
INV ITED
P A P E R

Compositionality in the Science
of SystemDesign
The advent of CPSs has urged researchers to rethink systems and system design.

This paper presents some challenges in the science of system design, expanding on

the key principle of compositionality.

By Stavros Tripakis

ABSTRACT | Is there a science of system design? Just like

any other design activity, system design is partly an art. How-

ever, mathematical theories and computer automation can

help, and are even essential for designing complex systems

reliably and economically. Until today, the plethora of differ-

ent types of systems has resulted in a fragmented space of

theories and tools. The advent of cyber–physical systems,

which are by definition multidisciplinary, has urged re-

searchers to rethink systems and system design, with model-

based methods gaining acceptance. This paper describes

some of the challenges in the domain, expanding on the key

principle of compositionality.

KEYWORDS | Compositionality; computer-aided design; cyber–

physical systems (CPSs); formal verification; interfaces

I . INTRODUCTION

The advent of cyber–physical systems (CPSs) has ex-

posed the limitations of current system design theory
and practice, and has revealed many new and exciting

challenges. In a way, the challenges facing the design

and construction of CPSs are not very different from

those facing the design and construction of safety-critical

systems, real-time systems, and embedded systems [1]

and [2], since the boundaries between such systems and

CPSs are blurry. On the other hand, CPSs can be seen as

the next generation in the history of these systems, with

increased size and complexity. This, and the fact that
CPSs are becoming widespread in our modern societies,

makes the need for overcoming the challenges pressing.

Broadly speaking, CPSs are systems which consist of

cyber parts (computing and digital communications),

physical parts (e.g., mechanical, chemical, bio, humans,

etc.), and components interfacing the two (sensors and

actuators). Application domains are very broad, and cover

almost every part of society: transportation (e.g., auto-

mated cars), energy (e.g., the “smart” power grid),

“smart” buildings, healthcare (e.g., assisted living), and

so on. Several good introductory publications on CPSs are

available: see [3]–[6], and the PROCEEDINGS OF THE IEEE

January 2012 special issue on CPSs [7], to list a few.

The design and implementation of CPSs involves two

a priori conflicting requirements: reliability and cost. On

the one hand, CPSs need to be reliable (including safe,

dependable, trustworthy, and secure), because they

closely interact with humans (in fact, humans can be

considered to be part of the CPSs). On the other hand,

CPSs need to be relatively low cost, to be affordable.

Today, we can build systems with high degrees of re-

liability, such as airplanes and nuclear power plants. But

these systems are very expensive to build. On the other

hand, we also know how to build low-cost (albeit com-
plex) systems such as consumer electronics. But these

are not very reliable (Would we trust our smart phone to

drive our car?). Unfortunately, we do not have a good

way to design and implement systems which meet both

requirements.

In addition to safety and monetary cost, timeliness is

also of the essence in CPSs, as it is in products like con-

sumer electronics. Such products evolve quickly and fast

“time to market” (which depends on design, develop-

ment, and testing delays) is key to a product’s success.

Unfortunately, highly reliable systems such as airplanes

and nuclear power plants are not only expensive, but

Manuscript received June 5, 2015; revised October 18, 2015; accepted December 15,
2015. Date of publication March 14, 2016; date of current version April 19, 2016. This
work was supported in part by the National Science Foundation under Awards
#1329759 and #1139138; by the Industrial Cyber-Physical Systems (iCyPhy) Research
Center. (supported by IBM and United Technologies); and by the Academy of Finland.
The author is with the Department of Computer Science, Aalto University, Espoo
02150, Finland and also with the Department of Electrical Engineering and Computer
Sciences, University of California at Berkeley, Berkeley, CA 94720 USA (e-mail:
stavros@eecs.berkeley.edu).

Digital Object Identifier: 10.1109/JPROC.2015.2510366

0018-9219 Ó 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

960 Proceedings of the IEEE | Vol. 104, No. 5, May 2016

also take a long time to develop, so cannot serve as good

recipes for CPSs in this aspect either.

