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Abstract, This papsr esamines the old question of the relationship between ISWIM and the
A-calculus, usitg the distinction berween call-by-value and call-by-name. It Is held thar the re-
lationship should be mediated by a ctandardisation theorem. Since this lcads to difficultics,
a2 new A-calew'us is introduced whose standardieation theorem gives a good correspondence
with ISWIM a: given by the SECD machine, but without the letrec featurs. Next a call-by-name
variant of ISWIM is introduced which i in an analogous corresponde ace with the vsual A-calculus,
The relation beiween call-ty-value and call-by-name is then studicd by giving simulations of each
lzuguage by tha other and interpretations of each calculus in the other, These are obtained as
another application of the continuation technique, Some emphais is placed throughout on the
uotion of operational eyuality (or conteatual eyuility). If oms cun e proved equal io a calculus
they are operationally equal in the corresponding language. Unfortanatel y, onerational aquality
is not preserved by either of the simul:tions

1. Introduction

Our Intention is to study call-by-value and call-by-name in the setting of the lambda-
calculus which was first used to explicate programming !anguage features by Lan-
din [5, 6, 7]. To this end, for each calling mechanism we sct up a programming lan-
guage and a formal calculus and then show how cach determines the other. After
that we give simulations of the call-by-value programming !language by the call-by-
pame one and vice versa — this also prcvides interpretations of each calculus in
the other one.

If the terms of the -calculus (e have in mind the AK-j calculus for the moment)
are regarded as rules, with a reduction relation showing how the; may bz carriad
out and indeed with a norma! order reduction sequencs capturing, in deternuinistic
fashion, all possible normal forms, then we have aiready preity well determined
a programming language.

On the other hand, the langnage can be regarded as giving true :quations between
programs (== terms of the calculus). Informally, one program equals another, oper-
ationally, if it can be substituted for the other in all contexts vithout “changirg
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The relation beiween call-by-value and call-by-name is then studicd hy giving simulations of each
lzuguage by th: other and interpretations of each calculus in the other, These are obtained as
another application of the continuation technmique, Some emphais is placed throughout on the
wotivn of opecational equality (or conteatual eyuility). If wons cun e proved equal io a calculus
they are operationally equal in the ponding | Unfortanatel 7, onerational aquality
is not preserved by either of the simulstions

1. Introduction

Our Intention Is to study call-by-value and call-by-ame in the setting of the lambda-
calculus which was first used to explicate programming !anguage features by Lan-
din [, 6, 7]. To this end, for each calling mecharnism we sct up a programming lan-
guage and a formal calculus and then show how cach determines the other. After
that we give simulations of the call-by-value programming !anguage by the call-by-
name one and vice versa — this also prcvides interpretations of each calculus in
the other one.

If the terms of the 2-calculus (e have in mind the AK-3 calculus for the moment)
are regarded as rules, with a reduction relation showing how the; may bz carriad
out and indeed with a norma! order reduction sequenc: capturing, in detertiinistic
fashion, all possible normal forms, then we have aiready preity well determined
a programming language.

On the other hand, the langnage can be regarded as giving true s quations between
programs (== terms of the calculus). Informally, one program equals another, oper-
ationally, if it can be substituted for the other in all contexts vithout “changirg
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they are operationally equal in the ponding language. Unfortunatel 7, onerational aquality
is not preserved by either of the simul:tions

In both cases the calculi are seen to be correct from the point of view of the programming languages.

Our intention Is to study call-by-value and call-by-name in the setting of the lambda-
calculus which was first used to explicate programming !anguage features by Lan-
din [5, 6, 7]. To this end, for each calling mechanism we sct up a programming lan-
guage and a formal calculus and then show how cach determines the other. After
that we give simulations of the call-by-value programming !anguage by the call-by-
oame one and vice versa — this also prcvides interpretations of each calculus in
the other one.

If the terms of the 2-calculus (e have in mind the AK-3 calculus for the moment)
are regarded as rules, with a reduction relation showing how the; may bz carriad
out and indeed with a norma! order reduction sequencs capturing, in deternuinistic
fashion, all possible normal forms, then we have aiready preity well determined
a programming language.

On the other hand, the langnage can be regarded as giving true s quations between
programs (== terms of the calculus). Informally, one program equals another, oper-
ationally, if it can be substituted for the other in all contexts vithout “changirg
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In both cases the calculi are seen to be correct from the point of view of the programming languages.

