
Mechanically Proving Determinacy of Hierarchical
Block Diagram Translations?

Viorel Preoteasa1,3(�), Iulia Dragomir2(�), and Stavros Tripakis3,4(�)

1 Space Systems Finland, Espoo, Finland
viorel.preoteasa@gmail.com

2 Univ. Grenoble Alpes, CNRS, Grenoble INP??,VERIMAG, 38000 Grenoble, France
iulia.dragomir@univ-grenoble-alpes.fr

3 Aalto University, Espoo, Finland
stavros.tripakis@aalto.fi

4 Northeastern University, Boston, USA

Abstract. Hierarchical block diagrams (HBDs) are at the heart of embedded sys-
tem design tools, including Simulink. Numerous translations exist from HBDs
into languages with formal semantics, amenable to formal verification. However,
none of these translations has been proven correct, to our knowledge.
We present in this paper the first mechanically proven HBD translation algorithm.
The algorithm translates HBDs into an algebra of terms with three basic com-
position operations (serial, parallel, and feedback). In order to capture various
translation strategies resulting in different terms achieving different tradeoffs, the
algorithm is nondeterministic. Despite this, we prove its semantic determinacy:
for every input HBD, all possible terms that can be generated by the algorithm are
semantically equivalent. We apply this result to show how three Simulink transla-
tion strategies introduced previously can be formalized as determinizations of the
algorithm, and derive that these strategies yield semantically equivalent results (a
question left open in previous work). All results are formalized and proved in the
Isabelle theorem-prover and the code is publicly available.

1 Introduction

Dozens of tools, including Simulink [28], the most widespread embedded system de-
sign environment, are based on hierarchical block diagrams (HBDs). Being a graphical
notation (and in the case of Simulink a “closed” one in the sense that the tool is not open-
source), such diagrams need to be translated into other formalisms more amenable to
formal analysis. Several such translations exist, e.g., see [2,39,29,41,34,12,24,43,44,30]
and the related discussion in Section 2. To our knowledge, none of these translations
has been formally verified. This paper aims to remedy this fact.

? This work has been partially supported by the Academy of Finland and the U.S. National
Science Foundation (awards #1329759 and #1801546). V. Preoteasa – Partially supported by
the ECSEL JU MegaM@Rt2 project under grant agreement #737494. I. Dragomir – Partially
supported by the the European Union’s Horizon 2020 research and innovation programme
under grant agreement #730080 (ESROCOS).

?? Institute of Engineering Univ. Grenoble Alpes

Our work builds upon the Refinement Calculus of Reactive Systems (RCRS), a
publicly available compositional framework for modeling and reasoning about reactive
systems [17,18]. RCRS is itself implemented on top of the Isabelle theorem prover [31].

RCRS uses Simulink as one of its front-ends, and includes a tool that translates
Simulink diagrams to RCRS theories [16]. This Translator implements three transla-
tion strategies from HBDs to an algebra of components with three basic composition
operators: serial, parallel, and feedback. The several translation strategies are motivated
by the fact that each strategy has its own pros and cons. For instance, one strategy may
result in shorter and/or easier to understand algebra terms, while another strategy may
result in terms that are easier to simplify by manipulating formulas in a theorem prover.
But a fundamental question is left open in [16]: are these translation strategies seman-
tically equivalent, meaning, do they produce semantically equivalent terms? This is the
question we study and answer (positively) in this paper.

The question is non-trivial, as we seek to prove the equivalence of three complex
algorithms which manipulate a graphical notation (hierarchical block diagrams) and
transform models in this notation into a different textual language, namely, the algebra
mentioned above. Terms in this algebra have intricate formal semantics, and formally
proving that two given specific terms are equivalent is already a non-trivial exercise.
Here, the problem is to prove that a number of translation strategies T1, T2, ..., Tk are
equivalent, meaning that for any given graphical diagram D, the terms resulting from
translating D by applying these strategies, T1(D), T2(D), ..., Tk(D), are all semanti-
cally equivalent.

This equivalence question is important for many reasons. Just like a compiler has
many choices when generating code, a HBD translator has many choices when gener-
ating algebraic expressions. Just like a correct compiler must guarantee that all possible
results are equivalent (independently of optimization or other flags/options), the transla-
tor must also guarantee that all possible algebraic expressions are equivalent. Moreover,
the algebraic expressions constitute the formal semantics of HBDs, and hence also those
of tools like Simulink. Therefore, this determinacy principle is also necessary in order
for the formal Simulink semantics to be well-defined.

In order to formulate the equivalence question precisely, we introduce an abstract
and nondeterministic algorithm for translating HBDs into an abstract algebra of compo-
nents with three composition operations (serial, parallel, feedback) and three constants
(split, switch, and sink). By abstract algorithm we understand an algorithm that pro-
duces terms in this abstract algebra. Concrete versions for this algorithm are obtained
when using it for concrete models of the algebra (e.g., constructive functions). The
algorithm is nondeterministic in the sense that it consists of a set of basic operations
(transformations) that can be applied in any order. This allows to capture various de-
terministic translation strategies as determinizations (refinements [5]) of the abstract
algorithm.

The main contributions of the paper are the following:

1. We formally and mechanically define a translation algorithm for HBDs.
2. We prove that despite its internal nondeterminism, the algorithm achieves deter-

ministic results in the sense that all possible algebra terms that can be generated by
the different nondeterministic choices are semantically equivalent.

3. We formalize two translation strategies introduced in [16] as refinements of the
abstract algorithm.

4. We formalize also the third strategy (feedbackless) introduced in [16] as an inde-
pendent algorithm.

5. We mechanically prove the equivalence of these three translation strategies.
6. We make our results publicly available at https://github.com/hbd-translation/

TranslateHBD.

To our knowledge, our work constitutes the first and only mechanically proven hi-
erarchical block diagram translator. Moreover, our method is compositional and our
abstract algorithm can be instantiated in many different ways, encompassing not just
the three translation strategies of [16], but also any other HBD translation strategy that
can be devised by combining the basic composition operations defined in the abstract
algorithm.

2 Related Work

Model transformation and the verification of its correctness is a long standing line of
research, which includes classification of model transformations [3] and the properties
they must satisfy with respect to their intent [26], verification techniques [1], frame-
works for specifying model transformations (e.g., ATL [19]), and various implementa-
tions for specific source and target meta-models. Extensive surveys of the above can be
found in [3,11,1].

Several translations from Simulink have been proposed in the literature, including
to Hybrid Automata [2], BIP [39], NuSMV [29], Lustre [41], Boogie [34], Timed In-
terval Calculus [12], Function Blocks [24], I/O Extended Finite Automata [43], Hybrid
CSP [44], and SpaceEx [30]. It is unclear to what extent these approaches provide for-
mal guarantees on the determinism of the translation. For example, the order in which
blocks in the Simulink diagram are processed might a-priori influence the result. Some
works fix this order, e.g., [34] computes the control flow graph and translates the model
according to this computed order. In contrast, we prove that the results of our algorithm
are equivalent for any order. To the best of our knowledge, the abstract translation pro-
posed hereafter for Simulink is the only one formally defined and mechanically proven
correct.

The focus of several works is to validate the preservation of the semantics of the
original diagram by the resulting translation (e.g., see [24,35,9,36]). In contrast, our
goal is to prove equivalence of all possible translations. Given that Simulink semantics
is informal (“what the simulator does”), ultimately the only way to gain confidence
that the translation conforms to the original Simulink model is by simulation (e.g., as
in [16]).

