THE CALL-BY-NEED LAMBDA CALCULUS, REVISITED

Stephen Chang and Matthias Felleisen

Northeastern University

26/3/2012

Church

12

Theoretical Computer Sciznce 1 (1975) 125-15D.
® Norti-Holland Punlishing Company

CALL-BY-NAME, CALL-BY-VALUE AND THE
#»CALCULUS

G. D. PLOTKIN

Department of Mashine Intelligence, School of Artificial Intelligmnce, University of Fdinburgh,
Edinburgh, United Kingdom

Communicated by R. Milner
Received 1 August 1974

Abstract, This papsr esamines the old question of the relationship between ISWIM and the
A-calculus, usitg the distinction berween call-by-value and call-by-name. It Is held thar the re-
lationship should be mediated by a ctandardisation theorem. Since this lcads to difficultics,
a2 new A-calew'us is introduced whose standardieation theorem gives a good correspondence
with ISWIM a: given by the SECD machine, but without the letrec featurs. Next a call-by-name
variant of ISWIM is introduced which i in an analogous corresponde ace with the vsual A-calculus,
The relation beiween call-ty-value and call-by-name is then studicd by giving simulations of each
lzuguage by tha other and interpretations of each calculus in the other, These are obtained as
another application of the continuation technique, Some emphais is placed throughout on the
uotion of operational eyuality (or conteatual eyuility). If oms cun e proved equal io a calculus
they are operationally equal in the corresponding language. Unfortanatel y, onerational aquality
is not preserved by either of the simul:tions

1. Introduction

Our Intention is to study call-by-value and call-by-name in the setting of the lambda-
calculus which was first used to explicate programming !anguage features by Lan-
din [5, 6, 7]. To this end, for each calling mechanism we sct up a programming lan-
guage and a formal calculus and then show how cach determines the other. After
that we give simulations of the call-by-value programming !language by the call-by-
pame one and vice versa — this also prcvides interpretations of each calculus in
the other one.

If the terms of the -calculus (e have in mind the AK-j calculus for the moment)
are regarded as rules, with a reduction relation showing how the; may bz carriad
out and indeed with a norma! order reduction sequencs capturing, in deternuinistic
fashion, all possible normal forms, then we have aiready preity well determined
a programming language.

On the other hand, the langnage can be regarded as giving true :quations between
programs (== terms of the calculus). Informally, one program equals another, oper-
ationally, if it can be substituted for the other in all contexts vithout “changirg

13

Theoretical Computar Sciance 1 (1975) 125-15D,
® Norti-Holland Punlishing Company

If the terms of the A-calculus are regarded as rules, with a reduction relation

showing how the, may be carriad out, then we have aircady preity well
determined a programming language.

Department of Machine Imelligence, School of Artificial Intelligence, University of Fdinburgh,
Edinburgh, United Kingdom

Communicated by R. Milner
Received 1 August 1974

Abstract, This papsr esamines the old question of the relationship between ISWIM and the
A-calculus, usirg the distinction berween call-by-value and call-by-name. It Is held thar the re-
lationship should be mediated by a standardisation theorem. Since this lcads to difficultics,
a2 new A-calew'us is introduced whose standardieation theorem gives a good correspondence
with ISWIM a: given by the SECD machine, but without the letrec featurs. Next a call-by-name
variant of ISWIM is introduced which i in an analogous corresponde ace with the vsual A-calculus,
The relation beiween call-ty-value and call-by-name is then studicd by giving simulations of each
lzuguage by th: other and interpretations of each calculus in the other, These are obtained as
another application of the continuation technique, Some emphais is placed throughout on the
wotion of operational eyuality (or conteatual eyuility). If wons cun e proved equal io a calculus
they are operationally equal in the corresponding language. Unfortunately, onerational aquality
is not preserved by either of the simul:tions

1. Introduction

Our Intention is to study call-by-value and call-by-name in the setting of the lambda-
calculus which was first used to explicate programming !anguage features by Lan-
din [5, 6, 7]. To this end, for each calling mechanism we sct up a programming lan-
guage and a formal calculus and then show how cach determines the other. After
that we give simulations of the call-by-value programming language by the call-by-
oame one and vice versa — this also prcvides interpretations of each calculus in
the other one.