Our Intention Is to study call-by-value and call-by-pame in the setting of the lambda-
calculus which was first used to explicate programming !anguage features by Lan-
din [, 6, 7]. To this end, for each calling mechanism we sct up a programming lan-
guage and a formal calculus and then show how cach determines the other. After
that we give simulations of the call-by-value programming !anguage by the call-by-

. .
So one has to look for programming language/calculus pairs.
If the terms of the 2-calculus (we have in mind the AK-j calculus for the moment)
are regarded as rules, with a reduction relation showing how the; may bz carriad
out and indeed with a norma! order reduction sequencs capturing, in determiinistic
fashion, all possible normal forms, then we have aiready preity well determined
a programming language.
On the other hand, the langnage can be regarded as giving true s quations between
programs (== terms of the calculus). Informally, one program equals another, oper-
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call-by-name

(Ax.e) ex —+ e{x:=e4} (B)
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A\

call-by-name

E[l(Ax.e) ex] = Ele{x:=es}]

"leftmost-outermost"

(B
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Av

call-by-value

E[l(Ax.e) vi] = Ele{x:=v}]

"eftmost-outermost"

()
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call-by-need
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call-by-need

1) Evaluate argument only when needed.
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call-by-need

1) Evaluate argument only when needed.
2) Evaluate argument at most once.

74



7\need

call-by-need

1) Evaluate argument only when needed.
2) Evaluate argument at most once.
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7\need—af ? A ? 7\need—mow
Ariola/Felleisen — — Maraist/Odersky /Wadler
0405 7 need 01,95,

call-by-need

1) Evaluate argument only when needed.
2) Evaluate argument at most once.
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7\need—af + A + 7\need—mow
Ariola/Felleisen Maraist/Odersky /Wadler
need

'94,'95,'97 '94,'95,'98

call-by-need

1) Evaluate argument only when needed.
2) Evaluate argument at most once.
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7\need—af

Ariola/Felleisen
'94,'95,'97

* 7\need *

call-by-need

7\need—mow
Maraist/Odersky /Wadler
'94,'95,'98
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7\need—mow
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7\need—af

Ariola/Felleisen
'94,'95,'97

* 7\need *

call-by-need

AX

7\need—mow
Maraist/Odersky /Wadler
'94,'95,'98
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7\need—af

Ariola/Felleisen
'94,'95,'97

* 7\need

call-by-need

AX

+

7\need—mow
Maraist/Odersky /Wadler
'94,'95,'98
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7\need—af

Ariola/Felleisen
'94,'95,'97

* 7\need *

call-by-need

AX

7\need—mow
Maraist/Odersky /Wadler
'94,'95,'98

(reshuffle)
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7\need—af + A + 7\need—mow
Ariola/Felleisen Maraist/Odersky /Wadler
need

'94,'95,'97 '94,'95,'98

call-by-need
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our 7\need

call-by-need

AX
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our 7\need

call-by-need

&

/ Sx
X
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our 7\need

call-by-need

AX e, "demand path"

X
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our 7\need

call-by-need

AX e, "demand path"

X

(pneed>
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OLD Apcea: OPERATIONAL OVERVIEW

1) Find the next demanded variable.
2) Find its corresponding argument and evaluate it.

3) Substitute evaluated argument for demanded variable.
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OLD Apcea: OPERATIONAL OVERVIEW

2) Find its corresponding argument and evaluate it.

3) Substitute evaluated argument for demanded variable.
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OLD Apeea: DEMAND CONTEXTS
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[ 1] | De | (Ax.D) e
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[ 1] | De | (Ax.D) e
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OLD Apeea: DEMAND CONTEXTS

[1 | De |
t

binding structure
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OLD Apeea: DEMAND CONTEXTS

[1 | De |
t

binding structure

}
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OLD Ageeq: BINDING STRUCTURE
B=[1 | (Ax.B) e

Ax. (Ay. (Az. ...) ez) ey) e
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B=[1 | (Ax.B) e

m

Ax. (Ay. (Az. ...) ez) ey) e
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OLD Ageeq: BINDING STRUCTURE
B=[1 | (Ax.B) e

4/4/‘/——\;\\
Ax.(Ay.(Az. ...) e) e) ex &

119



OLD Ageeq: BINDING STRUCTURE
B=[1 | (Ax.B) e

4///_——\\\.
Ax.(Ay.(Az. ...) e) ey) ex &

AZ e,
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OLD Apeeq: RESHUFFELING OF BINDINGS
B=[1]] (A\x.B) e

e o T
(COAX.AY.AZ. ...) ex) ey) e,

@
—

© e,
TN

@ ey
T~

AX ey
|

%Iy

7\|z
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e o T
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@ ey
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OLD Apeeq: RESHUFFELING OF BINDINGS
B=[1]] (A\x.B) e
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OLD Apeeq: RESHUFFELING OF BINDINGS
B=[1]] (A\x.B) e

m

(Ax. ((AYy.AzZ. ...) ey) e;) e
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OLD Apeeq: RESHUFFELING OF BINDINGS
B=[1]] (A\x.B) e

m

Ax. ((AV.AzZ. ...) &) e) e
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OLD Apeeq: RESHUFFELING OF BINDINGS
B=[1]] (A\x.B) e

m
(AX.(?xy.(Amz) e;) ex &
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PROBLEMS WITH OLD CALL-BY-NEED CALCULUS

1) Reshuffling rules.
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OLD Apcea: OPERATIONAL OVERVIEW

1) Find the next demanded variable.
2) Find its corresponding argument and evaluate it.

