) is the subsequence of

w containing every other symbol. For example, everyother(EVERYOTHER) = VROHR.

(j) rehtoyreve(L) := {w ∈ Σ∗ | everyother(w) ∈ L}.
(k) subseq(L) := {x ∈ Σ∗ | x is a subsequence of some y ∈ L}
(l) superseq(L) := {x ∈ Σ∗ | some y ∈ L is a subsequence of x}

(m) left(L) := {x ∈ Σ∗ | x y ∈ L for some y ∈ Σ∗ where |x |= |y|}
(n) right(L) := {y ∈ Σ∗ | x y ∈ L for some x ∈ Σ∗ where |x |= |y|}
(o) middle(L) := {y ∈ Σ∗ | x yz ∈ L for some x , z ∈ Σ∗ where |x |= |y|= |z|}
(p) half(L) := {w ∈ Σ∗ | ww ∈ L}
(q) third(L) := {w ∈ Σ∗ | www ∈ L}
(r) reflect(L) :=

�
w ∈ Σ∗

�� wwR ∈ L
	

?(s) sqrt(L) :=
�

x ∈ Σ∗
�� x y ∈ L for some y ∈ Σ∗ such that |y|= |x |2	

?(t) log(L) :=
�

x ∈ Σ∗
�� x y ∈ L for some y ∈ Σ∗ such that |y|= 2|x |

	

?(u) flog(L) :=
�

x ∈ Σ∗
�� x y ∈ L for some y ∈ Σ∗ such that |y|= F|x |

	
, where Fn is the

nth Fibonacci number.

?5. Let L ⊆ Σ∗ be an arbitrary regular language. Prove that the following languages are regular.
[Hint: For each language, there is an accepting NFA with at most qq states, where q is the
number of states in some DFA that accepts L.]

14

Models of Computation Lecture 4: Nondeterministic Automata [Fa’14]

(a) repeat(L) := {w ∈ Σ∗ | wn ∈ L for some n≥ 0}
(b) allreps(L) := {w ∈ Σ∗ | wn ∈ L for every n≥ 0}
(c) manyreps(L) := {w ∈ Σ∗ | wn ∈ L for infinitely many n≥ 0}
(d) fewreps(L) := {w ∈ Σ∗ | wn ∈ L for finitely many n≥ 0}
(e) powers(L) :=

�
w ∈ Σ∗

�� w2n ∈ L for some n≥ 0
	

Æ(f) whattheN (L) := {w ∈ Σ∗ | wn ∈ L for some n ∈ N}, where N is an arbitrary fixed set
of non-negative integers. [Hint: You only have to prove that an accepting NFA exists;
you don’t have to describe how to construct it.]

6. For each of the following expression automata, describe an equivalent DFA and an equivalent
regular expression.

ÆÆÆ
Half a dozen examples.

15

Algorithms Lecture 5: Context-Free Languages and Grammars [Fa’14]

Caveat lector: This is the first edition of this lecture note. Please send bug reports and
suggestions to jeffe@illinois.edu.

Imagine a piano keyboard, eh, 88 keys, only 88 and yet, and yet, hundreds of new melodies,
new tunes, new harmonies are being composed upon hundreds of different keyboards every
day in Dorset alone. Our language, tiger, our language: hundreds of thousands of available
words, frillions of legitimate new ideas, so that I can say the following sentence and be
utterly sure that nobody has ever said it before in the history of human communication:
“Hold the newsreader’s nose squarely, waiter, or friendly milk will countermand
my trousers.” Perfectly ordinary words, but never before put in that precise order. A unique
child delivered of a unique mother.

— Stephen Fry, A Bit of Fry and Laurie, Series 1, Episode 3 (1989)

5 Context-Free Languages and Grammars

5.1 Definitions

Intuitively, a language is regular if it can be built from individual strings by concatenation, union,
and repetition. In this note, we consider a wider class of context-free languages, which are
languages that can be built from individual strings by concatenation, union, and recursion.

Formally, a language is context-free if and only if it has a certain type of recursive description
known as a context-free grammar, which is a structure with the following components:

• A finite set Σ, whose elements are called symbols or terminals.

• A finite set Γ disjoint from Σ, whose elements are called non-terminals.

• A finite set R of production rules of the form A→ w, where A∈ Γ is a non-terminal and
w ∈ (Σ∪ Γ)∗ is a string of symbols and variables.

• A starting non-terminal, typically denoted S.

For example, the following eight production rules describe a context free grammar with terminals
Σ= {0,1} and non-terminals Γ = {S, A, B}:

S→ A A→ 0A B→ B1 C → ε
S→ B A→ 0C B→ C1 C → 0C1

Normally we write grammars more compactly by combining the right sides of all rules for
each non-terminal into one list, with alternatives separated by vertical bars.¹ For example, the
previous grammar can be written more compactly as follows:

S→ A | B
A→ 0A | 0C

B→ B1 | C1
C → ε | 0C1

For the rest of this lecture, I will almost always use the following notational conventions.

¹Yes, this means we now have three symbols ∪, +, and | with exactly the same meaning. Sigh.

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

1

Algorithms Lecture 5: Context-Free Languages and Grammars [Fa’14]

• Monospaced digits (0, 1, 2, . . .), and symbols (�, $, #, •, . . .) are explicit terminals.

• Early lower-case Latin letters (a, b, c, . . .) represent unknown or arbitrary terminals in Σ.

• Upper-case Latin letters (A, B, C , . . .) and the letter S represent non-terminals in Γ .

• Late lower-case Latin letters (. . . , w, x , y, z) represent strings in (Σ∪ Γ)∗, whose characters
could be either terminals or non-terminals.

We can apply a production rule to a string in (Σ ∪ Γ)∗ by replacing any instance of the
non-terminal on the left of the rule with the string on the right. More formally, for any strings
x , y, z ∈ (Σ∪ Γ)∗ and any non-terminal A∈ Γ , applying the production rule A→ y to the string
xAz yields the string x yz. We use the notation x Az x yz to describe this application. For
example, we can apply the rule C → 0C1 to the string 00C1BAC0 in two different ways:

00C 1BAC0 000C11BAC0 00C1BAC 0 00C1BA0C10

More generally, for any strings x , z ∈ (Σ∪ Γ)∗, we say that z derives from x , written x ∗ z,
if we can transform x into z by applying a finite sequence of production rules, or more formally,
if either

• x = z, or

• x y and y ∗ z for some string y ∈ (Σ∪ Γ)∗.
Straightforward definition-chasing implies that, for any strings w, x , y, z ∈ (σ ∪ γ)∗, if x ∗ y,
then wxz ∗ wyz.

The language L(w) of any string w ∈ (Σ∪Γ)∗ is the set of all strings in Σ∗ that derive from w:

L(w) := {x ∈ Σ∗ | w ∗ x} .

The language generated by a context-free grammar G, denoted L(G), is the language of its
starting non-terminal. Finally, a language is context-free if it is generated by some context-free
grammar.

Context-free grammars are sometimes used to model natural languages. In this context, the
symbols are words, and the strings in the languages are sentences. For example, the following
grammar describes a simple subset of English sentences. (Here I diverge from the usual notation
conventions. Strings in 〈angle brackets〉 are non-terminals, and regular strings are terminals.)

〈sentence〉 → 〈noun phrase〉〈verb phrase〉〈noun phrase〉
〈noun phrase〉 → 〈adjective phrase〉〈noun〉
〈adj. phrase〉 → 〈article〉 | 〈possessive〉 | 〈adjective phrase〉〈adjective〉
〈verb phrase〉 → 〈verb〉 | 〈adverb〉〈verb phrase〉

〈noun〉 → dog | trousers | daughter | nose | homework | time lord | pony | · · ·
〈article〉 → the | a | some | every | that | · · ·

〈possessive〉 → 〈noun phrase〉’s |my | your | his | her | · · ·
〈adjective〉 → friendly | furious |moist | green | severed | timey-wimey | little | · · ·

〈verb〉 → ate | found | wrote | killed |mangled | saved | invented | broke | · · ·
〈adverb〉 → squarely | incompetently | barely | sort of | awkwardly | totally | · · ·

2

Algorithms Lecture 5: Context-Free Languages and Grammars [Fa’14]

5.2 Parse Trees

It is often useful to visualize derivations of strings in L(G) using a parse tree. The parse tree for
a string w ∈ L(G) is a rooted ordered tree where

• Each leaf is labeled with a terminal or the empty string ε. Concatenating these in order
from left to right yields the string w.

• Each internal node is labeled with a non-terminal. In particular, the root is labeled with
the start non-terminal S.

• For each internal node v, there is a production rule A→ω where A is the label of v and
the symbols in ω are the labels of the children of v in order from left to right.

In other words, the production rules of the grammar describe template trees that can be
assembled into larger parse trees. For example, the simple grammar on the previous page has
the following templates, one for each production rule:

S

A

S

B

A

A0

A

C0

B

1B

B

1C

C

ε

C

1C0

The same grammar gives us the following parse tree for the string 000011:

S

A

A

C

1C

1C

ε

0

0

0

0

Our more complicated “English” grammar gives us parse trees like the following:

〈sentence〉

〈noun phrase〉

〈noun〉

trousers

〈adj. phrase〉

〈posessive〉

’s〈noun phrase〉

〈noun〉

dog

〈adj. phrase〉

〈possessive〉

my

〈verb phrase〉

〈verb phrase〉

〈verb〉

mangled

〈adverb〉

barely

〈noun phrase〉

〈noun〉

time lord

〈adj. phrase〉

〈adjective〉

green

〈adj. phrase〉

〈adjective〉

furious

〈adj. phrase〉

〈posessive〉

your

Any parse tree that contains at least one node with more than one non-terminal child
corresponds to several different derivations. For example, when deriving an “English” sentence,

3

Algorithms Lecture 5: Context-Free Languages and Grammars [Fa’14]

we have a choice of whether to expand the first 〈noun phrase〉 (“your furious green time lord”)
before or after the second (“my dog’s trousers”).

A string w is ambiguous with respect to a grammar if there is more than one parse tree for
w, and a grammar G is ambiguous is some string is ambiguous with respect to G. Neither of the
previous example grammars is ambiguous. However, the grammar S → 1 | S+S is ambiguous,
because the string 1+1+1+1 has five different parse trees:

S

S

1

+S

S

1

+S

S

1

+S

1

S

S

1

+S

S

S

1

+S

1

+S

1

S

S

S

1

+S

1

+S

S

1

+S

1

S

S

S

1

+S

S

1

+S

1

+S

1

S

S

S

S

1

+S

1

+S

1

+S

1

A context-free language L is inherently ambiguous if every context-free grammar that
generates L is ambiguous. The language generated by the previous grammar (the regular
language (1+)∗1) is not inherently ambiguous, because the unambiguous grammar S→ 1 | 1+S
generates the same language.

5.3 From Grammar to Language

Let’s figure out the language generated by our first example grammar

S→ A | B A→ 0A | 0C B→ B1 | C1 C → ε | 0C1.

Since the production rules for non-terminal C do not refer to any other non-terminal, let’s begin
by figuring out L(C). After playing around with the smaller grammar C → ε | 0C1 for a few
seconds, you can probably guess that its language is {ε,01,0011,000111, . . .}, that is, the set all
of strings of the form 0n1n for some integer n. For example, we can derive the string 00001111

from the start non-terminal S using the following derivation:

C 0C1 00C11 000C111 0000C1111 0000ε1111= 00001111

The same derivation can be viewed as the following parse tree:

C

1C

1C

1C

1C

ε

0

0

0

0

In fact, it is not hard to prove by induction that L(C) = {0n1n | n≥ 0} as follows. As usual when
we prove that two sets X and Y are equal, the proof has two stages: one stage to prove X ⊆ Y ,
the other to prove Y ⊆ X .

4

Algorithms Lecture 5: Context-Free Languages and Grammars [Fa’14]

• First we prove that C ∗ 0n1n for every non-negative integer n.

Fix an arbitrary non-negative integer n. Assume that C ∗ 0k1k for every non-negative
integer k < n. There are two cases to consider.

– If n= 0, then 0n1n = ε. The rule C → ε implies that C ε and therefore C ∗ ε.
– Suppose n> 0. The inductive hypothesis implies that C ∗ 0n−11n−1. Thus, the rule

C → 0C1 implies that C 0C1 ∗ 0(0n−11n−1)1= 0n1n.

In both cases, we conclude that that C ∗ 0n1n, as claimed.

• Next we prove that for every string w ∈ Σ∗ such that C ∗ w, we have w= 0n1n for some
non-negative integer n.

Fix an arbitrary string w such that C ∗ w. Assume that for any string x such that |x |< |w|
and C ∗ x , we have x = 0k1k for some non-negative integer k. There are two cases to
consider, one for each production rule.

– If w= ε, then w= 0010.

– Suppose w = 0x1 for some string x such that C ∗ x . Because |x | = |w| − 2 < |w|,
the inductive hypothesis implies that x = 0k1k for some integer k. Then we have
w= 0k+11k+1.

In both cases, we conclude that that w= 0n1n for some non-negative integer n, as claimed.

The first proof uses induction on strings, following the boilerplate proposed in the previous
lecture; in particular, the case analysis mirrors the recursive definition of “string”. The second
proof uses structural induction on the grammar; the case analysis mirrors the recursive definition
of the language of S, as described by the production rules. In both proofs, the inductive hypothesis
is “Assume there is no smaller counterexample.”

Similar analysis implies that L(A) = {0m1n | m > n} and L(B) = {0m1n | m < n}, and
therefore L(S) = {0m1n | m 6= n}.

5.4 More Examples

ÆÆÆ Give three or four examples of simple but interesting context-free grammars. Some
possibilities:

• Same number of 0s and 1s
• Different number of 0s and 1s
• Palindromes
• Balanced parentheses
• Arithmetic/algebraic expressions
• Regular expressions

5.5 Regular Languages are Context-Free

The following inductive argument proves that every regular language is also a context-free
language. Let L be an arbitrary regular language, encoded by some regular expression R. Assume
that any regular expression shorter than R represents a context-free language. (“Assume no
smaller counterexample.”) We construct a context-free grammar for L as follows. There are
several cases to consider.

5

Algorithms Lecture 5: Context-Free Languages and Grammars [Fa’14]

• Suppose L is empty. Then L is generated by the trivial grammar S→ S.

• Suppose L = {w} for some string w ∈ Σ∗. Then L is generated by the grammar S→ w.

• Suppose L is the union of some regular languages L1 and L2. The inductive hypothesis
implies that L1 and L2 are context-free. Let G1 be a context-free language for L1 with
starting non-terminal S1, and let G2 be a context-free language for L2 with starting non-
terminal S2, where the non-terminal sets in G1 and G2 are disjoint. Then L = L1 ∪ L2 is
generated by the production rule S→ S1 | S2.

• Suppose L is the concatenation of some regular languages L1 and L2. The inductive
hypothesis implies that L1 and L2 are context-free. Let G1 be a context-free language for
L1 with starting non-terminal S1, and let G2 be a context-free language for L2 with starting
non-terminal S2, where the non-terminal sets in G1 and G2 are disjoint. Then L = L1 L2 is
generated by the production rule S→ S1S2.

• Suppose L is the Kleene closure of some regular language L1. The inductive hypothesis
implies that L1 is context-free. Let G1 be a context-free language for L1 with starting
non-terminal S1. Then L = L∗1 is generated by the production rule S→ ε | S1S.

In every case, we have found a context-free grammar that generates L, which means L is
context-free.

In the next lecture note, we will prove that the context-free language {0n1n | n ≥ 0} is not
regular. (In fact, this is the canonical example of a non-regular language.) Thus, context-free
grammars are strictly more expressive than regular expressions.

5.6 Not Every Language is Context-Free

Again, you may be tempted to conjecture that every language is context-free, but a variant of our
earlier cardinality argument implies that this is not the case.

Any context-free grammar over the alphabet Σ can be encoded as a string over the alphabet
Σ∪ Γ ∪ { 3,→,|,$}, where $ indicates the end of the production rules for each non-terminal. For
example, our example grammar

S→ A | B A→ 0A | 0C B→ B1 | C1 C → ε | 0C1

can be encoded as the string

S→A|B$A→0A|0C$B→B1|C1$C→ 3|0C1$

We can further encode any such string as a binary string by associating each symbol in the
set Σ∪ Γ ∪ { 3,→,|,$} with a different binary substring. Specifically, if we encode each of the
grammar symbols 3,→,|,$ as a string of the form 11∗0, each terminal in Σ as a string of the
form 011∗0, and each non-terminal as a string of the form 0011∗0, we can unambiguously recover
the grammar from the encoding. For example, applying the code

37→ 10 0 7→ 010 S 7→ 0010

→ 7→ 110 1 7→ 0110 A 7→ 00110

| 7→ 1110 B 7→ 001110

$ 7→ 11110 C 7→ 0011110

transforms our example grammar into the 135-bit string

6

Algorithms Lecture 5: Context-Free Languages and Grammars [Fa’14]

00101100011011100011101111000110

11001000110111001000111101111000

11101100011100110111000111100110

11110001111011010111001000111100

1011110.

Adding a 1 to the start of this bit string gives us the binary encoding of the integer

51115 617766 581 763 757672 062401 233529 937502.

Our construction guarantees that two different context-free grammars over the same language
(ignoring changing the names of the non-terminals) yield different positive integers. Thus, the
set of context-free grammars over any alphabet is at most as large as the set of integers, and is
therefore countably infinite. (Most integers are not encodings of context-free grammars, but
that only helps us.) It follows that the set of all context-free languages over any fixed alphabet is
also countably infinite. But we already showed that the set of all languages over any alphabet is
uncountably infinite. So almost all languages are non-context-free!

Although we will probably not see them in this course, there are techniques for proving that
certain languages are not context-free, just as there are for proving certain languages are not
regular. In particular, the {0n1n0n | n ≥ 0} is not context-free. (In fact, this is the canonical
example of a non-context-free language.)

5.7 Recursive Automata?

All the flavors of finite-state automata we have seen so far describe/encode/accept/compute
regular languages; these are precisely the languages that can be constructed from individual
strings by union, concatenation, and unbounded repetition. Just as context-free grammars are
recursive generalizations of regular expressions, we can define a class of machines called recursive
automata, which generalize (nondeterministic) finite-state automata.

Formally, a recursive automaton consists of the following components:

• A non-empty finite set Σ, called the input alphabet

• Another non-empty finite set N , disjoint from Σ, whose elements are called module names

• A start name S ∈ N

• A set M = {MA | A∈ N} of NFAs over the alphabet Σ∪N calledmodules, each with a single
accepting state. Each module MA has the following components:

– A finite set QA of states, such that QA∩QB =∅ for all A 6= B

– A start state sA ∈QA

– A terminal or accepting state tA ∈QA

– A transition function δA : QA× (Σ∪ {ε} ∪ N)→ 2QA.

Equivalently, we have a single global transition function δ : Q × (Σ ∪ {ε} ∪ N) → 2Q, where
Q =

⋃
A∈N QA, such that for any name A and any state q ∈QA we have δ(q) ⊆QA. Machine MS is

called the main module.
A configuration of a recursive automaton is a triple (w, q, s), where w is a string in Σ∗ called

the input, q is a state in Q called the local state, and σ is a string in Q∗ called the stack. The
module containing the local state q is called the active module. A configuration can be changed
by three types of transitions.

7

Algorithms Lecture 5: Context-Free Languages and Grammars [Fa’14]

• A read transition consumes the first symbol in the input and changes the local state within
the current module, just like a standard NFA.

• An epsilon transition changes the local state within the current module, without consuming
any input characters, just like a standard NFA.

• A call transition chooses an arbitrary name A, changes the current state q0 to some state in
δ(q, A), and pushes the corresponding start state sA onto the stack (thereby changing the
active module to MA), without consuming any input characters.

• Finally, if the current state is the terminal state of some module and the stack is non-empty,
a return transition pops the top state off the stack and makes it the new local state (thereby
possibly changing the active module), without consuming any input characters.

Symbolically, we can describe these transitions as follows:

read:
�
ax , q,σ

� 7−→ �
x , q′,σ

�
for some q′ ∈ δ(q, a)

epsilon:
�
w, q,σ

� 7−→ �
w, q′,σ

�
for some q′ ∈ δ(q,ε)

call:
�
w, q,σ

� 7−→ �
w, sA, q′ ·σ� for some A∈ N and q′ ∈ δ(q, A)

return:
�
w, tA, q ·σ� 7−→ �

w, q,σ
�

A recursive automaton accepts a string w if there is a finite sequence of transitions starting at the
start configuration (w, sS ,ε) and ending at the terminal configuration (ε, tS ,ε).