If the terms of the A-calculus (e have in mind the AK-3 calculus for the moment)
are regarded as rules, with a reduction relation showing how the; may bz carriad
out and indeed with a norma! order reduction sequenc: capturing, in deterministic
fashion, all possible normal forms, then we have aiready preity well determined
a programming language.

On the other hand, the langnage can be regarded as giving true :quations between
programs { == terms of the calculus). Informally, one program equals another, oper-
ationally, if it can be substituted for the other in all contexts vithout “changirg

Theoretical Computer Sciance 1 (1975) 1235-15D,
@ Norh-Holland Pnnlighing Compeny

If the terms of the A-calculus are regarded as rules, with a recuction relation

showing how the; may be carried out, then we have aiready preity well
determined a programming language.

Department of Mazhine Intelligence, School of Artificial Intelligmnce, University of Fdinburgh,
Edinburgh, United Kingdom

Communicated by R. Milner
Received 1 August 1974

a new A-calcu’us is introduced whose standardisation theorem gives a good correspondence
with ISWIM a given by the SECD machine . .. Next a call-by-name variant of ISWIM
is introduced which i; in an analogous correspceridence with the vsual A-caiculus.

VEITARL O 1D YV LIV 15 IHUOULCTG WINCH 4 I a0 angiVEUUS CUITSSPUT UG IV WL IS V3G AL i,
The relation beiween call-by-value and call-by-name is then studicd hy giving simulations of each
lzuguage by th: other and interpretations of each calculus in the other, These are obtained as
another application of the continuation technmique, Some emphais is placed throughout on the
wotivn of opecational equality (or conteatual eyuility). If wons cun e proved equal io a calculus
they are operationally equal in the ponding | Unfortanatel 7, onerational aquality
is not preserved by either of the simulstions

1. Introduction

Our Intention Is to study call-by-value and call-by-ame in the setting of the lambda-
calculus which was first used to explicate programming !anguage features by Lan-
din [, 6, 7]. To this end, for each calling mecharnism we sct up a programming lan-
guage and a formal calculus and then show how cach determines the other. After
that we give simulations of the call-by-value programming !anguage by the call-by-
name one and vice versa — this also prcvides interpretations of each calculus in
the other one.

If the terms of the 2-calculus (e have in mind the AK-3 calculus for the moment)
are regarded as rules, with a reduction relation showing how the; may bz carriad
out and indeed with a norma! order reduction sequenc: capturing, in detertiinistic
fashion, all possible normal forms, then we have aiready preity well determined
a programming language.

On the other hand, the langnage can be regarded as giving true s quations between
programs (== terms of the calculus). Informally, one program equals another, oper-
ationally, if it can be substituted for the other in all contexts vithout “changirg

35

Theoretical Computer Sciance 1 (1975) 1235-15D,
© Norh-Holland Pnnlighing Compeny

If the terms of the A-calculus are regarded as rules, with a recuction relation

showing how the; may be carried out, then we have aiready preity well
determined a programming language.

Department of Mazhine Intelligence, School of Artificial Intelligmnce, University of Fdinburgh,
Edinburgh, United Kingdom

Communicated by R. Milner
Received 1 August 1974

a new A-calcu'us is introduced whose standardisation theorem gives a good correspondence
with ISWIM a given by the SECD machine . .. Next a call-by-name variant of ISWIM
is introduced which i; in an analogous correspceridence with the vsual A-caiculus.

VAITART OF 1D WAV 15 INUOQUCTa WINGH 4 I 80 angiVEUUS CULTSIPUT UG U0 WILH (UG UGN ATSa N Wi,
The relation beiween call-by-value and call-by-name is then studicd hy giving simulations of each
lzuguage by th: other and interpretations of each calculus in the other, These are obtained as
another application of the continuation technmique, Some emphais is placed throughout on the
wotivn of opecational equality (or conteatual eyuility). If wons cun e proved equal io a calculus
they are operationally equal in the ponding language. Unfortunatel 7, onerational aquality
is not preserved by either of the simul:tions

In both cases the calculi are seen to be correct from the point of view of the programming languages.

