
1

From Stack Traces to Lazy Rewriting Sequences

Stephen Chang, Eli Barzilay, John Clements*, Matthias Felleisen

Northeastern University

*California Polytechnic State University

10/5/2011

2

Debugging lazy programs is hard.

3

Freja (Nilsson and Fritzson 1992)

Hat (Sparud and Runciman, 1997)

Buddha (Pope, 1998)

HOOD (Gill, 2000)

New Hat (Wallace et al., 2001)

HsDebug (Ennals and Peyton Jones, 2003)

Rectus (Murk and Kolmoldin, 2006)

GHCi debugger (Marlow et al., 2007)

StackTrace (Allwood et al., 2009)

4

Freja (Nilsson and Fritzson 1992)

Hat (Sparud and Runciman, 1997)

Buddha (Pope, 1998)

HOOD (Gill, 2000)

New Hat (Wallace et al., 2001)

HsDebug (Ennals and Peyton Jones, 2003)

Rectus (Murk and Kolmoldin, 2006)

GHCi debugger (Marlow et al., 2007)

StackTrace (Allwood et al., 2009)

What do you think is Haskell's most glaring
weakness / blind spot / problem? [Tibell, Knowlson 2011]

Inadequate Tools (50%)
5

[State of Haskell Survey 2011]

6

[State of Haskell Survey 2011]

"A debugger adjusted to the complexity of debugging
lazily evaluated structures." (weeks)

7

[State of Haskell Survey 2011]

"A debugger adjusted to the complexity of debugging
lazily evaluated structures." (weeks)

"Laziness is hard to come to grips with.
It's powerful and good, but it also causes strange problems

that a beginner often cannot diagnose." (months)

8

[State of Haskell Survey 2011]

"A debugger adjusted to the complexity of debugging
lazily evaluated structures." (weeks)

"Laziness is hard to come to grips with.
It's powerful and good, but it also causes strange problems

that a beginner often cannot diagnose." (months)

"I think that a good debugger that lets me step through a program
/quickly and comfortably/ would be a great help." (1yr)

9

[State of Haskell Survey 2011]

"A debugger adjusted to the complexity of debugging
lazily evaluated structures." (weeks)

"Laziness is hard to come to grips with.
It's powerful and good, but it also causes strange problems

that a beginner often cannot diagnose." (months)

"I think that a good debugger that lets me step through a program
/quickly and comfortably/ would be a great help." (1yr)

"I'd love to see some debugging
(~step by step evaluation/run tracing) support." (2yrs)

10

[State of Haskell Survey 2011]

"A debugger adjusted to the complexity of debugging
lazily evaluated structures." (weeks)

"Laziness is hard to come to grips with.
It's powerful and good, but it also causes strange problems

that a beginner often cannot diagnose." (months)

"I think that a good debugger that lets me step through a program
/quickly and comfortably/ would be a great help." (1yr)

"I'd love to see some debugging
(~step by step evaluation/run tracing) support." (2yrs)

"Debugging lazy code" (4 yrs)

11

[State of Haskell Survey 2011]

"A debugger adjusted to the complexity of debugging
lazily evaluated structures." (weeks)

"Laziness is hard to come to grips with.
It's powerful and good, but it also causes strange problems

that a beginner often cannot diagnose." (months)

"I think that a good debugger that lets me step through a program
/quickly and comfortably/ would be a great help." (1yr)

"I'd love to see some debugging
(~step by step evaluation/run tracing) support." (2yrs)

"Debugging lazy code" (4 yrs)

Better lazy step-based tools are needed.
12

What's a "step"?

13

HsDebug

[Ennals and Peyton Jones 2003]

14

HsDebug

[Ennals and Peyton Jones 2003]

• Evaluate expressions optimistically.

15

HsDebug

[Ennals and Peyton Jones 2003]

• Evaluate expressions optimistically.

• To preserve lazy behavior, handle special cases:

non-termination

errors

16

HsDebug

[Ennals and Peyton Jones 2003]

• Evaluate expressions optimistically.

• To preserve lazy behavior, handle special cases:

non-termination

errors

• Too difficult to implement.

17

Idea #1:

Debugger shouldn't change the program evaluation model.

18

GHCi Debugger

[Marlow et al. 2007]

19

GHCi Debugger

[Marlow et al. 2007]

• Shows the effects of laziness.

20

GHCi Debugger

[Marlow et al. 2007]

• Shows the effects of laziness.

• "having execution jump around can be distracting and confusing"

21

GHCi Debugger

[Marlow et al. 2007]

• Shows the effects of laziness.