In general, our approach can be considered as a means in the certification and qual-
ification of compilers by mechanical formal verification. Several works tackle the for-
mal verification of compilers for programming languages: COMPCERT [25] is a ver-
ified compiler for a subset of C with the COQ interactive theorem prover [40], while
the verification of a compiler for Lustre with COQ is considered in [4,10]. The aim of
these works is to show that the semantics of the original program is preserved during

https://github.com/hbd-translation/TranslateHBD
https://github.com/hbd-translation/TranslateHBD

the different compilation phases until the generated assembly code, while we provide
a semantics for HBDs and we prove it correct with respect to the different translation
choices.

Further comparison of our approach to additional related works and in particular
works on category theory such as [6,13,21,22,23,37,38,42] is included in [32] and is
omitted from here due to space limitations. To our knowledge, none of these works has
been mechanically formalized nor verified.

3 Preliminaries

For a type or set X , X∗ is the type of finite lists with elements from X . We denote the
empty list by ε, (x1, . . . , xn) denotes the list with elements x1, . . . , xn, and for lists x
and y, x · y denotes their concatenation. The length of a list x is denoted by |x|. The
list of common elements of x and y in the order occurring in x is denoted by x ⊗ y.
The list of elements from x that do not occur in y is denoted by x 	 y. We define
x⊕ y = x · (y 	 x), the list of x concatenated with the elements of y not occurring in
x. A list x is a permutation of a list y, denoted perm(x, y), if x contains all elements of
y (including multiplicities) possibly in a different order. For a list x, set(x) denotes the
set of all elements of x.

In the sequel we refer to constructive functions as used in the constructive seman-
tics literature [27,8,20]. Constructive functions enjoy important properties, in particular
with respect to feedback composition, and are one of the concrete models for the ab-
stract algebra of HBDs introduced in Section 5. The formal definition of constructive
functions is omitted due to lack of space and the reader is referred to [32].

4 Overview of the Translation Algorithm

A block diagram N is a network of interconnected blocks. A block may be a basic
(atomic) block, or a composite block that corresponds to a sub-diagram. If N contains
composite blocks then it is called a hierarchical block diagram (HBD); otherwise it is
called flat. An example of a flat diagram is shown in Fig. 1a. The connections between
blocks are called wires, and they have a source block and a target block. For simplicity,
we will assume that every wire has a single source and a single target. This can be
achieved by adding extra blocks. For instance, the diagram of Fig. 1a can be transformed
as in Fig. 1b by adding an explicit block called Split.

Let us explain the idea of the translation algorithm. We first explain the idea for flat
diagrams, and then we extend it recursively for hierarchical diagrams.

A diagram is represented in the algorithm as a list of elements corresponding to the
basic blocks. One element of this list is a triple containing a list of input variables, a
list of output variables, and a function. The function computes the values of the outputs
based on the values of the inputs, and for now it can be thought of as a constructive
function. Later this function will be an element of an abstract algebra modeling HBDs.
Wires are represented by matching input/output variables from the block representa-
tions.

Add Delay •

(a) Original block diagram

Add
x

Delay
y

Split
z

u v

(b) Naming wires and adding Split block

Add
x

Delay

y
Split

z
u v

s s′

(c) Adding state variables

Add
x

Id

u
z

Delay

y

s′s

A

(d) One step of the algorithm

Fig. 1: Running example: diagram for summation.

A block diagram may contain stateful blocks such as delays or integrators. We
model these blocks using additional state variables (wires). In Fig. 1, the only state-
ful block is the block Delay. We model this block as an element with two inputs (x, s),
two outputs (y, s′) and function (y, s′) := (s, x) (Fig. 1c). More details about this
representation can be found in [16].

In summary, the list representation of the example of Fig. 1 is the following:(
Add,Delay,Split

)
, where: Add = ((z, u), x, [z, u; z + u]),

Delay = ((x, s), (y, s′), [x, s; s, x]), Split = (y, (z, v), [y ; y, y]).

The algorithm works by choosing nondeterministically some elements from the list
and replacing them with their appropriate composition (serial, parallel, or feedback).
The composition must connect all the matching variables. Let us illustrate how the al-
gorithm may proceed on the example of Fig. 1; for the full description of the algorithm
see Section 6. Symbols ◦, ‖ and feedback used below denote serial, parallel and feed-
back compositions, respectively, and they will be formally introduced in Section 5.1.

Suppose the algorithm first chooses to compose Add and Delay. The only matching
variable in this case is x, between the output of Add and the first input of Delay. The
appropriate composition to use here is serial composition. Because Delay also has s as
input, Add and Delay cannot be directly connected in series. This is due to the number
of outputs of Add that need to match the number of inputs of Delay. To compute the
serial composition, Add must first be composed in parallel with the identity block Id, as
shown in Fig. 1d. Doing so, a new element A is created:

A = ((z, u, s), (y, s′), Delay ◦ (Add ‖ Id))
Next, A is composed with Split. In this case we need to connect variable y (using serial
composition), as well as z (using feedback composition). The resulting element is A′:

A′ =
(
(u, s), (v, s′), feedback

(
(Split ‖ Id) ◦ Delay ◦ (Add ‖ Id)

))
where we need again to add the Id component for variable s′.

As a different nondeterministic choice, the algorithm may first compose Split and
Add into B:

Split Add

z

x

v

y

u

B

(a) First step: composing Split and Add

B Delay

x

s′

v

u

s

y

(b) Second step: composing B and Delay

Fig. 2: A different composition order for the example from Fig. 1.

B = ((y, u), (x, v), (Add ‖ Id) ◦ (Id ‖ [v, u; u, v]) ◦ (Split ‖ Id))
In this composition, shown in Fig. 2a, we now need in addition to the Id components,
a switch ([v, u ; u, v]) for wires v and u. Next the algorithm composes B and Delay
(Fig. 2b):

B′ =
(
(u, s), (s′, v), feedback

(
(Delay ‖ Id) ◦ (Id ‖ [v, s; s, v]) ◦ (B ‖ Id)

)
.
)

As we can see from this example, by considering the blocks in the diagram in differ-
ent orders, we obtain different expressions. On this example, expression A′ is simpler
(it has less connectors) than B′. In general, a diagram, being a graph, does not have a
predefined canonical order, and we need to show that the result of the algorithm is the
same regardless of the order in which the blocks are considered.

We make two remarks here. First, the final result of the algorithm is a triple with
the same structure as all elements on the original list: (input variables, output vari-
ables, function), where the function represents the computation performed by the entire
diagram. Therefore, the algorithm can be applied recursively on HBDs. Second, the
variables in the representation occur at most twice, once as input, and once as output.
The variables occurring only as inputs are the inputs of the resulting final element, and
variables occurring only as outputs are the outputs of the resulting final element. This
is true in general for all diagrams, due to the representation of splitting of wires. This
fact is essential for the correctness of the algorithm as we will see in Section 6.

5 An Abstract Algebra for Hierarchical Block Diagrams

We assume that we have a set of Types. We also assume a set of diagrams Dgr. Every
element S ∈ Dgr has input type t ∈ Types∗ and output type t′ ∈ Types∗. If t = t1 · · · tn
and t′ = t′1 · · · t′m, then S takes as input a tuple of the type t1 × . . .× tn and produces
as output a tuple of the type t′1 × . . . × t′m. We denote the fact that S has input type
t ∈ Types∗ and output type t′ ∈ Types∗ by S : t

◦−→ t′. The elements of Dgr are
abstract.