How to design reliable CPSs in a timely fashion and

at low cost? As CPSs probably represent the most inter-

esting class of (engineered) systems today, we are

tempted to generalize the question, and ask: What is the

best way to design systems, in general? Or, is there a sci-

ence of system design?

Before proceeding, we should clarify what we mean
by the terms “system” and “design.” Our focus is on dy-

namical systems, discussed more in Section II. As for de-

sign, we use it in this paper broadly, to include not just

the high-level, conceptual design process, but also lower

level development and implementation phases, all the

way to building an actual system. In fact, the term “de-

sign” can be broadened even further to encompass all

phases of a system’s lifecycle, including the ones that fol-
low its implementation and deployment, such as system

maintenance, repair, modification, and so on.

Of course, such bold generalizations run the risk of

making the scope of the paper too broad. We are aware of

this risk. Clearly, there are many different types of sys-

tems, and entire disciplines have developed to study

them, exploiting the particularities of each domain. Nev-

ertheless, we believe that there are certain principles
which are common to all systems. Many of these common

principles, e.g., stability, are studied in classical system

theory disciplines which focus primarily on continuous

and control systems (e.g., [8] and [9]). Others, such as

compositionality, are not emphasized enough. While it is

beyond the scope of this paper to provide a survey of

compositionality, we provide a general discussion of the

topic drawing primarily from our own research experi-
ence and the computer science literature, specifically the

field of formal methods (e.g., [10] and [11]).

II . SYSTEMS

The term “system” is overloaded with many meanings. In
this paper, we understand a system to be any kind of dy-

namical system. We view a dynamical system broadly, as

anything that has a notion of state and a notion of dy-

namics. The state can be seen as a “snapshot” of the sys-

tem at some point in time. The dynamics is a set of rules

that define how the state evolves in time. We can write

system ¼ stateþ dynamics

dynamics ¼ rules defining how state evolves in time.

A system may also contain inputs, which influence the

dynamics, and outputs, which correspond to what is ob-

servable about the system. Note, however, that inputs

and outputs need not be always present in a system. One

can imagine completely uncontrollable systems (with no

inputs), or completely unobservable systems (with no

outputs), or even both (complete black boxes). Also note
that our discussion here focuses primarily on system be-

havior, and somewhat less on system structure, which is

clearly also essential. We will return to the notion of

structure in Section V.

The above “definitions” are intentionally abstract, in

order to cover many (all, if possible) classes of dynamical

systems, including discrete systems, continuous systems,

and combinations of the two, called hybrid systems [12].
In discrete systems such as automata or state machines

[13], the set of states is discrete: finite, or countably infi-

nite. The dynamics are typically given as a discrete set of

discrete transitions, where a transition describes the cur-

rent state (before the transition) and the next state (after

the transition). In continuous systems [8], the set of

states is continuous, described typically as a vector of

state variables ranging over the real numbers. These state
variables are in fact functions of time, which is also con-

tinuous (typically a nonnegative real number). The dy-

namics are often described by differential equations, for

instance, of the form _x ¼ fðxÞ, where x is the state vari-

able, _x is the time derivative, and f is a function on reals.

This equation can be written more precisely as

ðdxðtÞ=dtÞ ¼ fðxðtÞÞ, making explicit the fact that x is a

function of time t.
Hybrid systems combine discrete and continuous sys-

tems. A state in a hybrid system is typically a pair ðq; xÞ
where q is the discrete part and x is the continuous part.

Both q and x evolve in time, so both can be seen as func-

tions of t (except in the case of nondeterministic sys-

tems; more on this below). x evolves continuously with

time (for instance, governed by a differential equation),

whereas q evolves in discrete “steps” or “jumps.” For ex-
ample, think of a heating system where q models the

state of the on/off switch. Switching from on to off or

vice versa corresponds to a discrete transition, typically

considered instantaneous, which changes the value of q.
Observe that state and time are inextricably linked in a