• "having execution jump around can be distracting and confusing"

test1 x y = (test2 y) + x
test2 x = x * 2
test3 x = x + 1
main = print $ test1 (1 + 2) (test3 (3 + 4))

22

GHCi Debugger

[Marlow et al. 2007]

• Shows the effects of laziness.

• "having execution jump around can be distracting and confusing"

test1 x y = (test2 y) + x
test2 x = x * 2
test3 x = x + 1
main = print $ test1 (1 + 2) (test3 (3 + 4))

23

GHCi Debugger

[Marlow et al. 2007]

• Shows the effects of laziness.

• "having execution jump around can be distracting and confusing"

test1 x y = (test2 y) + x
test2 x = x * 2
test3 x = x + 1
main = print $ test1 (1 + 2) (test3 (3 + 4))

24

GHCi Debugger

[Marlow et al. 2007]

• Shows the effects of laziness.

• "having execution jump around can be distracting and confusing"

test1 x y = (test2 y) + x
test2 x = x * 2
test3 x = x + 1
main = print $ test1 (1 + 2) (test3 (3 + 4))

25

GHCi Debugger

[Marlow et al. 2007]

• Shows the effects of laziness.

• "having execution jump around can be distracting and confusing"

test1 x y = (test2 y) + x
test2 x = x * 2
test3 x = x + 1
main = print $ test1 (1 + 2) (test3 (3 + 4))

26

GHCi Debugger

[Marlow et al. 2007]

• Shows the effects of laziness.

• "having execution jump around can be distracting and confusing"

test1 x y = (test2 y) + x
test2 x = x * 2
test3 x = x + 1
main = print $ test1 (1 + 2) (test3 (3 + 4))

27

GHCi Debugger

[Marlow et al. 2007]

• Shows the effects of laziness.

• "having execution jump around can be distracting and confusing"

test1 x y = (test2 y) + x
test2 x = x * 2
test3 x = x + 1
main = print $ test1 (1 + 2) (test3 (3 + 4))

28

GHCi Debugger

[Marlow et al. 2007]

• Shows the effects of laziness.

• "having execution jump around can be distracting and confusing"

test1 x y = (test2 y) + x
test2 x = x * 2
test3 x = x + 1
main = print $ test1 (1 + 2) (test3 (3 + 4))

29

GHCi Debugger

[Marlow et al. 2007]

• Shows the effects of laziness.

• "having execution jump around can be distracting and confusing"

test1 x y = (test2 y) + x
test2 x = x * 2
test3 x = x + 1
main = print $ test1 (1 + 2) (test3 (3 + 4))

30

GHCi Debugger

[Marlow et al. 2007]

• Shows the effects of laziness.

• "having execution jump around can be distracting and confusing"

test1 x y = (test2 y) + x
test2 x = x * 2
test3 x = x + 1
main = print $ test1 (1 + 2) (test3 (3 + 4))

31

GHCi Debugger

[Marlow et al. 2007]

• Shows the effects of laziness.

• "having execution jump around can be distracting and confusing"

test1 x y = (test2 y) + x
test2 x = x * 2
test3 x = x + 1
main = print $ test1 (1 + 2) (test3 (3 + 4))

32

GHCi Debugger

[Marlow et al. 2007]

• Shows the effects of laziness.

• "having execution jump around can be distracting and confusing"

test1 x y = (test2 y) + x
test2 x = x * 2
test3 x = x + 1
main = print $ test1 (1 + 2) (test3 (3 + 4))

33

GHCi Debugger

[Marlow et al. 2007]

• Shows the effects of laziness.

• "having execution jump around can be distracting and confusing"

test1 x y = (test2 y) + x
test2 x = x * 2
test3 x = x + 1
main = print $ test1 (1 + 2) (test3 (3 + 4))

34

GHCi Debugger

[Marlow et al. 2007]

• Shows the effects of laziness.

• "having execution jump around can be distracting and confusing"

test1 x y = (test2 y) + x
test2 x = x * 2
test3 x = x + 1
main = print $ test1 (1 + 2) (test3 (3 + 4))

• Step semantics correspond to low-level implementation

-- unfamiliar to programmers.

35

Idea #2:

Debugger should use a high-level semantics familiar to programmers.

36

A reduction semantics-based tool

[Gibbons and Wansbrough 1996, Ariola et al. 1995]

37

A reduction semantics-based tool

[Gibbons and Wansbrough 1996, Ariola et al. 1995]

• Persistent arguments clutter reductions.

38

A reduction semantics-based tool

[Gibbons and Wansbrough 1996, Ariola et al. 1995]

• Persistent arguments clutter reductions.