5.1 Operations of the Algebra of HBDs

Constants. Basic blocks are modeled as constants on Dgr. For types t, t′ ∈ Types∗ we
assume the following constants:

Id(t) : t
◦−→ t Split(t) : t

◦−→ t · t Sink(t) : t
◦−→ ε Switch(t, t′) : t · t′ ◦−→ t′ · t

S T S T

feedback(Id(a) ‖ S ; Switch(a, a) ‖ Id(t) ; Id(a) ‖ T) S ; T=

Fig. 3: Two flat diagrams and their corresponding terms in the abstract algebra.

Id corresponds to the identity block. It copies the input into the output. In the model of
constructive functions Id(t) is the identity function. Split(t) takes an input x of type t
and outputs x · x of type t · t. Sink(t) returns the empty tuple ε, for any input x of type
t. Switch(t, t′) takes an input x · x′ with x of type t and x′ of type t′ and returns x′ · x.
In the model of constructive functions these diagrams are total functions and they are
defined as explained above. In the abstract model, the behaviors of these constants is
defined with a set of axioms (see below).

Composition operators. For two diagrams S : t
◦−→ t′ and S′ : t′

◦−→ t′′, their
serial composition, denoted S ; S′ : t

◦−→ t′′ is a diagram that takes inputs of type
t and produces outputs of type t′′. In the model of constructive functions, the serial
composition corresponds to function composition (S ; S′ = S′ ◦ S). Please note that
in the abstract model we write the serial composition as S ; S′, while in the model of
constructive functions the first diagram that is applied to the input occurs second in the
composition.

The parallel composition of two diagrams S : t
◦−→ t′ and S′ : r ◦−→ r′, denoted

S ‖ S′ : t · r ◦−→ t′ · r′, is a diagram that takes as input tuples of type t · r and produces
as output tuples of type t′ · r′. This parallel composition corresponds to the parallel
composition of constructive functions.

Finally we introduce a feedback composition. For S : a · t ◦−→ a · t′, where a ∈
Types is a single type, the feedback of S, denoted feedback(S) : t

◦−→ t′, is the result
of connecting in feedback the first output of S to its first input. Again this feedback
operation corresponds to the feedback of constructive functions.

We assume that parallel composition operator binds stronger than serial composi-
tion, i.e. S ‖ T ; R is the same as (S ‖ T) ; R.

Graphical diagrams can be represented as terms in the abstract algebra, as illustrated
in Fig. 3. This figure depicts two diagrams, and their corresponding algebra terms. As
it turns out, these two diagrams are equivalent, in the sense that their corresponding
algebra terms can be shown to be equal using the axioms presented below.

5.2 Axioms of the Algebra of HBDs

In the abstract algebra, the behavior of the constants and composition operators is de-
fined by a set of axioms, listed below (fn denotes n applications of function f , so for
example feedback2(·) = feedback(feedback(·))):

1. S : t
◦−→ t′ =⇒ Id(t) ; S = S ; Id(t′) = S

2. S : t1
◦−→ t2 ∧ T : t2

◦−→ t3 ∧R : t3
◦−→ t4 =⇒ S ; (T ; R) = (S ; T) ; R

3. Id(ε) ‖ S = S ‖ Id(ε) = S

4. S ‖ (T ‖R) = (S ‖ T) ‖R

5. Id(t) ‖ Id(t′) = Id(t · t′)

6. S : s
◦−→ s′ ∧ S′ : s′ ◦−→ s′′ ∧ T : t

◦−→ t′ ∧ T ′ : t′ ◦−→ t′′

=⇒ (S ‖ T) ; (S′ ‖ T ′) = (S ; S′) ‖ (T ; T ′)

7. Switch(t, t′ · t′′) = Switch(t, t′) ‖ Id(t′′) ; Id(t′) ‖ Switch(t, t′′)

8. S : s
◦−→ s′ ∧ T : t

◦−→ t′ =⇒ Switch(s, t) ; T ‖ S ; Switch(t′, s′) = S ‖ T

9. feedback(Switch(a, a)) = Id(a)

10. S : a · s ◦−→ a · t =⇒ feedback(S ‖ T) = feedback(S) ‖ T

11. S : a · s ◦−→ a · t ∧A : s′
◦−→ s ∧B : t

◦−→ t′

=⇒ feedback(Id(a) ‖A ; S ; Id(a) ‖B) = A ; feedback(S) ; B

12. S : a · b · s ◦−→ a · b · t
=⇒ feedback2(Switch(b, a)‖ Id(s) ; S ; Switch(a, b)‖ Id(t)) = feedback2(S)

13. Split(t) ; Sink(t) ‖ Id(t) = Id(t)

14. Split(t) ; Switch(t, t) = Split(t)

15. Split(t) ; Id(t) ‖ Split(t) = Split(t) ; Split(t) ‖ Id(t)

16. Sink(t · t′) = Sink(t) ‖ Sink(t′)

17. Split(t · t′) = Split(t) ‖ Split(t′) ; Id(t) ‖ Switch(t, t′) ‖ Id(t′)

Due to space limitations, the intuition behind these axioms is explained and illus-
trated with figures in [32].

6 The Abstract Translation Algorithm and its Determinacy

6.1 Diagrams with Named Inputs and Outputs

The algorithm works by first transforming the graph of a HBD into a list of basic
components with named inputs and outputs as explained in Section 4. For this pur-
pose we assume a set of names or variables Var and a function T : Var → Types.
For v ∈ Var, T(v) is the type of variable v. We extend T to lists of variables by
T(v1, . . . , vn) = (T (v1), . . . , T (vn)).

Definition 1. A diagram with named inputs and outputs or io-diagram for short is a
tuple (in, out , S) such that in, out ∈ Var∗ are lists of distinct variables, and S :

T(in)
◦−→ T(out).

In what follows we use the symbols A,A′, B, . . . to denote io-diagrams, and I(A),
O(A), and D(A) to denote the input variables, the output variables, and the diagram of
A, respectively.

Definition 2. For io-diagrams A and B, we define V(A,B) = O(A)⊗ I(B) ∈ Var∗.

V(A,B) is the list of common variables that are output ofA and input ofB, in the order
occurring in O(A). We use V(A,B) later to connect for example in series A and B on
these common variables, as we did for constructingA from Add and Delay in Section 4.

6.2 General Switch Diagrams

We compose diagrams when their types are matching, and we compose io-diagrams
based on matching names of input and output variables. For example if we have two io-
diagramsA andB with O(A) = u ·v and I(B) = v ·u, then we can compose in seriesA
andB by switching the output ofA and feeding it intoB, i.e., (A ; Switch(T(u),T(v)) ; B).

In general, for two lists of variables x = (x1 · · ·xn) and y = (y1 · · · yk) we de-
fine a general switch diagram [x1 · · ·xn ; y1 · · · yk] : T(x1 · · ·xn)

◦−→ T(y1 · · · yk).
Intuitively this diagram takes as input a list of values of type T(x1 · · ·xn) and outputs
a list of values of type T(y1 · · · yk), where the output value corresponding to variable
yj is equal to the value corresponding to the first xi with xi = yj and it is arbitrary
(unknown) if there is no such xi. For example in the constructive functions model
[u, v ; v, u, w, u] for input (a, b) outputs (b, a,⊥, a).