For example, the following recursive automaton accepts the language {0m1n | m 6= n}. The
recursive automaton has two component machines; the start machine named S and a “subroutine”
named E (for “equal”) that accepts the language {0n1n | n≥ 0}. White arrows indicate recursive
transitions.

E

0 1

E

E

E

0 1

S

0
1

ε

A recursive automaton for the language {0m1n | m 6= n}

Lemma 5.1. Every context-free language is accepted by a recursive automaton.

Proof:

ÆÆÆ Direct construction from the CFG, with one module per nonterminal.

�

For example, the context-free grammar

S→ 0A | B1

A→ 0A | E
B→ B1 | E
E→ ε | 0E0

leads to the following recursive automaton with four modules:

8

Algorithms Lecture 5: Context-Free Languages and Grammars [Fa’14]

ÆÆÆ Figure!

Lemma 5.2. Every recursive automaton accepts a context-free language.

Proof (sketch): Let R = (Σ, N , S,δ, M) be an arbitrary recursive automaton. We define a
context-free grammar G that describes the language accepted by R as follows.

The set of nonterminals in G is isomorphic the state set Q; that is, for each state q ∈Q, the
grammar contains a corresponding nonterminal [q]. The language of [q] will be the set of strings
w such that there is a finite sequence of transitions starting at the start configuration (w, q,ε)
and ending at the terminal configuration (ε, t,ε), where t is the terminal state of the module
containing q.

The grammar has four types of production rules, corresponding to the four types of transitions:

• read: For each symbol a and each pair of states p and q such that p ∈ δ(q, a), the grammar
contains the production rule [q]→ a[p].

• epsilon: For any two states p and q such that p ∈ δ(q,ε), the grammar contains the
production rule [q]→ [p].

• call: Each name A and each pair of states states p and q such that p ∈ δ(q, A), the grammar
contains the production rule [q]→ [sA][p].

• return: Each name A, the grammar contains the production rule [tA]→ ε.
Finally, the starting nonterminal of G is [sS], which corresponds to the start state of the main
module.

We can now argue inductively that the grammar G and the recursive automaton R describe
the same language. Specifically, any sequence of transitions in R from (w, sS ,ε) to (ε, tS ,ε) can be
transformed mechanically into a derivation of w from the nonterminal [sS] in G. Symmetrically,
the leftmost derivation of any string w in G can be mechanically transformed into an accepting
sequence of transitions in R. We omit the straightforward but tedious details. �

For example, the recursive automaton on the previous page gives us the following context-free
grammar. To make the grammar more readable, I’ve renamed the nonterminals corresponding to
start and terminal states: S = [sS], T = [tS], and E = [sE] = [tE]:

S→ EA | 0B E→ ε | 0X

A→ 1A | 1T X → EY

B→ 0B | ET Y → 1Z

T → ε Z → E

Our earlier proofs imply that we can forbid ε-transitions or even allow regular-expression
transitions in our recursive automata without changing the set of languages they accept.

5.8 Chomsky Normal Form?

For many algorithmic problems involving context-free grammars, it is helpful to consider
grammars with a particular special structure called Chomsky normal form, abbreviated CNF:

• The starting non-terminal S does not appear on the right side of any production rule.

9

Algorithms Lecture 5: Context-Free Languages and Grammars [Fa’14]

• The starting non-terminal S may have the production rule S→ ε.
• The right side of every other production rule is either a single terminal symbol or a string

of exactly two non-terminals—that is, every other production rule has the form A→ BC or
A→ a.

A particularly attractive feature of CNF grammars is that they yield full binary parse trees; in
particular, every parse tree for a string of length n > 0 has exactly 2n− 1 non-terminal nodes.
Consequently, any string of length n in the language of a CNF grammar can be derived in exactly
2n− 1 production steps. It follows that we can actually determine whether a string belongs to
the language of a CNF grammar by brute-force consideration of all possible derivations of the
appropriate length.

For arbitrary context-free grammars, there is no similar upper bound on the length of a
derivation, and therefore no similar brute-force membership algorithm, because the grammar
may contain additional ε-productions of the form A→ ε and/or unit productions of the form
A→ B, where both A and B are non-terminals. Unit productions introduce nodes of degree 1
into any parse tree, and ε-productions introduce leaves that do not contribute to the word being
parsed.

Fortunately, it is possible to determine membership in the language of an arbitrary context-free
grammar, thanks to the following theorem. Two context-free grammars are equivalent if they
define the same language.

Every context-free grammar is equivalent to a grammar in Chomsky normal form.

To be more specific, define the total length of a context-free grammar to be the number of
symbols needed to write down the grammar; up to constant factors, the total length is the sum
of the lengths of the production rules.

Theorem 5.3. For every context-free grammar with total length L, there is an equivalent grammar
in Chomsky normal form with total length O(L2), which can be computed in O(L2) time.

Converting an arbitrary grammar into Chomsky normal form is a complex task. Fortunately,
for most applications of context-free grammars, it’s enough to know that the algorithm exists.
For the sake of completeness, however, I will describe one such conversion algorithm here. This
algorithm consists of several relatively straightforward stages. Efficient implementation of some
of these stages requires standard graph-traversal algorithms, which we will describe much later
in the course.

0. Add a new starting non-terminal. Add a new non-terminal S′ and a production rule S′→ S,
where S is the starting non-terminal for the given grammar. S′ will be the starting non-terminal
for the resulting CNF grammar. (In fact, this step is necessary only when S ∗ ε, but at this point
in the conversion process, we don’t yet know whether that’s true.)

1. Decompose long production rules. For each production rule A→ω whose right side w has
length greater than two, add new production rules of length two that still permit the derivation
A ∗ ω. Specifically, suppose ω= αχ for some symbol α ∈ Σ∪ Γ and string χ ∈ (Σ∪ Γ)∗. The
algorithm replaces A→ω with two new production rules A→ αB and B→ χ, where B is a new
non-terminal, and then (if necessary) recursively decomposes the production rule B→ χ. For

10

Algorithms Lecture 5: Context-Free Languages and Grammars [Fa’14]

example, we would replace the long production rule A→ 0BC1CB with the following sequence
of short production rules, where each Ai is a new non-terminal:

A→ 0A1 A1→ BA2 A2→ CA3 A3→ 1A4 A4→ CB

This stage can significantly increase the number of non-terminals and production rules, but it
increases the total length of all production rules by at most a small constant factor.² Moreover,
for the remainder of the conversion algorithm, every production rule has length at most two. The
running time of this stage is O(L).

2. Identify nullable non-terminals. A non-terminal A is nullable if and only if A ∗ ε. The
recursive definition of ∗ implies that A is nullable if and only if the grammar contains a
production rule A→ ω where ω consists entirely of nullable non-terminals (in particular, if
ω= ε). You may be tempted to transform this recursive characterization directly into a recursive
algorithm, but this is a bad idea; the resulting algorithm would fall into an infinite loop if (for
example) the same non-terminal appeared on both sides of the same production rule. Instead, we
apply the following fixed-point algorithm, which repeatedly scans through the entire grammar
until a complete scan discovers no new nullable non-terminals.

Nullables(Σ, Γ , R, S):
Γε ←∅ 〈〈known nullable non-terminals〉〉
done← False
while ¬done

done← True
for each non-terminal A∈ Γ \ Γε

for each production rule A→ω
if ω ∈ Γ∗ε

add A to Γε
done← False

return Γε

At this point in the conversion algorithm, if S′ is not identified as nullable, then we can safely
remove it from the grammar and use the original starting nonterminal S instead.

As written, Nullables runs in O(nL) = O(L2) time, where n is the number of non-terminals
in Γ . Each iteration of the main loop except the last adds at least one non-terminal to Γε, so the
algorithm halts after at most n+ 1≤ L iterations, and in each iteration, we examine at most L
production rules. There is a faster implementation of Nullables that runs in O(n+ L) = O(L)
time,³ but since other parts of the conversion algorithm already require O(L2) time, we needn’t
bother.

3. Eliminate ε-productions. First, remove every production rule of the form A→ ε. Then for
each production rule A→ w, add all possible new production rules of the form A→ w′, where w′

²In most textbook descriptions of this conversion algorithm, this stage is performed last, after removing ε-
productions and unit productions. But with the stages in that traditional order, removing ε-productions could
exponentially increase the length of the grammar in the worst case! Consider the production rule A→ (BC)k, where B
is nullable but C is not. Decomposing this rule first and then removing ε-productions introduces about 3k new rules;
whereas, removing ε-productions first introduces 2k new rules, most of which then must then be further decomposed.

³Consider the bipartite graph whose vertices correspond to non-terminals and the right sides of production rules,
with one edge per rule. The faster algorithm is a modified breadth-first search of this graph, starting at the vertex
representing ε.

11

Algorithms Lecture 5: Context-Free Languages and Grammars [Fa’14]

is a non-empty string obtained from w by removing one nullable non-terminal. For example, if if
the grammar contained the production rule A→ BC , where B and C are both nullable, we would
add two new production rules A→ B | C . Finally, if the starting nonterminal S′ was identified as
nullable in the previous stage, add the production rule S′→ ε; this will be the only ε-production
in the final grammar. This phase of the conversion runs in O(L) time and at most triples the
number of production rules.

4. Merge equivalent non-terminals. We say that two non-terminals A and B are equivalent if
they can be derived from each other: A ∗ B and B ∗ A. Because we have already removed
ε-productions, any such derivation must consist entirely of unit productions. For example, in the
grammar

S→ B | C , A→ B | D | CC | 0, B→ C | AD | 1, C → A | DA, D→ BA | CS,

non-terminals A, B, C are all equivalent, but S is not in that equivalence class (because we cannot
derive S from A) and neither is D (because we cannot derive A from D).

Construct a directed graph G whose vertices are the non-terminals andwhose edges correspond
to unit productions, in O(L) time. Then two non-terminals are equivalent if and only if they are
in the same strong component of G. Compute the strong components of G in O(L) time using,
for example, the algorithm of Kosaraju and Sharir. Then merge all the non-terminals in each
equivalence class into a single non-terminal. Finally, remove any unit productions of the form
A→ A. The total running time for this phase is O(L). Starting with our example grammar above,
merging B and C with A and removing the production A→ A gives us the simpler grammar

S→ A, A→ AA | D | DA | 0 | 1, D→ AA | AS.

We could further simplify the grammar by merging all non-terminals reachable from S using only
unit productions (in this case, merging non-terminals S and S), but this further simplification is
unnecessary.

5. Remove unit productions. Once again, we construct a directed graph G whose vertices are
the non-terminals and whose edges correspond to unit productions, in O(L) time. Because no
two non-terminals are equivalent, G is acyclic. Thus, using topological sort, we can index the
non-terminals A1, A2, . . . , An such that for every unit production Ai → A j we have i < j, again in
O(L) time; moreover, we can assume that the starting non-terminal is A1. (In fact, both the dag
G and the linear ordering of non-terminals was already computed in the previous phase!!)

Then for each index j in decreasing order, for each unit production Ai → A j and each
production A j →ω, we add a new production rule Ai →ω. At this point, all unit productions are
redundant and can be removed. Applying this algorithm to our example grammar above gives us
the grammar

S→ AA | AS | DA | 0 | 1, A→ AA | AS | DA | 0 | 1, D→ AA | AS.

In the worst case, each production rule for An is copied to each of the other n − 1 non-
terminals. Thus, this phase runs in Θ(nL) = O(L2) time and increases the length of the grammar
to Θ(nL) = O(L2) in the worst case.

This phase dominates the running time of the CNF conversion algorithm. Unlike previous
phases, no faster algorithm for removing unit transformations is known! There are grammars of
length L with unit productions such that any equivalent grammar without unit productions has

12

Algorithms Lecture 5: Context-Free Languages and Grammars [Fa’14]

length Ω(L1.499999) (for any desired number of 9s), but this lower bound does not rule out the
possibility of an algorithm that runs in only O(L3/2) time. Closing the gap between Ω(L3/2−ε)
and O(L2) has been an open problem since the early 1980s.

6. Protect terminals. Finally, for each terminal a ∈ Σ, we introduce a new non-terminal Aa
and a new production rule Aa→ a, and then replace a with Aa in every production rule of length
2. This completes the conversion to Chomsky normal form. As claimed, the total running time of
the algorithm is O(L2), and the total length of the output grammar is also O(L2).

CNF Conversion Example

As a running example, let’s apply these stages one at a time to our first example grammar.

S→ A | B A→ 0A | 0C B→ B1 | C1 C → ε | 0C1

0. Add a new starting non-terminal S′.

S′→ S S→ A | B A→ 0A | 0C B→ B1 | C1 C → ε | 0C1

1. Decompose the long production rule C → 0C1.

S′→ S S→ A | B A→ 0A | 0C B→ B1 | C1 C → ε | 0D D→ C1

2. Identify C as the only nullable non-terminal. Because S′ is not nullable, remove the
production rule S′→ S.

3. Eliminate the ε-production C → ε.

S→ A | B A→ 0A | 0C | 0 B→ B1 | C1 | 1 C → 0D D→ C1 | 1

4. No two non-terminals are equivalent, so there’s nothing to merge.

5. Remove the unit productions S′→ S, S→ A, and S→ B.

S→ 0A | 0C | B1 | C1 | 0 | 1
A→ 0A | 0C | 0 B→ B1 | C1 | 1 C → 0D D→ C1 | 1.

6. Finally, protect the terminals 0 and 1 to obtain the final CNF grammar.

S→ EA | EC | BF | C F | 0 | 1
A→ EA | EC | 0 B→ BF | C F | 1
C → ED D→ C F | 1
E→ 0 F → 1

13

Algorithms Lecture 5: Context-Free Languages and Grammars [Fa’14]

Exercises

1. Describe context-free grammars that generate each of the following languages. The
function #(x , w) returns the number of occurrences of the substring x in the string w. For
example, #(0,101001) = 3 and #(010,1010100011) = 2.

(a) All strings in {0,1}∗ whose length is divisible by 5.

(b) All strings in {0,1}∗ representing a non-negative multiple of 5 in binary.

(c) {w ∈ {0,1}∗ | #(0, w) = #(1, w)}
(d) {w ∈ {0,1}∗ | #(0, w) 6= #(1, w)}
(e) {w ∈ {0,1}∗ | #(00, w) = #(11, w)}
(f) {w ∈ {0,1}∗ | #(01, w) = #(10, w)}
(g) {w ∈ {0,1}∗ | #(0, w) = #(1, w) and |w| is a multiple of 3}
(h) {0,1}∗ \ {0n1n | n≥ 0}
(i) {0n12n | n≥ 0}
(j) {0,1}∗ \ {0n12n | n≥ 0}
(k) {0n1m | 0≤ 2m≤ n< 3m}
(l) {0i1 j2i+ j | i, j ≥ 0}

(m) {0i1 j2k | i = j or j = k}
(n) {0i1 j2k | i 6= j or j 6= k}
(o) {0i1 j0 j1i | i, j ≥ 0}
(p)

�
w$0#(0,w)

�� w ∈ {0,1}∗	

(q) {x y | x , y ∈ {0,1}∗ and x 6= y and |x |= |y|}
(r)

�
x$yR

�� x , y ∈ {0,1}∗ and x 6= y
	

(s) {x$y | x , y ∈ {0,1}∗ and #(0, x) = #(1, y)}
(t) {0,1}∗ \ {ww | w ∈ {0,1}∗}
(u) All strings in {0,1}∗ that are not palindromes.

(v) All strings in {(,), �}∗ in which the parentheses are balanced and the symbol �
appears at most four times. For example, ()(()) and (��(()()�)()())� and ���
are strings in this language, but)(() and (���)�� are not.

2. Describe recursive automata for each of the languages in problem 1. (“Describe” does not
necessarily mean “draw”!)

3. Prove that if L is a context-free language, then LR is also a context-free language. [Hint:
How do you reverse a context-free grammar?]

4. Consider a generalization of context-free grammars that allows any regular expression over
Σ∪ Γ to appear on the right side of a production rule. Without loss of generality, for each
non-terminal A∈ Γ , the generalized grammar contains a single regular expression R(A). To
apply a production rule to a string, we replace any non-terminal A with an arbitrary word

14

Algorithms Lecture 5: Context-Free Languages and Grammars [Fa’14]

in the language described by R(A). As usual, the language of the generalized grammar is
the set of all strings that can be derived from its start non-terminal.

For example:, the following generalized context-free grammar describes the language
of all regular expressions over the alphabet {0,1}:

S→ (T+)∗T + Ø (Regular expressions)

T → 3+ F∗F (Terms = summable expressions)

F → (0+ 1+ (S))(*+ ε) (Factors = concatenable expressions)

Here is a parse tree for the regular expression 0+1(10*1+01*0)*10* (which represents the
set of all binary numbers divisible by 3):

S

T

F

*0

F

1

F

*)S

T

F

0

F

*1

F

0

+T

F

1

F

*0

F

1

(

F

1

+T

0

Prove that every generalized context-free grammar describes a context-free language.
In other words, show that allowing regular expressions to appear in production rules does
not increase the expressive power of context-free grammars.

15

Models of Computation Lecture 6: Turing Machines [Fa’14]

Caveat lector: This is the zeroth (draft) edition of this lecture note. In particular, some topics
still need to be written. Please send bug reports and suggestions to jeffe@illinois.edu.

Think globally, act locally.

— Attributed to Patrick Geddes (c.1915), among many others.

We can only see a short distance ahead,
but we can see plenty there that needs to be done.

— Alan Turing, “Computing Machinery and Intelligence” (1950)

Never worry about theory as long as the machinery does what it’s supposed
to do.

— Robert Anson Heinlein, Waldo & Magic, Inc. (1950)

6 Turing Machines

In 1936, a few months before his 24th birthday, Alan Turing launched computer science as a
modern intellectual discipline. In a single remarkable paper, Turing provided the following
results:

• A simple formal model of mechanical computation now known as Turing machines.

• A description of a single universal machine that can be used to compute any function
computable by any other Turing machine.

• A proof that no Turing machine can solve the halting problem—Given the formal description
of an arbitrary Turing machine M , does M halt or run forever?

• A proof that no Turing machine can determine whether an arbitrary given proposition
is provable from the axioms of first-order logic. This Hilbert and Ackermann’s famous
Entscheidungsproblem (“decision problem”)

• Compelling arguments¹ that his machines can execute arbitrary “calculation by finite
means”.

Turing’s paper was not the first to prove that the Entscheidungsproblem had no algorithmic
solution. Alonzo Church published the first proof just a new months earlier, using a very different
model of computation, now called the untyped λ-calculus. Turing and Church developed their
results independently; indeed, Turing rushed the submission of his own paper immediately
after receiving a copy of Church’s paper, pausing only long enough to prove that any function
computable via λ-calculus can also be computed by a Turing machine and vice versa. Church
was the referee for Turing’s paper; between the paper’s submission and its acceptance, Turing
was admitted to Princeton, where he became Church’s PhD student. He finished his PhD two
years later.

Informally, Turing described a device with a finite number of internal states that has access
to memory in the form of a tape. The tape consists of a semi-infinite sequence of cells, each

¹As Turing put it, “All arguments which can be given are bound to be, fundamentally, appeals to intuition, and for
this reason rather unsatisfactory mathematically.” The claim that anything that can be computed can be computing
using Turing machines is now known as the Church-Turing thesis.

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

1

Models of Computation Lecture 6: Turing Machines [Fa’14]

containing a single symbol from some arbitrary finite alphabet. The Turing machine can access
the tape only through its head, which is positioned over a single cell. Initially, the tape contains
an arbitrary finite input string followed by an infinite sequence of blanks, and the head is
positioned over the first cell on the tape. In a single iteration, the machine reads the symbol in
that cell, possibly write a new symbol into that cell, possibly changes its internal state, possibly
moves the head to a neighboring cell, and possibly halts. The precise behavior of the machine at
each iteration is entirely determined by its internal state and the symbol that it reads. When the
machine halts, it indicates whether it has accepted or rejected the original input string.

T O R T U R I N G M A C H I N E

T O R T U R I N G M A C H I N E

N O R T U R I N G M A C H I N E

N U R T U R I N G M A C H I N E

Write O
Move left

Write N
Move right

Write U
Move right

Halt and
accept!

A few iterations of a six-state Turing machine.

6.1 Why Bother?

Students used to thinking of computation in terms of higher-level operations like random memory
accesses, function calls, and recursion may wonder why we should even consider a model as
simple and constrained as Turing machines. Admittedly, Turing machines are a terrible model
for thinking about fast computation; simple operations that take constant time in the standard
random-access model can require arbitrarily many steps on a Turing machine. Worse, seemingly
minor variations in the precise definition of “Turing machine” can have significant impact on
problem complexity. As a simple example (which will make more sense later), we can reverse
a string of n bits in O(n) time using a two-tape Turing machine, but the same task provably
requires Ω(n2) time on a single-tape machine.