(dynamical) system, since state can be defined as some-

thing that evolves in time, and time could itself be defined

as the evolution of state. Again, the definitions are abstract
in order to capture different types of systems. For instance,

in continuous systems, time is typically modeled as the

nonnegative reals. In discrete systems, time can be mod-

eled explicitly as the nonnegative integers, but it can also

be modeled implicitly, simply by the order of events, or

state changes in the system. In the latter case, time is

purely qualitative or logical, as opposed to being quantita-

tive as in a continuous system. For instance, in a discrete
system execution modeled as a sequence of states

s0; s1; s2; . . ., all we know is that the system was first at

state s0, then at state s1, then at s2, and so on. We do not

know at what time the system was at s1, nor how much

time elapsed until the state changed to s2, etc. These no-

tions only have a meaning in a quantitative time model. A

simple model which allows to add this information to

Vol. 104, No. 5, May 2016 | Proceedings of the IEEE 961

Tripakis: Compositionality in the Science of System Design

discrete systems without adding the full power of differen-
tial equations is the model of timed automata [14].

What is the basic mathematical model of a systems

science? We believe it is the model of a transition sys-

tem, as it can be used to capture systems of different

kinds, finite or infinite, discrete or continuous, untimed,

timed, or hybrid. A transition system is essentially a (fi-

nite or infinite) graph where the nodes correspond to

states and the edges correspond to transitions. A path in
the graph models one possible execution of the system.1

The states or the transitions can be labeled with addi-

tional information which helps define properties of sys-

tem behaviors. For instance, the states can be labeled

with a set of atomic propositions capturing the facts that

are true when the system is in that state. A transition

may be labeled with an action that captures the cause of

the state change. The model is able to capture not just
discrete transitions, but also timed transitions modeling

the passage of time, and “continuous transitions” model-

ing continuous system trajectories [12].

This operational view of systems may seem at odds

with the denotational view of systems as signal trans-

formers, i.e., as functions which take as inputs signals

(functions of time) and produce new signals as output.

The latter view is typically adopted in signals and sys-
tems theory [9]. Both the operational and denotational

views are useful, each having its pros and cons. The de-

notational view is elegant and “lighter,” and can often

greatly simplify reasoning and proofs (especially regard-

ing system composition; more on this below). The opera-

tional view has the advantage (and the disadvantage at

the same time) of being “lower level.” This allows it to

capture more accurately the behavior of systems. Indeed,
there are cases where a too abstract denotational view

loses critical information about a system’s behavior; cf.,

the so-called Brock–Ackerman anomaly [15]. Another ad-

vantage of the operational view is that it lends itself to

automation even when analytical methods are not avail-

able. For instance, the state space of a finite transition

system can be explored exhaustively using sophisticated

model-checking algorithms [16], [17].
Several generic behavioral properties of systems (be-

yond structural properties such as the number of inputs

and outputs) can be defined and understood at the level

of a transition system. For instance, a system with no in-

puts is deterministic if it has a unique behavior, that is,

if every state in its transition system has at most one out-

going transition. A system with inputs is deterministic if

it has a unique behavior for each input behavior.

Denotationally, nondeterministic systems can be mod-
eled as relations instead of functions. However, care

must be taken as relations can sometimes lose informa-

tion [15]. Another generic system property is input re-

ceptiveness (sometimes also called input enabledness or

input completeness), which states that the system is able

to accept any possible input at any time. Yet a third ge-

neric system notion is the notion of deadlocks. Intui-

tively, a deadlock occurs when the system is “blocked.”
This is easy to define formally on transition systems: a

deadlock is simply a state with no outgoing transitions.

These are only some of the properties which can be de-

fined on (transition) systems in a generic fashion, with-

out being concerned about what type of system (finite

state or infinite state, discrete or continuous) the model

represents. In Section IV-B, we discuss other generic sys-

tem properties.

III . COMPLEX SYSTEMS

Today’s CPSs are highly complex, which motivates re-

thinking our system design methods. Before discussing

these methods, it is useful to discuss what we mean by

system complexity, and where it comes from.2

Complexity in CPSs stems from a number of factors.

Important factors are heterogeneity and multidisciplinar-

ity. A CPS is not one system but a system of systems in-
teracting in complex and sometimes unexpected ways.