To define [_ ; _] we use Split, Sink, and Switch, but we need also an additional
diagram that outputs an arbitrary (or unknown) value for an empty input. For a ∈ Types,
we define Arb(a) : ε

◦−→ a by Arb(a) = feedback(Split(a)). The diagram Arb is
represented in Fig. 4.

•

Fig. 4: The diagram Arb.

We define now [x ; y] : T(x)
◦−→ T(y) in two

steps. First for x ∈ Var∗ and u ∈ Var, the diagram
[x ; u] : T(x)

◦−→ T(u), for input a1, . . . , an outputs
the value ai where i is the first index such that xi = u.
Otherwise it outputs an arbitrary (unknown) value.

[ε; u] = Arb(T(u))

[u · x; u] = Id(T(u)) ‖ Sink(T(x))
[v · x; u] = Sink(T(v)) ‖ [x; u] (if u 6= v)

[x; ε] = Sink(T(x))

[x; u · y] = Split(T(x)) ; ([x; u] ‖ [x; y])

6.3 Basic Operations of the Abstract Translation Algorithm

The algorithm starts with a list of io-diagrams and repeatedly applies operations until
it reduces the list to only one io-diagram. These operations are the extensions of serial,
parallel and feedback from diagrams to io-diagrams.

Definition 3. The named serial composition of two io-diagrams A and B, denoted
A ; ; B is defined by A ; ; B = (in, out , S), where x = I(B) 	 V(A,B), y =
O(A)	 V(A,B), in = I(A)⊕ x, out = y · O(B) and

S = [in ; I(A) · x] ; D(A) ‖ [x; x] ; [O(A) · x; y · I(B)] ; [y ; y] ‖ D(B).

The construction of A from Section 4 can be obtained by applying the named serial
composition to Add and Delay.

Fig. 5a illustrates an example of the named serial composition. In this case we have
V(A,B) = u, x = (a, b), y = (v, w), in = (a, c, b), and out = (v, w, d, e). The
componentA has outputs u, v, w, and u is also input ofB. Variable u is the only variable
that is output of A and input of B. Because the outputs v, w of A are not inputs of B
they become outputs of A ; ; B. Variable a is input for both A and B, so in A ; ; B the
value of a is split and fed into both A and B. The diagram for this example is:

[a, c, b; a, c, a, b] ; A ‖ Id(T(a, b)) ; [u, v, w, a, b; v, w, a, u, b] ; Id(T(v, w)) ‖B

The result of the named serial composition of two io-diagrams is not always an io-
diagram. The problem is that the outputs of A ; ; B are not distinct in general. The next
lemma gives sufficient conditions for A ; ; B to be an io-diagram.

Lemma 1. If A,B are io-diagrams and (O(A)	 I(B))⊗O(B) = ε then A ; ; B is an
io-diagram. In particular if O(A)⊗ O(B) = ε then A ; ; B is an io-diagram.

The named serial composition is associative, expressed by the next lemma.

Lemma 2. If A,B,C are io-diagrams such that (O(A) 	 I(B)) ⊗ O(B) = ε and
(O(A)⊗ I(B))⊗ I(C) = ε, then (A ; ; B) ; ; C = A ; ; (B ; ; C).

Next we introduce the corresponding operation on io-diagrams for the parallel com-
position.

Definition 4. If A,B are io-diagrams, then the named parallel composition of A and
B, denoted A |||B is defined by

A |||B = (I(A)⊕ I(B), O(A) · O(B), [I(A)⊕ I(B); I(A) · I(B)] ; (A ‖B)).

Fig. 5b presents an example of a named parallel composition. The named parallel com-
position is meaningful only if the outputs of the two diagrams have different names.
However, the inputs may not necessarily be distinct as shown in Fig. 5b.

As in the case of named serial composition, the parallel composition of two io-
diagrams is not always an io-diagram. Next lemma gives conditions for the parallel
composition to be io-diagram and also states that the named parallel composition is
associative.

Lemma 3. Let A, B, and C be io-diagrams, then

1. O(A)⊗ O(B) = ε ⇒ A |||B is an io-diagram.

2. (A |||B) |||C = A ||| (B |||C)

Next definition introduces the feedback operator for io-diagrams.

A
v
u

w B
u

a

c

a

b

d

e

•

(a) A named serial composition.

A
v
u

w
b

a

c

B
s
t

r
b

d

a

•
•

(b) A named parallel composition.

Fig. 5: Examples of named compositions.

A
a
e
u

v

d

c
b

a

d
e

Fig. 6: Example of named feedback composition.

Definition 5. If A is an io-diagram, then the named feedback of A, denoted FB(A) is
defined by (in, out , S), where in = I(A)	 V(A,A), out = O(A)	 V(A,A) and

S = feedback|V(A,A)|([V(A,A) · in; I(A)] ; S ; [O(A); V(A,A) · out]).

The named feedback operation of A connects all inputs and outputs of A with the same
name in feedback. Fig. 6 illustrates an example of named feedback composition. The
named feedback applied to an io-diagram is always an io-diagram.

Lemma 4. If A is an io-diagram then FB(A) is an io-diagram.

6.4 The Abstract Translation Algorithm

We have now all elements for introducing the abstract translation algorithm. The algo-
rithm starts with a list A = (A1, A2, . . . , An) of io-diagrams, such that for all i 6= j,
the inputs and outputs of Ai and Aj are disjoint respectively (I(Ai) ⊗ I(Aj) = ε and
O(Ai) ⊗ O(Aj) = ε). We denote this property by io−distinct(A). The algorithm is
given in Alg. 1. Formally the algorithm is represented as a monotonic predicate trans-
former [15], within the framework of refinement calculus [5].

Computing FB(A) in the last step of the algorithm is necessary only if A con-
tains initially only one element. However, computing FB(A) always at the end does not
change the result since, as we will see later in Theorem 1, the FB operation is idempo-
tent, i.e. FB(FB(A)) = FB(A). In the presentation of the algorithm, we have used the
keyword choose for the nondeterministic choice u, to emphasize the two alternatives.

Note that, semantically, choice (b) of the algorithm is a special case of choice (a),
as shown later in Theorem 1. But syntactically, choices (a) and (b) result in different

input: A = (A1, A2, . . . , An) (list of io-diagrams)
while |A| > 1 :

choose between options (a) and (b) :
(a) [A := A′ | ∃ k,B1, . . . , Bk, C : k > 1 ∧

perm(A, (B1, . . . , Bk)·C) ∧ A′ = FB(B1 ||| . . . |||Bk)·C]
(b) [A := A′ | ∃ A,B, C : perm(A, (A,B) · C) ∧

A′ = FB(FB(A) ; ; FB(B)) · C]
A := FB(A′) (where A′ is the only remaining element of A)

Alg. 1: Nondeterministic algorithm for translating HBDs.

expressions that achieve different performance tradeoffs as observed in Section 4 and
as further discussed in [16]. The point of the Translator is to be indeed able to generate
semantically equivalent but syntactically different expressions, which achieve different
performance tradeoffs [16].

The result for the running example from Section 4 can be obtained by applying the
second choice of the algorithm twice for the initial list of io-diagrams ([Add,Delay,Split]),
first to Add and Delay to obtain A, and next to A and Split to obtain(

(u, s), (v, s′), feedback
(
(D(Add) ‖ Id) ; D(Delay) ; ((Split) ‖ Id)

))
As opposed to the example from Section 4, the elements are composed serially in the
order occurring in the diagram.

