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The Racket doctrine tells developers to create languages (as libraries) to narrow the gap between the terminol-

ogy of a problem domain and general programming constructs. This pearl illustrates this doctrine with the

creation of a relatively simple domain-specific language for editing videos. To produce the video proceedings

of a conference, for example, video professionals traditionally use łnon-linearž GUI editors to manually edit

each talk, despite the repetitive nature of the process. As it turns out, the task of video editing naturally

splits into a declarative phase and an imperative rendering phase at the end. Hence it is natural to create a

functional-declarative language for the first phase, which reduces a lot of manual labor. The implementation

of this user-facing DSL, dubbed Video, utilizes a second, internal DSL to implement the second phase, which

is an interface to a general, low-level C library. Finally, we inject type checking into our Video language via

another DSL that supports programming in the language of type formalisms. In short, the development of

the video editing language cleanly demonstrates how the Racket doctrine naturally leads to the creation of

language hierarchies, analogous to the hierarchies of modules found in conventional functional languages.
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1 BEING IAVOR DIATCHKI

Imagine being Iavor Diatchki. He is the friendly guy who records all the wonderful ICFP pre-
sentations, edits them into digestible video clips, and finally creates a YouTube channel for the
whole conference. When he creates the video clips, he combines a feed of the presenter with the
presenter’s screen, the sound feed for the speaker, and yet another one for audience questions.
Additionally, Diatchki must add a start and end sequence to each video plus various watermarks
throughout.

Once one video is put together, the same process must be repeated for the next conference talk
and the next and so on. Worse, even though some editing steps involve creativity, the process
becomes so monotonous that it reduces the creative spirit for when it is truly needed.

The problem cries out for a declarative language, especially because the state of the art for video
editing suggests (see section 3) that professionals in this domain already think łfunctionally.ž To
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30:2 Leif Andersen, Stephen Chang, Matthias Felleisen

wit, professionals speak of łnon-linear video editingž (NLVE) to highlight the idea that the process
is non-destructive. Technically, the editing process separates a descriptive phaseÐwhat the eventual
video is supposed to look like, given existing tracksÐfrom the rendering phaseÐwhich actually
creates the video clip from these descriptions.

This pearl presents Video (section 4), a scripting language for video production. Video turns video
editing upside down. Instead of sitting for hours on end in front of some NLVE GUI, a professional
can now spend a few minutes in front of an IDE to create a Video script and, voilà, a video clip
pops out. A Video script is just a sequence of expressions, which describe fragments of a video clip,
and definitions, which introduce constants for and functions on video clips. Running such a script
turns this description into suitable łassembly codež for a video renderer.
Speaking of an IDE, everyone knows that in this day and age a programming language comes

with a whole suite of gadgets, that is, the programming environment around the language. We
therefore throw in an IDE (section 7) and a dependent type system (section 6), not only because
these might be useful for producing video channels, but because a real functional pearl deserves
this much attention. Thus an Agda-trained programmer may add types to Video modules. And
better still, Video code may include an NLVE widget, which may of course come with embedded
Video code, which may contain another NLVE widget, ... Did we mention turtles yet?1

Abstractly speaking, Video once again demonstrates the power of the Racket doctrine (section 2).
Racket hosts Video as an embedded domain-specific language. Implementing (section 5) this
language in Racket takes only a small effort because of Racket’s powerful language-production
language. Indeed, adding an IDE and a type system is also a matter of a few hours of thinking
time and coding. In this spirit, the pearl points out a key difference between the construction
of embedded DSLs in conventional functional languages and the one true-blue kid on the block,
Racket.

2 DR STRANGELOVE: HOW I LEARNED TO STOP WORRYING AND LOVE RACKET

The Racket doctrine [Felleisen et al. 2015] says that developers must feel empowered to easily create
and deploy a new language when a software development situation demands it. The emphasis on
language reflects the Racket team’s deep embrace of the Sapir-Whorf hypothesis. In the world
of software, this hypothesis means that language frames the developer’s ability to understand a
problem and articulate a solutionÐat every stage in the development process.

Philosophically, Racket achieves this ideal with a radical emphasis on linguistic reuse [Krishna-
murthi 2001]. Technically, this reuse is enabled via Racket’s distinctive feature: a modular syntax
system [Flatt 2002]. In this system, it is easy to import a linguistic construct as a function; indeed
the system blurs the distinction between languages and libraries, e.g. Tobin-Hochstadt et al. [2011].
While a library module exports functions with a related purpose, a language module exports the
constructs of a programming language.
In Racket, every module must first import its language definition, via a one-line specification.

For example, #lang racket/baseÐpronounced łhash lang racket basežÐtells Racket and a future
reader that the module is written in the racket/base language. This specification points to a
file containing the language implementation that, approximately speaking, consists of a suite of
linguistic features and run-time functions. A developer can thus edit a language L in one buffer of
an IDE and an L program in a second one. Any change to the first is immediately visible in the
second one, just by switching between tabs. Thus, language development in Racket suffers from no
points of friction.

1See en.wikipedia.org/wiki/Turtles_all_the_way_down, last visited Feb 20, 2017.
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Developing a new language typically starts from a base language close to the desired one. From
there, a Racket developer creates a new language with some or all of the following actions:

‚ adding new linguistic constructs;
‚ hiding linguistic constructs; and
‚ re-interpreting linguistic constructs.

Video exploits all of the above. Here, linguistic constructs are any functions or syntactic extensions
added to a language such as list comprehensions or pattern matching. For the re-interpretation of lin-
guistic constructs, Racket developers heavily rely on linguistic interposition points, that is, anchors
in the syntax elaboration process where a program may inject additional syntax transformations.
Due to the ease of developing and installing languages in the Racket ecosystem, the language

creation łwarheadž is Racket’s distinguishing weapon, akin to Haskell’s type classes or ML’s
functors, in its arsenal of software-engineering tools. When developers realize that it is best to
express themselves in the language of a domain, they do not hesitate to develop a matching
programming language. After all, domain experts have developed this specialized terminology (and
ontology) so that they can discuss problems and solutions efficiently.2

The domain of video editing is a particularly well-suited domain for illustrating the above points.
While the evolution of the language follows the standard path from a veneer for a C library to a
full-fledged language [Fowler and Parsons 2010], Racket reduces this path significantly and this
pearl demonstrates how. Before we can describe Video and its implementation, however, we need
to survey the world of editing videos.

3 PRIMER

People use so-called non-linear video editors (NLVEs) to compose video clips [Dancyger 2010].
In the context of film production, non-linear means non-destructive, that is, the source videos do
not degrade in quality due to editing.3 A NLVE is a graphical tool with a time line of tracks. Each
track describes a composition of video clips, audio clips, and effects playing in sequence. The NLVE
renders these tracks by playing them all simultaneously, placing one track on top of the other.
Obviously a screen displaying the result can play only a single track for video;4 by convention this
is the last or top track. Video editors use effects to composite tracks. That is, effects splice two or
more tracks together so that they appear on the screen at the same time. Technically, the renderer
uses these effects to combine tracks as they play and either output the result to a file or play it on a
screen.

Over time, professionals have developed tools and design patterns to reduce the amount of repet-
itive manual labor in video editing. They frequently develop so-called macrosÐa scripted sequence
of user interface elementsÐin languages such as AppleScript [Cook 2007]. Some professional tools,
such as Adobe Premiere [Jago and Adobe Creative Team 2017], even include an API to create
script-style plug-ins directly. Extending tools in this fashion has limits. These kinds of macros
are extremely brittle and frequently break, even within a single application, because these macro
languages essentially specify dialog box clicks without understanding the underlying tools.
Using a tool’s official plug-in interface produces reasonably robust scripts but yields plug-ins

that are tightly coupled with its tool. They can be used only when the entire toolchain is present.
Blender [Roosendaal and Hess 2007], for example, is only scriptable with a Blender-specific Python
interpreter that runs when Blender is launched.