39

A reduction semantics-based tool

[Gibbons and Wansbrough 1996, Ariola et al. 1995]

• Persistent arguments clutter reductions.

40

A reduction semantics-based tool

[Gibbons and Wansbrough 1996, Ariola et al. 1995]

• Persistent arguments clutter reductions.

41

A reduction semantics-based tool

[Gibbons and Wansbrough 1996, Ariola et al. 1995]

• Persistent arguments clutter reductions.

• Extraneous reductions.

42

A reduction semantics-based tool

[Gibbons and Wansbrough 1996, Ariola et al. 1995]

• Persistent arguments clutter reductions.

• Extraneous reductions.

43

A reduction semantics-based tool

[Gibbons and Wansbrough 1996, Ariola et al. 1995]

• Persistent arguments clutter reductions.

• Extraneous reductions.

44

A reduction semantics-based tool

[Gibbons and Wansbrough 1996, Ariola et al. 1995]

• Persistent arguments clutter reductions.

• Extraneous reductions.

45

A reduction semantics-based tool

[Gibbons and Wansbrough 1996, Ariola et al. 1995]

• Persistent arguments clutter reductions.

• Extraneous reductions.

46

Idea #3:

A more "intuitive" lazy semantics is needed.

47

Our Work

48

Our Work

A step-based lazy debugging tool,

based on a high-level "intuitive" lazy semantics.

49

Our Work

• An algebraic stepper tool for Lazy Racket.

50

Our Work

• An algebraic stepper tool for Lazy Racket.

• A new, "intuitive" semantics for lazy languages,

51

Our Work

• An algebraic stepper tool for Lazy Racket.

• A new, "intuitive" semantics for lazy languages,

• Theory:

 corresponds to existing lazy semantics.

52

Our Work

• An algebraic stepper tool for Lazy Racket.

• A new, "intuitive" semantics for lazy languages,

• Theory:

 corresponds to existing lazy semantics.

Tool is correct with respect to

53

"intuitive"

54

"intuitive"

=

syntactic

55

"intuitive"

=

syntactic

+

substitution-based

56

Demo!

57

Semantics

58

: Syntax

59

: Two-phase Steps

60

: Two-phase Steps

1) Reduce next redex.

61

: Two-phase Steps

1) Reduce next redex.

 fresh

62

: Two-phase Steps

1) Reduce next redex.

 fresh

2) If redex is under a label, update all other
identically labeled expressions to match.

63

: Two-phase Steps, Pictorially

64

: Two-phase Steps, Pictorially

65

: Two-phase Steps, Pictorially

66

: Two-phase Steps, Pictorially

67

: Two-phase Steps, Pictorially

68

Implementation

69

Continuation Marks

Mechanism for lightweight stack access. [Clements 2001]

70

Continuation Marks

Mechanism for lightweight stack access. [Clements 2001]

Continuation marks used in Racket implementation of:

71

Continuation Marks

Mechanism for lightweight stack access. [Clements 2001]

Continuation marks used in Racket implementation of:

stack tracer, stepper, debugger, profiler, exception handling,

dynamic binding, delimited continuations, web server
72

Stepper Architecture

73

Continuation marks are easily added to any language.

74

Continuation marks are easily added to any language.

["Implementing continuation marks in JavaScript" (Clements et al., 2008)]

75

Continuation marks are easily added to any language.

["Implementing continuation marks in JavaScript" (Clements et al., 2008)]

["Finding the needle: stack traces for GHC" (Allwood et al., 2009)]

76

: Correctness

Correspondence exists between and:

77

: Correctness

Correspondence exists between and:

- Low-level semantics (i.e., Launchbury)

78

: Correctness

Correspondence exists between and:

- Low-level semantics (i.e., Launchbury)

- Reduction semantics (i.e., Ariola et al.)

79

To Do

80

To Do

• Advanced navigation features, breakpointing

81

To Do

• Advanced navigation features, breakpointing

• Additional inspection of program state

82

To Do

• Advanced navigation features, breakpointing

• Additional inspection of program state

• Scaling to large programs

83

Summary

• New semantics for lazy evaluation:

Easy to understand and suitable for use in a debugger.

Equivalent to existing lazy semantics.

• Algebraic stepper for Lazy Racket, based on

Proven correct.

Easily ported to any lazy language via continuation marks.

84

Summary

• New semantics for lazy evaluation:

Easy to understand and suitable for use in a debugger.

Equivalent to existing lazy semantics.

• Algebraic stepper for Lazy Racket, based on

Proven correct.

Easily ported to any lazy language via continuation marks.

Thanks!

http://racket-lang.org/

85