6.5 Determinacy of the Abstract Translation Algorithm

The result of the algorithm depends on how the nondeterministic choices are resolved.
However, in all cases the final io-diagrams are equivalent modulo a permutation of the
inputs and outputs. To prove this, we introduce the concept io-equivalence for two io-
diagrams.

Definition 6. Two io-diagrams A,B are io-equivalent, denoted A ∼ B if they are
equal modulo a permutation of the inputs and outputs, i.e., I(B) is a permutation of
I(A), O(B) is a permutation of O(A) and

D(A) = [I(A); I(B)] ; D(B) ; [O(B); O(A)]

Lemma 5. The relation io-equivalent is a congruence relation, i.e, for all io-diagrams
A,B,C:

1. A ∼ A

2. A ∼ B ⇒ B ∼ A

3. A ∼ B ∧B ∼ C ⇒ A ∼ C.

4. A ∼ B ⇒ FB(A) ∼ FB(B).

5. O(A)⊗ O(B) = ε⇒ A |||B ∼ B |||A.

6. If io−distinct(A1, . . . , An) and perm((A1, . . . , An), (B1, . . . , Bn)) then

A1 ||| . . . An ∼ B1 ||| . . . Bn.

A

B
t

s

v

u

x
y

(a) Composing A and B in parallel and
then in feedback

= A B

x

s

t

u

v

y

(b) Composing A and B in series and
then in feedback

Fig. 7: Named feedback of parallel composition is equivalent to named feedback of
serial composition.

To prove correctness of the algorithm we also need the following results:

Theorem 1. If A,B are io-diagrams such that I(A)⊗ I(B) = ε and O(A)⊗O(B) = ε
then

(1) FB(A |||B) = FB(FB(A) ; ; FB(B)) and (2) FB(FB(A)) = FB(A).

The proof of Theorem 1 is quite involved and requires several properties of diagrams
(see the RCRS formalization [18] for details). Fig. 7 illustrates a simplified application
of Theorem 1 (1). In the general case of this theorem there are possibly multiple wires
between A and B. There may also be wires between the outputs and inputs of A, and
B, and these wires may also be inter-mixed.

We can now state and prove one of the main results of this paper, namely, determi-
nacy of Alg. 1.

Theorem 2. If A = (A1, A2, . . . , An) is the initial list of io-diagrams satisfying
io−distinct(A), then Alg. 1 terminates, and if A is the io-diagram computed by the
algorithm, then

A ∼ FB(A1 ||| . . . |||An)

7 Proving Equivalence of Two Translation Strategies

To demonstrate the usefulness of our framework, we return to our original motivation,
namely, the open problem of how to prove equivalence of the translation strategies in-
troduced in [16]. Two of the translation strategies of [16], called feedback-parallel and
incremental translation, can be seen as a determinizations (or refinements) of the ab-
stract algorithm of Section 6, and therefore can be shown to be equivalent and correct
with respect to the abstract semantics. (The third strategy proposed in [16], called feed-
backless, is significantly different and is presented in the next section.)

The feedback-parallel strategy is the implementation of the abstract algorithm where
we choose k = |A|. Intuitively, all diagram components are put in parallel and the com-
mon inputs and outputs are connected via feedback operators. On the running example
from Fig. 1c, this strategy will generate the following component:

((u, s), (v, s′), feedback3([z, x, y, u, s; z, u, x, s, y]

; D(Add) ‖ D(Delay) ‖ D(Split) ; [x, y, s′, z, v ; z, x, y, v, s′]))

The switches are ordering the variables such that the feedback variables are first and in
the same order in both input and output lists.

The incremental strategy is the implementation of the abstract algorithm where we
use only the second choice of the algorithm and the first two components of the list A.
This strategy is dependent on the initial order ofA, and we orderA topologically (based
on the input - output connections) at the beginning, in order to reduce the number of
switches needed.

Again on the running example, assume that this strategy composes first Add with
Delay, and the result is composed with Split. The following component is then obtained:

((u, s), (v, s′), feedback(D(Add) ‖ Id ; D(Delay) ; D(Split) ‖ Id)

The Add and Split components are put in parallel with Id for the unconnected input
and output state respectively. Next all components are connected in series with one
feedback operator for the variable z.

The next theorem shows that the two strategies are equivalent, and that they are
independent of the initial order of A.

Theorem 3. If A and B are the result of the feedback-parallel and incremental strate-
gies onA, respectively, then A and B are input - output equivalent (A ∼ B). Moreover
both strategies are independent of the initial order of A.

Since both strategies are refinements of the nondeterministic algorithm, they both
satisfy the same correctness conditions of Theorem 2.

8 Proving Equivalence of A Third Translation Strategy

The abstract algorithm for translating HBDs, as well as the two translation strategies
presented in Section 7, use the feedback operator when translating diagrams. As dis-
cussed in [16], expressions that contain the feedback operator are more complex to pro-
cess and simplify. For this reason, we wish to avoid using the feedback operator as much
as possible. Fortunately, in practice, diagrams such as those obtained from Simulink are
deterministic and algebraic loop free. As it turns out, such diagrams can be translated
into algebraic expressions that do not use the feedback operator at all [16]. This can be
done using the third translation strategy proposed in [16], called feedbackless.

While the two translation strategies presented in Section 7 can be modeled as refine-
ments of the abstract algorithm, the feedbackless strategy is significantly more complex,
and cannot be captured as such a refinement. We therefore treat it separately in this sec-
tion. In particular, we formalize the feedbackless strategy and we show that it is equiv-
alent to the abstract algorithm, namely, that for the same input, the results of the two
algorithms are io-equivalent.

8.1 Deterministic and Algebraic-Loop-Free Diagrams

Before we introduce the feedbackless strategy, we need some additional definitions.

Definition 7. A diagram S is deterministic if [x ; x, x] ; (S ‖ S) = S ; [y ; y, y].
An io-diagram A is deterministic if D(A) is deterministic.

The definition of deterministic diagram corresponds to the following intuition. If we
execute two copies of S in parallel using the same input value x, we should obtain the
same result as executing one S for the same input value x.

The deterministic property is closed under the serial, parallel, and switch operations
of the HBD algebra.

Lemma 6. If S, T ∈ Dgr are deterministic and x, y are lists of variables such that x is
distinct and set(y) ⊆ set(x), then [x; y], and S ; T , and S ‖T are also deterministic.

It is not obvious whether we can deduce from the axioms that the deterministic
property is closed under the feedback operation. However, since we do not use the
feedback operation in this algorithm, we do not need this property.

Definition 8. The output input dependency relation of an io-diagram A is defined by

oi_rel(A) = set(O(A))× set(I(A))

and the output input dependency relation of a list A = [A1, . . . , An] of io-diagrams is
defined by

oi_rel(A) = oi_rel(A1) ∪ . . . ∪ oi_rel(An)

A list A of io-diagrams is algebraic loop free, denoted loop_free(A), if

(∀x : (x, x) 6∈ (oi_rel(A))+)

where (oi_rel(A))+ is the reflexive and transitive closure of relation (oi_rel(A)).

If we apply this directly to the list of io-diagrams from our exampleA = [Add,Delay,Split]
we obtain

oi_rel(A) = {(x, u), (x, z), (y, x), (y, s), (s′, x), (s′, s), (z, y), (v, y)}

and we have that (z, z) ∈ (oi_rel(A))+ because (z, y), (y, x), (x, z) ∈ oi_rel(A), there-
foreA is not algebraic loop free. However, the diagram from the example is accepted by
Simulink, and it is considered algebraic loop free. In our treatment oi_rel(A) contains
pairs that do not represent genuine output input dependencies. For example output y of
Delay depends only on the input s, and it does not depend on x. Similarly, output s′ of
Delay depends only on x.