2Not every DSL is a week or month-long project. Turnstile [Chang et al. 2017] took almost a year of development time!
3Digital editors achieve this result by operating on references to videos, rather than operating on the videos themselves.
4Audio tracks can actually be played simultaneously.
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Alternative approaches use general-purpose multimedia frameworks such as GStreamer [Tay-
mans et al. 2013] or the MLT Framework.5 These frameworks are APIs for C-like languages that
provide data types for building and rendering videos. These frameworks are primarily used in
two situations. First, they are the back-ends to NLVEs. For example, MLT is the backend for
both Shotcut6 and Kdenlive.7 Second, professionals use these frameworks to batch-process videos,
particularly when interactive development is not desired.
The appeal of these frameworks comes from their ability to create abstractions, such as func-

tions, to handle otherwise repetitive tasks. Using these frameworks quickly becomes cumbersome,
however, when there is a need to combine interactive and programmatic work flows, as is the case
for the creation of conference recordings. Thus, studios tend to stick with NLVEs and use these
frameworks only sparingly.
Professionals also use domain-specific languages for video editing. These DSLs primarily fall

into two categories: XML-based DSLs and scripting-based DSLs. XML DSLs such as MLT XML and
the now-deprecated SMIL [Bulterman et al. 2008] offer declarative languages for processing videos.
These languages generally do not have functions or any other type of abstraction, however, and
thus professionals tend not to deal with these XML languages directly when video editing. Rather,
NLVEs use these languages as a file format to save video projects.
Scripting-based DSLs such as AVISynth8 are declarative and support functions and other ab-

stractions, but have their own limitations. They typically support only the simplest of tasks such as
playing videos in sequence with transitions and minor visual effects. They also tend to lack any
formal grammars and use a small script for a parser. Finally, they lack many code reuse features.
AVISynth, for example, allows programmers to create simple functions but comes without any
control flow constructs such as conditional branching.

4 THE PRODUCERS

The literature survey in the preceding section suggests that non-linear video editing distinctly
separates the description of a video clip from the rendering action on it. Specifically, an editor
(as in the tool) needs a description of what the final video should look like in terms of the given
pieces. The action of rendering this video is a distinct second step. Going from this assessment
to a language design requires one more idea: abstraction. For example, a description of a video
composition should be able to use a sequence comprehension to apply a watermark to all images.
Similarly, a professional may wish to create one module per ICFP presentation in order to make
up a complete ICFP channel in a modular fashion. And of course, the language must allow the
definition and use of functions because it is the most common form of abstraction.

The Video language gets to the heart of the domain. Each Video program is a complete module
that intermingles descriptions of video clips and auxiliary definitions. It denotes a Racket module
that exports a playlist description of the complete video. One way to use a Video module is to
create a video with a renderer. A different way is to import it into a second Video module and to
incorporate its exported playlist into another video.

Figure 1 displays a simple Video script. It consists of five expressions, each describing a piece of
a video clip. Right below the third part of the video description, it also contains two definitions,
which introduce one name each so that the preceding multitrack description does not become
too deeply nested. When the renderer turns this script into an actual video, it turns the five pieces

5mltframework.org/
6shotcutapp.com/
7kdenlive.org/
8avisynth.nl
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01 #lang video

02

03 (image "splash.png" #:length 100)

04

05 (fade-transition #:length 50)

06

07 (multitrack (blank #f)

08 (composite-transition 0 0 1/4 1/4)

09 slides

10 (composite-transition 1/4 0 3/4 1)

11 presentation

12 (composite-transition 0 1/4 1/4 3/4)

13 (image "logo.png" #:length (producer-length talk)))

14

15 ; where

16 (define slides

17 (clip "slides05.MTS" #:start 2900 #:end 80000))

18

19 (define presentation

20 (playlist (clip "vid01.mp4")

21 (clip "vid02.mp4")

22 #:start 3900 #:end 36850))

23

24 (fade-transition #:length 50)

25

26 (image "splash.png" #:length 100)

time

Figure 1: A first Video script

01 #lang video

02

03 (require "conference-lib.vid")

04

05 (conference-talk video slides audio 125)

06 ; where

07 (define slides (clip "slides05.MTS" #:start 2900 #:end 80000))

08 (define video (playlist (clip "vid01.mp4") (clip "vid02.mp4")

09 #:start 3900 #:end 36850))

10 (define audio (playlist (clip "capture01.wav") (clip "capture02.wav")))

time

Figure 2: A Video description of a conference talk
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into sequence of images, taking into account the transitions between the first and second fragment
and the fourth and the fifth.
In essence, the script in figure 1 assembles the visual part of a simple conference video. What

is missing is the audio part. Naturally, a Video programmer should abstract over this sequence
of expressions, plus the audio processing, and create a suitable library. Figure 2 shows what the
same script roughly looks like after a Video programmer has encapsulated an abstraction over the
script in figure 1 as a utility library. This program uses the imported conference-talk function to
combine a recording of the speaker, a capture of the slides, and the audio. As mentioned, line 1 of
the program specifies that this module is written in the Video language. Line 3 imports the library
that defines the conference-talk function. Line 5 produces the video that this module describes.
Finally, the remainder is a sequence of definitions that introduce auxiliary constants.
Figure 3 shows the essence of the utility library, also written as a Video module. Explaining its

construction introduces enough of Video’s primitives and combinators to get a sense of what the
rest of the language looks like. First we explain Video’s primary linguistic mechanisms, modules
and functions (section 4.1). Then, we describe basic producers (section 4.2): images, clips, colors
and so on, following up with a discussion of the basics of how to combine these producers into
playlists and multitracks (sections 4.3, 4.5). To make compelling examples, we introduce transitions,
filters, and properties (sections 4.4, 4.6, 4.7). Finally, we describe the interface for displaying videos
and rendering Video programs (section 4.8).

4.1 Essential Video

Video modules consist of a series of interleaved expressions, definitions, and import/export forms;
functions have the same shape as modules but without the import/export forms. Video enforces
different scoping rules, and assigns slightly different meaning to these constructs, than Racket
does. In both cases, definitions are valid in the entire scopeÐthat is, the entire module or the entire
function body. The expressions must describe video playlists. Modules and functions differ in
that the former provides a video, while the latter returns one. Furthermore, Video modules are
first-order entities that can be compiled separately, while functions are actually first-class values.

Now, take a second look at figure 3. Lines 5 through 7 show the function header. The rest of the
code describes the function body (lines 7ś28). Functions in Video are declarative; in particular, line
8 is the producer returned by this function. The remaining subsections explain the Video language
in sufficient detail to understand the rest of this code. Specifically, we explain individual features of
the language and how they improve the video editing process.

4.2 Producers

The producer is the most basic building block for a Video program. A producer evaluates to a data
structure that denotes some sort of multimedia object: audio clips, video clips, pictures, and so on.
Combinations of producers are themselves producers, and they can be further combined into yet
more complex producers.
The simplest type of producer, clip, incorporates traditional video files. The clip producer

converts the file into a sequence of frames. Developers use clip to import recordings from files,
such as a conference talk, into scripts:

#lang video

(clip "talk00.mp4") time

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 30. Publication date: September 2017.
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01 #lang video

02

03 (provide conference-talk)

04

05 ; Describes an edited conference video with appropriate feeds

06 ; Producer Producer Producer Positive-Integer -> Producer

07 (define (conference-talk video slides audio offset)

08 (multitrack clean-video clean-audio)

09 ; where

10 (define clean-audio

11 (playlist (blank offset)

12 (attach-filter audio

13 (envelope-filter 50 #:direction 'in)

14 (envelope-filter 50 #:direction 'out))))

15 (define spliced-video

16 (multitrack (blank #f)

17 (composite-transition 0 0 1/4 1/4)

18 slides

19 (composite-transition 1/4 0 3/4 1)

20 video

21 (composite-transition 0 1/4 1/4 3/4)

22 (image "logo.png" #:length (producer-length talk))))