Our intention Is to study call-by-value and call-by-name in the setting of the lambda-
calculus which was first used to explicate programming !anguage features by Lan-
din [5, 6, 7]. To this end, for each calling mechanism we sct up a programming lan-
guage and a formal calculus and then show how cach determines the other. After
that we give simulations of the call-by-value programming !anguage by the call-by-
oame one and vice versa — this also prcvides interpretations of each calculus in
the other one.

If the terms of the 2-calculus (e have in mind the AK-3 calculus for the moment)
are regarded as rules, with a reduction relation showing how the; may bz carriad
out and indeed with a norma! order reduction sequencs capturing, in deternuinistic
fashion, all possible normal forms, then we have aiready preity well determined
a programming language.

On the other hand, the langnage can be regarded as giving true s quations between
programs (== terms of the calculus). Informally, one program equals another, oper-
ationally, if it can be substituted for the other in all contexts vithout “changirg

46

Theoretical Computar Sciznce 1 (1975) 125-15D,
® Norih-Holland Punlishing Compeny

If the terms of the A-calculus are regarded as rules, with a recuction relation

showing how the; may be carried out, then we have aiready preity well
determined a programming language.

Department of Mazhine Intelligence, School of Artificial Intelligmnce, University of Fdinburgh,
Edinburgh, United Kingdom

Communicated by R. Milner
Received 1 August 1974

a new A-calcu’us is introduced whose standardisation theorem gives a good correspondence
with ISWIM a given by the SECD machine . .. Next a call-by-name variant of ISWIM
is introduced which i; in an analogous correspceridence with the vsual A-caiculus.

VAITART OF 1D WAV 15 INUOQUCTa WINGH 4 I 80 angiVEUUS CULTSIPUT UG U0 WILH (UG UGN ATSa N Wi,
The relation beiween call-by-value and call-by-name is then studicd hy giving simulations of each
lzuguage by th: other and interpretations of each calculus in the other, These are obtained as
another application of the continuation technmique, Some emphais is placed throughout on the
wotivn of opecational equality (or conteatual eyuility). If wons cun e proved equal io a calculus
they are operationally equal in the corresponding | Unfortanatel 7, onerational aquality
is not preserved by either of the simulstions

In both cases the calculi are seen to be correct from the point of view of the programming languages.

Our Intention Is to study call-by-value and call-by-pame in the setting of the lambda-
calculus which was first used to explicate programming !anguage features by Lan-
din [, 6, 7]. To this end, for each calling mechanism we sct up a programming lan-
guage and a formal calculus and then show how cach determines the other. After
that we give simulations of the call-by-value programming !anguage by the call-by-

. .
So one has to look for programming language/calculus pairs.
If the terms of the 2-calculus (we have in mind the AK-j calculus for the moment)
are regarded as rules, with a reduction relation showing how the; may bz carriad
out and indeed with a norma! order reduction sequencs capturing, in determiinistic
fashion, all possible normal forms, then we have aiready preity well determined
a programming language.
On the other hand, the langnage can be regarded as giving true s quations between
programs (== terms of the calculus). Informally, one program equals another, oper-
ationally, if it can be substituted for the other in all contexts vithout “changirg

57

A\

call-by-name

(Ax.e) ex —+ e{x:=e4} (B)

68-69

A\

call-by-name

E[l(Ax.e) ex] = Ele{x:=es}]

"leftmost-outermost"

(B

70

Av

call-by-value

E[l(Ax.e) vi] = Ele{x:=v}]

"eftmost-outermost"

()

71

call-by-need

72

call-by-need

1) Evaluate argument only when needed.

73

call-by-need

1) Evaluate argument only when needed.
2) Evaluate argument at most once.

74

7\need

call-by-need

1) Evaluate argument only when needed.
2) Evaluate argument at most once.

75

7\need—af ? A ? 7\need—mow
Ariola/Felleisen — — Maraist/Odersky /Wadler
0405 7 need 01,95,

call-by-need

1) Evaluate argument only when needed.
2) Evaluate argument at most once.

76

7\need—af + A + 7\need—mow
Ariola/Felleisen Maraist/Odersky /Wadler
need

'94,'95,'97 '94,'95,'98

call-by-need

1) Evaluate argument only when needed.
2) Evaluate argument at most once.