Before applying the feedbackless algorithm, we change the initial list of blocks into
a new list such that the output input dependencies are recorded more accurately, and all
elements in the new list have one single output. We split a basic block A into a list of
blocks A1, . . . , An with single outputs such that A ∼ A1 ||| . . . |||An. Basically every
block with n outputs is split into n single output blocks.

We can do the splitting systematically by composing a block A with all projections
of the output. For example if A = (x, (u1, . . . , un), S), then we can split A into Ai =
(x, ui, S ; [u1, . . . , un ; ui]). Such splitting is always possible:

Lemma 7. If A is deterministic, then A1, . . . , An is a splitting of A, i.e.

A ∼ A1 ||| . . . |||An.

However, this will still introduce unwanted output input dependencies. We solve this
problem by defining the splitting for every basic block, such that it accurately records
the output input dependency. For example, we split the delay block into Delay1 and
Delay2:
Delay1 = (s, y, [s; s]) = (s, y, Id) and Delay2 = (x, s′, [x; x]) = (x, s′, Id)

The Split block is split into Split1 and Split2:
Split1 = (y, z, [y ; y]) = (y, z, Id) and Split2 = (y, v, [y ; y]) = (y, v, Id)

The blocks Delay1, Delay2, Split1, and Split2 are all the same, except the naming of the
inputs and outputs. The Add block has one single output that depends on both inputs,
so it remains unchanged.

After splitting, the list of single output blocks for our example becomes
B =

(
Add,Delay1,Delay2,Split1,Split2

)
and we have

oi_rel(B) = {(x, u), (x, z), (y, s), (s′, x), (z, y), (v, y)}.
Now B is algebraic loop free.

Definition 9. A block diagram is algebraic loop free if, after splitting, the list of blocks
is algebraic loop free.

We assume that every splitting of a block A into B1, . . . , Bk is done such that
A ∼ B1 ||| . . . |||Bk.

Lemma 8. If a list of blocks A = (A1, . . . , An) is split into B = (B1, . . . , Bm), then
we have

A1 ||| . . . |||An ∼ B1 ||| . . . |||Bm.
For the feedbackless algorithm, we assume that A is algebraic loop free, all io-

diagrams in A are single output and deterministic, and all outputs are distinct. We de-
note this by ok_fbless(A).

Definition 10. ForA, such that ok_fbless(A), a variable u is internal inA if there exist
A and B in A such that O(A) = u and u ∈ set(I(B)). We denote the set of internal
variables of A by internal(A).

Definition 11. IfA andB are single output io-diagrams, then their internal serial com-
position is defined by

A�B = if set(O(A)) ⊆ set(I(B)) then A ; ; B else B

and
A� (B1, . . . , Bn) = (A�B1, . . . , A�Bn)

We use this composition when all io-diagrams have a single output, and for an io-
diagram A, we connect A in series with all io-diagrams from B1, . . . , Bn that have
O(A) as an input.

The internal serial composition satisfies some properties that are used in proving the
correctness of the algorithm.

Lemma 9. If ok_fbless(A,B,C) then ((A�B)� (A�C)) ∼ ((B�A)� (B�C))

Lemma 10. If ok_fbless(A) and A ∈ set(A) such that O(A) ∈ internal(A) then
ok_fbless(A� (A	A)) and internal(A� (A	A)) = internal(A)− {O(A)}.

8.2 Functional Definition of the Feedbackless Strategy

Definition 12. For a list x of distinct internal variables ofA, we define by induction on
x the function fbless(x,A) by

fbless(ε,A) = A and fbless(u · x,A) = fbless(x,A� (A	A))

where A is the unique io-diagram from A with O(A) = u.

Lemma 10 shows that the function fbless is well defined.
The function fbless is the functional equivalent of the feedbackless iterative algo-

rithm that we introduce in Section 8.3.

Theorem 4. If A = (A1, . . . , An) is a list of io-diagrams satisfying ok_fbless(A), x is
a distinct list of all internal variables ofA (set(x) = internal(A)), and (B1, . . . , Bk) =
fbless(x,A) then

FB(A1 ||| . . . |||An) ∼ (B1 ||| . . . |||Bn).

This theorem together with Lemma 8 show that the result of the fbless function is io-
equivalent to the results of the nondeterministic algorithm. This theorem also shows
that the result of fbless is independent of the choice of the order of the internal variables
in x.

The proof of Theorem 4 is based on Lemmas 9 and 10, and is available in the RCRS
formalization – https://github.com/hbd-translation/TranslateHBD.

8.3 The Feedbackless Translation Algorithm

The recursive function fbless calculates the feedbackless translation, but it assumes that
the set of internal variables is given at the beginning in a specific order. We want an
equivalent iterative version of this function, which at every step picks an arbitrary io-
diagram A with internal output, and performs one step:

A := A� (A	A)

The feedbackless algorithm is given in Alg. 2.

input: A = (A1 . . . , An) (list of io-diagrams satisfying ok_fbless(A))
while internal(A) 6= ∅:

[A := A′ | ∃ A ∈ set(A) : O(A) ∈ internal(A) ∧ A′ = A� (A	A)]
A := B1 ||| . . . |||Bk (where A = (B1, . . . , Bk))

Alg. 2: Feedbackless algorithm for translating HBDs.

The feedbackless algorithm is also nondeterministic, because it allows choosing
at every step one of the available io-diagrams with internal output. As we will see in
Section 8.4, this nondeterminism allows for different implementations regarding the
complexity of the generated expressions.

https://github.com/hbd-translation/TranslateHBD

C

D

SplitBA
a b

c

d

u

v

w

Fig. 8: Example for efficient implementation of feedbackless.

Theorem 5. If A = (A1 . . . , An) is a list of io-diagrams satisfying ok_fbless(A), then
the feedbackless algorithm terminates for input A, and if A is the output of the algo-
rithm on A, then

FB(A1 ||| . . . |||An) ∼ A.

Theorem 6. For a deterministic and algebraic loop free block diagram, the feedback-
less algorithm and the nondeterministic algorithm are equivalent.

8.4 On the Nondeterminism of the Feedbackless Translation

We have seen already that different choices in the nondeterministic abstract algorithm
result in different algebraic expressions, e.g., with different numbers of composition
operators. We show in this section that the same is true for the feedbackless translation
algorithm. In particular, consider a framework like the Refinement Calculus of Reactive
Systems [16], where the intermediate results of the algorithm are symbolically simpli-
fied at every translation step. Different choices of the order of internal variables could
result in different complexities of the simplification work. We illustrate this with the
example from Fig. 8.

After the splitting phase, the list of blocks for this example is

A =
(
(u, a,A), (a, b, B), (b, c, Id), (b, d, Id), (c, v, C), (d,w,D)

)
and the set of internal variables is

internal(A) = {a, b, c, d}.