23 (define clean-video

24 (playlist (image "splash.png" #:length 100)

25 (fade-transition #:length 50)

26 spliced-video

27 (fade-transition #:length 50)

28 (image "splash.png" #:length 100))))

Figure 3: A Video function definition

Unlike clip, image creates an infinite stream of frames. Video’s combination forms truncate
these streams to fit the length of other producers. Additionally, developers can use the #:length
keyword when they want a specific number of frames:

#lang video

(image "splash.png" #:length 3) time

4.3 Playlists

A video is usually a composition of many producers. Video provides two main ways for combining
them: playlists andmultitracks. Roughly speaking, playlists play clips in sequence, while multitracks
play clips in parallel. Any producer can be put in a playlist, including another playlist. Each
clip in the playlist plays in succession. Frequently, video cameras split recordings into multiple
files. With playlist, developers can easily stitch these files together to form a single producer:

#lang video

(playlist (clip "talk00.MTS")

(clip "talk01.MTS"))
time

Developers cut playlists and other producers to desired lengths with the #:start and #:end

keywords. This capability is included because video recordings frequently start before a talk begins

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 30. Publication date: September 2017.
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#lang video

(image "logo.jpg" #:length 100)

talk

(image "logo.jpg" #:length 100)

; where

(define talk

(playlist (clip "talk00.MTS")

(clip "talk01.MTS")

#:start 100

#:end 8000))

time

Figure 4: (a). Example of cutting a playlist

#lang video

(image "splash.png" #:length 100)

(fade-transition #:length 50)

talk

(fade-transition #:length 50)

(image "splash.jpg" #:length 100)

; where

(define talk ⟨⋯elided⋯⟩)

time

Figure 4 (continued): (b). Example with fading transition

and end after the talk finishes; see figure 4a. Recall that while define is located below the video
description, its scope includes the preceding expressions.

4.4 Transitions

Jumping from one producer in a playlist to another can be rather jarring. Scripts can reduce this
effect with transitions: fading, swiping, etc. These transitions merge the two adjacent clips in a
playlist and are placed directly inside of (possibly implicit) playlists. Expanding on the example
from figure 4a, fade transitions are used to smooth the transition from logo to the talk. Figure 4b
illustrates this point.
Every transition in a playlist actually shortens the length of its frame sequence, because

transitions produce one clip for every two clips they consume. Additionally, a playlist may
contain multiple transitions. Such a playlist still specifies a unique behavior because playlist
transitions are associative operations. Thus, multiple transitions placed in a single playlist

describe the desired clip without any surprises.

4.5 Multitracks

Multitracks play producers in parallel. Like playlists, they employ transitions to composite their
producers. Syntactically, multitrack is similar to playlist. The multitrack form consists of a
sequence of producers and creates a new multitrack producer. Again, transitions are included
within the sequence to combine tracks; see figure 4c. This example uses composite-transition,
which places one producer on top of the other. The four constants specify the coordinates of the
top-left corner of the producer and the screen space that the top producer takes. Here, the producer

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 30. Publication date: September 2017.
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#lang video

(multitrack

(clip "slides.mp4")

(composite-transition 0 0 1/4 1/4)

talk)

; where

(define talk ⟨⋯elided⋯⟩)

time

Figure 4 (continued): (c). Example using multitracks

#lang video

(multitrack

(blank #f)

(composite-transition 0 0 1/4 1/4)

(clip "slides.mp4")

(composite-transition 1/4 0 3/4 1)

talk)

; where

(define talk ⟨⋯elided⋯⟩)

time

Figure 4 (continued): (d). Example using inlined transitions in a multitracks

following the transition appears in the top-left hand of the screen and takes up one quarter of the
width and height of the screen.

Transitions within a multitrack are not associative; instead, multitrack interprets transitions
in left to right order. Videos that require a different order can embed a multitrack inside of another
one, because a multitrack is itself a producer. Using multiple transitions allow producers to appear
side by side rather than just on top of each other. Expanding on the running example in figure 4c,
figure 4d describes a conference video where the recording of the presenter goes in the top left while
the slides go on the right. This example adds a composite-transition to the previous example
and places the slides and the recording over a single blank producer. Blank producers are empty
slides that act as either a background for a multitrack or a filler for a playlist. In this case, the
blank producer is providing a background that the slides and camera feeds appear on.

4.6 Filters

Filters are similar to transitions, but they modify the behavior of only one producer. In other words,
filters are functions from producers to producers. Among other effects, filters can remove the color
from a clip or change a producer’s aspect ratio. Conference recordings frequently capture audio
and video on separate tracks. Before splicing the tracks together, a developer may add an envelope
filter to provide a fade effect for audio.

A script may use function application notation to apply filters or attach them to producers with
the #:filters keyword. Figure 4e shows an example of a filter being attached to an audio track
that is itself composited with the video of the composited talk in figure 4d.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 30. Publication date: September 2017.
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#lang video

(multitrack

composited-talk

(clip "0000.wav"

#:filters

(list

(envelope-filter 50 #:direction 'in)

(envelope-filter 50 #:direction 'out))))

; where

(define composited-talk ⟨⋯elided⋯⟩)

time

Figure 4 (continued): (e). Example of adding audio tracks

#lang video

(multitrack

(blank #f)

(composite-transition 0 0 1/4 1/4)

(clip "slides.mp4")

(composite-transition 1/4 0 3/4 1)

talk

(composite-transition 0 1/4 1/4 3/4)

(image "logo.png"

#:length (get-property talk 'length)))

; where

(define talk ⟨⋯elided⋯⟩)

time

Figure 4 (continued): (f). Example of adding a watermark

4.7 Properties and Dependent Clips

Producers use two types of properties to store information: implicit and explicit properties. Implicit
properties are innate to clips, for example, length and dimensions. Explicit properties must be
added by the program itself.
The properties API comes with two functions:

‚ (set-property producer key value) creates an explicit property. It returns a new producer
with key associated with value.

‚ (get-property producer key) returns the value associated with key. If the property is set
both implicitly and explicitly, the explicit property has priority.

Explicit properties provide a protocol for communicating information from one clip to another.
Implicit properties exist for the same purpose except that they store information that is implicitly
associated with a producer, such as its length. For example, a conference video may have to come
with a watermark that is the same length as the captured conference talk. A script that performs
this operation can be found in figure 4f.

4.8 From Programs to Videos

A Video module may be incorporated into a program or understood as a stand-alone program. In
the first case, another Video or Racket module may require the Video module and incorporate its
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> (preview

(external-video "talk.vid"))

> (preview-video

"talk.vid")

Figure 5: Previewing Videos

export into its own code. In the second case, a user can hand the Video script to a renderer that
either plays the video on a screen or saves it to a file.
By default, a Video module implicitly provides a producer. Any module that wants to use this

implicitly created video imports it with the external-video form. For an example, consider this
two-line module and what it denotes:

#lang video

(image "splash.png" #:length 100)

(external-video "talk.vid")
time

The module’s first line sets up a splash screen, the second line incorporates the external Video
module.

A renderer converts Video scripts to traditional videos. Having a dedicated rendering pass allows
users to set various visual properties such as aspect ratio, frame rate, and even output format
separately. The simplest renderers, dubbed render and preview, are functions that consume a
producer and display it in a separate window. At DrRacket’s REPL, developers can apply this
function directly (left half of figure 5). While render just displays the video, preview adds playback
controls, and even gives developers the ability to preview a video excerpt. Another renderer,
called preview-video is a function that consumes a path to a Video script and plays it in a newly
opened window (right half of figure 5). This functionality is available outside of the IDE so that
non-programmers may view the videos, too.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 30. Publication date: September 2017.
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01 #lang racket/base

02

03 (provide (rename-out [boo:set! set!])

04 (except-out (all-from-out racket/base) set!))

