
Laziness By Need

Stephen Chang
Northeastern University

3/19/2013

ESOP 2013, Rome, Italy

Laziness is great.

“pragmatically important because it enables
the producer-consumer programming style”

[HM76]

“the most powerful tool for modularization
… the key to successful programming”

[Hughes90]

... Valid?

Or is it?

“in a lazy language, it’s much more difficult
to predict the order of evaluation”

[PJ11]

“lazy programs can
exhibit astonishing
poor space behavior”

[HHPJW07]

“monumentally difficult
to reason about time”

[Harper11]

I want the good
without the bad.

Solution: strict + lazy
(when needed)

via static analysis

“languages should support
both strict and lazy”

[PJ2011]

“The question is:
What’s the default?

How easy is it to get the other?
How do you mix them together?”

Combining lazy and strict
has been done?

Previous Approaches

• Lenient evaluation: Id, pH
[Nikhil91, NAH+95]

• Eager Haskell [Maessen02]

• Optimistic Evaluation [EPJ03]

• Strictness analysis [Mycroft1981,
BHA86, CPJ85]

• Cheap Eagerness [Faxen00]

All Adds strictness to lazy languages.

How do real-world lazy
programmers add

strictness?

seq

What about adding laziness to
strict languages?

“most thunks are
unnecessary”
[EPJ03]

“both before and after
optimization, most
thunks are evaluated”

[Faxen00]

“most Id90 programs
require neither
functional nor
conditional
non-strictness”

[SG95]

“in our corpus of R
programs … the
average evaluation
rate of promises is

90%”
[MHOV12]

strict
languages

lazy
languages

lazy
+

strictness
analysis

lazy
+

optimistic
evaluation

strict
+

laziness
by need

more laziness
(placements not exact)

lenient
evaluation

Strict languages already have laziness

So what’s the problem?

• Lazy data structures are not enough.

• Lazy annotations are hard to get right.

• Laziness is a global property!

Same Fringe
Two binary trees have the same fringe if they have
exactly the same leaves, reading from left to right.

samefringe tree1 tree2 =

(flatten tree1) == (flatten tree2)

1

2

5,000,001
...

0

1

5,000,000
...

Same Fringe

flat (Leaf x) acc = x::acc

flat (Node t1 t2) acc = flat t1 (flat t2 acc)

flatten t = flat t []

A (Tree X) is either a:
- Leaf X
- Node (Tree X) (Tree X)

Same Fringe (eager)

1

2

5,000,001
...

0

1

5,000,000
...

let tree1 = let tree2 =

samefringe tree1 tree2 => false

0m13.363s

Same Fringe (with streams)

A (Stream X) is either a:
- Nil
- Lcons X $(Stream X)

Same Fringe (with streams)

flatten t = flat t Nil

flat (Leaf x) acc = Lcons x $acc

flat (Node t1 t2) acc = flat t1 (flat t2 acc)

Same Fringe (with streams)

streameq $Nil $Nil = true

streameq $(Lcons x1 xs1) $(Lcons x2 xs2)=

x1==x2 && streameq xs1 xs2

streameq _ _ = false

Same Fringe (with streams)

samefringe tree1 tree2 => false

0m17.277s

samefringe tree1 tree2 =

streameq $(flatten tree1) $(flatten tree2)

(with lazy trees)
0m36.905s

Same Fringe (naïvely lazy)

flatten t = flat t Nil

flat (Leaf x) acc = Lcons x $acc

flat (Node t1 t2) acc = flat t1 (flat t2 acc)

Same Fringe (properly lazy)

flatten t = flat t Nil

flat (Leaf x) acc = Lcons x $acc

flat (Node t1 t2) acc = flat t1 $(flat t2 acc)

Same Fringe (properly lazy)

samefringe tree1 tree2 => false

0m0.002s

Takeaway

• Using lazy data structures is not
enough.

• Additional annotations are needed but
can be tricky.

• If only there was a tool that could help
with the process . . .

lcons x y

≡

cons x $y

30s 5s

Same Fringe (naïvely lazy)

flatten t = flat t Nil

flat (Leaf x) acc = Lcons x $acc

flat (Node t1 t2) acc = flat t1 (flat t2 acc)

control flow analysis

+

laziness flow analysis

control flow analysis

+

laziness flow analysis

arguments that reach a lazy construct

arguments that reach a strict context

expressions to force

Transformation

• Delay all

• Force all

Abstract value

tracks flow of functions arguments.

Read: Sets

if and only if constraints

approximate expression

Analysis specified with rules:

hold.

examples:

– arguments to primitives

– if test expression

– function position in an application

strict contexts
contexts where a thunk should not appear

We used our tool …

… and found some bugs.

Conclusions

• Get the benefits of laziness by starting
strict and adding laziness by need.

• A flow-analysis-based tool can help in
adding laziness to strict programs.

Thanks.