But here we are not interested in finding fast algorithms, or indeed in finding algorithms
at all, but rather in proving that some problems cannot be solved by any computational means.
Such a bold claim requires a formal definition of “computation” that is simple enough to support
formal argument, but still powerful enough to describe arbitrary algorithms. Turing machines
are ideal for this purpose. In particular, Turing machines are powerful enough to simulate other

2

Models of Computation Lecture 6: Turing Machines [Fa’14]

Turing machines, while still simple enough to let us build up this self-simulation from scratch,
unlike more complex but efficient models like the standard random-access machine

(Arguably, self-simulation is even simpler in Church’s λ-calculus, or in Schönfinkel and
Curry’s combinator calculus, which is one of many reasons those models are more common in
the design and analysis of programming languages than Turing machines. Those models much
more abstract; in particular, they are harder to show equivalent to standard iterative models of
computation.)

6.2 Formal Definitions

Formally, a Turing machine consists of the following components. (Hang on; it’s a long list.)

• An arbitrary finite set Γ with at least two elements, called the tape alphabet.

• An arbitrary symbol � ∈ Γ , called the blank symbol or just the blank.

• An arbitrary nonempty subset Σ ⊆ (Γ \ {�}), called the input alphabet.

• Another arbitrary finite set Q whose elements are called states.

• Three distinct special states start, accept, reject ∈Q.

• A transition function δ : (Q \ {accept, reject})× Γ →Q× Γ × {−1,+1}.
A configuration or global state of a Turing machine is represented by a triple (q, x , i) ∈

Q×Γ ∗×N, indicating that the machine’s internal state is q, the tape contains the string x followed
by an infinite sequence of blanks, and the head is located at position i. Trailing blanks in the
tape string are ignored; the triples (q, x , i) and (q, x�, i) describe exactly the same configuration.

The transition function δ describes the evolution of the machine. For example, δ(q, a) =
(p, b,−1) means that when the machine reads symbol a in state q, it changes its internal state
to p, writes symbol b onto the tape at its current location (replacing a), and then decreases its
position by 1 (or more intuitively, moves one step to the left). If the position of the head becomes
negative, no further transitions are possible, and the machine crashes.

We write (p, x , i)⇒M (q , y, j) to indicate that Turing machine M transitions from the first
configuration to the second in one step. (The symbol⇒ is often pronounced “yields”; I will omit
the subscript M if the machine is clear from context.) For example, δ(p, a) = (q, b,±1) means
that

(p, xa y, i) ⇒ (q, x b y, i ± 1)

for any non-negative integer i, any string x of length i, and any string y. The evolution of any
Turing machine is deterministic; each configuration C yields a unique configuration C ′. We write
C ⇒∗ C ′ to indicate that there is a (possibly empty) sequence of transitions from configuration C
to configuration C ′. (The symbol⇒∗ can be pronounced “eventually yields”.)

The initial configuration is (w, start, 0) for some arbitrary (and possibly empty) input string
w ∈ Σ∗. If M eventually reaches the accept state—more formally, if (w, start, 0)⇒∗ (x , accept, i)
for some string x ∈ Γ ∗ and some integer i—we say that M accepts the original input string w.
Similarly, if M eventually reaches the reject state, we say that M rejects w. We must emphasize
that “rejects” and “does not accept” are not synonyms; if M crashes or runs forever, then M
neither accepts nor rejects w.

We distinguish between two different senses in which a Turing machine can “accept” a
language. Let M be a Turing machine with input alphabet Σ, and let L ⊆ Σ∗ be an arbitrary
language over Σ.

3

Models of Computation Lecture 6: Turing Machines [Fa’14]

• M recognizes or accepts L if and only if M accepts every string in L but nothing else. A
language is recognizable (or semi-computable or recursively enumerable) if it is recognized
by some Turing machine.

• M decides L if and only if M accepts every string in L and rejects every string in Σ∗ \ L.
Equivalently, M decides L if and only if M recognizes L and halts (without crashing) on all
inputs. A language is decidable (or computable or recursive) if it is decided by some Turing
machine.

Trivially, every decidable language is recognizable, but (as wewill see later), not every recognizable
language is decidable.

6.3 A First Example

Consider the language L = {0n1n0n | n≥ 0}. This language is neither regular nor context-free,
but it can be decided by the following six-state Turing machine. The alphabets and states of the
machine are defined as follows:

Γ = {0,1,$,x,�}
Σ= {0,1}
Q = {start, seek1, seek0, reset, verify, accept, reject}

The transition function is described in the following table; all unspecified transitions lead to the
reject state. We also give a graphical representation of the same machine, which resembles a
drawing of a DFA, but with output symbols and actions specified on each edge. For example, we
indicate the transition δ(p,0) = (q,1,+1) by writing 0/1,+1 next to the arrow from state p to
state q.

δ(p , a) = (q , b , ∆) explanation

δ(start , 0) = (seek1 , $, +1) mark first 0 and scan right

δ(start , x) = (verify , $, +1) looks like we’re done, but let’s make sure

δ(seek1, 0) = (seek1 , 0 , +1) scan rightward for 1

δ(seek1, x) = (seek1 , x , +1)
δ(seek1, 1) = (seek0 , x , +1) mark 1 and continue right

δ(seek0, 1) = (seek0 , 1 , +1) scan rightward for 0

δ(seek0, x) = (seek0 , x , +1)
δ(seek0, 0) = (reset , x , +1) mark 0 and scan left

δ(reset , 0) = (reset , 0 , −1) scan leftward for $

δ(reset , 1) = (reset , 1 , −1)
δ(reset , x) = (reset , x , −1)
δ(reset , $) = (start , $, +1) step right and start over

δ(verify, x) = (verify , $, +1) scan right for any unmarked symbol

δ(verify, �) = (accept, �, −1) success!

The transition function for a Turing machine that decides the language {0n1n0n | n≥ 0}.

Finally, we trace the execution of this machine on two input strings: 001100 ∈ L and
00100 6∈ L. In each configuration, we indicate the position of the head using a small triangle

4

Models of Computation Lecture 6: Turing Machines [Fa’14]

0/x,−10/$,+1 1/x,+1

x/$,+1

□/□,−1

0/0,+1
x/x,+1

1/1,+1
x/x,+1

0/0,−1
1/1,−1
x/x,−1

$/$,+1

start seek1 seek0 reset

verify acceptx/$,+1

A graphical representation of the example Turing machine

instead of listing the position explicitly. Notice that we automatically add blanks to the tape
string as necessary. Proving that this machine actually decides L—and in particular, that it never
crashes or infinite-loops—is a straightforward but tedious exercise in induction.

(start,Î001100)⇒ (seek1,$Î01100)⇒ (seek1,$0Î1100)⇒ (seek0,$0xÎ100)⇒ (seek0,$0x1Î00)

⇒ (reset,$0xÎ1x0)⇒ (reset,$0Îx1x0)⇒ (reset,$Î0x1x0)⇒ (reset,Î$0x1x0)

⇒ (start,$Î0x1x0)

⇒ (seek1,$$Îx1x0)⇒ (seek1,$$xÎ1x0)⇒ (seek0,$$xxÎx0)⇒ (seek0,$$xxxÎ0)

⇒ (reset,$$xxÎxx)⇒ (reset,$$xÎxxx)⇒ (reset,$$Îxxxx)⇒ (reset,$Î$xxxx)

⇒ (verify,$$Îxxxx)⇒ (verify,$$$Îxxx)⇒ (verify,$$$$Îxx)

⇒ (verify,$$$$$Îx)⇒ (verify,$$$$$$Î�)⇒ (accept,$$$$$Î$)⇒ accept!

The evolution of the example Turing machine on the input string 001100 ∈ L

(start,Î00100)⇒ (seek1,$Î0100)⇒ (seek1,$0Î100)⇒ (seek0,$0xÎ00)

⇒ (reset,$0Îxx0)⇒ (reset,$Î0xx0)⇒ (reset,Î$0xx0)

⇒ (start,$Î0xx0)

⇒ (seek1,$$Îxx0)⇒ (seek1,$$xÎx0)⇒ (seek1,$$xxÎ0)⇒ reject!

The evolution of the example Turing machine on the input string 00100 6∈ L

6.4 Variations

There are actually several formal models that all fall under the name “Turing machine”, each
with small variations on the definition we’ve given. Although we do need to be explicit about
which variant we want to use for any particular problem, the differences between the variants are
relatively unimportant. For any machine defined in one model, there is an equivalent machine in
each of the other models; in particular, all of these variants recognize the same languages and
decide the same languages. For example:

5

Models of Computation Lecture 6: Turing Machines [Fa’14]

• Halting conditions. Some models allow multiple accept and reject states, which (depend-
ing on the precise model) trigger acceptance or rejection either when the machine enters
the state, or when the machine has no valid transitions out of such a state. Others include
only explicit accept states, and either equate crashing with rejection or do not define a
rejection mechanism at all. Still other models include halting as one of the possible actions
of the machine, in addition to moving left or moving right; in these models, the machine
accepts/rejects its input if and only if it halts in an accepting/non-accepting state.

• Actions. Some Turing machine models allow transitions that do not move the head, or
that move the head by more than one cell in a single step. Others insist that a single step of
the machine either writes a new symbol onto the tape or moves the head one step. Finally,
as mentioned above, some models include halting as one of the available actions.

• Transition function. Some models of Turing machines, including Turing’s original
definition, allow the transition function to be undefined on some state-symbol pairs. In this
formulation, the transition function is given by a set δ ⊂ Q× Γ ×Q× Γ × {+1,−1}, such
that for each state q and symbol a, there is at most one transition (q, a, · , · , ·) ∈ δ. If the
machine enters a configuration from which there is no transition, it halts and (depending
on the precise model) either crashes or rejects. Others define the transition function as
δ : Q× Γ →Q× (Γ ∪ {−1,+1}), allowing the machine to either write a symbol to the tape
or move the head in each step.

• Beginning of the tape. Some models forbid the head to move past the beginning of the
tape, either by starting the tape with a special symbol that cannot be overwritten and
that forces a rightward transition, or by declaring that a leftward transition at position 0
leaves the head in position 0, or even by pure fiat—declaring any machine that performs a
leftward move at position 0 to be invalid.

To prove that any two of these variant “species” of Turing machine are equivalent, we must
show how to transform a machine of one species into a machine of the other species that accepts
and rejects the same strings. For example, let M = (Γ ,�,Σ,Q, s, accept, reject,δ) be a Turing
machine with explicit accept and reject states. We can define an equivalent Turing machine
M ′ that halts only when it moves left from position 0, and accepts only by halting while in an
accepting state, as follows. We define the set of accepting states for M ′ as A= {accept} and
define a new transition function

δ′(q, a) :=

(accept, a,−1) if q = accept

(reject, a,−1) if q = reject

δ(q, a) otherwise

Similarly, suppose someone gives us a Turing machine M = (Γ ,�,Σ,Q, s, accept, reject,δ)
whose transition function δ : Q×Γ →Q×Γ ×{−1,0,+1} allows the machine to transition without
moving its head. We can construct an equivalent Turingmachine M ′ = (Γ ,�,Σ,Q′, s, accept, reject,δ′)
that moves its head at every transition by defining Q′ :=Q× {0,1} and

δ′((p, 0), a) :=

¨
((q, 1), b,+1) if δ(p, a) = (q, b, 0),
((q, 0), b,∆) if δ(p, a) = (q, b,∆) and ∆ 6= 0,

δ′((p, 1), a) := ((p, 0), a,−1).

6

Models of Computation Lecture 6: Turing Machines [Fa’14]

6.5 Computing Functions

Turing machines can also be used to compute functions from strings to strings, instead of just
accepting or rejecting strings. Since we don’t care about acceptance or rejection, we replace
the explicit accept and reject states with a single halt state, and we define the output of the
Turing machine to be the contents of the tape when the machine halts, after removing the
infinite sequence of trailing blanks. More formally, for any Turing machine M , any string w ∈ Σ∗,
and any string x ∈ Γ ∗ that does not end with a blank, we write M(w) = x if and only if
(w, s, 0)⇒∗M (x , halt, i) for some integer i. If M does not halt on input w, then we write M(w)↗,
which can be read either “M diverges on w” or “M(w) is undefined.” We say that M computes
the function f : Σ∗→ Σ∗ if and only if M(w) = f (w) for every string w.

6.5.1 Shifting

One basic operation that is used in many Turing machine constructions is shifting the input
string a constant number of steps to the right or to the left. For example, given any input
string w ∈ {0,1}∗, we can compute the string 0w using a Turing machine with tape alphabet
Γ = {0,1,�}, state set Q = {0, 1,halt}, start state 0, and the following transition function:

δ(p, a) = (q , b, ∆)
δ(0, 0) = (0 , 0, +1)
δ(0, 1) = (1 , 0, +1)
δ(0, �) = (halt, 0, +1)
δ(1, 0) = (0 , 1, +1)
δ(1, 1) = (1 , 1, +1)
δ(1, �) = (halt, 1, +1)

By increasing the number of states, we can build a Turing machine that shifts the input string any
fixed number of steps in either direction. For example, a machine that shifts its input to the left
by five steps might read the string from right to left, storing the five most recently read symbols in
its internal state. A typical transition for such a machine would be δ(12345, 0) = (01234,5,−1).

6.5.2 Binary Addition

With a more complex Turing machine, we can implement binary addition. The input is a string of
the form w+x , where w, x ∈ {0,1}n, representing two numbers in binary; the output is the binary
representation of w+ x . To simplify our presentation, we assume that |w|= |x |> 0; however, this
restrictions can be removed with the addition of a few more states. The following figure shows
the entire Turing machine at a glance. The machine uses the tape alphabet Γ = {�,0,1,+,0,1};
the start state is shift0. All missing transitions go to a fail state, indicating that the input was
badly formed.

Execution of this Turing machine proceeds in several phases, each with its own subset of
states, as indicated in the figure. The initialization phase scans the entire input, shifting it to
the right to make room for the output string, marking the rightmost bit of w, and reading and
erasing the last bit of x .

7

Models of Computation Lecture 6: Turing Machines [Fa’14]

□/□,−1 □/□,−1

0/0,−1 0/0,−1

□/□,−1

0/□,−1 1/□,−1 1/□,−1

0/1,−1 1/0,−1 0/0,−1
1/1,−1

0/0,−1
1/1,−1

0/0,−1
1/1,−1
+/+,−1

0/0,−1
1/1,−1
+/+,−1

0/0,−1
1/1,−1
+/+,−1

0/0,+1
1/1,+1
+/+,+1

0/0,+1
1/1,+1
+/+,+1

□/□,−1

+/□,−1 +/□,−1

0/0,−1
1/1,−1

0/+,+1 1/+,+1
+/0,+1 +/1,+1

1/0,+1

0/1,+1
0/0,+1 1/1,+1

1/0,+1 1/1,+1

0/□,−1

shift0

add0 add1

halt

shift1

shift+

add2

back0

next0

get0

back1

next1

get1

last0 last1
0/0,−1
1/1,−1

initialization

termination

scan left
and add

scan right
and read

main loop

A Turing machine that adds two binary numbers of the same length.

δ(p , a) = (q , b , ∆)
δ(shift0 , 0) = (shift0 , 0 , +1)
δ(shift0 , 1) = (shift1 , 0 , +1)
δ(shift0 , +) = (shift+, 0 , +1)
δ(shift0 , �) = (add0 , �, −1)
δ(shift1 , 0) = (shift0 , 1 , +1)
δ(shift1 , 1) = (shift1 , 1 , +1)
δ(shift1 , +) = (shift+, 1 , +1)
δ(shift1 , �) = (add1 , �, −1)
δ(shift+, 0) = (shift0 , + , +1)
δ(shift+, 1) = (shift1 , + , +1)

The first part of the main loop scans left to the marked bit of w, adds the bit of x that was
just erased plus the carry bit from the previous iteration, and records the carry bit for the next
iteration in the machines internal state.

δ(p , a) = (q , b, ∆)
δ(add0, 0) = (add0 , 0, −1)
δ(add0, 1) = (add0 , 0, −1)
δ(add0, +) = (add0 , 0, −1)
δ(add0, 0) = (back0, 0, −1)
δ(add0, 1) = (back0, 1, −1)

δ(p , a) = (q , b, ∆)
δ(add1, 0) = (add1 , 0, −1)
δ(add1, 1) = (add1 , 0, −1)
δ(add1, +) = (add1 , 0, −1)
δ(add1, 0) = (back0, 1, −1)
δ(add1, 1) = (back1, 0, −1)

δ(p , a) = (q , b, ∆)
δ(add2, 0) = (add2 , 0, −1)
δ(add2, 1) = (add2 , 0, −1)
δ(add2, +) = (add2 , 0, −1)
δ(add2, 0) = (back1, 0, −1)
δ(add2, 1) = (back1, 1, −1)

The second part of the main loop marks the previous bit of w, scans right to the end of x , and
then reads and erases the last bit of x , all while maintaining the carry bit.

8

Models of Computation Lecture 6: Turing Machines [Fa’14]

δ(p , a) = (q , b , ∆)
δ(back0, 0) = (next0, 0 , +1)
δ(back0, 1) = (next0, 1 , +1)
δ(next0, 0) = (next0, 0 , +1)
δ(next0, 1) = (next0, 0 , +1)
δ(next0, +) = (next0, 0 , +1)
δ(next0, �) = (get0 , �, −1)
δ(get0 , 0) = (add0 , �, −1)
δ(get0 , 1) = (add1 , �, −1)
δ(get0 , +) = (last0 , �, −1)

δ(p , a) = (q , b , ∆)
δ(back1, 0) = (next1, 0 , +1)
δ(back1, 1) = (next1, 1 , +1)
δ(next1, 0) = (next1, 0 , +1)
δ(next1, 1) = (next1, 0 , +1)
δ(next1, +) = (next1, 0 , +1)
δ(next1, �) = (get1 , �, −1)
δ(get1 , 0) = (add1 , �, −1)
δ(get1 , 1) = (add2 , �, −1)
δ(get1 , +) = (last1 , �, −1)

Finally, after erasing the + in the last iteration of the main loop, the termination phase adds the
last carry bit to the leftmost output bit and halts.

δ(p , a) = (q , b, ∆)
δ(last0, 0) = (last0, 0, −1)
δ(last0, 1) = (last0, 0, −1)
δ(last0, 0) = (halt , 0,)
δ(last1, 0) = (last1, 0, −1)
δ(last1, 1) = (last1, 0, −1)
δ(last1, 0) = (halt , 1,)

6.6 Variations on Tracks, Heads, and Tapes

Multiple Tracks

It is sometimes convenient to endow the Turing machine tape with multiple tracks, each with its
own tape alphabet, and allow the machine to read from and write to the same position on all
tracks simultaneously. For example, to define a Turing machine with three tracks, we need three
tape alphabets Γ1, Γ2, and Γ3, each with its own blank symbol, where (say) Γ1 contains the input
alphabet Σ as a subset; we also need a transition function of the form

δ : Q× Γ1 × Γ2 × Γ3→Q× Γ1 × Γ2 × Γ3 × {−1,+1}

Describing a configuration of this machine requires a quintuple (q, x1, x2, x3, i), indicating that
each track i contains the string x i followed by an infinite sequence of blanks. The initial
configuration is (start, w,ε,ε, 0), with the input string written on the first track, and the other
two tracks completely blank.

But any such machine is equivalent (if not identical) to a single-track Turing machine with
the (still finite!) tape alphabet Γ := Γ1 × Γ2 × Γ3. Instead of thinking of the tape as three infinite
sequences of symbols, we think of it as a single infinite sequence of “records”, each containing
three symbols. Moreover, there’s nothing special about the number 3 in this construction; a
Turing machine with any constant number of tracks is equivalent to a single-track machine.

Doubly-Infinite Tape

It is also sometimes convenient to allow the tape to be infinite in both directions, for example,
to avoid boundary conditions. There are several ways to simulate a doubly-infinite tape on a
machine with only a semi-infinite tape. Perhaps the simplest method is to use a semi-infinite tape
with two tracks, one containing the cells with positive index and the other containing the cells

9

Models of Computation Lecture 6: Turing Machines [Fa’14]

with negative index in reverse order, with a special marker symbol at position zero to indicate
the transition.