05

06 (define-syntax (boo:set! stx)

07 (syntax-parse stx

08 [(_ id val)

09 #'(begin (log-warning "Boo!!! Reassigning „a" id)

10 (set! id val))]))

Figure 6: Logging assignment statements to expose ill-behaved functional programmers

4.9 Effectiveness

Leif Andersen, the first author, has been involved in the production of a video channel for RacketCon
2016. In Andersen’s experience, creating Video and compositing the videos for that conference
took less time than manually editing the videos for the previous year’s conference (same number
of talks, same nature of talks, etc).

5 THE FAST AND THE FURIOUS

Using the Racket ecosystem allows developers to implement languages quickly and easily. Fur-
thermore, these languages compose so that modules written in one language can easily interact
with modules in another. Best of all, the implementation of a language may take advantage of
other language technologies, too. The upshot here is that implementing Video is as simple as
implementing video-specific pieces, while leaving the general-purpose bits to Racket.
Video’s implementation makes heavy use of the Racket ecosystem. It consists of three major

components and accounts for approximately 2,400 lines of code: a surface syntax, a run-time library,
and a rendering layer. Of the code, about 90 lines are specific to the syntax and 350 lines define
the video-specific primitives the language uses. The remaining lines are for the FFI and renderer.
The video-specific primitives serve as adapters to imperative actions that work on Video’s core
data-types; they are implemented using standard functional programming techniques.

This section explains how a developer can implement a DSL in Racket (section 5.1), with Video
serving as the running example (section 5.2). Not only is Video a Racket DSL, but part of the imple-
mentation of Video is implemented using additional DSLs created specifically for implementing
Video (section 5.3).

5.1 Creating Languages, the Racket Way

Recall from section 2, creating Racket DSLs means removing unwanted features from some base
language, adding new ones, and altering existing features to match the semantics of the new
domain.
Adding and removing features is simple, because a language implementation is a module like

any other module in Racket. Removing a feature is simply a matter of not re-providing it from the
host language. See figure 6 for an example. Line 4 uses the except-out keyword to remove the
definition of set! from racket/base, while all-from-out re-exports all remaining features from
racket/base.
In addition to these operations, adding new features is simply a matter of defining the new

features and exporting them. Developers do so in the same manner as a programmer who augments
the functionality of a library via a wrapper module.
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01 #lang racket/base

02

03 (provide (rename-out #%lazy-app #%app)

04 (except-out (all-from-out racket/base) #%app))

05

06 (define-syntax (#%lazy-app stx)

07 (syntax-parse stx

08 [(_ rator rand ...)

09 #'(#%app (force rator) (lazy rand) ...)]))

Figure 7: An essential element of Lazy Racket

In contrast, modifying existing features requires slightly more work. Specifically the module
must define a syntax transformation in terms of the old language and rename this transformation
on export.
Let us illustrate this idea with a simple example. Many functional programmers do not like

assignment statements; at Clojure conferences, programmers who admit to their use (via Java)
are booed on stage.9 So, imagine creating a language like Racket that logs a boo-warning of any
use of set!, Racket’s variable assignment form. The set! provided by racket/base provides the
functionality for assignment, while log-warning from the same language provides the logging
functionality. All we have to do is define a new syntax transformer, say boo:set!, that logs its use
and performs the assignment. From there, we need to rename boo:set! to set! in the provide
specification. This renaming makes the revised set! functionality available to programmers who
use the new and improved Functions-first variant of Racket. Figure 6 displays the complete solution.
Now recall that Racket’s syntax system supports several interposition points that facilitate lan-

guage creation: #%app for function application, #%module-begin for module boundaries, #%datum
for literals, and so on. The purpose of these points is to allow language developers to alter the
semantics of the relevant features without changing the surface syntax.
Figure 7 displays a small, illustrative example. Here, a language developer uses a strict #%app

to construct a lazy form of function application. The #%app protocol works because the Racket
compiler places the marker in front of every function application. Thus, language developers only
need to implement their version of #%app in terms of an existing one.10

When a programmer uses this new language, the Racket syntax elaborator inserts #%app into
all regular function applications. The elaborator resolves this reference to the imported version,

written as #%applazy. From there, Racket redirects to #%lazy-app, which expands into #%appbase,
Racket’s actual application. Here is what the complete process looks like:

(f a b c ...) elaborates to (#%applazy f a b c ...)

elaborates to (#%lazy-app f a b c ...)

elaborates to (#%appbase (force f) (lazy a) (lazy b) (lazy c) ...)

The curious reader may wish to step through the elaboration via DrRacket’s syntax debug-
ger [Culpepper and Felleisen 2010].

9One of the authors witnessed this booing at a recent Clojure conference. Which has the largest, most successful community

of commercial functional programmers.
10Indeed, the Racket family of languages comes with the lazy language [Barzilay and Clements 2005], which uses exactly

this interposition point to convert racket into an otherwise equivalent language with lazy semantics.
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01 #lang racket/base

02

03 (provide (rename-out [#%video-module-begin module-begin])

04 (except-out #%module-begin racket/base))

05

06 (define-syntax (#%video-module-begin stx)

07 (syntax-parse stx

08 [(#%video-module-begin body ...)

09 #'(#%module-begin (video-begin vid (provide vid) () body ...))]))

10

11 (define-syntax (video-begin stx)

12 (syntax-parse stx

13 [(video-begin vid export (exprs ...))

14 #'(begin

15 (define vid (playlist exprs ...))

16 export)]

17 [(video-begin vid export (exprs ...) b1 body ...)

18 (syntax-parse (local-expand #'b1 'module ⟨⋯elided⋯⟩) ; <-- this-syntax

19 [(id*:id rest ...)

20 #:when (matches-one-of? #'id* (list #'provide #'define ⟨⋯elided⋯⟩))
21 #'(begin this-syntax (video-begin vid export (exprs ...) body ...))]

22 [else

23 #'(video-begin id export (exprs ... this-syntax) body ...)])]))

Figure 8: Video Compilation

5.2 The Essence of Video’s Syntax

The implementation of Video’s syntax uses two of Racket’s interposition points: #%module-begin
and #%plain-lambda. With these forms, language developers can simultaneously reuse Racket
syntax and interpret it in a Video-appropriate manner.

Like #%app, #%module-begin is inserted at the start of every module and wraps the contents of
that module. Hence, a re-interpretation may easily implement context-sensitive transformations.
In the case of Video, the re-implementation of #%module-begin lifts definitions to the beginning
of the module and collects the remaining expressions into a single playlist.
Figure 8 shows the essence of Video’s #%module-begin syntax transformer. It is written in

Racket’s syntax-parse language [Culpepper 2012], a vast improvement over the Scheme macro
system [Bawden and Rees 1988; Clinger 1991; Dybvig et al. 1993; Kohlbecker et al. 1986; Kohlbecker
and Wand 1987]. As before, the transformer is defined with a different name, #%video-module-
begin (line 6), and is renamed on export (line 3). The implementation of #%video-module-begin
dispatches to video-begin (line 9), the workhorse of the module. This auxiliary syntax transformer
consumes four pieces: an identifier (vid), a piece of code (export) formulated in terms of the
identifier, a list of expressions (e ...), and the module’s body, which is represented as a sequence of
expressions (body ...). In the case of #%video-module-begin, the four pieces are vid, (provide
vid), (), and the module body.