If we choose the order (c, d, b, a), then after first two steps (including intermediate
simplifications) we obtain the list:(

(u, a,A), (a, b, B), (b, v, C), (b, w,D)
)

After another step for internal variable b we obtain:(
(u, a,A), (a, v, simplify(B ; C)), (a,w, simplify(B ; D))

)
where the function simplify models the symbolic simplification. Finally, after applying
the step for the internal variable a we obtain:(

(u, v, simplify(A ; simplify(B ; C))), (u,w, simplify(A ; simplify(B ; D)))
)

(1)

In this order, we end up simplifying A serially composed with B twice. This is espe-
cially inefficient if A and B are complex. If we choose the order (c, d, a, b), then in the
first three steps we obtain:(

(u, b, simplify(A ; B)), (b, v, C), (b, w,D)
)

At this point the term A ; B is simplified, and the simplified version is composed with
C and D to obtain:(

(u, v, simplify(simplify(A ; B) ; C)), (u,w, simplify(simplify(A ; B) ; D))
)

(2)

If we compare relations (1) and (2) we see the same number of occurrences of simplify,
but in relation (2) there are two occurrences of the common subterm simplify(A ; B),
and this is simplified only once.

As this example shows, different choices of the nondeterministic feedbackless trans-
lation strategy result in expressions of different quality, in particular with respect to
simplification. It is beyond the scope of this paper to examine efficient deterministic
implementations of the feedbackless translation. Our goal here is to prove the correct-
ness of this translation, by proving its equivalence to the abstract algorithm. It follows
that every refinement/determinization of the feedbackless strategy will also be equiva-
lent to the abstract algorithm, and therefore a correct implementation of the semantics.
Once we know that all possible refinements give equivalent results, we can concentrate
in finding the most efficient strategy. In general, we remark that this way of using the
mechanisms of nondeterminism and refinement are standard in the area of correct by
construction program development, and are often combined to separate the concerns of
correctness and efficiency, as is done here.

9 Implementation in Isabelle

Our implementation in Isabelle uses locales [7] for the axioms of the algebra. We use
locale interpretations to show that these axioms are consistent. In Isabelle locales are a
powerful mechanism for developing consistent abstract theories (based on axioms). To
represent the algorithm we use monotonic predicate transformers. To prove correctness
of the algorithm we use Hoare total correctness rules.

The formalization contains the locale for the axioms, a theory for constructive func-
tions, and one for proving that such functions are a model for the axioms. An important
part of the formalization is the theory introducing the diagrams with named inputs and
outputs, and their operations and properties. The formalization also includes a theory
for monotonic predicate transformers, refinement calculus, Hoare total correctness rules
for programs, and a theory for the nondeterministic algorithm and its correctness.

In total the formalization contains 14797 lines of Isabelle code of which 13587
lines of code for the actual problem, i.e., excluding the code for monotonic predicate
transformers, refinement calculus, and Hoare rules. The formalization is available at
https://github.com/hbd-translation/TranslateHBD.

10 Conclusions and Future Work

We introduced an abstract algebra for hierarchical block diagrams, and an abstract al-
gorithm for translating HBDs to terms of this algebra. We proved that this algorithm
is correct in the sense that no matter how its nondeterministic choices are resolved, the
results are semantically equivalent. As an application, we closed a question left open

https://github.com/hbd-translation/TranslateHBD

in [16] by proving that the Simulink translation strategies presented there yield equiv-
alent results. Our HBD algebra is reminiscent of the algebra of flownomials [14] but
our axiomatization is more general, in the sense that our axioms are weaker. This im-
plies that all models of flownomials are also models of our algebra. Here, we presented
constructive functions as one possible model of our algebra.

Our work applies to hierarchical block diagrams in general, and the de facto pre-
dominant tool for embedded system design, Simulink. Proving the HBD translator cor-
rect is a challenging problem, and as far as we know our work is the only one to have
achieved such a result.

We believe that our results are reusable in other contexts as well, in at least two
ways. First, every other translation that can be shown to be a refinement/special case of
our abstract translation algorithm, is automatically correct. For example, [34,44] impose
an order on blocks such that they use mostly serial composition and could be considered
an instance of our abstract algorithm. Second, our algorithms translate diagrams into an
abstract algebra. By choosing different models of this algebra we obtain translations
into these alternative models.

As future work we plan to investigate further HBD translation strategies, in addition
to those studied above. Currently the RCRS Translator can only partially handle dia-
grams with algebraic loops, i.e., with instantaneous circular dependencies. Fully dealing
with diagrams with algebraic loops is a non-trivial problem, because of the subtleties of
instantaneous feedback for non-deterministic and non-input-receptive systems [33]. For
deterministic and input-receptive systems, however, the model of constructive functions
should be sufficient. Another future research goal is to unify the proof of the third trans-
lation strategy with that of the other two which are currently modeled as refinements of
the abstract translation algorithm.

This work covers hierarchical block diagrams in general and Simulink in particu-
lar. Any type of diagram can be handled, however, we do assume a single-rate (i.e.,
synchronous) semantics. Handling multi-rate or event-triggered diagrams is left for fu-
ture work. Handling hierarchical state machine models such as Stateflow is also left for
future work.

As mentioned in Section 2, there are many existing translations from Simulink to
other formalisms. It is beyond the scope of this paper to define and prove correctness
of those translations, but this could be another future work direction. In order to do
this, one would first need to formalize those translations. This in turn requires detailed
knowledge of the algorithms or even access to their implementation, which is not always
available. Our work and source code are publicly available and we hope can serve as
a good starting point for others who may wish to provide formal correctness proofs of
diagram translations.

Acknowledgments

We would like to thank Gheorghe Ştefănescu for his help with the algebra of flownomi-
als.

References

1. Lukman Ab. Rahim and Jon Whittle. A survey of approaches for verifying model transfor-
mations. Software & Systems Modeling, 14(2):1003–1028, 2015.

2. Aditya Agrawal, Gyula Simon, and Gabor Karsai. Semantic Translation of
Simulink/Stateflow Models to Hybrid Automata Using Graph Transformations. Electronic
Notes in Theoretical Computer Science, 109:43 – 56, 2004.

3. Moussa Amrani, Benoît Combemale, Levi Lúcio, Gehan M. K. Selim, Jürgen Dingel,
Yves Le Traon, Hans Vangheluwe, and James R. Cordy. Formal verification techniques
for model transformations: A tridimensional classification. Journal of Object Technology,
14(3):1:1–43, August 2015.

4. Cédric Auger. Compilation certifiée de SCADE/LUSTRE. (Certified compilation of
SCADE/LUSTRE). PhD thesis, University of Paris-Sud, Orsay, France, 2013. In French.

5. Ralph-Johan Back and Joakim von Wright. Refinement Calculus. A Systematic Introduction.
Springer, 1998.

6. John C. Baez and Jason Erbele. Categories in control. CoRR, abs/1405.6881, 2015.
7. Clemens Ballarin. Locales: A module system for mathematical theories. Journal of Auto-

mated Reasoning, 52(2):123–153, 2014.
8. G. Berry. The Constructive Semantics of Pure Esterel, 1999.
9. Olivier Bouissou and Alexandre Chapoutot. An Operational Semantics for Simulink’s Sim-

ulation Engine. SIGPLAN Not., 47(5):129–138, June 2012.
10. Timothy Bourke, Lélio Brun, Pierre-Évariste Dagand, Xavier Leroy, Marc Pouzet, and Li-

onel Rieg. A formally verified compiler for lustre. SIGPLAN Not., 52(6):586–601, June
2017.

11. Daniel Calegari and Nora Szasz. Verification of model transformations. Electronic Notes in
Theoretical Computer Science, 292:5 – 25, 2013.

12. Chunqing Chen, Jin Song Dong, and Jun Sun. A formal framework for modeling and vali-
dating Simulink diagrams. Formal Aspects of Computing, 21(5):451–483, 2009.