0 +1 +2 +3 +4 · · ·
É −1 −2 −3 −4 · · ·

Another method is to shuffle the positive-index and negative-index cells onto a single track,
and add additional states to allow the Turing machine to move two steps in a single transition.
Again, we need a special symbol at the left end of the tape to indicate the transition:

É 0 −1 +1 −2 +2 −3 +3 · · ·

A third method maintains two sentinel symbols É and Ê that surround all other non-blank
symbols on the tape. Whenever the machine reads the right sentinel Ê, we write a blank, move
right, write Ê, move left, and then proceed as if we had just read a blank. On the other hand,
when the machine reads the left sentinel É, we shift the entire contents of the tape (up to and
including the right sentinel) one step to the right, then move back to the left sentinel, move right,
write a blank, and finally proceed as if we had just read a blank. Since the Turing machine does
not actually have access to the position of the head as an integer, shifting the head and the tape
contents one step right has no effect on its future evolution.

É −3 −2 −1 0 +1 +2 +3 +4 +5 Ê · · ·

Using either of the first two methods, we can simulate t steps of an arbitrary Turing machine
with a doubly-infinite tape using only O(t) steps on a standard Turing machine. The third
method, unfortunately, requires Θ(t2) steps in the worst case.

Insertion and Deletion

We can also allow Turing machines to insert and delete cells on the tape, in addition to simply
overwriting existing symbols. We’ve already seen how to insert a new cell: Leave a special mark
on the tape (perhaps in a second track), shift everything to the right of this mark one cell to the
right, scan left to the mark, erase the mark, and finally write the correct character into the new
cell. Deletion is similar: Mark the cell to be deleted, shift everything to the right of the mark one
step to the left, scan left to the mark, and erase the mark. We may also need to maintain a mark
in some cell to the right every non-blank symbol, indicating that all cells further to the right are
blank, so that we know when to stop shifting left or right.

Multiple Heads

Another convenient extension is to allow machines simultaneous access to more than one position
on the tape. For example, to define a Turing machine with three heads, we need a transition
function of the form

δ : Q× Γ 3→Q× Γ 3 × {−1,+1}3.

Describing a configuration of such a machine requires a quintuple (q, x , i, j, k), indicating that the
machine is in state q, the tape contains string x , and the three heads are at positions i, j, k. The
transition function tells us, given q and the three symbols x[i], x[j], x[k], which three symbols
to write on the tape and which direction to move each of the heads.

We can simulate this behavior with a single head by adding additional tracks to the tape
that record the positions of each head. To simulate a machine M with three heads, we use a

10

Models of Computation Lecture 6: Turing Machines [Fa’14]

tape with four tracks: track 0 is the actual work tape; each of the remaining tracks has a single
non-blank symbol recording the position of one of the heads. We also insert a special marker
symbols at the left end of the tape.

É M Y W O R K T A P E · · ·
É Î · · ·
É Î · · ·
É Î · · ·

We can simulate any single transition of M , starting with our single head at the left end of
the tape, as follows. Throughout the simulation, we maintain the internal state of M as one of
the components of our current state. First, for each i, we read the symbol under the ith head of
M as follows:

Scan to the right to find the mark on track i, read the corresponding symbol from
track 0 into our internal state, and then return to the left end of the tape.

At this point, our internal state records M ’s current internal state and the three symbols under
M ’s heads. After one more transition (using M ’s transition function), our internal state records
M ’s next state, the symbol to be written by each head, and the direction to move each head.
Then, for each i, we write with and move the ith head of M as follows:

Scan to the right to find the mark on track i, write the correct symbol onto on track
0, move the mark on track i one step left or right, and then return to the left end of
the tape.

Again, there is nothing special about the number 3 here; we can simulate machines with any
fixed number of heads.

Careful analysis of this technique implies that for any integer k, we can simulate t steps
of an arbitrary Turing machine with k independent heads in Θ(t2) time on a standard Turing
machine with only one head. Unfortunately, this quadratic blowup is unavoidable. It is relatively
easy to recognize the language of marked palindromes {w•wR | w ∈ {0,1}∗} in O(n) time using
a Turing machine with two heads, but recognizing this language provably requires Ω(n2) time
on a standard machine with only one head. On the other hand, with much more sophisticated
techniques, it is possible to simulate t steps of a Turing machine with k head, for any fixed
integer k, using only O(t log t) steps on a Turing machine with just two heads.

Multiple Tapes

We can also allow machines with multiple independent tapes, each with its own head. To
simulate such a machine with a single tape, we simply maintain each tape as an independent
track with its own head. Equivalently, we can simulate a machine with k tapes using a single
tape with 2k tracks, half storing the contents of the k tapes and half storing the positions of the k
heads.

É T A P E # O N E · · ·
É Î · · ·
É T A P E # T W O · · ·
É Î · · ·
É T A P E # T H R E E · · ·
É Î · · ·

11

Models of Computation Lecture 6: Turing Machines [Fa’14]

Just as for multiple tracks, for any constant k, we can simulate t steps of an arbitrary Turing
machine with k independent tapes in Θ(t2) steps on a standard Turing machine with one tape,
and this quadratic blowup is unavoidable. Moreover, it is possible to simulate t steps on a
k-tape Turing machine using only O(t log t) steps on a two-tape Turing machine using more
sophisticated techniques. (This faster simulation is easier to obtain for multiple independent
tapes than for multiple heads on the same tape.)

By combining these tricks, we can simulate a Turing machine with any fixed number of tapes,
each of which may be infinite in one or both directions, each with any fixed number of heads and
any fixed number of tracks, with at most a quadratic blowup in the running time.

6.7 Simulating a Real Computer

6.7.1 Subroutines and Recursion

ÆÆÆ Use a second tape/track as a “call stack”. Add save and restore actions. In the simplest
formulation, subroutines do not have local memory. To call a subroutine, save the current
state onto the call stack and jump to the first state of the subroutine. To return, restore (and
remove) the return state from the call stack. We can simulate t steps of any recursive Turing
machine with O(t) steps on a multitape standard Turing machine, or in O(t2) steps on a
standard Turing machine.

More complex versions of this simulation can adapt to

6.7.2 Random-Access Memory

ÆÆÆ Keep [address•data] pairs on a separate “memory” tape. Write address to an “address”
tape; read data from or write data to a “data” tape. Add new or changed [address•data]
pairs at the end of the memory tape. (Semantics of reading from an address that has never
been written to?)

Suppose all memory accesses require at most ` address and data bits. Then we can
simulate the kth memory access in O(k`) steps on a multitape Turing machine or in O(k2`2)
steps on a single-tape machine. Thus, simulating t memory accesses in a random-access
machine with `-bit words requires O(t2`) time on a multitape Turing machine, or O(t3`2) time
on a single-tape machine.

6.8 Universal Turing Machines

With all these tools in hand, we can now describe the pinnacle of Turing machine constructions:
the universal Turing machine. For modern computer scientists, it’s useful to think of a universal
Turing machine as a "Turing machine interpreter written in Turing machine". Just as the input to
a Python interpreter is a string of Python source code, the input to our universal Turing machine
U is a string 〈M , w〉 that encodes both an arbitrary Turing machine M and a string w in the input
alphabet of M . Given these encodings, U simulates the execution of M on input w; in particular,

• U accepts 〈M , w〉 if and only if M accepts w.

• U rejects 〈M , w〉 if and only if M rejects w.

In the next few pages, I will sketch a universal Turing machine U that uses the input alphabet
{0,1,[,],•,|} and a somewhat larger tape alphabet (via marks on additional tracks). However,
I do not require that the Turing machines that U simulates have similarly small alphabets, so we
first need a method to encode arbitrary input and tape alphabets.

12

Models of Computation Lecture 6: Turing Machines [Fa’14]

Encodings

Let M = (Γ ,�,Σ,Q, start,accept, reject,δ) be an arbitrary Turing machine, with a single half-
infinite tape and a single read-write head. (I will consistently indicate the states and tape symbols
of M in slanted green to distinguish them from the upright red states and tape symbols of U .)

We encode each symbol a ∈ Γ as a unique string |a| of dlg(|Γ |)e bits. Thus, if Γ = {0,1,$,x,�},
we might use the following encoding:

〈0〉= 001, 〈1〉= 010, 〈$〉= 011, 〈x〉= 100, 〈�〉= 000.

The input string w is encoded by its sequence of symbol encodings, with separators • between
every pair of symbols and with brackets [and] around the whole string. For example, with this
encoding, the input string 001100 would be encoded on the input tape as

〈001100〉= [001•001•010•010•001•001]

Similarly, we encode each state q ∈Q as a distinct string 〈q〉 of dlg|Q|e bits. Without loss of
generality, we encode the start state with all 1s and the reject state with all 0s. For example, if
Q = {start, seek1, seek0, reset,verify,accept, reject}, we might use the following encoding:

〈start〉= 111 〈seek1〉= 010 〈seek0〉= 011 〈reset〉= 100

〈verify〉= 101 〈accept〉= 110 〈reject〉= 000

We encode the machine M itself as the string 〈M〉 = [〈reject〉•〈�〉]〈δ〉, where 〈δ〉 is the
concatenation of substrings [〈p〉•〈a〉|〈q〉•〈b〉•〈∆〉] encoding each transition δ(p, a) = (q, b,∆)
such that q 6= reject. We encode the actions ∆ = ±1 by defining 〈−1〉 := 0 and 〈+1〉 := 1.
Conveniently, every transition string has exactly the same length. For example, with the symbol
and state encodings described above, the transition δ(reset,$) = (start,$,+1) would be encoded
as

[100•011|001•011•1].

Our first example Turing machine for recognizing {0n1n0n | n≥ 0} would be represented by
the following string (here broken into multiple lines for readability):

[000•000][[001•001|010•011•1][001•100|101•011•1]
[010•001|010•001•1][010•100|010•100•1]
[010•010|011•100•1][011•010|011•010•1]
[011•100|011•100•1][011•001|100•100•1]
[100•001|100•001•0][100•010|100•010•0]
[100•100|100•100•0][100•011|001•011•1]
[101•100|101•011•1][101•000|110•000•0]]

Finally, we encode any configuration of M on U ’s work tape by alternating between encodings
of states and encodings of tape symbols. Thus, each tape cell is represented by the string
[〈q〉•〈a〉] indicating that (1) the cell contains symbol a; (2) if q 6= reject, then M ’s head is
located at this cell, and M is in state q; and (3) if q = reject, then M ’s head is located somewhere
else. Conveniently, each cell encoding uses exactly the same number of bits. We also surround
the entire tape encoding with brackets [and].

For example, with the encodings described above, the initial configuration (start,Î001100, 0)
for our first example Turing machine would be encoded on U ’s tape as follows.

〈start,Î001100, 0〉= [[111•001]︸ ︷︷ ︸
start 0

[000•001]︸ ︷︷ ︸
reject 0

[000•010]︸ ︷︷ ︸
reject 1

[000•010]︸ ︷︷ ︸
reject 1

[000•001]︸ ︷︷ ︸
reject 0

[000•001]︸ ︷︷ ︸
reject 0

]

13

Models of Computation Lecture 6: Turing Machines [Fa’14]

Similarly, the intermediate configuration (reset,$0xÎ1x0, 3) would be encoded as follows:

〈reset,$$xÎ1x0, 3〉= [[000•011]︸ ︷︷ ︸
reject $

[000•011]︸ ︷︷ ︸
reject 0

[000•100]︸ ︷︷ ︸
reject x

[010•010]︸ ︷︷ ︸
reset 1

[000•100]︸ ︷︷ ︸
reject x

[000•001]︸ ︷︷ ︸
reject 0

]

Input and Execution

Without loss of generality, we assume that the input to our universal Turing machine U is given
on a separate read-only input tape, as the encoding of an arbitrary Turing machine M followed
by an encoding of its input string x . Notice the substrings [[and]] each appear only only once
on the input tape, immediately before and after the encoded transition table, respectively. U also
has a read-write work tape, which is initially blank.

We start by initializing the work tape with the encoding 〈start, x , 0〉 of the initial configuration
of M with input x . First, we write [[〈start〉•. Then we copy the encoded input string 〈x〉 onto
the work tape, but we change the punctuation as follows:

• Instead of copying the left bracket [, write [[〈start〉•.
• Instead of copying each separator •, write][〈reject〉•
• Instead of copying the right bracket], write two right brackets]].

The state encodings 〈start〉 and 〈reject〉 can be copied directly from the beginning of 〈M〉
(replacing 0s for 1s for 〈start〉). Finally, we move the head back to the start of U ’s tape.

At the start of each step of the simulation, U ’s head is located at the start of the work tape.
We scan through the work tape to the unique encoded cell [〈p〉•〈a〉] such that p 6= reject.
Then we scan through the encoded transition function 〈δ〉 to find the unique encoded tuple
[〈p〉•〈a〉|〈q〉•〈b〉•〈∆〉] whose left half matches our the encoded tape cell. If there is no such
tuple, then U immediately halts and rejects. Otherwise, we copy the right half 〈q〉•〈b〉 of the
tuple to the work tape. Now if q = accept, then U immediately halts and accepts. (We don’t
bother to encode reject transformations, so we know that q 6= reject.) Otherwise, we transfer
the state encoding to either the next or previous encoded cell, as indicated by M ’s transition
function, and then continue with the next step of the simulation.

During the final state-copying phase, we ever read two right brackets]], indicating that
we have reached the right end of the tape encoding, we replace the second right bracket with
[〈reject〉•〈�〉]] (mostly copied from the beginning of the machine encoding 〈M〉) and then scan
back to the left bracket we just wrote. This trick allows our universal machine to pretend that its
tape contains an infinite sequence of encoded blanks [〈reject〉•〈�〉] instead of actual blanks �.

Example

As an illustrative example, suppose U is simulating our first example Turing machine M on
the input string 001100. The execution of M on input w eventually reaches the configuration
(seek1,$$xÎ1x0, 3). At the start of the corresponding step in U ’s simulation, U is in the following
configuration:

Î[[000•011][000•011][000•100][010•010][000•100][000•001]]

First U scans for the first encoded tape cell whose state is not reject. That is, U repeatedly
compares the first half of each encoded state cell on the work tape with the prefix [〈reject〉• of
the machine encoding 〈M〉 on the input tape. U finds a match in the fourth encoded cell.

[[000•011][000•011][000•100][010Î•010][000•100][000•001]]

14

Models of Computation Lecture 6: Turing Machines [Fa’14]

Next, U scans the machine encoding 〈M〉 for the substring [010•010 matching the current
encoded cell. U eventually finds a match in the left size of the the encoded transition
[010•010|011•100•1]. U copies the state-symbol pair 011•100 from the right half of this
encoded transition into the current encoded cell. (The underline indicates which symbols are
changed.)

[[000•011][000•011][000•100][011•100Î][000•100][000•001]]

The encoded transition instructs U to move the current state encoding one cell to the right. (The
underline indicates which symbols are changed.)

[[000•011][000•011][000•100][000•100][011Î•100][000•001]]

Finally, U scans left until it reads two left brackets [[; this returns the head to the left end of
the work tape to start the next step in the simulation. U ’s tape now holds the encoding of M ’s
configuration (seek0,$$xxÎx0, 4), as required.

Î[[000•011][000•011][000•100][000•100][011•100][000•001]]

Exercises

1. Describe Turing machines that decide each of the following languages:

(a) Palindromes over the alphabet {0,1}
(b) {ww | w ∈ {0,1}∗}
(c)

�
0a1b0ab | a, b ∈ N	

2. Let 〈n〉2 denote the binary representation of the non-negative integer n. For example,
〈17〉2 = 10001 and 〈42〉2 = 101010. Describe Turing machines that compute the following
functions from {0,1}∗ to {0,1}∗:
(a) w 7→ www

(b) 1n01m 7→ 1mn

(c) 1n 7→ 12n

(d) 1n 7→ 〈n〉2
(e) 0∗〈n〉2 7→ 1n

(f) 〈n〉2 7→ 〈n2〉2
3. Describe Turing machines that write each of the following infinite streams of bits onto

their tape. Specifically, for each integer n, there must be a finite time after which the first
n symbols on the tape always match the first n symbols in the target stream.

(a) An infinite stream of 1s

(b) 0101101110111101111101111110 . . ., where the nth block of 1s has length n.

(c) The stream of bits whose nth bit is 1 if and only if n is prime.

15

Models of Computation Lecture 6: Turing Machines [Fa’14]

(d) The Thue-Morse sequence T0 • T1 • T2 • T3 · · ·, where

Tn :=

0 if n= 0

1 if n= 1

Tn−1 • Tn−1 otherwise

where w indicates the binary string obtained from w by flipping every bit. Equivalently,
the nth bit of the Thue Morse sequence if 0 if the binary representation of n has an
even number of 1s and 1 otherwise.

011010011001011010010110011010011001011001101001011010010 . . .

(e) The Fibonacci sequence F0 • F1 • F2 • F3 · · ·, where

Fn :=

0 if n= 0

1 if n= 1

Fn−2 • Fn−1 otherwise

010110101101101011010110110101101101011010110110101101 . . .

4. A two-stack machine is a Turing machine with two tapes with the following restricted
behavior. At all times, on each tape, every cell to the right of the head is blank, and every
cell at or to the left of the head is non-blank. Thus, a head can only move right by writing
a non-blank symbol into a blank cell; symmetrically, a head can only move left by erasing
the rightmost non-blank cell. Thus, each tape behaves like a stack. To avoid underflow,
there is a special symbol at the start of each tape that cannot be overwritten. Initially, one
tape contains the input string, with the head at its last symbol, and the other tape is empty
(except for the start-of-tape symbol).

Prove formally that any standard Turing machine can be simulated by a two-stack
machine. That is, given any standard Turing machine M , describe a two-stack machine
M ′ that accepts and rejects exactly the same input strings as M .

ÆÆÆ
Counter machines. Configuration consists of k rational numbers and an internal state (from

some finite set Q). Transition function δ : Q × {= 0,> 0}k → Q × {−1, 0,+1}k takes internal
state and signs of counters as input, and produces new internal state and changes to counters
as output.

• Prove that any Turing machine can be simulated by a three-counter machine. One
counter holds the binary representation of the tape after the head; another counter
holds the reversed binary representation of the tape before the head. Implement
transitions via halving, doubling, and parity, using the third counter for scratch work.

• Prove that two counters can simulate three. Store 2a3b5c in one counter, use the other
for scratch work.

• Prove that a three-counter machine can compute any computable function: Given input
(n, 0, 0), we can compute (f (n), 0, 0) for any computable function f . First transform
(n, 0, 0) to (2n, 0, 0) using all three counters; then run two- (or three-)counter TM sim-
ulation to obtain (2 f (n), 0, 0); and finally transform (2 f (n), 0, 0) to (f (n), 0, 0) using all
three counters.

• HARD: Prove that a two-counter machine cannot transform (n, 0) to (2n, 0). [Barzdin’
1963, Yao 1971, Schröpel 1972, Ibarra+Trân 1993]

16

Models of Computation Lecture 6: Turing Machines [Fa’14]

ÆÆÆ
FRACTRAN [Conway 1987]: One-counter machine whose “program” is a sequence of

rational numbers. The counter is initially 1. At each iteration, multiply the counter by the first
rational number that yields an integer; if there is no such number, halt.

• Prove that for any computable function f : N→ N, there is a FRACTRAN program that
transforms 2n+1 into 3 f (n)+1, for all natural numbers n.

• Prove that every FRACTRAN program, given the integer 1 as input, either outputs 1 or
loops forever. It follows that there is no FRACTRAN program for the increment function
n 7→ n+ 1.

5. A tag-Turing machine has two heads: one can only read, the other can only write. Initially,
the read head is located at the left end of the tape, and the write head is located at the
first blank after the input string. At each transition, the read head can either move one cell
to the right or stay put, but the write head must write a symbol to its current cell and move
one cell to the right. Neither head can ever move to the left.

Prove that any standard Turing machine can be simulated by a tag-Turing machine.
That is, given any standard Turing machine M , describe a tag-Turing machine M ′ that
accepts and rejects exactly the same input strings as M .

6. ?(a) Prove that any standard Turing machine can be simulated by a Turing machine with
only three states. [Hint: Use the tape to store an encoding of the state of the machine
yours is simulating.]

Æ(b) Prove that any standard Turing machine can be simulated by a Turing machine with
only two states.

7. A two-dimensional Turing machine uses an infinite two-dimensional grid of cells as
the tape; at each transition, the head can move from its current cell to any of its
four neighbors on the grid. The transition function of such a machine has the form
δ : Q×Γ →Q×Γ ×{↑,←,↓,→}, where the arrows indicate which direction the head should
move.

(a) Prove that any two-dimensional Turing machine can be simulated by a standard
Turing machine.

(b) Suppose further that we endow our two-dimensional Turing machine with the
following additional actions, in addition to moving the head:

• Insert row: Move all symbols on or above the row containing the head up one
row, leaving the head’s row blank.

• Insert column: Move all symbols on or to the right of the column containing the
head one column to the right, leaving the head’s column blank.

• Delete row: Move all symbols above the row containing the head down one row,
deleting the head’s row of symbols.