77

7\need—af

Ariola/Felleisen
'94,'95,'97

* 7\need *

call-by-need

7\need—mow
Maraist/Odersky /Wadler
'94,'95,'98

78

7\need—af

Ariola/Felleisen
'94,'95,'97

* 7\need *

call-by-need

7\need—mow
Maraist/Odersky /Wadler
'94,'95,'98

79

7\need—af

Ariola/Felleisen
'94,'95,'97

* 7\need *

call-by-need

AX

7\need—mow
Maraist/Odersky /Wadler
'94,'95,'98

80

7\need—af

Ariola/Felleisen
'94,'95,'97

* 7\need

call-by-need

AX

+

7\need—mow
Maraist/Odersky /Wadler
'94,'95,'98

81

7\need—af

Ariola/Felleisen
'94,'95,'97

* 7\need *

call-by-need

AX

7\need—mow
Maraist/Odersky /Wadler
'94,'95,'98

(reshuffle)

92

7\need—af + A + 7\need—mow
Ariola/Felleisen Maraist/Odersky /Wadler
need

'94,'95,'97 '94,'95,'98

call-by-need

103

our 7\need

call-by-need

AX

104

our 7\need

call-by-need

&

/ Sx
X

105

our 7\need

call-by-need

AX e, "demand path"

X

106

our 7\need

call-by-need

AX e, "demand path"

X

(pneed>

107

OLD Apcea: OPERATIONAL OVERVIEW

1) Find the next demanded variable.
2) Find its corresponding argument and evaluate it.

3) Substitute evaluated argument for demanded variable.

108

OLD Apcea: OPERATIONAL OVERVIEW

2) Find its corresponding argument and evaluate it.

3) Substitute evaluated argument for demanded variable.