The video-begin syntax transformer (lines 11ś23) is responsible for lifting definitions to the
beginning of the module body and accumulating expressions into a playlist. Its definition uses
pattern matching again. Lines 13 and 17 specify the two pattern cases, one for when the module
body is empty and another one that handles a non-empty sequence of body expressions:
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#lang video

(image "splash.png" ⟨⋯elided⋯⟩)
(conference-talk video ⟨⋯elided⋯⟩)
(define video ⟨⋯elided⋯⟩)

elaborates to

#lang video

(#%module-beginvideo

(image "splash.png" ⟨⋯elided⋯⟩)
(conference-talk video ⟨⋯elided⋯⟩)
(define video ⟨⋯elided⋯⟩))

elaborates to

#lang racket/base

(#%video-module-begin

(image "splash.png" ⟨⋯elided⋯⟩)
(conference-talk video ⟨⋯elided⋯⟩)
(define video ⟨⋯elided⋯⟩))

elaborates to

#lang racket/base

(#%module-beginbase

(define video ⟨⋯elided⋯⟩)
(video-begin vid

(image "splash.png" ⟨⋯elided⋯⟩)
(conference-video video ⟨⋯elided⋯⟩)))

elaborates to

#lang racket/base

(#%module-beginbase

(define video ⟨⋯elided⋯⟩)
(provide vid)

(define vid

(playlist

(image "splash.png" ⟨⋯elided⋯⟩)
(conference-video video ⟨⋯elided⋯⟩))))

Figure 9: Compilation for a Video module

‚ Once video-begin has traversed every piece of syntax (line 13), exprs contains all of the
original module body’s expressions. The generated output (lines 14ś16) defines the given
vid to stand for the list of expressions bundled as a playlist.

‚ In the second case, the transformer expands the first term up to the point where it can decide
whether it is a definition (line 18). Next, the transformer uses syntax-parse to check whether
the elaborated code is a syntax list (lines 19 and 22) with a recognized identifier in the first
position (line 21), in particular, define and provide.
ś If so, the transformer lifts the first term out of the video-begin and recursively calls itself
without the newly lifted expression (line 21).

ś Otherwise, it is an expression and gets collected into the exprs collection (line 23).

The astute reader maywonder about the generated begin blocks. As it turns out, Racket’s #%module-
begin flattens begin sequences at the module top-level into a simple sequence of terms.
The syntax transformer for function bodies also uses video-begin. Instead of handing over

(provide vid), the call in the function transformer merely passes along vid, because functions
return the produced playlist, they do not export it.

Figure 9 shows the syntax elaboration of a module using the Video specific #%module-begin form.

The elaborated module describes the running conference talk example. Here, #%module-beginvideo

is Video’s variant, while #%module-beginbase is the one provided by racket.
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5.3 Video, Behind the Scenes

Video relies on bindings to a C library to perform the rendering of video descriptions to files or
streams. It exploits Racket’s FFI language for this purpose [Barzilay and Orlovsky 2004]. While
Video uses the MLT Multimedia Framework, any suitable multimedia library will do.

As it turns out, the Racket doctrine actually applies to the step of adding bindings too. The task
of importing bindings manually is highly repetitive and developers frequently turn to other tools
or libraries to construct the FFI bindings for them. Using a DSL to create the bindings has two
advantages over using a library for a similar task. First, a DSL separates the task of constructing
safe FFI calls with the task of connecting to a specific multimedia library. Using an FFI, developers
can connect to a library safely by specifying the contracts. Second, a DSL allows developers to
create new binding forms that are relevant to the multimedia library. It turns out that, once again,
the effort of implementing this auxiliary DSL plus writing a single program in it is smaller than the
effort of just writing down the FFI bindings directly. In other words, creating the DSL sufficiently
reduces the overall effort so much that it offsets the startup cost, even though it is used only once.
The auxiliary DSL relies on two key forms: define-mlt and define-constructor. The first

form uses the Racket FFI to import bindings from MLT. The second form, define-constructor,
defines the core data types for Video and sets up a mapping to data that MLT understands. While we
chose to use MLT to support Video, other rendering libraries can be used in its place. For example,
early versions of Video used both GStreamer and MLT.

The define-mlt form is useful for hardening foreign functions. By using define-mlt, program-
mers must only specify a contract [Findler and Felleisen 2002] that describes the valid inputs and
outputs. Consider mlt_profile_init, a function that initializes a C library. It takes a string and
returns either a profile object or NULL if there is an error. Rather than having to manually check
the input and output values, the FFI just states input and output types:

(define-mlt mlt-profile-init (fun string

-> [v : mlt-profile-pointer/null]

-> (null-error v)))

It errors if a bad input or output type passes through this interface.
The define-constructor form introduces both structures to represent video clips in Video

and methods for converting these Video-level objects into structures that MLT understands. For
its first purpose, it generalizes Racket’s record-like struct definitions with an optional super-
struct, additional fields, and their default values. For example, the following is the description of a
Video-level producer:

(define-constructor producer service ([type #f] [source #f] [start -1] [end -1])

(define producer* (mlt-factory-producer (current-profile) type source))

(mlt-producer-set-in-and-out producer* start end)

(register-mlt-close mlt-producer-close producer*))

This definition names the struct producer, specifies that it extends service, and adds four fields
to those it inherits: type, source, start, and end.
For its second purpose, define-constructor introduces the body of a conversion function,

which renderers know about. Here the function body consists of three lines. It has access to all of
the structure’s fields, as well as the parent stucture’s fields. The renderer calls this conversion code
at the point when it needs to operate over MLT objects rather than Video data structures.
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6 THE BODYGUARD

What use is a programming language without a dependent type system? Lots of course, as Video
shows. After all, Video is a scripting language, and most descriptions of a conference video are
no longer than a few lines. No real programmer needs types for such programs. For some readers,
however, the existence of an untyped language might be inconceivable, and we therefore whipped
together a dependent type system in a single work day.11

After explaining the rationale for such a type system (section 6.1), we present the essential idea:
type checking the length of producers, transitions (which are conceptually functions on producers),
functions on transitions, and so on (section 6.2). Then we examine a few type-checking rules
(section 6.3). Finally, we once again demonstrate the power of Racket’s syntax system, which not
only modifies the syntax of a base language but also adds a type systemÐwith more or less the
familiar notation found in papers on fancy type systems (section 6.4).

6.1 Video Data Types

Video programs primarily manipulate two types of data: producers and transitions. A typical
program slices these values and then combines them. Not surprisingly, errors often involve ma-
nipulating producers and transitions of improper lengths. Such errors are particularly dangerous
because they often manifest themselves at the FFI level during rendering. For example, the following
piece of untyped code mistakenly tries to extract 15 frames from a producer that is only 10 frames
long:

(cut-producer (color "green" #:length 10) #:start 0 #:end 15)

; EXCEPTION: given producer must have length >= end - start = 15

The following second example attempts to use producers that are too short for the specified
transition:

(playlist (blank 10) (fade-transition #:length 15) (color "green" #:length 10))

; EXCEPTION: given producers must have length >= transition length 15

While old-fashioned scripting languages rely on dynamic checks to catch these bugs, modern
scripting languages use a static type system instead [Gonzalez 2015; Meijer 2000]. So does Typed
Video.

6.2 Length Indexes

Typed Video adds a lightweight dependent type system to Video, where the types of producers and
transitions are indexed by natural-number terms corresponding to their lengths. The rest of the
type system resembles a simplified version of Dependent ML [Xi and Pfenning 1998].
Such a type system does not impose too much of a burden in our domain. Indeed, it works

well in practice because Video programmers are already accustomed to specifying explicit length
information in their programs. For example, the snippets from the preceding section produce static
type error messages in Typed Video:

(cut-producer (color "green" #:length 10) #:start 0 #:end 15)

; TYPE ERR: cut-producer: expected (Producer 15), given (Producer 10)

(playlist (blank 10) (fade-transition #:length 15) (color "green" #:length 10))

; TYPE ERR: playlist: (fade-transition #:length 15) too long for producer (blank 10)

In general, the type system ensures that producer values do not flow into positions where their
length is less than expected.

11We do not explore the metatheory of our type system since it is beyond the scope of this pearl.
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Typed Video also supports writing functions polymorphic in the lengths of videos. Recall the
conference-talk example from figure 3. A function add-slides that just combines the video of
a speaker with a video of slides from their presentation might look like this:

(define (add-slides {n} [vid : (Producer n)] [slides : (Producer n)] -> (Producer n))

(multitrack vid ⟨⋯elided⋯⟩ slides ⟨⋯elided⋯⟩))

The function’s type binds a universally-quantified type index variable n that ranges over natural
numbers and uses it to specify that the lengths of the input and output producers must match up.
In addition, a programmer may specify side-conditions involving type index variables. Here is

an add-bookend function, which adds an opening and ending sequence to a speaker’s video:

; Add conference logos to the front and end of a video.