3) Substitute evaluated argument for demanded variable.
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1) Find the next demanded variable.

3) Substitute evaluated argument for demanded variable.
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OLD Apcea: OPERATIONAL OVERVIEW

1) Find the next demanded variable.

2) Find its corresponding argument and evaluate it.
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OLD Ayeeq: DEREFERENCING

e,

Ax. (Ay. (Az. ...) ez) ey) e

AZ e,

178



OLD Ayeeq: DEREFERENCING

e,

Ax. (Ay.(Az. v ) ez) ey) e

@
—

AX e,
I

@
—~

7\|Y Sy
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—~ >~
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y
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OLD Ayeeq: DEREFERENCING

e,

Ax. (Ay.(Az. v ) ez) Vy) e

@
—

AX e,
I

@
—~

7\|Y Vy

@
—~ >~

AZ e,
|

y
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OLD Ayeeq: DEREFERENCING

e,

Ax. (Ay.(Az. v ) ez) Vy) e

@
—

AX e,
I

@
—~

7\|Y Vy

@
—~ >~

AZ e,
|

y

(Ay.Dly]) v — (Ay.D]v]) v| (deref)

191



OLD Ayeeq: DEREFERENCING

e

Ax. (Ay. (Az. vy ) ez) Vvy) ex
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AX ey
I

@
—~

7\|Y Vy
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(Ay.Dly]) v — (Ay.D]v]) v| (deref)
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PROBLEMS WITH OLD CALL-BY-NEED CALCULUS

1) Reshuffling rules.
2) Arguments and applications never go away.
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NEW Apeeqa: HANDLING ARBITRARY BINDING STRUCTURE
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©

AZ e,

B=[11 (Ax.B) e
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NEW Apeeqa: HANDLING ARBITRARY BINDING STRUCTURE

@
—

@ e,
TN

¢ ey
T~

AX e,
|

Aly

7\|z

A=T[1 | 7?77
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AX ey
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Ay ey

A=T[1 | 7?77
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A=T[1 | 7?77
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AX ey
|

@
—~ >~

7\|Y Sy
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NEW Apceq: HANDLING ARBITRARY BINDING STRUCTURE
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@ e,
TN

AX ey
|
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—~ >~

7\|Y Sy

7\|z

A=T[1] 1] Al(A\x.A)]
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NEW Apeeqa: HANDLING ARBITRARY BINDING STRUCTURE

@
—

@ e,
TN

AX e,
|

©
~— T~

A[(Ax.A)] e

[ 1 |
| D e | A[D]
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PROBLEMS WITH OLD CALL-BY-NEED CALCULUS

HReshutthingrutes:

2) Arguments and applications never go away.
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NEW Apceq: SPLITTING CONTEXTS
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NEW Apcea: SPLITTING CONTEXTS
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@ e,
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© ey
T~

AX ey
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7\Iy
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D[y]
A[D[y]]
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AX e,
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D[y]

(Ay...D[yl)...
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NEW Apeeq: SPLITTING CONTEXTS
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AX ey
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AX ey
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NEW Apcea: SPLITTING CONTEXTS
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NEW Apcea: SPLITTING CONTEXTS

©

7\|z
D[y]

L ADY.ADIYII] ey ...

A=T[1711 ADx.Al
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NEW Apcea: SPLITTING CONTEXTS

?\Iz

D[y]
A[AAY.ADIy]]] el
A=T[11 Alrx.Al
A=1_[11A[] e
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NEW Apcea: SPLITTING CONTEXTS
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© Vy
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D[y]

A[A [Ay. A[D [yll] vyl

= [ ] IAD\XA]
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NEW Ancea: pneed
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NEW Ancea: pneed

©
T
@ e, ©
TN TN
@ Vy @ e
7\IX ey — 7\IX ey
7\Iy 7\|z [ \
T =V
AZ D[yl S

A[AMAY.ADIy]1] v
N — (pneed)
ATATADIy]]{y:=v,}]]

249



PROBLEMS WITH PREVIOUS CALL-BY-NEED CALCULUS
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NEW Apeeq: EVALUATING ARGUMENTS

| D e | A[D]
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NEW Apeeq: EVALUATING ARGUMENTS

D=1[11De | A | A[A[AY.AD[y]]] DI
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OTHER INTERESTING THINGS IN THE PAPER . . .

* Correspondence to Launchbury's (1993) machine semantics.
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* Correspondence to Launchbury's (1993) machine semantics.

* Confluence, Standardization properties.
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OTHER INTERESTING THINGS IN THE PAPER . . .

* Correspondence to Launchbury's (1993) machine semantics.
* Confluence, Standardization properties.

* Soundness with respect to observational equivalence.
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Thanks!
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