Even a relatively simple embedded control system such

as adaptive cruise control involves mechanical parts, the

engine, sensors, actuators, computers, computer net-

works, and software. Such a system is not designed by a

single person,3 or not even by a single team, but by

many teams, involving stakeholders coming from differ-

ent engineering disciplines (mechanical, electrical, and
software engineering, to name a few) and each having a

different view [18]–[20].

Complexity in modern systems also stems from the

increased use of software. Software is inherently com-

plex, perhaps the most complex artifact that humans can

build today. Even small pieces of software can be intrin-

sically difficult to reason about. For example, consider

the following simple program (written in pseudocode):

int n :¼ read inputðÞ
whileðn > 1Þ

ifðn modulo 2 ¼ 0Þ then
n :¼ n

2

else

n :¼ 3 � nþ 1:

1Often we are interested in infinite executions, modeling situations
where the system never stops. For instance, embedded controllers are
supposed to interact with the system under control repeatedly, and for
a long duration of time. Just how long is typically unknown, thus it is
convenient to assume it is infinite. Such nonterminating systems are
sometimes also called reactive systems in the computer science litera-
ture [8], to distinguish them from classical models of computation
such as Turing machines, where termination is important.

2Our focus being engineered systems, we do not discuss physical
theories of complex systems, such as chaos theory and fractals.

3As a colleague recently joked, such a person would need to be
Leonardo da Vinci in order to cope with the complexity.

962 Proceedings of the IEEE | Vol. 104, No. 5, May 2016

Tripakis: Compositionality in the Science of System Design

The program reads an integer number from the console
and then performs a series of arithmetic transformations

on the number, depending on whether it is even or

odd. We may ask: Does this program terminate for any

input? This seemingly simple question represents an un-

solved problem in mathematics, the famous Collatz

conjecture.

In addition to its intrinsic complexity, the sheer

amount of software in modern systems makes reasoning
about these systems a daunting task. How many lines of

code does it take to run a premium car? According to some

sources, on the order of 100 million [21], [22]. This soft-

ware performs hundreds or thousands of functions.4 Even

a small system such as a pacemaker can have up to a hun-

dred thousand lines of code. In the case of a car, the soft-

ware does not run on a single computer, but on a

distributed, networked execution platform consisting of
70–100 electronic control units (ECUs) [21], [22]. In addi-

tion to ECUs, the system is connected to sensors and actua-

tors (according to http://www.automotivesensors2015.com

the number of sensors in a car ranges in the hundreds).

This is just a single vehicle. When designing a large-scale

CPS such as an automated intersection, one needs to

consider a large and varying number of vehicles, interact-

ing with many other systems, including humans. Clearly,
size is another key factor of system complexity.

IV. SYSTEM DESIGN METHODS

Perhaps the most common system design method is de-

sign by trial and error. It consists in building a system

prototype, testing it, finding bugs, and repeating the

process until the system is deemed satisfactory for re-

lease. In addition, in most cases, bug fixing does not

stop after system deployment but continues during the

lifecycle of the system. This is especially true for soft-

ware, where regular software updates (including bug
fixes) are accepted software engineering practice. But

the phenomenon is encountered in other industries as

well, for instance, in the automotive industry, where

car recalls are becoming commonplace [23]. Recalls are

common in the medical device industry as well: see

http://www.fda.gov/MedicalDevices/Safety/.

Design by trial and error is both costly and unsafe.

It is costly mainly because finding errors after a system
prototype is built is too late in the development process,

and fixing those bugs is difficult and takes precious

time. Finding bugs after the system is deployed is even

worse. Design by trial and error is unsafe because unre-
liable CPSs put human lives at risk.

A more systematic and rigorous system design ap-

proach is so-called model-based design (MBD). The main

idea is to build system models instead of system proto-

types. Such models can be anything from simple spread-

sheets to detailed, executable models of system behavior

(or aspects thereof) used, for instance, for simulation

(this is sometimes referred to as virtual prototyping).
There are several advantages to using models rather than

prototypes. First, it is safer to test a model than a real

system. Second, a model is often cheaper to develop.