(define (add-bookend {n} [main-talk : (Producer n)] #:when (>= n 400) -> (Producer (+ n 600)))

(playlist begin-clip

(fade-transition #:length 200)

main-talk

(fade-transition #:length 200)

end-clip)

(define begin-clip (image "logo.png" #:length 500))

(define end-clip (image "logo.png" #:length 500)))

The add-bookend function specifies, with a #:when keyword, that its input must be a producer of at
least 400 frames because it uses two 200-frame transitions. The result type says that the output adds
600 frames to the input. The additional frames come from the added beginning and end segments,
minus the transition frames.

Programmer-specified side-conditions may propagate to other functions. The conference-talk
function from section 4 benefits from this propagation:

(define (conference-talk {n} [video : (Producer n)] [slides : (Producer n)]

[audio : (Producer n)] [offset : Int]

-> (Producer (+ n 600)))

⟨⋯elided⋯⟩
(define p1 (add-slides video slides))

(define p2 (add-bookend p1))

⟨⋯elided⋯⟩)

Even though conference-talk does not specify a side-condition, it inherits the (>= n 400)

side-condition from add-bookend. Thus applying conference-talk to a video that is not provably
longer than 400 frames results in a type error:

(conference-talk (blank 200) (blank 200) (blank 200) 0)

; TYPE ERROR: Failed condition (>= n 400), inferred n = 200

6.3 The Type System

While Typed Video utilizes only existing type system ideas, it is nevertheless instructive to inspect
a few of its rules before we explain how to turn them into a language implementation.
As previously mentioned, Video programmers already specify explicit video lengths in their

programs, and it thus is easy to lift this information to the type level. For example, figure 10 shows
a few rules for creating and consuming producers. The Color-n rule lifts the specified length to
the expression’s type. In the absence of a length argument, as in the Color rule, the expression has
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Color-n

Γ $ e : String

Γ $ (color e #:length n) : (Producer n)

Color

Γ $ e : String

Γ $ (color e) : Producer

Clip

Γ $ f : File |f| = n

Γ $ (clip f) : (Producer n)

Playlist

@p/t: Γ $ p/t : (Producer n) or Γ $ p/t : (Transition m)

where each transition must occur between two producers

Γ $ (playlist p/t ...) : (Producer (- (+ n ...) (+ m ...)))

Figure 10: A few Producer type rules for Typed Video

type Producer, which is syntactic sugar for (Producer 8). The Clip rule says that if the given
file f on disk points to a video of length n,12 then an expression (clip f) has type (Producer n).
Typed Video utilizes a standard subtyping relation with a few additions, e.g., for Producers:

m >= n

(Producer m) <: (Producer n)

Since Typed Video aims to prevent not-enough-frame errors, it is acceptable to supply a producer
that is longer, but not shorter, than expected.
The Playlist rule in figure 10 shows how producer lengths may be combined. Specifically, a

playlist appends producers together and thus their lengths are summed. If playlists interleave
transitions between producers, the lengths of the transitions are subtracted from the total because
each transition results in an overlapping of producers. A type error is signaled if the computed
length of a producer is negative, as specified in the kinding rule for Producers:

Γ $ n : Int and n is a well-formed index expression n >= 0

Γ $ (Producer n) : *

In addition to requiring a non-negative constraint for n, this rule also restricts which terms may
serve as type indices. Well-formed type index terms include only addition, subtraction, and a few
Video primitives. If the Producer type constructor is applied to an unsupported term, the type
defaults to a Producer of infinite length. Despite these restrictions, Typed Video works well in
practice and can type check all our example programs, including those for the RacketCon 2016
video proceedings.

The Lam and App rules in figure 11 roughly illustrate how Typed Video handles constraints.
Rather than implement multiple passes, Typed Video interleaves constraint collection and type
checking, solving the constraints in a "local" manner.
Specifically, type checking judgements additionally specify a set of constraints φ on the right-

hand side, as in figure 11, corresponding to the constraints produced while type checking that
expression. Constraints in Typed Video are restricted to linear arithmetic inequalities. The Lam rule
in figure 11 shows that functions bind a type index variable n together with a procedural variable x,
and must satisfy input constraints φ. These functions are assigned a universally quantified type that
additionally includes constraints φ’ collected while type checking the body of the function. When
applying such a function, the App rule first infers a concrete number i at which to instantiate the n

12Obviously, the soundness of our type system is now contingent on the correctness of this system call.
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Lam

Γ,n:Int,x:τ $ e : τ 1; ϕ1

Γ $ λn,x:τ,ϕ.e : Πtn| ϕ ^ ϕ1u.τ Ñ τ 1; true

App

Γ $ f : Πtn| ϕu.τ Ñ τ 1;ϕ1 Di.Γ $ e : τ rn{is;ϕ2
á
Epϕrn{isq “ ϕ3, ϕ3 satisfiable

Γ $ f e : τ 1rn{is;ϕ1 ^ ϕ2 ^ ϕ3

Figure 11: λ and function application type rules for Typed Video

index variable. It then uses i to simplify constraints φ via a partial-evaluation function á
E. Type

checking fails if the resulting constraints are not satisfiable. Otherwise, the unsolved constraints
are propagated. Modularly checking constraints at function applications in this manner enables
the reporting of errors on a local basis.

6.4 Type Systems as Macros

The implementation of Typed Video relies on linguistic reuse to produce a full-fledged programming
language without starting from scratch. Specifically, it reuses Racket’s syntax system to implement
type checking, following Chang et al.’s [2017] type-systems-as-macros technique. As a result, Typed
Video is an extension to, rather than a reimplementation of, the untyped Video language.

Figure 12 shows the implementation of two rules: λ and function application. The require at
the top of the figure imports and prefixes the identifiers from untyped Video, i.e., the syntactic
extensions from section 5, which are used, unmodified, to construct the output of the type-checking
pass.
We implement our type checker with Turnstile, a Racket DSL introduced by Chang et al. for

creating typed DSLs. This DSL-generating-DSL uses a concise, bidirectional type-judgement-like
syntax. In other words, the define-syntax/typecheck definitions in figure 12 resemble their
specification counterparts in figure 11. The implementation rules define syntax transformers that
incorporate type checking as part of syntax elaboration. Interleaving type checking and elaboration
in this manner not only simplifies implementation of the type system, but it also enables creating
true abstractions on top of the host language.
Next we briefly explain each line of the λ definition:

line 4: The transformer’s input must match (λ {n ...} ([x : τ] ... #:when φ) e), a pattern
that binds five pattern variables: n (the type index variables), x (the λ parameters), τ (the type
annotations), φ (a side-condition), and e (the lambda body).

line 5: Since type checking is interleaved with syntax elaboration, Turnstile type judgements are
elaboration judgements as well. Specifically, a judgement of the form [ctx $ e " e- ñ τ] is
read łin context ctx, e elaborates to e- and has type τ .ž
Thus the λ transformer elaborates e to e-, simultaneously computing its type τ_out. This

elaboration and type checking occurs in the context of the free variables. Instead of propagating a
type environment, Turnstile reuses Racket’s lexical scoping to implement the type environment. This
re-use greatly enhances the compositionality of languages and reduces effort so that a programmer
gets away with specifying only new environment bindings. Specifically, the first premise adds type
index variables and lambda parameters to the type environment, where the latter may contain
references to the former.
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#lang turnstile

01 (require (prefix-in untyped-video: video))

02 (provide λ #%app)

03

04 (define-syntax/typecheck (λ {n ...} ([x : τ ] ... #:when φ) e) "

05 [(n ...) ([x " x- : τ ] ...) $ e " e- ñ τ _out]

06 #:with new-φs (get-captured-φs e-)

07 ------------------------------------------------------------

08 [$ (untyped-video:λ (x- ...) e-)

09 ñ (Π (n ...) #:when (and φ new-φs) (Ñ τ ... τ _out))])

10

11 (define-syntax/typecheck (#%app e_fn e_arg ...) "

12 [$ e_fn " e_fn- ñ (Π Xs #:when φX (Ñ τ _inX ... τ _outX))]

13 #:with solved-τ s (solve Xs (τ _inX ...) (e_arg ...))