• Delete column: Move all symbols the right of the column containing the head
one column to the right, deleting the head’s column of symbols.

Show that any two-dimensional Turing machine that can add an delete rows can be
simulated by a standard Turing machine.

8. A binary-tree Turing machine uses an infinite binary tree as its tape; that is, every cell in
the tape has a left child and a right child. At each step, the head moves from its current

17

Models of Computation Lecture 6: Turing Machines [Fa’14]

cell to its Parent, its Left child, or to its Right child. Thus, the transition function of such a
machine has the form δ : Q× Γ →Q× Γ × {P,L,R}. The input string is initially given along
the left spine of the tape.

Show that any binary-tree Turing machine can be simulated by a standard Turing
machine.

9. A stack-tape Turing machine uses an semi-infinite tape, where every cell is actually the
top of an independent stack. The behavior of the machine at each iteration is governed by
its internal state and the symbol at the top of the current cell’s stack. At each transition,
the head can optionally push a new symbol onto the stack, or pop the top symbol off the
stack. (If a stack is empty, its “top symbol” is a blank and popping has no effect.)

Show that any stack-tape Turing machine can be simulated by a standard Turing
machine. (Compare with Problem 4!)

10. A tape-stack Turing machine has two actions that modify its work tape, in addition to
simply writing individual cells: it can save the entire tape by pushing in onto a stack, and it
can restore the entire tape by popping it off the stack. Restoring a tape returns the content
of every cell to its content when the tape was saved. Saving and restoring the tape do not
change the machine’s state or the position of its head. If the machine attempts to “restore”
the tape when the stack is empty, the machine crashes.

Show that any tape-stack Turing machine can be simulated by a standard Turing
machine.

ÆÆÆ • Tape alphabet = N.
– Read: zero or positive. Write: +1, −1
– Read: even or odd. Write: +1, −1, ×2, ÷2
– Read: positive, negative, or zero. Write: x + y (merge), x − y (merge), 1, 0

• Never three times in a row in the same direction
• Hole-punch TM: tape alphabet {�,�}, and only � 7→ � transitions allowed.

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

18

Models of Computation Lecture 7: Universal Models [Fa’14]

Caveat lector: This note is not even a first draft, but more of a rough sketch, with many
topics still to be written and/or unwritten. But the semester is over, so it’s time to put it down.
Please send bug reports and suggestions to jeffe@illinois.edu.

Any sufficiently advanced technology is indistinguishable from magic.

— Arthur C. Clarke, “Hazards of Prophecy: The Failure of Imagination” (1962)

Any technology that is distinguishable from magic is insufficiently advanced.

— Barry Gehm, quoted by Stan Schmidt in ANALOG magazine (1991)

7 Universal Models of Computation

ÆÆÆ Remind about the Church-Turing thesis.
There is some confusion here between universal models of computation and the

somewhat wider class of undecidable problems.

7.1 Universal Turing Machines

The pinnacle of Turing machine constructions is the universal Turing machine. For modern
computer scientists, it’s useful to think of a universal Turing machine as a "Turing machine
interpreter written in Turing machine". Just as the input to a Python interpreter is a string of
Python source code, the input to our universal Turing machine U is a string 〈M , w〉 that encodes
both an arbitrary Turing machine M and a string w in the input alphabet of M . Given these
encodings, U simulates the execution of M on input w; in particular,

• U accepts 〈M , w〉 if and only if M accepts w.

• U rejects 〈M , w〉 if and only if M rejects w.

In the next few pages, I will sketch a universal Turing machine U that uses the input alphabet
{0,1,[,],•,|} and a somewhat larger tape alphabet. However, I do not require that the Turing
machines that U simulates have similarly small alphabets, so we first need a method to encode
arbitrary input and tape alphabets.

Encodings

Let M = (Γ ,�,Σ,Q, start, accept, reject,δ) be an arbitrary Turing machine, with a single half-
infinite tape and a single read-write head. (I will consistently indicate the states and tape symbols
of M in slanted green to distinguish them from the upright red states and tape symbols of U .)

We encode each symbol a ∈ Γ as a unique string |a| of dlg(|Γ |)e bits. Thus, if Γ = {0,1,$,x,�},
we might use the following encoding:

〈0〉= 001, 〈1〉= 010, 〈$〉= 011, 〈x〉= 100, 〈�〉= 000.

The input string w is encoded by its sequence of symbol encodings, with separators • between
every pair of symbols and with brackets [and] around the whole string. For example, with this
encoding, the input string 001100 would be encoded on the input tape as

〈001100〉= [001•001•010•010•001•001]

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

1

Models of Computation Lecture 7: Universal Models [Fa’14]

Similarly, we encode each state q ∈Q as a distinct string 〈q〉 of dlg|Q|e bits. Without loss of
generality, we encode the start state with all 1s and the reject state with all 0s. For example, if
Q = {start, seek1, seek0, reset, verify, accept, reject}, we might use the following encoding:

〈start〉= 111 〈seek1〉= 010 〈seek0〉= 011 〈reset〉= 100

〈verify〉= 101 〈accept〉= 110 〈reject〉= 000

We encode the machine M itself as the string 〈M〉 = [〈reject〉•〈�〉]〈δ〉, where 〈δ〉 is the
concatenation of substrings [〈p〉•〈a〉|〈q〉•〈b〉•〈∆〉] encoding each transition δ(p, a) = (q, b,∆)
such that q 6= reject. We encode the actions ∆ = ±1 by defining 〈−1〉 := 0 and 〈+1〉 := 1.
Conveniently, every transition string has exactly the same length. For example, with the symbol
and state encodings described above, the transition δ(reset,$) = (start,$,+1) would be encoded
as

[100•011|001•011•1].

Our first example Turing machine for recognizing {0n1n0n | n≥ 0} would be represented by
the following string (here broken into multiple lines for readability):

[000•000][[001•001|010•011•1][001•100|101•011•1]
[010•001|010•001•1][010•100|010•100•1]
[010•010|011•100•1][011•010|011•010•1]
[011•100|011•100•1][011•001|100•100•1]
[100•001|100•001•0][100•010|100•010•0]
[100•100|100•100•0][100•011|001•011•1]
[101•100|101•011•1][101•000|110•000•0]]

Finally, we encode any configuration of M on U ’s work tape by alternating between encodings
of states and encodings of tape symbols. Thus, each tape cell is represented by the string
[〈q〉•〈a〉] indicating that (1) the cell contains symbol a; (2) if q 6= reject, then M ’s head is
located at this cell, and M is in state q; and (3) if q = reject, then M ’s head is located somewhere
else. Conveniently, each cell encoding uses exactly the same number of bits. We also surround
the entire tape encoding with brackets [and].

For example, with the encodings described above, the initial configuration (start,Î001100, 0)
for our first example Turing machine would be encoded on U ’s tape as follows.

〈start,Î001100, 0〉= [[111•001]︸ ︷︷ ︸
start 0

[000•001]︸ ︷︷ ︸
reject 0

[000•010]︸ ︷︷ ︸
reject 1

[000•010]︸ ︷︷ ︸
reject 1

[000•001]︸ ︷︷ ︸
reject 0

[000•001]︸ ︷︷ ︸
reject 0

]

Similarly, the intermediate configuration (reset,$0xÎ1x0, 3) would be encoded as follows:

〈reset,$$xÎ1x0, 3〉= [[000•011]︸ ︷︷ ︸
reject $

[000•011]︸ ︷︷ ︸
reject 0

[000•100]︸ ︷︷ ︸
reject x

[010•010]︸ ︷︷ ︸
reset 1

[000•100]︸ ︷︷ ︸
reject x

[000•001]︸ ︷︷ ︸
reject 0

]

Input and Execution

Without loss of generality, we assume that the input to our universal Turing machine U is given
on a separate read-only input tape, as the encoding of an arbitrary Turing machine M followed
by an encoding of its input string x . Notice the substrings [[and]] each appear only only once
on the input tape, immediately before and after the encoded transition table, respectively. U also
has a read-write work tape, which is initially blank.

2

Models of Computation Lecture 7: Universal Models [Fa’14]

We start by initializing the work tape with the encoding 〈start, x , 0〉 of the initial configuration
of M with input x . First, we write [[〈start〉•. Then we copy the encoded input string 〈x〉 onto
the work tape, but we change the punctuation as follows:

• Instead of copying the left bracket [, write [[〈start〉•.
• Instead of copying each separator •, write][〈reject〉•
• Instead of copying the right bracket], write two right brackets]].

The state encodings 〈start〉 and 〈reject〉 can be copied directly from the beginning of 〈M〉
(replacing 0s for 1s for 〈start〉). Finally, we move the head back to the start of U ’s tape.

At the start of each step of the simulation, U ’s head is located at the start of the work tape.
We scan through the work tape to the unique encoded cell [〈p〉•〈a〉] such that p 6= reject.
Then we scan through the encoded transition function 〈δ〉 to find the unique encoded tuple
[〈p〉•〈a〉|〈q〉•〈b〉•〈∆〉] whose left half matches our the encoded tape cell. If there is no such
tuple, then U immediately halts and rejects. Otherwise, we copy the right half 〈q〉•〈b〉 of the
tuple to the work tape. Now if q = accept, then U immediately halts and accepts. (We don’t
bother to encode reject transformations, so we know that q 6= reject.) Otherwise, we transfer
the state encoding to either the next or previous encoded cell, as indicated by M ’s transition
function, and then continue with the next step of the simulation.

During the final state-copying phase, we ever read two right brackets]], indicating that
we have reached the right end of the tape encoding, we replace the second right bracket with
[〈reject〉•〈�〉]] (mostly copied from the beginning of the machine encoding 〈M〉) and then scan
back to the left bracket we just wrote. This trick allows our universal machine to pretend that its
tape contains an infinite sequence of encoded blanks [〈reject〉•〈�〉] instead of actual blanks �.

Example

As an illustrative example, suppose U is simulating our first example Turing machine M on
the input string 001100. The execution of M on input w eventually reaches the configuration
(seek1,$$xÎ1x0, 3). At the start of the corresponding step in U ’s simulation, U is in the following
configuration:

Î[[000•011][000•011][000•100][010•010][000•100][000•001]]

First U scans for the first encoded tape cell whose state is not reject. That is, U repeatedly
compares the first half of each encoded state cell on the work tape with the prefix [〈reject〉• of
the machine encoding 〈M〉 on the input tape. U finds a match in the fourth encoded cell.

[[000•011][000•011][000•100][010Î•010][000•100][000•001]]

Next, U scans the machine encoding 〈M〉 for the substring [010•010 matching the current
encoded cell. U eventually finds a match in the left size of the the encoded transition
[010•010|011•100•1]. U copies the state-symbol pair 011•100 from the right half of this
encoded transition into the current encoded cell. (The underline indicates which symbols are
changed.)

[[000•011][000•011][000•100][011•100Î][000•100][000•001]]

The encoded transition instructs U to move the current state encoding one cell to the right. (The
underline indicates which symbols are changed.)

[[000•011][000•011][000•100][000•100][011Î•100][000•001]]

3

Models of Computation Lecture 7: Universal Models [Fa’14]

Finally, U scans left until it reads two left brackets [[; this returns the head to the left end of
the work tape to start the next step in the simulation. U ’s tape now holds the encoding of M ’s
configuration (seek0,$$xxÎx0, 4), as required.

Î[[000•011][000•011][000•100][000•100][011•100][000•001]]

7.2 Two-Stack Machines

A two-stack machine is a Turing machine with two tapes with the following restricted behavior.
At all times, on each tape, every cell to the right of the head is blank, and every cell at or to the
left of the head is non-blank. Thus, a head can only move right by writing a non-blank symbol
into a blank cell; symmetrically, a head can only move left by erasing the rightmost non-blank
cell. Thus, each tape behaves like a stack. To avoid underflow, there is a special symbol at the
start of each tape that cannot be overwritten. Initially, one tape contains the input string, with
the head at its last symbol, and the other tape is empty (except for the start-of-tape symbol).

ÆÆÆ Simulate a doubly-infinite tape with two stacks, one holding the tape contents to the left of
the head, the other holding the tape contents to the right of the head. For each transition
of a standard Turing machine M , the stack machine pops the top symbol off the (say) left
stack, changes its internal state according to the transition δ, and then either pushes a new
symbol onto the right stack, or pushes a new symbol onto the left stack and then moves the
top symbol from the right stack to the left stack.

7.3 Counter Machines

ÆÆÆ A configuration of a k-counter machine consists of k non-negative integers and an internal
state from some finite set Q. The transition function δ : Q× {0,+1}k →Q× {−1,0,+1}k takes
an internal state and the signs of the counters as input, and produces a new internal state and
changes to counters as output.

• Prove that any Turing machine can be simulated by a three-counter machine. One
counter holds the binary representation of the tape after the head; another counter
holds the reversed binary representation of the tape before the head. Implement
transitions via halving, doubling, and parity, using the third counter for scratch work.

• Prove that two counters can simulate three. Store 2a3b5c in one counter, use the other
for scratch work.

• Prove that a three-counter machine can compute any computable function: Given input
(n, 0, 0), we can compute (f (n), 0, 0) for any computable function f . First transform
(n, 0, 0) to (2n, 0, 0) using all three counters; then run two- (or three-)counter TM sim-
ulation to obtain (2 f (n), 0, 0); and finally transform (2 f (n), 0, 0) to (f (n), 0, 0) using all
three counters.

• HARD: Prove that a two-counter machine cannot transform (n, 0) to (2n, 0). [Barzhdin
1963, Yao 1971, Schröpel 1972]

4

Models of Computation Lecture 7: Universal Models [Fa’14]

7.4 FRACTRAN

ÆÆÆ FRACTRAN [Conway 1987]: A one-counter machine whose “program” is a sequence of rational
numbers. The counter is initially 1. At each iteration, multiply the counter by the first rational
number that yields an integer; if there is no such number, halt.

• Prove that for any computable function f : N→ N, there is a FRACTRAN program that
transforms 2n+1 into 3 f (n)+1, for all natural numbers n.

• Prove that every FRACTRAN program, given the integer 1 as input, either outputs 1 or
loops forever. It follows that there is no FRACTRAN program for the increment function
n 7→ n+ 1.

7.5 Post Correspondence Problem

Given n of pairs of strings (x1, y1), (x2, y2), . . . , (xn, yn), is there a finite sequence of integers
(i1, i2, . . . , ik) such that x i1 x i2 · · · x ik = yi1 yi2 · · · yik? For notation convenience, we write each pair
vertically as

�x
y

�
instead of horizontally as (x , y). For example, given the string pairs

a =
�
0

100

�
, b =

�
01

00

�
, c =

�
110

11

�
,

we should answer True, because

cbca =
�
110

11

��
01

00

��
110

11

��
0

100

�

gives us 110110100 for both concatenations. As more extreme examples, the shortest solutions
for the input

a =
�
0

001

�
, b =

�
001

1

�
, c =

�
1

0

�

have length 75; one such solution is aacaacabbabccaaccaaaacbaabbaacbacbbccbbacbaccbcb
acbbacbaccbacbbbacccbabbccbaacaacaaacbabbaacacbccbbabacbcaaccbacabbbbabcccc
bcaababaaccbcbbbacccbabbccb. The shortest solution for the instance

a =
�
0

000

�
, b =

�
0

0101

�
, c =

�
01

1

�
, d =

�
1111

10

�

is the unbelievable a2 b8a4c16ab4a2 b4ad4 b3c8a6c8 b2c4 bc6d2a18d2c4dcad2cb54c3dca2c111dc
a6d28cb17c63d16c16d4c4dc, which has total length 451. Finally, the shortest solution for the
instance

a =
�

0

00010

�
, b =

�
010

01

�
, c =

�
100

0

�
,

has length 528.

ÆÆÆ The simplest universality proof simulates a tag-Turing machine.

7.6 Matrix Mortality

ÆÆÆ Given a set of integer matrices A1, . . . , Ak, is the product of any sequence of these matrices
(with repetition) equal to 0? Undecidable by reduction from PCP, even for two 15×15 matrices
or six 3× 3 matrices [Cassaigne, Halava, Harju, Nicolas 2014]

5

Models of Computation Lecture 7: Universal Models [Fa’14]

7.7 Dynamical Systems

ÆÆÆ Ray Tracing [Reif, Tygar, and Yoshida 1994] The configuration of a Turing machine is encoded
as the (x , y) coordinates of a light path crossing the unit square [0, 1]× [0, 1], where the x-
(resp. y-)coordinate encodes the tape contents to the left (resp. right) of the head. Need
either quadratic-surface mirrors or refraction to simulate transitions.

N-body problem [Smith 2006]: Similar idea
Skolem-Pisot reachability: Given an integer vector x and an integer matrix A, does An x =

(0, . . .) for any integer n? [Halava, Harju, Hirvensalo, Karhumäki 2005] It’s surprising that this
problem is undecidable; the similar mortality problem for one matrix is not.

7.8 Wang Tiles

ÆÆÆ Turing machine simulation is straightforward. Small Turing-complete tile sets via affine maps
(via two-stack machines) are a little harder.

7.9 Combinator Calculus

In the 1920s, Moses Schönfinkel developed what can now be interpreted as a model of computation
now called combinator calculus or combinatory logic. Combinator calculus operates on terms,
where every term is either one of a finite number of combinators (represented here by upper
case letters) or an ordered pair of terms. For notational convenience, we omit commas between
components of every pair and parentheses around the left term in every pair. Thus, SKK(IS) is
shorthand for the term (((S,K),K), (I,S)).

We can “evaluate” any term by a sequence of rewriting rules that depend on its first primitive
combinator. Schönfinkel defined three primitive combinators with the following evaluation rules:

• Identity: Ix 7→ x

• Constant: Kx y 7→ x

• Substitution: Sx yz 7→ xz(yz)

Here, x , y, and z are variables representing unknown but arbitrary terms. “Computation” in
the combinator calculus is performed by repeatedly evaluating arbitrary (sub)terms with one of
these three structures, until all such (sub)terms are gone.

For example, the term S(K(SI))Kx y (for any terms x and y) evaluates as follows:

S(K(SI))Kx y 7→ K(SI)x(Kx)y Substitution

7→ SI(Kx)y Constant

7→ Iy(Kx y) Substitution

7→ y(Kx y) Identity

7→ y x Constant

Thus, we can define a new combinator R := S(K(SI))K that upon evaluation reverses the next
two terms: Rx y 7→ y x .

6

Models of Computation Lecture 7: Universal Models [Fa’14]

On the other hand, evaluating SII(S(KI)(SII)) leads to an infinite loop:

SII(S(KI)(SII)) 7→ I(S(KI)(SII))(I(S(KI)(SII))) Substitution

7→ S(KI)(SII)(I(S(KI)(SII))) Identity

7→ S(KI)(SII)(S(KI)(SII)) Identity

7→ KI(S(KI)(SII))(SII(S(KI)(SII))) Substitution

7→ I(SII(S(KI)(SII))) Constant

7→ SII(S(KI)(SII)) Identity

ÆÆÆ Wikipedia sketches a direct undecidability proof. Is there a Turing-completeness proof that
avoids λ-calculus?

Exercises

1. A tag-Turing machine has two heads: one can only read, the other can only write. Initially,
the read head is located at the left end of the tape, and the write head is located at the
first blank after the input string. At each transition, the read head can either move one cell
to the right or stay put, but the write head must write a symbol to its current cell and move
one cell to the right. Neither head can ever move to the left.

Prove that any standard Turing machine can be simulated by a tag-Turing machine.
That is, given any standard Turing machine M , describe a tag-Turing machine M ′ that
accepts and rejects exactly the same input strings as M .

2. ?(a) Prove that any standard Turing machine can be simulated by a Turing machine with
only three states. [Hint: Use the tape to store an encoding of the state of the machine
yours is simulating.]

Æ(b) Prove that any standard Turing machine can be simulated by a Turing machine with
only two states.

3. A two-dimensional Turing machine uses an infinite two-dimensional grid of cells as
the tape; at each transition, the head can move from its current cell to any of its
four neighbors on the grid. The transition function of such a machine has the form
δ : Q×Γ →Q×Γ ×{↑,←,↓,→}, where the arrows indicate which direction the head should
move.

(a) Prove that any two-dimensional Turing machine can be simulated by a standard
Turing machine.

(b) Suppose further that we endow our two-dimensional Turing machine with the
following additional actions, in addition to moving the head:

• Insert row: Move all symbols on or above the row containing the head up one
row, leaving the head’s row blank.

• Insert column: Move all symbols on or to the right of the column containing the
head one column to the right, leaving the head’s column blank.

• Delete row: Move all symbols above the row containing the head down one row,
deleting the head’s row of symbols.

• Delete column: Move all symbols the right of the column containing the head
one column to the right, deleting the head’s column of symbols.