109

OLD Apeea: DEMAND CONTEXTS

110

OLD Apeea: DEMAND CONTEXTS

111

OLD Apeea: DEMAND CONTEXTS

[1] | De | (Ax.D) e

112

OLD Apeea: DEMAND CONTEXTS

[1] | De | (Ax.D) e

113

OLD Apeea: DEMAND CONTEXTS

[1] | De | (Ax.D) e

114

OLD Apeea: DEMAND CONTEXTS

[1 | De |
t

binding structure

115

OLD Apeea: DEMAND CONTEXTS

[1 | De |
t

binding structure

}

116

OLD Ageeq: BINDING STRUCTURE
B=[1 | (Ax.B) e

Ax. (Ay. (Az. ...) ez) ey) e

117

OLD Ageeq: BINDING STRUCTURE
B=[1 | (Ax.B) e

m

Ax. (Ay. (Az. ...) ez) ey) e

118

OLD Ageeq: BINDING STRUCTURE
B=[1 | (Ax.B) e

4/4/‘/——\;\\
Ax.(Ay.(Az. ...) e) e) ex &

119

OLD Ageeq: BINDING STRUCTURE
B=[1 | (Ax.B) e

4///_——\\\.
Ax.(Ay.(Az. ...) e) ey) ex &

AZ e,

130

OLD Apeeq: RESHUFFELING OF BINDINGS
B=[1]] (A\x.B) e

e o T
(COAX.AY.AZ. ...) ex) ey) e,

@
—

© e,
TN

@ ey
T~

AX ey
|

%Iy

7\|z

131

OLD Apeeq: RESHUFFELING OF BINDINGS
B=[1]] (A\x.B) e

e o T
((OAX.AY.AZ. ...) ex) ey) e,

@
—

© e,
TN

@ ey
T~

AX ey
|

%Iy

7\|z

132

OLD Apeeq: RESHUFFELING OF BINDINGS
B=[1]] (A\x.B) e

e o T
((OAX.AY.AZ. ...) ex) ey) e,

@
—

© e,
TN

@ ey
T~

AX ey
I

%Iy

7\|z

133

OLD Apeeq: RESHUFFELING OF BINDINGS
B=[1]] (A\x.B) e

e e aa
((Ax.(AY.AzZ. ...) ey) ex) e,

@
—

© e,
TN

AX ey
|

@
—~ >~

7\|Y Sy

7\|z

149

OLD Apeeq: RESHUFFELING OF BINDINGS
B=[1]] (A\x.B) e

e e aa
((Ax.(Ay.AzZ. ...) ey) ex) e,

@
—

© e,
TN

AX ey
|

@
—~ >~

7\|Y Sy

7\|z

150

OLD Apeeq: RESHUFFELING OF BINDINGS
B=[1]] (A\x.B) e

m

(Ax. ((AYy.AzZ. ...) ey) e;) e

161

OLD Apeeq: RESHUFFELING OF BINDINGS
B=[1]] (A\x.B) e

m

Ax. ((AV.AzZ. ...) &) e) e

162

OLD Apeeq: RESHUFFELING OF BINDINGS
B=[1]] (A\x.B) e

m
(AX.(?xy.(Amz) e;) ex &

173

PROBLEMS WITH OLD CALL-BY-NEED CALCULUS

1) Reshuffling rules.

174

OLD Apcea: OPERATIONAL OVERVIEW

1) Find the next demanded variable.
2) Find its corresponding argument and evaluate it.

3) Substitute evaluated argument for demanded variable.

175

OLD Apcea: OPERATIONAL OVERVIEW

1) Find the next demanded variable.

3) Substitute evaluated argument for demanded variable.

176

OLD Apcea: OPERATIONAL OVERVIEW

1) Find the next demanded variable.

2) Find its corresponding argument and evaluate it.

177

OLD Ayeeq: DEREFERENCING

e,

Ax. (Ay. (Az. ...) ez) ey) e

AZ e,

178

OLD Ayeeq: DEREFERENCING

e,

Ax. (Ay.(Az. v) ez) ey) e

@
—

AX e,
I

@
—~

7\|Y Sy

@
—~ >~

AZ e,
|

y

179

OLD Ayeeq: DEREFERENCING

e,

Ax. (Ay.(Az. v) ez) Vy) e

@
—

AX e,
I

@
—~

7\|Y Vy

@
—~ >~

AZ e,
|

y

190

OLD Ayeeq: DEREFERENCING

e,

Ax. (Ay.(Az. v) ez) Vy) e

@
—

AX e,
I

@
—~

7\|Y Vy

@
—~ >~

AZ e,
|

y

(Ay.Dly]) v — (Ay.D]v]) v| (deref)

191

OLD Ayeeq: DEREFERENCING

e

Ax. (Ay. (Az. vy) ez) Vvy) ex

@
—

AX ey
I

@
—~

7\|Y Vy

@
—~ >~

AZ e,
|

Vy

(Ay.Dly]) v — (Ay.D]v]) v| (deref)

202

PROBLEMS WITH OLD CALL-BY-NEED CALCULUS

1) Reshuffling rules.
2) Arguments and applications never go away.

203

NEW Apeeqa: HANDLING ARBITRARY BINDING STRUCTURE

©

204-205

NEW Apeeqa: HANDLING ARBITRARY BINDING STRUCTURE

©

AZ e,

B=[11 (Ax.B) e

206

NEW Apeeqa: HANDLING ARBITRARY BINDING STRUCTURE

@
—

@ e,
TN

¢ ey
T~

AX e,
|

Aly

7\|z

A=T[1 | 7?77

207

NEW Apeeqa: HANDLING ARBITRARY BINDING STRUCTURE

@
—

AX ey
|

©
— ~~

@ e,
TN

Ay ey

A=T[1 | 7?77

208

NEW Apeeqa: HANDLING ARBITRARY BINDING STRUCTURE

@
—

@ e,

A=T[1 | 7?77

209

NEW Apeeqa: HANDLING ARBITRARY BINDING STRUCTURE

@
—

@ e,
TN

AX ey
|

@
—~ >~

7\|Y Sy

7\|z

A=T[1] | (Ax.A)

e

210

NEW Apeeqa: HANDLING ARBITRARY BINDING STRUCTURE

@
—

@ e,
TN

AX ey
|

@
—~ >~

7\|Y Sy

7\|z

A=T[1] | (Ax.A)

e

211

NEW Apeeqa: HANDLING ARBITRARY BINDING STRUCTURE

@
—

@ e,
TN

AX ey
|

@
—~ >~

7\|Y Sy

7\|z

A=T[1] | (Ax.A)

e

212

NEW Apceq: HANDLING ARBITRARY BINDING STRUCTURE

@
—

@ e,
TN

AX ey
|

@
—~ >~

7\|Y Sy

7\|z

A=T[1] 1] Al(A\x.A)]

213

NEW Apeeqa: HANDLING ARBITRARY BINDING STRUCTURE

@
—

@ e,
TN

AX e,
|

©
~— T~

A[(Ax.A)] e

[1 |
| D e | A[D]

214

PROBLEMS WITH OLD CALL-BY-NEED CALCULUS

HReshutthingrutes:

2) Arguments and applications never go away.