13. Bruno Courcelle. A representation of graphs by algebraic expressions and its use for graph
rewriting systems, pages 112–132. Springer Berlin Heidelberg, Berlin, Heidelberg, 1987.

14. Gheorghe Ştefănescu. Network Algebra. Springer, 2000.
15. E.W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs.

Commun. ACM, 18(8):453–457, 1975.
16. Iulia Dragomir, Viorel Preoteasa, and Stavros Tripakis. Compositional semantics and anal-

ysis of hierarchical block diagrams. In Dragan Bosnacki and Anton Wijs, editors, Model
Checking Software - 23rd International Symposium, SPIN 2016, Co-located with ETAPS
2016, Eindhoven, The Netherlands, April 7-8, 2016, Proceedings, volume 9641 of Lecture
Notes in Computer Science, pages 38–56. Springer, 2016.

17. Iulia Dragomir, Viorel Preoteasa, and Stavros Tripakis. The Refinement Calculus of Reactive
Systems Toolset. In Dirk Beyer and Marieke Huisman, editors, Tools and Algorithms for the
Construction and Analysis of Systems, pages 201–208, Cham, 2018. Springer International
Publishing.

18. Iulia Dragomir, Viorel Preoteasa, and Stavros Tripakis. The Refinement Calculus of Reactive
Systems Toolset - Feb 2018. figshare. https://doi.org/10.6084/m9.figshare.
5900911, February 2018.

19. Eclipse. ATL - a model transformation technology. http://www.eclipse.org/atl/.
20. S. Edwards and E.A. Lee. The semantics and execution of a synchronous block-diagram

language. Sci. Comp. Progr., 48:21–42(22), July 2003.
21. Dan R. Ghica and Achim Jung. Categorical semantics of digital circuits. In Ruzica Piskac

and Muralidhar Talupur, editors, 2016 Formal Methods in Computer-Aided Design, FMCAD
2016, Mountain View, CA, USA, October 3-6, 2016, pages 41–48. IEEE, 2016.

https://doi.org/10.6084/m9.figshare.5900911
https://doi.org/10.6084/m9.figshare.5900911
http://www.eclipse.org/atl/

22. Dan R. Ghica, Achim Jung, and Aliaume Lopez. Diagrammatic semantics for digital circuits.
In Valentin Goranko and Mads Dam, editors, 26th EACSL Annual Conference on Computer
Science Logic, CSL 2017, August 20-24, 2017, Stockholm, Sweden, volume 82 of LIPIcs,
pages 24:1–24:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

23. Dan R. Ghica and Aliaume Lopez. A structural and nominal syntax for diagrams. In Bob
Coecke and Aleks Kissinger, editors, Proceedings 14th International Conference on Quan-
tum Physics and Logic, QPL 2017, Nijmegen, The Netherlands, 3-7 July 2017., volume 266
of EPTCS, pages 71–83, 2017.

24. Chia han Yang and Valeriy Vyatkin. Transformation of Simulink models to IEC 61499 Func-
tion Blocks for verification of distributed control systems. Control Engineering Practice,
20(12):1259–1269, 2012.

25. Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus Pister, and
Christian Ferdinand. CompCert - A Formally Verified Optimizing Compiler. In ERTS 2016:
Embedded Real Time Software and Systems, 8th European Congress, Toulouse, France, Jan-
uary 2016. SEE.

26. Levi Lúcio, Moussa Amrani, Juergen Dingel, Leen Lambers, Rick Salay, Gehan M. Selim,
Eugene Syriani, and Manuel Wimmer. Model transformation intents and their properties.
Softw. Syst. Model., 15(3):647–684, July 2016.

27. S. Malik. Analysis of cyclic combinational circuits. IEEE Trans. Computer-Aided Design,
13(7):950–956, 1994.

28. MathWorks. Simulink. https://www.mathworks.com/products/simulink.
html.

29. B. Meenakshi, Abhishek Bhatnagar, and Sudeepa Roy. Tool for Translating Simulink Models
into Input Language of a Model Checker. In ICFEM, volume 4260 of LNCS, pages 606–620.
Springer, 2006.

30. Stefano Minopoli and Goran Frehse. SL2SX Translator: From Simulink to SpaceEx Models.
In Proceedings of the 19th International Conference on Hybrid Systems: Computation and
Control, HSCC ’16, pages 93–98, New York, NY, USA, 2016. ACM.

31. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof Assis-
tant for Higher-Order Logic. LNCS 2283. Springer, 2002.

32. Viorel Preoteasa, Iulia Dragomir, and Stavros Tripakis. Mechanically Proving Determinacy
of Hierarchical Block Diagram Translations. CoRR, abs/1611.01337, 2018.

33. Viorel Preoteasa and Stavros Tripakis. Towards compositional feedback in non-deterministic
and non-input-receptive systems. In Proceedings of the 31st Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS ’16, pages 768–777, New York, NY, USA, 2016. ACM.

34. Robert Reicherdt and Sabine Glesner. Formal Verification of Discrete-Time MAT-
LAB/Simulink Models Using Boogie. In Dimitra Giannakopoulou and Gwen Salaün, ed-
itors, Software Engineering and Formal Methods: 12th International Conference, SEFM
2014, Grenoble, France, September 1-5, 2014. Proceedings, pages 190–204, Cham, 2014.
Springer International Publishing.

35. Michael Ryabtsev and Ofer Strichman. Translation Validation: From Simulink to C. In
Ahmed Bouajjani and Oded Maler, editors, Computer Aided Verification: 21st International
Conference, CAV 2009, Grenoble, France, June 26 - July 2, 2009. Proceedings, pages 696–
701, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

36. Sebastian Schlesinger, Paula Herber, Thomas Göthel, and Sabine Glesner. Proving transfor-
mation correctness of refactorings for discrete and continuous simulink models. In ICONS
2016, The Eleventh International Conference on Systems, EMBEDDED 2016, International
Symposium on Advances in Embedded Systems and Applications, pages 45–50. IARIA XPS
Press, 2016.

37. Hartmut Schmeck. Algebraic characterization of reducible flowcharts. Journal of Computer
and System Sciences, 27(2):165 – 199, 1983.

https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html

38. P. Selinger. A Survey of Graphical Languages for Monoidal Categories, pages 289–355.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

39. Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Marius Bozga, and Joseph Sifakis. Com-
positional translation of Simulink models into synchronous BIP. In SIES, pages 217–220,
July 2010.

40. The Coq Development Team. The Coq proof assistant reference. INRIA, 2016. Version 8.5.
41. Stavros Tripakis, Christos Sofronis, Paul Caspi, and Adrian Curic. Translating Discrete-time

Simulink to Lustre. ACM Trans. Embed. Comput. Syst., 4(4):779–818, November 2005.
42. Fabio Zanasi. Interacting Hopf Algebras- the Theory of Linear Systems. (Interacting Hopf

Algebras - la théorie des systèmes linéaires). PhD thesis, École normale supérieure de Lyon,
France, 2015.

43. Changyan Zhou and Ratnesh Kumar. Semantic Translation of Simulink Diagrams to In-
put/Output Extended Finite Automata. Discrete Event Dynamic Systems, 22(2):223–247,
2012.

44. Liang Zou, Naijun Zhany, Shuling Wang, Martin Franzle, and Shengchao Qin. Verifying
Simulink diagrams via a Hybrid Hoare Logic Prover. In EMSOFT, pages 9:1–9:10, Sept
2013.

	Mechanically Proving Determinacy of Hierarchical Block Diagram Translations