7

Models of Computation Lecture 7: Universal Models [Fa’14]

Show that any two-dimensional Turing machine that can add an delete rows can be
simulated by a standard Turing machine.

4. A binary-tree Turing machine uses an infinite binary tree as its tape; that is, every cell in
the tape has a left child and a right child. At each step, the head moves from its current
cell to its Parent, its Left child, or to its Right child. Thus, the transition function of such a
machine has the form δ : Q× Γ →Q× Γ × {P,L,R}. The input string is initially given along
the left spine of the tape.

Show that any binary-tree Turing machine can be simulated by a standard Turing
machine.

5. A stack-tape Turing machine uses an semi-infinite tape, where every cell is actually the
top of an independent stack. The behavior of the machine at each iteration is governed by
its internal state and the symbol at the top of the current cell’s stack. At each transition,
the head can optionally push a new symbol onto the stack, or pop the top symbol off the
stack. (If a stack is empty, its “top symbol” is a blank and popping has no effect.)

Show that any stack-tape Turing machine can be simulated by a standard Turing
machine. (Compare with Problem ??!)

6. A tape-stack Turing machine has two actions that modify its work tape, in addition to
simply writing individual cells: it can save the entire tape by pushing in onto a stack, and it
can restore the entire tape by popping it off the stack. Restoring a tape returns the content
of every cell to its content when the tape was saved. Saving and restoring the tape do not
change the machine’s state or the position of its head. If the machine attempts to “restore”
the tape when the stack is empty, the machine crashes.

Show that any tape-stack Turing machine can be simulated by a standard Turing
machine.

ÆÆÆ • Tape alphabet = N.
– Read: zero or positive. Write: +1, −1
– Read: even or odd. Write: +1, −1, ×2, ÷2
– Read: positive, negative, or zero. Write: x + y (merge), x − y (merge), 1, 0

• Never three times in a row in the same direction
• Hole-punch TM: tape alphabet {�,�}, and only � 7→ � transitions allowed.

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

8

Models of Computation Lecture 8: Undecidiability [Fa’14]

Caveat lector: This is the zeroth (draft) edition of this lecture note. Please send bug reports
and suggestions to jeffe@illinois.edu.

I said in my haste, All men are liars.

— Psalms 116:11 (King James Version)

yields falsehood when preceded by its quotation.

— William V. Quine, “Paradox”, Scientific American (1962)

Some problems are so complex that you have to be highly intelligent and well informed
just to be undecided about them.

— Laurence Johnston Peter, Peter’s Almanac (September 24, 1982)

“Proving or disproving a formula—once you’ve encrypted the formula into numbers,
that is—is just a calculation on that number. So it means that the answer to the question
is, no! Some formulas cannot be proved or disproved by any mechanical process! So I
guess there’s some point in being human after all!”

Alan looked pleased until Lawrence said this last thing, and then his face collapsed.
“Now there you go making unwarranted assumptions.”

— Neal Stephenson, Cryptonomicon (1999)

No matter how P might perform, Q will scoop it:
Q uses P’s output to make P look stupid.
Whatever P says, it cannot predict Q:
P is right when it’s wrong, and is false when it’s true!

— Geoffrey S. Pullum, “Scooping the Loop Sniffer” (2000)

This castle is in unacceptable condition! UNACCEPTABLE!!

— Earl of Lemongrab [Justin Roiland], “Too Young”
Adventure Time (August 8, 2011)

8 Undecidability

Perhaps the single most important result in Turing’s remarkable 1936 paper is his solution to
Hilbert’s Entscheidungsproblem, which asked for a general automatic procedure to determine
whether a given statement of first-order logic is provable. Turing proved that no such procedure
exists; there is no systematic way to distinguish between statements that cannot be proved even
in principle and statements whose proofs we just haven’t found yet.

8.1 Acceptable versus Decidable

Recall that there are three possible outcomes for a Turing machine M running on any particular
input string w: acceptance, rejection, and divergence. Every Turing machine M immediately
defines four different languages (over the input alphabet Σ of M):

• The accepting language Accept(M) := {w ∈ Σ∗ | M accepts w}
• The rejecting language Reject(M) := {w ∈ Σ∗ | M rejects w}
• The halting language Halt(M) := Accept(M)∪Reject(M)
• The diverging language Diverge(M) := Σ∗ \Halt(M)

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

1

Models of Computation Lecture 8: Undecidiability [Fa’14]

For any language L, the sentence “M accepts L” means Accept(M) = L, and the sentence “M
decides L” means Accept(M) = L and Diverge(M) =∅.

Now let L be an arbitrary language. We say that L is acceptable (or semi-computable, or
semi-decidable, or recognizable, or listable, or recursively enumerable) if some Turing machine
accepts L, and unacceptable otherwise. Similarly, L is decidable (or computable, or recursive) if
some Turing machine decides L, and undecidable otherwise.

8.2 Lo, I Have Become Death, Stealer of Pie

There is a subtlety in the definitions of “acceptable” and “decidable” that many beginners miss:
A language can be decidable even if we can’t exhibit a specific Turing machine decides it. As a
canonical example, consider the language Π = {w | 1|w| appears in the binary expansion of π}.
Despite appearances, this language is decidable! There are only two cases to consider:

• Suppose there is an integer N such that the binary expansion of π contains the substring
1N but does not contain the substring 1N+1. Let MN be the Turing machine with N + 3
states {0, 1, . . . , N ,accept, reject}, start state 0, and the following transition function:

δ(q, a) =

accept if a = �
reject if a 6= � and q = n

(q+ 1, a,+1) otherwise

This machine correctly decides Π.

• Suppose the binary expansion of π contains arbitrarily long substrings of 1s. Then any
Turing machine that accepts all inputs correctly decides Π.

We have no idea which of these machines correctly decides Π, but one of them does, and that’s
enough!

8.3 Useful Lemmas

This subsection lists several simple but useful properties of (un)decidable and (un)acceptable
languages. For almost all of these properties, the proofs are straightforward; readers are strongly
encouraged to try to prove each lemma themselves before reading ahead.

One might reasonably ask why we don’t also define “rejectable” and “haltable” languages.
The following lemma, whose proof is an easy exercise (hint, hint), implies that these are both
identical to the acceptable languages.

Lemma 1. Let M be an arbitrary Turing machine.
(a) There is a Turing machine MR such that Accept(MR) = Reject(M) and Reject(MR) =

Accept(M).
(b) There is a Turing machine MA such that Accept(MA) = Accept(M) and Reject(MA) =∅.
(c) There is a Turing machine M H such that Accept(M H) = Halt(M) and Reject(M H) =∅.

The decidable languages have several fairly obvious useful properties.

Lemma 2. If L and L′ are decidable, then L ∪ L′, L ∩ L′, L \ L′, and L′ \ L are also decidable.

2

Models of Computation Lecture 8: Undecidiability [Fa’14]

Proof: Let M and M ′ be Turing machines that decide L and L′, respectively. We can build a
Turing machine M∪ that decides L ∪ L′ as follows. First, M∪ copies its input string w onto a
second tape. Then M∪ runs M on input w (on the first tape), and then runs M ′ on input w (on
the second tape). If either M or M ′ accepts, then M∪ accepts; if both M and M ′ reject, then M∪
rejects.

The other three languages are similar. �

Corollary 3. The following hold for all languages L and L′.
(a) If L ∩ L′ is undecidable and L′ is decidable, then L is undecidable.
(b) If L ∪ L′ is undecidable and L′ is decidable, then L is undecidable.
(c) If L \ L′ is undecidable and L′ is decidable, then L is undecidable.
(d) If L′ \ L is undecidable and L′ is decidable, then L is undecidable.

The asymmetry between acceptance and rejection implies that merely acceptable languages
are not quite as well-behaved as decidable languages.

Lemma 4. For all acceptable languages L and L′, the languages L∪L′ and L∩L′ are also acceptable.

Proof: Let M and M ′ be Turing machines that decide L and L′, respectively. We can build a
Turing machine M∩ that decides L ∩ L′ as follows. First, M∩ copies its input string w onto a
second tape. Then M∩ runs M on input w using the first tape, and then runs M ′ on input w
using the second tape. If both M and M ′ accept, then M∩ accepts; if either M or M ′ reject, then
M∩ rejects; if either M or M ′ diverge, then M∩ diverges (automatically).

The construction for L ∪ L′ is more subtle; instead of running M and M ′ in series, we must
run them in parallel. Like M∩, the new machine M∪ starts by copying its input string w onto
a second tape. But then M∪ runs M and M ′ simultaneously; with each step of M∪ simulating
both one step of M on the first tape and one step of M ′ on the second. Ignoring the states and
transitions needed for initialization, the state set of M∪ is the product of the state sets of M and
M ′, and the transition function is

δ∪(q, a, q′, a′) =

accept∪ if q = accept or q′ = accept′

reject∪ if q = reject and q′ = reject′

(δ(q, a),δ′(q′, a′)) otherwise

Thus, M∪ accepts as soon as either M or M ′ accepts, and rejects only after both M or M ′

reject. �

Lemma 5. An acceptable language L is decidable if and only if Σ∗ \ L is also acceptable.

Proof: Let M and M be Turing machines that accept L and Σ∗ \ L, respectively. Following the
previous proof, we construct a new Turing machine M∗ that copies its input onto a second tape,
and then simulates M and M ′ in parallel on the two tapes. If M accepts, then M∗ accepts; if M
accepts, then M∗ rejects. Since every string is accepted by either M or M , we conclude that M∗

decides L.
The other direction follows immediately from Lemma 1. �

3

Models of Computation Lecture 8: Undecidiability [Fa’14]

8.4 Self-Haters Gonna Self-Hate

Let U be an arbitrary fixed universal Turing machine. Any Turing machine M can be encoded
as a string 〈M〉 of symbols from U ’s input alphabet, so that U can simulate the execution of
M on any suitably encoded input string. Different universal Turing machines require different
encodings.¹

A Turing machine encoding is just a string, and any string (over the correct alphabet) can
be used as the input to a Turing machine. Thus, we can use the encoding 〈M〉 of any Turing
machine M as the input to another Turing machine. We’ve already seen an example of this ability
in our universal Turing machine U , but more significantly, we can use 〈M〉 as the input to the
same Turing machine M . Thus, each of the following languages is well-defined:

SelfAccept :=
�〈M〉

�� M accepts 〈M〉	

SelfReject :=
�〈M〉

�� M rejects 〈M〉	

SelfHalt :=
�〈M〉

�� M halts on 〈M〉	

SelfDiverge :=
�〈M〉

�� M diverges on 〈M〉	

One of Turing’s key observations is that SelfReject is undecidable; Turing proved this theorem
by contradiction as follows:

Suppose to the contrary that there is a Turing machine SR such that Accept(SR) =
SelfReject and Diverge(SR) =∅. More explicitly, for any Turing machine M ,

• SR accepts 〈M〉 ⇐⇒ M rejects 〈M〉, and
• SR rejects 〈M〉 ⇐⇒ M does not reject 〈M〉.

In particular, these equivalences must hold when M is equal to SR. Thus,

• SR accepts 〈SR〉 ⇐⇒ SR rejects 〈SR〉, and
• SR rejects 〈SR〉 ⇐⇒ SR does not reject 〈SR〉.

In short, SR accepts 〈SR〉 if and only if SR rejects 〈SR〉, which is impossible! The only logical
conclusion is that the Turing machine SR does not exist!

8.5 Aside: Uncountable Barbers

Turing’s proof by contradiction is nearly identical to the famous diagonalization argument that
uncountable sets exist, published by Georg Cantor in 1891. Indeed, SelfReject is sometimes
called “the diagonal language”. Recall that a function f : A→ B is a surjection² if f (A) = { f (a) |
a ∈ A}= B.

Cantor’s Theorem. Let f : X → 2X be an arbitrary function from an arbitrary set X to its power
set. This function f is not a surjection.

¹In fact, these undecidability proofs never actually use the universal Turing machine; all we really need is an
encoding function that associates a unique string 〈M〉 with every Turing machine M . However, we do need the
encoding to be compatible with a universal Turing machine for the results in Section ??.

²more commonly, flouting all reasonable standards of grammatical English, “an onto function”

4

Models of Computation Lecture 8: Undecidiability [Fa’14]

Proof: Fix an arbitrary function f : X → 2X . Call an element x ∈ X happy if x ∈ f (x) and sad
if x 6∈ f (x). Let Y be the set of all sad elements of X ; that is, for every element x ∈ X , we have

x ∈ Y ⇐⇒ x 6∈ f (x).

For the sake of argument, suppose f is a surjection. Then (by definition of surjection) there must
be an element y ∈ X such that f (y) = Y . Then for every element x ∈ X , we have

x ∈ f (y) ⇐⇒ x 6∈ f (x).

In particular, the previous equivalence must hold when x = y:

y ∈ f (y) ⇐⇒ y 6∈ f (y).

We have a contradiction! We conclude that f is not a surjection after all. �

Now let X = Σ∗, and define the function f : X → 2X as follows:

f (w) :=

¨
Accept(M) if w= 〈M〉 for some Turing machine M

∅ if w is not the encoding of a Turing machine

Cantor’s theorem immediately implies that not all languages are acceptable.
Alternatively, let X be the set of all Turing machines that halt on all inputs. For any Turing

machine M ∈ X , let f (M) be the set of all Turing machines N ∈ X such that M accepts the
encoding 〈N〉. Then a Turing machine M is sad if it rejects its own encoding 〈M〉; thus, Y is
essentially the set SelfReject. Cantor’s argument now immediately implies that no Turing
machine decides the language SelfReject.

The core of Cantor’s diagonalization argument also appears in the “barber paradox” popular-
ized by Bertrand Russell in the 1910s. In a certain small town, every resident has a haircut on
Haircut Day. Some residents cut their own hair; others have their hair cut by another resident of
the same town. To obtain an official barber’s license, a resident must cut the hair of all residents
who don’t cut their own hair, and no one else. Given these assumptions, we can immediately
conclude that there are no licensed barbers. After all, who would cut the barber’s hair?

To map Russell’s barber paradox back to Cantor’s theorem, let X be the set of residents, and
let f (x) be the set of residents who have their hair cut by x; then a resident is sad if they do not
cut their own hair. To prove that SelfReject is undecidable, replace “resident” with “a Turing
machine that halts on all inputs”, and replace “A cuts B’s hair” with “A accepts 〈B〉”.

8.6 Just Don’t Know What to Do with Myself

Similar diagonal arguments imply that the other three languages SelfAccept, SelfHalt, and
Self-Diverge are also undecidable. The proofs are not quite as direct for these three languages
as the proof for SelfReject; each fictional deciding machine requires a small modification to
create the contradiction.

Theorem 6. SelfAccept is undecidable.

Proof: For the sake of argument, suppose there is a Turing machine SA such that Accept(SA) =
SelfAccept and Diverge(M) = ∅. Let SAR be the Turing machine obtained from SA by
swapping its accept and reject states (as in the proof of Lemma 1). Then Reject(SAR) =
SelfAccept and Diverge(SAR) =∅. It follows that SAR rejects 〈SAR〉 if and only if SAR accepts
〈SAR〉, which is impossible. �

5

Models of Computation Lecture 8: Undecidiability [Fa’14]

Theorem 7. SelfHalt is undecidable.

Proof: Suppose to the contrary that there is a Turing machine SH such that Accept(SH) =
SelfHalt and Diverge(SH) = ∅. Let SHX be the Turing machine obtained from SH by
redirecting every transition to accept to a new hanging state hang, and then redirecting every
transition to reject to accept. Then Accept(SHX) = Σ∗ \ SelfHalt and Reject(SHX) = ∅.
It follows that SHX accepts 〈SHX 〉 if and only if SHX does not halt on 〈SHX 〉, and we have a
contradiction. �

Theorem 8. SelfDiverge is unacceptable and therefore undecidable.

Proof: Suppose to the contrary that there is a Turing machine SD such that Accept(M) =
SelfDiverge. Let SDA be the Turing machine obtained from M by redirecting every transition
to reject to a new hanging state hang such that δ(hang, a) = (hang, a,+1) for every symbol a.
Then Accept(SDA) = SelfDiverge and Reject(SDA) =∅. It follows that SDA accepts 〈SDA〉 if
and only if SDA does not halt on 〈SDA〉, which is impossible. �

8.7 Nevertheless, Acceptable?

Our undecidability argument for SelfDiverge actually implies the stronger result that Self-
Diverge is unacceptable; we never assumed that the hypothetical accepting machine SD halts
on all inputs. However, we can use or modify our universal Turing machine to accept the other
three languages.

Theorem 9. SelfAccept is acceptable.

Proof: We describe a Turing machine SA that accepts the language SelfAccept. Given any
string w as input, SA first verifies that w is the encoding of a Turing machine. If w is not the
encoding of a Turing machine, then SA diverges. Otherwise, w= 〈M〉 for some Turing machine
M ; in this case, SA writes the string ww = 〈M〉〈M〉 onto its tape and passes control to the
universal Turing machine U . U then simulates M (the machine encoded by the first half of its
input) on the string 〈M〉 (the second half of its input).³ In particular, U accepts 〈M , M〉 if and
only if M accepts 〈M〉. We conclude that SR accepts 〈M〉 if and only if M accepts 〈M〉. �

Theorem 10. SelfReject is acceptable.

Proof: Let UR be the Turing machine obtained from our universal machine U by swapping the
accept and reject states. We describe a Turing machine SR that accepts the language SelfReject
as follows. SR first verifies that its input string w is the encoding of a Turing machine and
diverges if not. Otherwise, SR writes the string ww= 〈M , M〉 onto its tape and passes control to
the reversed universal Turing machine UR. Then UR accepts 〈M , M〉 if and only if M rejects 〈M〉.
We conclude that SR accepts 〈M〉 if and only if M rejects 〈M〉. �

Finally, because SelfHalt is the union of two acceptable languages, SelfHalt is also
acceptable.

³To simplify the presentation, I am implicitly assuming here that 〈M〉= 〈〈M〉〉. Without this assumption, we need
a Turing machine that transforms an arbitrary string w ∈ Σ∗M into its encoding 〈w〉 for U; building such a Turing
machine is straightforward.

6

Models of Computation Lecture 8: Undecidiability [Fa’14]

8.8 The Halting Problem via Reduction

Consider the following related languages:⁴

Accept :=
�〈M , w〉

�� M accepts w
	

Reject :=
�〈M , w〉

�� M rejects w
	

Halt :=
�〈M , w〉

�� M halts on w
	

Diverge :=
�〈M , w〉

�� M diverges on w
	

Deciding the language Halt is what is usually meant by the halting problem: Given a program
M and an input w to that program, does the program halt? This problem may seem trivial; why
not just run the program and see? More formally, why not just pass the input string 〈M , x〉 to
our universal Turing machine U? That strategy works perfectly if we just want to accept Halt,
but we actually want to decide Halt; if M is not going to halt on w, we still want an answer in a
finite amount of time. Sadly, we can’t always get what we want.

Theorem 11. Halt is undecidable.

Proof: Suppose to the contrary that there is a Turing machine H that decides Halt. Then we
can use H to build another Turing machine SH that decides the language SelfHalt. Given any
string w, the machine SH first verifies that w = 〈M〉 for some Turing machine M (rejecting if
not), then writes the string ww = 〈M , M〉 onto the tape, and finally passes control to H. But
SelfHalt is undecidable, so no such machine SH exists. We conclude that H does not exist
either. �

Nearly identical arguments imply that the languages Accept, Reject, and Diverge are
undecidable.

Here we have our first example of an undecidability proof by reduction. Specifically, we
reduced the language SelfHalt to the language Halt. More generally, to reduce one language
X to another language Y , we assume (for the sake of argument) that there is a program PY that
decides Y , and we write another program that decides X , using PY as a black-box subroutine.
If later we discover that Y is decidable, we can immediately conclude that X is decidable.
Equivalently, if we later discover that X is undecidable, we can immediately conclude that Y is
undecidable.

To prove that a language L is undecidable,
reduce a known undecidable language to L.

Perhaps the most confusing aspect of reduction arguments is that the languages we want to
prove undecidable nearly (but not quite) always involve encodings of Turing machines, while at
the same time, the programs that we build to prove them undecidable are also Turing machines.
Our proof that Halt is undecidable involved three different machines:

• The hypothetical Turing machine H that decides Halt.

• The new Turing machine SH that decides SelfHalt, using H as a subroutine.

⁴Sipser uses the shorter name AT M instead of Accept, but uses HALTT M instead of Halt. I have no idea why he
thought four-letter names are okay, but six-letter names are not. His subscript TM is just a reminder that these are
languages of Turing machine encodings, as opposed to encodings of DFAs or some other machine model.