14 #:with (τ _in ... τ _out φ) (inst solved-τ s Xs (τ _inX ... τ _outX φX))

15 #:with φ* (type-eval φ)

16 #:fail-unless (not (false? φ*)) "failed side-condition φ at row:col ..."

17 #:unless (boolean? φ*) (add-φ φ*)

18 [$ e_arg " e_arg- ð τ _in] ...

19 ------------------------------------------------------------

20 [$ (untyped-video:#%app e_fn- e_arg- ...) ñ τ _out])

Figure 12: Type-checking via syntax transformers

line 6: A #:with premise binds additional pattern variables. Here, elaborating the lambda body e

may generate additional side-conditions, new-φs, that must be satisfied by the function’s inputs.
Rather than thread the side-conditions through every subexpression, as in figure 11, Typed Video’s
implementation utilizes a separate imperative interface for collecting constraints. Specifically, we
use the get-captured-φs and add-φ functions to propagate side-conditions (the definition of
these functions are not shown).

line 7: These dashes separate the premises from the conclusion.

line 8: The conclusion specifies the transformer’s outputs: (untyped-video:λ (x- ...) e-), an
untyped term, along with its type (Π (n ...) #:when (and φ new-φs) (Ñ τ ... τ_out)).
In Turnstile, types are represented using the same syntax structures as terms.

The second part of figure 12 presents Typed Video’s function application rule implementation. It
naturally interposes on Racket’s function application hook, #%app, via untyped Video’s function
application definition, to add type checking. Here is a brief description of each line of #%app:

line 11: The input syntax is matched against pattern (#%app e_fn e_arg ...), binding the
function to e_fn and all arguments to e_arg.

line 12: The function elaborates to e_fn-with type (Π Xs #:when φX (Ñ τ_inX ... τ_outX)),
which is universally quantified over type index variables Xs and has side-condition φX.

line 13: The transformer peforms local type inference, computing the concrete type indices solved-
τs at which to instantiate the polymorphic function.

line 14: Next, the polymorphic function type is instantiated to concrete types (τ_in ... τ_out)

and side-condition φ.
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Figure 13: Mingling graphical NLVE widgets inside of Video scripts

line 15: The transformer partially evaluates the concrete constraints in φ, producing φ*.

line 16: If φ* is false, elaboration stops and the transformer reports an error. Though this paper
truncates the error message details, this line demonstrates how our DSL creates true abstractions,
reporting errors in terms of the surface language rather than the host language.

line 17: If φ* is still an expression, propagate it using add-φ.

line 18: Check that the function arguments have the instantiated types. This premise uses the
łcheckž left arrow. If a programmer does not explicitly implement a left-arrow version of a rule,
Turnstile uses a standard subsumption rule by default.

line 20: The generated code consists of an untyped Video term along with its computed type.

The rest of the implementation of the typing rules is similar. For example, implementing Π is
straightforward because Turnstile reuses Racket’s knowledge of a program’s binding structure to
automatically handle naming. Further, the łas macrosž approach facilitates implementation of rules
for both terms and types, and thus the implementation of type-level computations also resembles
the rules in figure 12.

7 TEENAGE MUTANT NINJA TURTLES -ω˚

Some videos are best expressed with a graphical NLVE, and the DrRacket extension for Video
therefore comes with embedded NLVE widgets. Unlike other NLVEs with scriptable APIs, the NLVE

∗We failed to find the Roman numeral rendering of ω on Google.
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widget is actually part of the language. A developer may place an NLVE directly into a script. Best
of all, the embedded NLVE may include code snippets, which in turn can contain yet another NLVE
widget, etc. See figure 13 for a screenshot of such nesting.

A reader may wonder why one would want such a łturtles all the way downž approach to a Video
IDE. Consider the actual scenario when a hardware failure during a talk prevented the capture of
the speaker’s screen. Fortunately, the speaker supplied a copy of their slide deck as a PDF document.
While the captured video can still be recreated by using the slide deck, a decision has to be made
concerning the duration of each slide. If a plain-text Video script were to use this method, it would
inevitably contain a bunch of łmagic numbers.ž Embedding NLVE widgets into the code explains
these łmagic numbersž to any future reader of the code and is thus a cleaner way to solve the
problem. Figure 14 illustrates this point with a simplistic example. The module with magic numbers
is on the left; the right part of the figure shows how an embedded NLVE explains the numbers
directly. In both cases a developer must manually determine the screen time allocated to each slide.
However, using the widget gives the author a graphical representation of the layout, thus speeding
development time. Additionally, future authors can more easily tweak the times by dragging and
resizing clips in the widget.

Graphical NLVEs are producers and first-class objects in Video. They can be bound to a variable,
put in a playlist, supplied to a multitrack, and so on. Integrating the graphical and textual program
in this manner allows users to edit videos in the style that is relevant for the task at hand. For
example, the program in figure 13 shows an implementation of the conference-talk function
from section 4, now implemented using NLVE widgets with embedded code snippets.

Traditional NLVEs have several advantages over DrRacket widgets.13 For example, NLVEs such
as Premier have a cursor that tracks a notion of łcurrent time,ž with a preview window that shows a
low resolution but real-time sample of the video at that position. This feature enables high-precision
editing with quick feedback. As another example, traditional NLVEs do not have a notion of syntax
error. While an NLVE project may not be correct, it is guaranteed to describe a Video. Even with
widgets, Video programs can still have syntax errors as with other programming languages.

Video relies on the Racket ecosystem and the DrRacket environment to get REPL-style feedback
needed for quick video editing. As described in section 4.8 the preview function shows a low-
resolution (but real time) preview of the video being edited. This function starts the preview
moments after it is called; it can additionally be called from both the Racket REPL and any shell
environment. Developers using DrRacket can even use its cursor as an indicator for where to
preview.

The Racket ecosystem makes it possible to add NLVE support with only a small amount of code.
The editor itself plugs into the DrRacket programming environment [Findler et al. 2002]. The editor
itself is built on top of Racket’s graphical framework [Flatt et al. 2010], which greatly facilitates
such work. The entire editor is implemented in less than 800 lines of code. Of this, approximately
700 lines are for the graphical editor itself, and 50 are for the integration with Video. These lines
are not counted in the 2,400 lines for Video’s implementation. The code implementing these NLVE
widgets is plain Racket code, and we therefore omit details of the implementation.

8 THE RELATED SUSPECTS

Two main principles guide the Racket Way14 of creating DSLs [Flatt 2012]: reuse and abstraction.
As the old adage goes, łdon’t build languages from scratchž [Hudak 1996]. Reusing existing language

13We conjecture that these limitations are not fundamental to the concept of these widgets. However, testing that claim

would require a significant amount of engineering compared to the rest of Video’s implementation.
14Matthew Flatt. łThe Racket Wayž. Strange Loop Conference, 2012. infoq.com/presentations/Racket
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#lang video

(apply playlist

(for/list ([slide (directory-list slides)]

[time (in-list slide-times)])

(image slide #:length (* 48 time))))

; where

(define slide-times

(list 75 100 105 120 50 30 30 19 3

10 50 15 33 250 42 20 65

13 9 25 37 25 13 30 39 45))

Figure 14: Slide reconstruction using magic numbers (left) and a NLVE widget (right)

components greatly helps DSL creators, who are unlikely to be programming language researchers.
To aid reuse, Racket allows componentwise interposition of every core form.