215

NEW Apceq: SPLITTING CONTEXTS

@
—

@ e,
TN

© ey
T~

AX ey
|

%Iy

7\|z

216

NEW Apeeq: SPLITTING CONTEXTS

@
—

@ e,
TN

¢ ey
T~

AX ey
|

%Iy

7\|z

217

NEW Apcea: SPLITTING CONTEXTS

@
—

@ e,
TN

© ey
T~

AX ey
|

7\Iy
7\Iz

D[y]
A[D[y]]

218

NEW Apeeq: SPLITTING CONTEXTS

@
—

@ e,
TN

© ey
T~

AX ey
|

%Iy
7\|z

D[y]
A[D[y]]

219

NEW Apceq: SPLITTING CONTEXTS

@
—

© e,
TN

¢ ey
T

AX e,
|

7\Iy
7\|z

D[y]

(Ay...D[yl)...

220

NEW Apeeq: SPLITTING CONTEXTS

©

AX ey

(Ay...Dlyl) .. .ey...

221

NEW Apeeq: SPLITTING CONTEXTS

©

AX ey

. A[Ay...DLyl 1 e ...

222

NEW Apeeq: SPLITTING CONTEXTS

@
—

© e,
TN

@ ey
T

AX ey
|

7\Iy

7\|z

D[y]

. A[Ay. . DIyl 1 e ...

223

NEW Apcea: SPLITTING CONTEXTS

@
—

@ e,
TN

@ ey
— T

AX ey
|

Aly

7\|z
D[y]

. ADY.ADIYII] e ...

A=T[1711 ADx.Al

224

NEW Apcea: SPLITTING CONTEXTS

©

7\|z
D[y]

L ADY.ADIYII] ey ...

A=T[1711 ADx.Al

225

NEW Apcea: SPLITTING CONTEXTS

?\Iz

D[y]
A[AAY.ADIy]]] el
A=T[11 Alrx.Al
A=1_[11A[] e

226

NEW Apcea: SPLITTING CONTEXTS

@
—

@ e,
TN

© Vy
— T
AX e,
|

7\Iy

7\Iz
D[y]

A[A [Ay. A[D [yll] vyl

= [] IAD\XA]
= [] |A[A]e

=> =<

237

NEW Ancea: pneed

@
—

© e,
TN

@ Vy
— T

AX e,
|

Aly

7\|z
D[y]

A[AMAY.ADIy]1] vy

%

ATATADIy]]{y:=v,}]]

(Bueea)

238

NEW Ancea: pneed

©
T
@ e, ©
TN TN
@ Vy @ e
7\IX ey — 7\IX ey
7\Iy 7\|z [\
T =V
AZ D[yl S

A[AMAY.ADIy]1] v
N — (pneed)
ATATADIy]]{y:=v,}]]

249

PROBLEMS WITH PREVIOUS CALL-BY-NEED CALCULUS

250

[]

NEW Apeeq: EVALUATING ARGUMENTS

| D e | A[D]

251-252

NEW Apeeq: EVALUATING ARGUMENTS

D=1[11De | A | A[A[AY.AD[y]]] DI

253

OTHER INTERESTING THINGS IN THE PAPER . . .

* Correspondence to Launchbury's (1993) machine semantics.

254-255

OTHER INTERESTING THINGS IN THE PAPER . . .

* Correspondence to Launchbury's (1993) machine semantics.

* Confluence, Standardization properties.

256

OTHER INTERESTING THINGS IN THE PAPER . . .

* Correspondence to Launchbury's (1993) machine semantics.
* Confluence, Standardization properties.

* Soundness with respect to observational equivalence.

257

Thanks!

258