7

Models of Computation Lecture 8: Undecidiability [Fa’14]

• The Turing machine M whose encoding is the input to H.

It is incredibly easy to get confused about which machines are playing each in the proof. Therefore,
it is absolutely vital that we give each machine in a reduction proof a unique and mnemonic
name, and then always refer to each machine by name. Never write, say, or even think “the
machine” or “that machine” or (gods forbid) “it”. You also may find it useful to think of the
working programs we are trying to construct (H and SH in this proof) as being written in a
different language than the arbitrary source code that we want those programs to analyze (〈M〉
in this proof).

8.9 One Million Years Dungeon!

As a more complex set of examples, consider the following languages:

NeverAccept :=
�〈M〉 | Accept(M) =∅	

NeverReject :=
�〈M〉 | Reject(M) =∅	

NeverHalt :=
�〈M〉 | Halt(M) =∅	

NeverDiverge :=
�〈M〉 | Diverge(M) =∅	

Theorem 12. NeverAccept is undecidable.

Proof: Suppose to the contrary that there is a Turing machine NA that decides NeverAccept.
Then by swapping the accept and reject states, we obtain a Turing machine NAR that decides
the complementary language Σ∗ \NeverAccept.

To reach a contradiction, we construct a Turing machine A that decides Accept as follows.
Given the encoding 〈M , w〉 of an arbitrary machine M and an arbitrary string w as input, A writes
the encoding 〈Mw〉 of a new Turing machine Mw that ignores its input, writes w onto the tape,
and then passes control to M . Finally, A passes the new encoding 〈Mw〉 as input to NAR. The
following cartoon tries to illustrate the overall construction.

accept

reject

A
NAR NA<M,w> <Mw>Build

<Mw>

Mw
Mx w

accept

reject

hang

A reduction from from Accept to NeverAccept, which proves NeverAccept undecidable.

Before going any further, it may be helpful to list the various Turing machines that appear in
this construction.

8

Models of Computation Lecture 8: Undecidiability [Fa’14]

• The hypothetical Turing machine NA that decides NeverAccept.

• The Turing machine NAR that decides Σ∗ \ NeverAccept, which we constructed by
modifying NA.

• The Turing machine A that we are building, which decides Accept using NAR as a black-box
subroutine.

• The Turing machine M , whose encoding is part of the input to A.

• The Turing machine Mw whose encoding A constructs from 〈M , w〉 and then passes to NAR

as input.

Now let M be an arbitrary Turing machine and w be an arbitrary string, and suppose we run
our new Turing machine A on the encoding 〈M , w〉. To complete the proof, we need to consider
two cases: Either M accepts w or M does not accept w.

• First, suppose M accepts w.

– Then for all strings x , the machine Mw accepts x .
– So Accept(Mw) = Σ∗, by the definition of Accept(Mw).
– So 〈Mw〉 6∈ NeverAccept, by definition of NeverAccept.
– So NA rejects 〈Mw〉, because NA decides NeverAccept.
– So NAR accepts 〈Mw〉, buy construction of NAR.
– We conclude that A accepts 〈M , w〉, by construction of A.

• On the other hand, suppose M does not accept w, either rejecting or diverging instead.

– Then for all strings x , the machine Mw does not accept x .
– So Accept(Mw) =∅, by the definition of Accept(Mw).
– So 〈Mw〉 ∈ NeverAccept, by definition of NeverAccept.
– So NA accepts 〈Mw〉, because NA decides NeverAccept.
– So NAR rejects 〈Mw〉, buy construction of NAR.
– We conclude that A rejects 〈M , w〉, by construction of A.

In short, A decides the language Accept, which is impossible. We conclude that NA does not
exist. �

Again, similar arguments imply that the languages NeverReject, NeverHalt, and Never-
Diverge are undecidable. In each case, the core of the argument is describing how to transform
the incoming machine-and-input encoding 〈M , w〉 into the encoding of an appropriate new
Turing machine 〈Mw〉.

Now that we know that NeverAccept and its relatives are undecidable, we can use them as
the basis of further reduction proofs. Here is a typical example:

Theorem 13. The language DivergeSame :=
�〈M1〉 〈M2〉

�� Diverge(M1) = Diverge(M2)
	
is unde-

cidable.

Proof: Suppose for the sake of argument that there is a Turing machine DS that decides
DivergeSame. Then we can build a Turing machine N D that decides NeverDiverge as follows.
Fix a Turing machine Y that accepts Σ∗ (for example, by defining δ(start, a) = (accept, ·, ·) for
all a ∈ Γ). Given an arbitrary Turing machine encoding 〈M〉 as input, N D writes the string
〈M〉〈Y 〉 onto the tape and then passes control to DS. There are two cases to consider:

9

Models of Computation Lecture 8: Undecidiability [Fa’14]

• If DS accepts 〈M〉〈Y 〉, then Diverge(M) = Diverge(Y) =∅, so 〈M〉 ∈ NeverDiverge.

• If DS rejects 〈M〉〈Y 〉, then Diverge(M) 6= Diverge(Y) =∅, so 〈M〉 6∈ NeverDiverge.

In short, N D accepts 〈M〉 if and only if 〈M〉 ∈ NeverDiverge, which is impossible. We conclude
that DS does not exist. �

8.10 Rice’s Theorem

In 1953, Henry Rice proved the following extremely powerful theorem, which essentially states
that every interesting question about the language accepted by a Turing machine is undecidable.

Rice’s Theorem. Let L be any set of languages that satisfies the following conditions:
• There is a Turing machine Y such that Accept(Y) ∈ L.
• There is a Turing machine N such that Accept(N) 6∈ L.

The language AcceptIn(L) :=
�〈M〉

�� Accept(M) ∈ L
	
is undecidable.

Proof: Without loss of generality, suppose∅ 6∈ L. (A symmetric argument establishes the theorem
in the opposite case ∅ ∈ L.) Fix an arbitrary Turing machine Y such that Accept(Y) ∈ L.

Suppose to the contrary that there is a Turing machine AL that decides AcceptIn(L). To
derive a contradiction, we describe a Turing machine H that decides the halting language Halt,
using AL as a black-box subroutine. Given the encoding 〈M , w〉 of an arbitrary Turing machine
M and an arbitrary string w as input, H writes the encoding 〈WTF〉 of a new Turing machine
WTF that executes the following algorithm:

WTF(x):
run M on input w (and discard the result)
run Y on input x

H then passes the new encoding 〈WTF〉 to AL.
Now let M be an arbitrary Turing machine and w be an arbitrary string, and suppose we run

our new Turing machine H on the encoding 〈M , w〉. There are two cases to consider.

• Suppose M halts on input w.

– Then for all strings x , the machine WTF accepts x if and only if Y accepts x .
– So Accept(WTF) = Accept(Y), by definition of Accept(·).
– So Accept(WTF) ∈ L, by definition of Y .
– So AL accepts 〈WTF〉, because AL decides AcceptIn(L).
– So H accepts 〈M , w〉, by definition of H.

• Suppose M does not halt on input w.

– Then for all strings x , the machine WTF does not halt on input x , and therefore does
not accept x .

– So Accept(WTF) =∅, by definition of Accept(WTF).
– So Accept(WTF) 6∈ L, by our assumption that ∅ 6∈ L.
– So AL rejects 〈WTF〉, because AL decides AcceptIn(L).
– So H rejects 〈M , w〉, by definition of H.

10

Models of Computation Lecture 8: Undecidiability [Fa’14]

In short, H decides the language Halt, which is impossible. We conclude that AL does not
exist. �

The set L in the statement of Rice’s Theorem is often called a property of languages, rather
than a set, to avoid the inevitable confusion about sets of sets. We can also think of L as a
decision problem about languages, where the languages are represented by Turing machines
that accept or decide them. Rice’s theorem states that the only properties of languages that are
decidable are the trivial properties “Does this Turing machine accept an acceptable language?”
(Answer: Yes, by definition.) and “Does this Turing machine accept Discover?” (Answer: No,
because Discover is a credit card, not a language.)

Rice’s Theorem makes it incredibly easy to prove that language properties are undecidable;
we only need to exhibit one acceptable language that has the property and another acceptable
language that does not. In fact, most proofs using Rice’s theorem can use at least one of the
following Turing machines:

• MAccept accepts every string, by defining δ(start, a) = accept for every tape symbol a.

• MReject rejects every string, by defining δ(start, a) = reject for every tape symbol a.

• MDiverge diverges on every string, by defining δ(start, a) = (start, a,+1) for every tape
symbol a.

Corollary 14. Each of the following languages is undecidable.
(a) {〈M〉 | M accepts given an empty initial tape}
(b) {〈M〉 | M accepts the string UIUC}
(c) {〈M〉 | M accepts exactly three strings}
(d) {〈M〉 | M accepts all palindromes}
(e) {〈M〉 | Accept(M) is regular}
(f) {〈M〉 | Accept(M) is not regular}
(g) {〈M〉 | Accept(M) is undecidable}
(h) {〈M〉 | Accept(M) = Accept(N)}, for some arbitrary fixed Turing machine N .

Proof: In all cases, undecidability follows from Rice’s theorem.

(a) Let L be the set of all languages that contain the empty string. Then AcceptIn(L) = {〈M〉 |
M accepts given an empty initial tape}.

• Given an empty initial tape, MAccept accepts, so Halt(MAccept) ∈ L.
• Given an empty initial tape, MDiverge does not accept, so Halt(MDiverge) 6∈ L.

Therefore, Rice’s Theorem implies that AcceptIn(L) is undecidable.

(b) Let L be the set of all languages that contain the string UIUC.

• MAccept accepts UIUC, so Halt(MAccept) ∈ L.
• MDiverge does not accept UIUC, so Halt(MDiverge) 6∈ L.

Therefore, AcceptIn(L) = {〈M〉 | M accepts the string UIUC} is undecidable by Rice’s The-
orem.

(c) There is a Turing machine that accepts the language {larry,curly,moe}. On the other
hand, MReject does not accept exactly three strings.

11

Models of Computation Lecture 8: Undecidiability [Fa’14]

(d) MAccept accepts all palindromes, and MReject does not accept all palindromes.

(e) MReject accepts the regular language ∅, and there is a Turing machine M0n1n that accepts
the non-regular language {0n1n | n≥ 0}.

(f) MReject accepts the regular language ∅, and there is a Turing machine M0n1n that accepts
the non-regular language {0n1n | n≥ 0}.⁵

(g) MReject accepts the decidable language ∅, and there is a Turing machine that accepts the
undecidable language SelfReject.

(h) The Turing machine N accepts Accept(N) by definition. The Turing machine NR, obtained
by swapping the accept and reject states of N , accepts the language Halt(L)\Accept(N) 6=
Accept(N). �

We can also use Rice’s theorem as a component in more complex undecidability proofs, where
the target language consists of more than just a single Turing machine encoding.

Theorem 15. The language L :=
�〈M , w〉

�� M accepts wk for every integer k ≥ 0
	
is undecidable.

Proof: Fix an arbitrary string w, and let L be the set of all languages that contain wk for all k.
Then Accept(MAccept) = Σ∗ ∈ L and Accept(MReject) = ∅ 6∈ L. Thus, even if the string w is
fixed in advance, no Turing machine can decide L. �

Nearly identical reduction arguments imply the following variants of Rice’s theorem. (The
names of these theorems are not standard.)

Rice’s Rejection Theorem. Let L be any set of languages that satisfies the following conditions:
• There is a Turing machine Y such that Reject(Y) ∈ L

• There is a Turing machine N such that Reject(N) 6∈ L.
The language RejectIn(L) :=

�〈M〉
�� Reject(M) ∈ L

	
is undecidable.

Rice’s Halting Theorem. Let L be any set of languages that satisfies the following conditions:
• There is a Turing machine Y such that Halt(Y) ∈ L

• There is a Turing machine N such that Halt(N) 6∈ L.
The language HaltIn(L) :=

�〈M〉
�� Halt(M) ∈ L

	
is undecidable.

Rice’s Divergence Theorem. Let L be any set of languages that satisfies the following conditions:
• There is a Turing machine Y such that Diverge(Y) ∈ L

• There is a Turing machine N such that Diverge(N) 6∈ L.
The language DivergeIn(L) :=

�〈M〉
�� Diverge(M) ∈ L

	
is undecidable.

Rice’s Decision Theorem. Let L be any set of languages that satisfies the following conditions:
• There is a Turing machine Y such that decides an language in L.
• There is a Turing machine N such that decides an language not in L.

The language DecideIn(L) :=
�〈M〉

�� M decides a language in L
	
is undecidable.

⁵Yes, parts (e) and (f) have exactly the same proof.

12

Models of Computation Lecture 8: Undecidiability [Fa’14]

As a final sanity check, always be careful to distinguish the following objects:
• The string ε
• The language ∅
• The language {ε}
• The language property ∅
• The language property {∅}
• The language property {{ε}}
• The Turing machine MReject that rejects every string and therefore decides the language ∅.
• The Turing machine MDiverge that diverges on every string and therefore accepts the

language ∅.

8.11 The Rice-McNaughton-Myhill-Shapiro Theorem?

The following subtle generalization of Rice’s theorem precisely characterizes which properties
of acceptable languages are acceptable. This result was partially proved by Henry Rice in 1953,
in the same paper that proved Rice’s Theorem; Robert McNaughton, John Myhill, and Norman
Shapiro completed the proof a few years later, each independently from the other two.⁶

The Rice-McNaughton-Myhill-Shapiro Theorem. Let L be an arbitrary set of acceptable lan-
guages. The language AcceptIn(L) := {〈M〉 | Accept(M) ∈ L} is acceptable if and only if L
satisfies the following conditions:

(a) L is monotone: For any language L ∈ L, every superset of L is also in L.

(b) L is compact: Every language in L has a finite subset that is also in L.

(c) L is finitely acceptable: The language
�〈L〉 | L ∈ L and L is finite

	
is acceptable.⁷

I won’t give a complete proof of this theorem (in part because it requires techniques I haven’t
introduced), but the following lemma is arguably the most interesting component:

Lemma 16. Let L be a set of acceptable languages. If L is not monotone, then AcceptIn(L) is
unacceptable.

Proof: Suppose to the contrary that there is a Turing machine AIL that accepts AcceptIn(L).
Using this Turing machine as a black box, we describe a Turing machine SD that accepts the
unacceptable language SelfDiverge. Fix two Turing machines Y and N such that

Accept(Y) ∈ L,

Accept(N) 6∈ L,

and Accept(Y) ⊆ Accept(N).

Let w be the input to SD. After verifying that w = 〈M〉 for some Turing machine M
(and rejecting otherwise), SD writes the encoding 〈WTF〉 or a new Turing machine WTF that
implements the following algorithm:

⁶McNaughton never published his proof (although he did announce the result); consequently, this theorem is
sometimes called “The Rice-Myhill-Shapiro Theorem”. Even more confusingly, Myhill published his proof twice, once
in a paper with John Shepherdson and again in a later paper with Jacob Dekker. So maybe it should be called the
Rice–Dekker-Myhill–McNaughton–Myhill-Shepherdson–Shapiro Theorem.

⁷Here the encoding 〈L〉 of a finite language L ⊆ Σ∗ is exactly the string that you would write down to explicitly
describe L. Formally, 〈L〉 is the unique string over the alphabet Σ ∪ {{,,,}, 3} that contains the strings in L in
lexicographic order, separated by commas , and surrounded by braces {}, with 3representing the empty string. For
example,

{ε,0,01,0110,01101001}�= { 3,0,01,0110,01101001}.

13

Models of Computation Lecture 8: Undecidiability [Fa’14]

WTF(x):
write x to second tape
write 〈M〉 to third tape
in parallel:

run Y on the first tape
run N on the second tape
run M on the third tape

if Y accepts x
accept

if N accepts x and M halts on 〈M〉
accept

Finally, SD passes the new encoding 〈WTF〉 to AIL. There are two cases to consider:

• If M halts on 〈M〉, then Accept(WTF) = Accept(N) 6∈ L, and therefore AIL does not
accept 〈WTF〉.

• If M does not halt on 〈M〉, then Accept(WTF) = Accept(Y) ∈ L, and therefore AIL
accepts 〈WTF〉.

In short, SD accepts SelfDiverge, which is impossible. We conclude that SD does not exist. �

Corollary 17. Each of the following languages is unacceptable.
(a) {〈M〉 | Accept(M) is finite}
(b) {〈M〉 | Accept(M) is infinite}
(c) {〈M〉 | Accept(M) is regular}
(d) {〈M〉 | Accept(M) is not regular}
(e) {〈M〉 | Accept(M) is decidable}
(f) {〈M〉 | Accept(M) is undecidable}
(g) {〈M〉 | M accepts at least one string in SelfDiverge}
(h) {〈M〉 | Accept(M) = Accept(N)}, for some arbitrary fixed Turing machine N .

Proof: (a) The set of finite languages is not monotone: ∅ is finite; Σ∗ is not finite; both ∅ and
Σ∗ are acceptable (in fact decidable); and ∅ ⊂ Σ∗.

(b) The set of infinite acceptable languages is not compact: No finite subset of the infinite
acceptable language Σ∗ is infinite!

(c) The set of regular languages is not monotone: Consider the languages ∅ and {0n1n | n≥ 0}.
(d) The set of non-regular acceptable languages is not monotone: Consider the languages
{0n1n | n≥ 0} and Σ∗.

(e) The set of decidable languages is not monotone: Consider the languages ∅ and SelfReject.

(f) The set of undecidable acceptable languages is not monotone: Consider the languages
SelfReject and Σ∗.

(g) The set L= {L | L∩SelfDiverge 6=∅} is not finitely acceptable. For any string w, deciding
whether {w} ∈ L is equivalent to deciding whether w ∈ SelfDiverge, which is impossible.

(h) If Accept(N) 6= Σ∗, then the set {Accept(N)} is not monotone. On the other hand, if
Accept(N) = Σ∗, then the set {Accept(N)} is not compact: No finite subset of Σ∗ is equal
to Σ∗! �

14

Models of Computation Lecture 8: Undecidiability [Fa’14]

8.12 Turing Machine Behavior: It’s Complicated

Rice’s theorems imply that every interesting question about the language that a Turing machine
accepts—or more generally, the function that a program computes—is undecidable. A more subtle
question is whether we can recognize Turing machines that exhibit certain internal behavior.
Some behaviors we can recognize; others we can’t.

Theorem 18. The language NeverLeft := {〈M , w〉 | Given w as input, M never moves left} is de-
cidable.

Proof: Given the encoding 〈M , w〉, we simulate M with input w using our universal Turing
machine U , but with the following termination conditions. If M ever moves its head to the left,
then we reject. If M halts without moving its head to the left, then we accept. Finally, if M reads
more than |Q| blanks, where Q is the state set of M , then we accept. If the first two cases do not
apply, M only moves to the right; moreover, after reading the entire input string, M only reads
blanks. Thus, after reading |Q| blanks, it must repeat some state, and therefore loop forever
without moving to the left. The three cases are exhaustive. �

Theorem 19. The language LeftThree := {〈M , w〉 | Given w as input, M eventually moves left
three times in a row} is undecidable.

Proof: Given 〈M〉, we build a new Turing machine M ′ that accepts the same language as M and
moves left three times in a row if and only if it accepts, as follows. For each non-accepting state
p of M , the new machine M ′ has three states p1, p2, p3, with the following transitions:

δ′(p1, a) = (q2, b,∆), where (q, b,∆) = δ(p, a) and q 6= accept

δ′(p2, a) = (p3, a,+1)

δ′(p3, a) = (p1, a,−1)

In other words, after each non-accepting transition, M ′ moves once to the right and then once to
the left. For each transition to accept, M ′ has a sequence of seven transitions: three steps to the
right, then three steps to the left, and then finally accept’, all without modifying the tape. (The
three steps to the right ensure that M ′ does not fall off the left end of the tape.)

Finally, M ′ moves left three times in a row if and only if M accepts w. Thus, if we could
decide LeftThree, we could also decide Accept, which is impossible. �

There is no hard and fast rule like Rice’s theorem to distinguish decidable behaviors from
undecidable behaviors, but I can offer two rules of thumb.

• If it is possible to simulate an arbitrary Turing machine while avoiding the target behavior,
then the behavior is not decidable. For example: there is no algorithm to determine
whether a given Turing machine reenters its start state, or revisits the left end of the tape,
or writes a blank.

• If a Turing machine with the target behavior is limited to a finite number of configurations,
or is guaranteed to force an infinite loop after a finite number of transitions, then the
behavior is likely to be decidable. For example, there are algorithms to determine whether
a given Turing machine ever leaves its start state, or reads its entire input string, or writes
a non-blank symbol over a blank.