Like all programmers, DSL users deserve proper abstractions, that is, constructs that do not
expose the underlying, reused components. In other words, host language details should not leak
into uses of the DSL, including in error messages. Racket’s syntactic abstraction capabilities builds
on the innovations of its Scheme and Lisp roots, but these predecessors never cared about writing
true abstractions. At best, Lisp and Scheme programmers write low-level validation code that
clutters the implementation; more commonly, validation is omitted, leaving Lisp and Scheme
macros that resemble naive rewrite rules that do not distinguish the DSL from the host language.
Racket helps the creation of robust linguistic abstractions with a declarative DSL for writing syntax
transformers [Culpepper 2012]. Instead of low-level validation code, programmers write high-level
specifications, which is compiled to produce error messages in terms of the surface language.

Researchers have studied DSLs for a long time and have developed various alternative classifica-
tions for DSL construction strategies. In the functional programming language community, Gibbons
and Wu [2014] distinguish DSLs along łdeepž vs łshallowž lines. Deep embeddings implement a
DSL’s AST as algebraic datatype constructors. As a result, well-typed DSL terms are also well-typed
host terms. While this makes effective reuse of the host language’s type checker, this approach falls
short on reuse because it requires implementing an evaluator from scratch. In addition, the deep
embedding approach requires advanced type system features [Jones et al. 2006; Xi et al. 2003], which
often produce obscure error messages that compromise the abstractions of the DSL. The łshallowž
approach uses standard functions to build DSLs [Hudak 1996] and thus both reuses the evaluator of
the host and leverages the abstraction power of functions and types to hide implementation details.
This approach has limited flexibility to deviate from and change features of the host, however,
because it does not consider syntactic abstraction nor interposition of language features. In other
words, programmers cannot create new abstractions. The łfinally taglessž technique [Carette et
al. 2009] tries to improve on the shallow approach via a clever encoding of types, but it sacrifices
reuse and abstraction altogether in the process.

In general, the deep vs shallow distinction seems more of an academic analysis and less focused
on the pragmatics of DSL creation. Thus, it might not be so useful for programmers who are
weighing tradeoffs and trying to solve domain-specific problems in the most effective manner.
Some industrial developers [Fowler and Parsons 2010] view DSLs as either łinternalž or łexternal.ž
Internal DSLs focus on reuse and typically involve extending a host language, which is why they
are also commonly called łembeddedž DSLs. The Racket approach creates internal DSLs. External
DSLs, as exemplified by the UNIX philosophy of łlittle languagesž [Bentley 1986; Raymond 2003],
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are typically implemented from scratch and require more effort but as a result are not constrained
by any particular host language.15

Racket may also be considered a łlanguage workbenchž16 [Feltey et al. 2016], which describes
a broad spectrum of tools and frameworks for creating DSLs, as well as a large community of
researchers and developers. While workbenches tend to utilize GUI tools [Kelly et al. 1996], and
commonly create external DSLs [Kats and Visser 2010], some more closely resemble Racket’s łreuse
and abstractionž approach [Erdweg et al. 2011], but with different design choices and thus trade-offs.
See Erdweg et al. [2015]’s recent summary for a detailed survey of the characteristics and design
choices in a large world of workbenches.

9 STAR TREK BEYOND

Imagine being Spock on the USS Enterprise. The ship’s hyper-light-nano-pulsar sensor has dis-
covered this paper. The discovery reveals a whole new, alternative futureÐRacket’s approach to
language-oriented programming [Dmitriev 2004; Ward 1994]Ðonly a few light-years away. Now
use extremely rational thinking to reason through the consequences of this insight.
Clearly, this alternative world encourages developers to build languages that are as close as

possible to problem domains. In this context, łlanguagež falls into the same class of concepts as
library, framework, or module. Software systems will consist of a deep hierarchy of such languages.
Some of these languages may sit at the surface of the system, helping domain experts formulate
partial solutions to facets of the overall problem. Others may sit below the surface, in the interior
of the hierarchy, because the implementation of DSLs also pose domain-specific problems. Each
language will narrow the gap between the ordinary constructs of the underlying language (variables,
loops, methods) and the concepts found in a problem domain (videos; syllabi; configurations). The
hierarchy underneath Racket contains several dozen such languages, each dedicated to a special
purpose, but all of them sitting within the core language.
Two critical factors enable this brave new world of language-oriented programming in the

Racket ecosystem. The first one is that developing languages in RacketÐreal languagesÐis a process
without friction. A language developer can edit a language implementation in one Emacs buffer,
save the file, and immediately run a second Emacs buffer with code written in the language of
the first one. Furthermore, the Racket syntax systemÐwith interposition points, advance syntax-
transformer facilities, syntax modules and so onÐallows an extreme degree of linguistic re-use.
Indeed, because of this potential of re-use, developers do not hesitate to create languages for a
single use.

The second factor is that Racket acts as a common substrate. Eventually programs in these łlittlež
languages are elaborated into core Racket modules. Developers can link these modules, creating
multi-lingual systems within a single host language. While this kind of linking is not without
problems, the advantages so far outweigh its disadvantages.
Racket is the host of this multi-lingual paradise, and Video is a poetic illustration of how this

paradise works and what it promises. Figure 15 displays an organization diagram that summarizes
the small language hierarchy underneath Video and its dependencies. The Video language itself
exists because the domain of video editing calls out for a declarative scripting language. As always,
Video closes the gap between the domain expert, who wishes to composite video clips program-
matically, and the scripting language, whose core provides nothing but functions and variables and
list comprehension and similar linguistic features.

15Racket, like most languages, can of course be used to create external DSLs, but they do not represent łthe Racket wayž.
16łLanguage Workbenches: The Killer-App for DSLs?ž, 2005, martinfowler.com/articles/languageWorkbench.html
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Video Docs 2

Scribble 6

Video 1 Typed Video 4

Video FFI 3 Turnstile 5

Syntax Parse 7

Racket 8

builds on

builds on builds on

builds on

builds on builds on

extendsextends

builds on

builds on

builds on

Figure 15: The tower of languages for Video

Similarly, a linguistic gap shows up for the implementation of Typed Video, an extension of
Video. Here the domain expert is a type-system designer, who uses type-checking rules to design
type systems. Once again, the gap between an ordinary functional language and this language of
type-system designers is quite large. Hence our implementation uses another DSL to articulate our
type systemÐas attachments to just those linguistic features for which we want typesÐ as much as
possible in the language of type-system designers.
The left side of the diagram shows yet another extension of Video, the Video Docs language,

which Video programmers can use to create integrated documentation. Like Typed Video, it extends
Video and rests on another domain-specific language, Scribble, which is a general-purpose mark-up
language for writing API documentation [Flatt et al. 2009]. While this extension is less complicated
than the one on the right side, it is worth mentioning because documentation is all too often not
understood as a domain in its own right.
The language gap also shows up with the implementation of Video. The language’s run-time

system demands extensive checking of values that flow into the C-level primitives. One way to
translate the language from the C documentation into Racket is to add explicit checks inside
Racket function definitions. Instead, we designed and implemented a DSL for dealing with just this
insertion of checks for this specific library.
Finally, all of these languages make extensive use of yet another DSL, syntax-parse. This

language closes the gap between Racket’s constructs for defining syntax transformers and the
language developers have in mind. For example, developers know that one particular element of
syntactic form must be an identifier while another must be a definition. Furthermore, they know
that the error messages must come from the form itself, not the result of elaborating an instance of
the form. The language of syntax-parse provides all this and more, once again allowing developers
to use the language they have in mind instead of just the underlying, raw core language.

No, Racket by no means solves all problems that come with language-oriented programming; see
the note on linking above.17 But, it sets itself apart from other approaches in the functional world,
plus it already has numerous successes to show for. We hope that functional programmers of all
stripes recognize the beauty of language-oriented-programming in general and Racket’s approach
in particular, and we invite them to translate the idea into their world.

17Patterson and Ahmed’s [2017] linking types might help here.
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