15

Models of Computation Lecture 8: Undecidiability [Fa’14]

Exercises

1. Let M be an arbitrary Turing machine.

(a) Describe a Turing machine MR such that

Accept(MR) = Reject(M) and Reject(MR) = Accept(M).

(b) Describe a Turing machine MA such that

Accept(MA) = Accept(M) and Reject(MA) =∅.

(c) Describe a Turing machine M H such that

Accept(M H) = Halt(M) and Reject(M H) =∅.

2. (a) Prove that Accept is undecidable.

(b) Prove that Reject is undecidable.

(c) Prove that Diverge is undecidable.

3. (a) Prove that NeverReject is undecidable.

(b) Prove that NeverHalt is undecidable.

(c) Prove that NeverDiverge is undecidable.

4. Prove that each of the following languages is undecidable.

(a) AlwaysAccept := {〈M〉 | Accept(M) = Σ∗}
(b) AlwaysReject := {〈M〉 | Reject(M) = Σ∗}
(c) AlwaysHalt := {〈M〉 | Halt(M) = Σ∗}
(d) AlwaysDiverge := {〈M〉 | Diverge(M) = Σ∗}

5. Let L be a non-empty proper subset of the set of acceptable languages. Prove that the
following languages are undecidable:

(a) RejectIn(L) :=
�〈M〉

�� Reject(M) ∈ L
	

(b) HaltIn(L) :=
�〈M〉

�� Halt(M) ∈ L
	

(c) DivergeIn(L) :=
�〈M〉

�� Diverge(M) ∈ L
	

6. For each of the following decision problems, either sketch an algorithm or prove that the
problem is undecidable. Recall that wR denotes the reversal of string w. For each problem,
the input is the encoding 〈M〉 of a Turing machine M .

(a) Does M accept 〈M〉R?
(b) Does M reject any palindrome?

(c) Does M accept all palindromes?

16

Models of Computation Lecture 8: Undecidiability [Fa’14]

(d) Does M diverge only on palindromes?

(e) Is there an input string that forces M to move left?

(f) Is there an input string that forces M to move left three times in a row?

(g) Does M accept the encoding of any Turing machine N such that Accept(N) =
SelfDiverge?

7. For each of the following decision problems, either sketch an algorithm or prove that the
problem is undecidable. Recall that wR denotes the reversal of string w. For each problem,
the input is an encoding 〈M , w〉 of a Turing machine M and its input string w.

(a) Does M accept the string wwR?

(b) Does M accept either w or wR?

(c) Does M either accept w or reject wR?

(d) Does M accept the string wk for some integer k?

(e) Does M accept w in at most 2|w| steps?
(f) If we run M on input w, does M ever change a symbol on its tape?

(g) If we run M on input w, does M ever move to the right?

(h) If we run M on input w, does M ever move to the right twice in a row?

(i) If we run M on input w, does M move its head to the right more than 2|w| times (not
necessarily consecutively)?

(j) If we run M with input w, does M ever change a � on the tape to any other symbol?

(k) If we run M with input w, does M ever change a � on the tape to 1?

(l) If we run M with input w, does M ever write a �?
(m) If we run M with input w, does M ever leave its start state?

(n) If we run M with input w, does M ever reenter its start state?

(o) If we run M with input w, does M ever reenter a state that it previously left? That is,
are there states p 6= q such that M moves from state p to state q and then later moves
back to state p?

8. Let M be a Turing machine, let w be an arbitrary input string, and let s and t be positive
integers integer. We say that M accepts w in space s if M accepts w after accessing at
most the first s cells on the tape, and M accepts w in time t if M accepts w after at most t
transitions.

(a) Prove that the following languages are decidable:

i.
�〈M , w〉

�� M accepts w in time |w|2	

ii.
�〈M , w〉

�� M accepts w in space |w|2	

(b) Prove that the following languages are undecidable:

i.
�〈M〉 �� M accepts at least one string w in time |w|2	

ii.
�〈M〉

�� M accepts at least one string w in space |w|2	

17

Models of Computation Lecture 8: Undecidiability [Fa’14]

9. Let L0 be an arbitrary language. For any integer i > 0, define the language

Li :=
�〈M〉

�� M decides Li−1

	
.

For which integers i > 0 is Li decidable? Obviously the answer depends on the initial
language L0; give a complete characterization of all possible cases. Prove your answer is
correct. [Hint: This question is a lot easier than it looks!]

10. Argue that each of the following decision problems about programs in your favorite
programming language are undecidable.

(a) Does this program correctly compute Fibonacci numbers?

(b) Can this program fall into an infinite loop?

(c) Will the value of this variable ever change?

(d) Will this program every attempt to deference a null pointer?

(e) Does this program free every block of memory that it dynamically allocates?

(f) Is any statement in this program unreachable?

(g) Do these two programs compute the same function?

?11. Call a Turing machine conservative if it never writes over its input string. More formally, a
Turing machine is conservative if for every transition δ(p, a) = (q, b,∆) where a ∈ Σ, we
have b = a; and for every transition δ(p, a) = (q, b,∆) where a 6∈ Σ, we have b 6= Σ.
(a) Prove that if M is a conservative Turing machine, then Accept(M) is a regular

language.

(b) Prove that the language {〈M〉 | M is conservative and M accepts ε} is undecidable.
Together, these two results imply that every conservative Turing machine accepts the same
language as some DFA, but it is impossible to determine which DFA.

Æ12. (a) Prove that it is undecidable whether a given C++ program is syntactically correct.
[Hint: Use templates!]

(b) Prove that it is undecidable whether a given ANSI C program is syntactically correct.
[Hint: Use the preprocessor!]

(c) Prove that it is undecidable whether a given Perl program is syntactically correct.
[Hint: Does that slash character / delimit a regular expression or represent division?]

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

18

Models of Computation Lecture 9: Nondeterministic Turing Machines [Fa’14]

Caveat lector: This is the zeroth (draft) edition of this lecture note. In particular, some topics
still need to be written. Please send bug reports and suggestions to jeffe@illinois.edu.

If first you don’t succeed, then try and try again.
And if you don’t succeed again, just try and try and try.

— Marc Blitzstein, “Useless Song”, The Three Penny Opera (1954)
Adaptation of Bertold Brecht, “Das Lied von der Unzulänglichkeit

menschlichen Strebens” Die Dreigroschenoper (1928)

Children need encouragement.
If a kid gets an answer right, tell him it was a lucky guess.
That way he develops a good, lucky feeling.

— Jack Handey, “Deep Thoughts”, Saturday Night Live (March 21, 1992)

9 Nondeterministic Turing Machines

9.1 Definitions

In his seminal 1936 paper, Turing also defined an extension of his “automatic machines” that
he called choice machines, which are now more commonly known as nondeterministic Turing
machines. The execution of a nondeterministic Turing machine is not determined entirely by its
input and its transition function; rather, at each step of its execution, the machine can choose
from a set of possible transitions. The distinction between deterministic and nondeterministic
Turing machines exactly parallels the distinction between deterministic and nondeterministic
finite-state automata.

Formally, a nondeterministic Turing machine has all the components of a standard determin-
istic Turing machine—a finite tape alphabet Γ that contains the input alphabet Σ and a blank
symbol �; a finite set Q of internal states with special start, accept, and reject states; and a
transition function δ. However, the transition function now has the signature

δ : Q× Γ → 2Q×Γ×{−1,+1}.

That is, for each state p and tape symbol a, the output δ(p, a) of the transition function is a set
of triples of the form (q, b,∆) ∈Q× Γ × {−1,+1}. Whenever the machine finds itself in state p
reading symbol a, the machine chooses an arbitrary triple (q, b,∆) ∈ δ(p, a), and then changes
its state to q, writes b to the tape, and moves the head by ∆. If the set δ(p, a) is empty, the
machine moves to the reject state and halts.

The set of all possible transition sequences of a nondeterministic Turing machine N on a
given input string w define a rooted tree, called a computation tree. The initial configuration
(start, w, 0) is the root of the computation tree, and the children of any configuration (q, x , i)
are the configurations that can be reached from (q, x , i) in one transition. In particular, any
configuration whose state is accept or reject is a leaf. For deterministic Turing machines, this
computation tree is just a single path, since there is at most one valid transition from every
configuration.

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

1

Models of Computation Lecture 9: Nondeterministic Turing Machines [Fa’14]

9.2 Acceptance and Rejection

Unlike deterministic Turing machines, there is a fundamental asymmetry between the acceptance
and rejection criteria for nondeterministic Turing machines. Let N be any nondeterministic
Turing machine, and let w be any string.

• N accepts w if and only if there is at least one sequence of valid transitions from the initial
configuration (start, w, 0) that leads to the accept state. Equivalently, N accepts w if the
computation tree contains at least one accept leaf.

• N rejects w if and only if every sequence of valid transitions from the initial configuration
(start, w, 0) leads to the reject state. Equivalently, N rejects w if every path through the
computation tree ends with a reject leaf.

In particular, N can accept w even when there are choices that allow the machine to run forever,
but rejection requires N to halt after only a finite number of transitions, no matter what choices
it makes along the way. Just as for deterministic Turing machines, it is possible that N neither
accepts nor rejects w.

Acceptance and rejection of languages are defined exactly as they are for deterministic
machines. A non-deterministic Turing machine N accepts a language L ⊆ Σ∗ if M accepts all
strings in L and nothing else; N rejects L if M rejects every string in L and nothing else; and
finally, N decides L if M accepts L and rejects Σ∗ \ L.

9.3 Time and Space Complexity

ÆÆÆ • Define “time” and “space”.
• TIME(f (n)) is the class of languages that can be decided by a deterministic multi-tape

Turing machine in O(f (n)) time.
• NTIME(f (n)) is the class of languages that can be decided by a nondeterministic multi-

tape Turing machine in O(f (n)) time.
• SPACE(f (n)) is the class of languages that can be decided by deterministic multi-tape

Turing machine in O(f (n)) space.
• NSPACE(f (n)) is the class of languages that can be decided by a nondeterministic

multi-tape Turing machine in O(f (n)) space.
• Why multi-tape TMs? Because t steps on any k-tape Turing machine can be simulated in

O(t log t) steps on a two-tape machine [Hennie and Stearns 1966, essentially using lazy
counters and amortization], and in O(t2) steps on a single-tape machine [Hartmanis
and Stearns 1965; realign multiple tracks at every simulation step]. Moreover, the latter
quadratic bound is tight [Hennie 1965 (palindromes, via communication complexity)].

9.4 Deterministic Simulation

Theorem 1. For any nondeterministic Turing machine N , there is a deterministic Turing machine
M that accepts exactly the same strings and N and rejects exactly the same strings as N . Moreover,
if every computation path of N on input x halts after at most t steps, then M halts on input x after
at most O(t2r2t) steps, where r is the maximum size of any transition set in N .

Proof: I’ll describe a deterministic machine M that performs a breadth-first search of the
computation tree of N . (The depth-first search performed by a standard recursive backtracking
algorithm won’t work here. If N ’s computation tree contains an infinite path, a depth-first search
would get stuck in that path without exploring the rest of the tree.)

2

Models of Computation Lecture 9: Nondeterministic Turing Machines [Fa’14]

At the beginning of each simulation round, M ’s tape contains a string of the form

�� · · ·�••y1q1z1•y2q2z2• · · ·•ykqkzk••

where each substring yiqizi encodes a configuration (qi , yizi , |yi|) of some computation path of
N , and • is a new symbol not in the tape alphabet of N . The machine M interprets this sequence
of encoded configurations as a queue, with new configurations inserted on the right and old
configurations removed from the left. The double-separators •• uniquely identify the start and
end of this queue; outside this queue, the tape is entirely blank.

Specifically, in each round, first M appends the encodings of all configurations than N can
reach in one transition from the first encoded configuration (q1, y1z1, |y1|); then M erases the
first encoded configuration.

· · ·��••y1q1z1•y2q2z2• · · ·•yrqrzr••�� · · ·w� w�
· · ·���� · · ·�••y2q2z2• · · ·•ykqkzk• ỹ1q̃1z̃1• ỹ2q̃2z̃2• · · ·• ỹr q̃r z̃r••�� · · ·

Suppose each transition set δN (q, a) has size at most r. Then after simulating t steps of
N , the tape string of M encoding O(r t) different configurations of N and therefore has length
L = O(t r t) (not counting the initial blanks). If M begins each simulation phase by moving
the initial configuration from the beginning to the end of the tape string, which takes O(t2r t)
time, the time for the rest of the the simulation phase is negligible. Altogether, simulating all r t

possibilities for the the tth step of N requires O(t2r2t) time. We conclude that M can simulate
the first t steps of every computation path of N in O(t 2r2t) time, as claimed. �

The running time of this simulation is dominated by the time spent reading from one end of
the tape string and writing to the other. It is fairly easy to reduce the running time to O(t r t) by
using either two tapes (a “read tape” containing N -configurations at time t and a “write tape”
containing N -configurations at time t + 1) or two independent heads on the same tape (one at
each end of the queue).

9.5 Nondeterminism as Advice

Any nondeterministic Turing machine N can also be simulated by a deterministic machine M
with two inputs: the user input string w ∈ Σ∗, and a so-called advice string x ∈ Ω∗, where Ω is
another finite alphabet. Only the first input string w is actually given by the user. At least for
now, we assume that the advice string x is given on a separate read-only tape.

The deterministic machine M simulates N step-by-step, but whenever N has a choice of
how to transition, M reads a new symbol from the advice string, and that symbol determines
the choice. In fact, without loss of generality, we can assume that M reads a new symbol from
the advice string and moves the advice-tape’s head to the right on every transition. Thus, M ’s
transition function has the form δM : Q× Γ ×Ω→Q× Γ × {−1,+1}, and we require that

δN (q, a) = {δM (q, a,ω) | ω ∈ Ω}

For example, if N has a binary choice

δN (branch,?) =
�
(left,L,−1), (right,R,+1)

	
,

3

Models of Computation Lecture 9: Nondeterministic Turing Machines [Fa’14]

then M might determine this choice by defining

δM (branch,?,0) = (left,L,−1) and δM (branch,?,1) = (right,R,+1)

More generally, if every set δN (p, a) has size r, then we let Ω= {1, 2, . . . , r} and define δM (q, a, i)
to be the ith element of δN (q, a) in some canonical order.

Now observe that N accepts a string w if and only if M accepts the pair (w, x) for some string
x ∈ Ω∗, and N rejects w if and only if M rejects the pair (w, x) for all strings x ∈ Ω∗.

The “advice” formulation of nondeterminism allows a different strategy for simulation by a
standard deterministic Turing machine, which is often called dovetailing. Consider all possible
advice strings x , in increasing order of length; listing these advice strings is equivalent to
repeatedly incrementing a base-r counter. For each advice string x , simulate M on input (w, x)
for exactly |x | transitions.

DovetailM (w):
for t ← 1 to∞

done← True
for all strings x ∈ Ωt

if M accepts (w, x) in at most t steps
accept

if M(w, x) does not halt in at most t steps
done← False

if done
reject

The most straightforward Turing-machine implementation of this algorithm requires three tapes:
A read-only input tape containing w, an advice tape containing x (which is also used as a timer
for the simulation), and the work tape. This simulation requires O(t r t) time to simulate all
possibilities for t steps of the original non-deterministic machine N .

If we insist on using a standard Turing machine with a single tape and a single head, the
simulation becomes slightly more complex, but (unlike our earlier queue-based strategy) not
significantly slower. This standard machine S maintains a string of the form •w•x•z, where
z is the current work-tape string of M (or equivalently, of N), with marks (on a second track)
indicating the current positions of the heads on M ’s work tape and M ’s advice tape. Simulating
a single transition of M now requires O(|x |) steps, because S needs to shuttle its single head
between these two marks. Thus, S requires O(t 2r t) time to simulate all possibilities for t
steps of the original non-deterministic machine N . This is significantly faster than the queue-
based simulation, because we don’t record (and therefore don’t have to repeatedly scan over)
intermediate configurations; recomputing everything from scratch is actually cheaper!

9.6 The Cook-Levin Theorem

ÆÆÆ Define Sat and CircuitSat. Non-determinism is fundamentally different from other Turing
machine extensions, in that it seems to provide an exponential speedup for some problems,
just like NFAs can use exponentially fewer states than DFAs for the same language.

The Cook-Levin Theorem. If SAT ∈ P, then P=NP.

Proof: Let L ⊆ Σ∗ be an arbitrary language in NP, over some fixed alphabet Σ. There must be
an integer k and Turing machine M that satisfies the following conditions:

4

Models of Computation Lecture 9: Nondeterministic Turing Machines [Fa’14]

• For all strings w ∈ L, there is at least one string x ∈ Σ∗ such that M accepts the string w�x .

• For all strings w 6∈ L and x ∈ Σ∗, M rejects the string w�x .

• For all strings w, x ∈ Σ∗, M halts on input w�x after at most max{1, |w|k} steps.
Now suppose we are given a string w ∈ Σ∗. Let n = |w| and let N = max{1, |w|k}. We

construct a boolean formula Φw that is satisfiable if and only if w ∈ L, by following the execution
of M on input w�x for some unknown advice string x . Without loss of generality, we can assume
that |x |= N − n−1 (since we can extend any shorter string x with blanks.) Our formula Φw uses
the following boolean variables for all symbols a ∈ Γ , all states q ∈Q, and all integers 0≤ t ≤ N
and 0≤ i ≤ N + 1.

• Q t,i,q — M is in state q with its head at position i after t transitions.

• Tt,i,a — The kth cell of M ’s work tape contains a after t transitions.

The formula Φw is the conjunction of the following constraints:

• Boundaries: To simplify later constraints, we include artificial boundary variables just
past both ends of the tape:

Q t,i,q =Q t,N+1,q = False for all 0≤ t ≤ N and q ∈Q

Tt,0,a = Tt,N+1,a = False for all 0≤ t ≤ N and a ∈ Γ

• Initialization: We have the following values for variables with t = 0:

Q0,1,start = True

Q0,1,q = False for all q 6= start

H0,i,q = False for all i 6= 1 and q ∈Q

T0,i,wi
= True for all 1≤ i ≤ n

T0,i,a = False for all 1≤ i ≤ n and a 6= wi

T0,n+1,� = True

T0,i,a = False for all a 6= �

• Uniqueness: The variables T0,i,a with n+ 2≤ i ≤ N represent the unknown advice string
x; these are the “inputs” to Φw. We need some additional constraints ensure that for each
i, exactly one of these variables is True:

�∨
a∈Γ

T0, j,a

�
∧
∧
a 6=b

�
T0, j,a ∨ T0, j,b

�

• Transitions: For all 1 ≤ t ≤ N and 1 ≤ i ≤ N , the following constraints simulate the
transition from time t − 1 to time t.

Q t,i,q =
∨

δ(p,a)=(q,·,+1)

�
Q t−1,i−1,p ∧ Tt,i−1,a

� ∨
∨

δ(p,a)=(q,·,−1)

�
Q t−i,i+1,p ∧ Tt,i+1,a

�

Tt,i,b =
∨

δ(p,a)=(·,b,·)

�
Q t−1,i,p ∧ Tt−1,i,a

� ∨
�∧

q∈Q
Q t−1,i,q ∧ Tt−1,i,b

�

5

Models of Computation Lecture 9: Nondeterministic Turing Machines [Fa’14]

• Output: We have one final constraint that indicates acceptance.

z =
N∨

t=0

N∨
i=1

Q t,i,accept

A straightforward induction argument implies that without the acceptance constraint, any
assignment of values to the unknown variables T0,i,a that satisfies the uniqueness constraints
determines unique values for the other variables in Φw, which consistently describe the execution
of M . Thus, Φw is satisfiable if and only if for some input values T0,i,a, the resulting , including
acceptance. In other words, Φw is satisfiable if and only if there is a string x ∈ Γ ∗ such that M
accepts the input w�x . We conclude that Φw is satisfiable if and only if w ∈ L.

For any any string w of length n, the formula Φw has O(N2) variables and O(N2) constraints
(where the hidden constants depend on the machine M). Every constraint except acceptance
has constant length, so altogether Φw has length O(N2). Moreover, we can construct Φw in
O(N2) = O(n2k) time.

In conclusion, if we could decide SAT for formulas of size n in (say) O(nc) time, then we
could decide membership in L in O(n2kc) time, which implies that L ∈ P. �

Exercises

1. Prove that the following problem is NP-hard, without using the Cook-Levin Theorem. Given
a string 〈M , w〉 that encodes a non-deterministic Turing machine M and a string w, does
M accept w in at most |w| transitions?

ÆÆÆ More excerises!

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

6

	Strings
	Regular Languages
	Finite-State Machines
	Nondeterministic Automata
	Context-Free Languages
	Turing Machines
	Universal Models
	Undecidability
	Nondeterministic Turing Machines