Third, it is often faster to test a model (by running a sim-

ulation, or many simulations in parallel). As a result,

more tests can be run during the available time budget.

Moreover, it is sometimes possible to exhaustively test a

model, that is, to formally verify that all its behaviors are
correct (more on verification below). Last, when bugs

are found, they can be fixed more easily (often simply by

modifying the model itself) and earlier in the develop-

ment process.

The main disadvantage of models, of course, is that

they are not the “real thing.” They are abstractions of re-

ality, and as such contain inherent approximations and

inaccuracies. Care must be taken so that these approxi-
mations are managed in a systematic and (mathemati-

cally) rigorous manner, so that the results of the analysis

are not meaningless. This is one of the key scientific

challenges in system design.

In summary, (model-based) system design can be

seen as the process of answering three main questions.

1) Modeling: What is the system we want to

design?
2) Analysis: Is this indeed the system that we

want?

3) Implementation: How can this system be built?

Model-based design is widely accepted in today’s in-

dustrial practice, especially in the domain of embedded

systems. For an in-depth study of the multiple facets and

applications of MBD we refer the reader to the scientific

literature (e.g., [24] and [25]) as well as commercial
websites (e.g., http://www.mathworks.com/solutions/

model-based-design/). Concrete industrial case studies

are often difficult to find, both due to intellectual prop-

erty restrictions, as well as due to the size and complex-

ity of systems involved. Nevertheless, a positive recent

development is the set of benchmarks collected within

the Applied Verification for Continuous and Hybrid Sys-

tems workshop (ARCH); see http://cps-vo.org/group/
ARCH. Several of these benchmarks are accompanied by

publications where the models and challenge problems

are explained in detail, e.g., [26]–[28].

Although MBD has become widely accepted in prac-

tice, it is by no means a solved problem. In what follows,

we identify some of the main research challenges in each

of the three domains listed above.

4News on emissions control software emerging during the writing
of this paper provide a noticeable illustration of the scope of these
functions and their potential (see https://en.wikipedia.org/wiki/
Volkswagen_emissions_scandal).

Vol. 104, No. 5, May 2016 | Proceedings of the IEEE 963

Tripakis: Compositionality in the Science of System Design

A. Modeling
As mentioned above, a significant challenge is how to

build accurate models. This is hard enough to justify en-

tire communities specializing in modeling specific types

of systems from various domains (mechanical, chemical,

biological, etc.).

But there is also another challenge in modeling, espe-

cially in the MBD context, namely, how to come up with

the right modeling languages. This is a language design
problem. The question is how to be able to describe

CPSs in the best possible way, where “best” includes

ease and economy of description, understandability,

mathematical rigor, lack of vagueness and ambiguity in

semantics, and several other criteria. Here, we are not

necessarily advocating a single CPS modeling language.

There are likely to be many languages specialized to the

field they all target. As such, these languages’ primary
users will be field specialists with little background in

computer science or engineering, programming lan-

guages, etc., which brings up research problems in

domain-specific languages.

It is important for these modeling languages to be

executable [29], that is, amenable to automated,

computer-aided analysis. At a minimum this would mean

simulation; exhaustive verification would be even better.

B. Verification
The second element of MBD is analysis. The goal of

analysis is to convince the designer that the system she

designed is the system she intended to design, that is,

free of errors, performance and cost issues, etc. The goal

is to do that before actually building the system, in order

to minimize surprises at the later stages.
In this sense, analysis is itself a vast field, including

all types of correctness, performance, reliability, and cost

analyses, using simulation-based or analytic (closed-form)

methods. As systems become more complex, analytic

methods are more difficult to apply, and computer-

aided methods become more prevalent. In this context,

we view formal, exhaustive verification methods such as

model checking as the biggest research challenge in the
domain of analysis, and one of the key challenges in

system design in general.

The model-checking problem can be stated as fol-

lows: given a system S and a property �, check (ideally

fully automatically) whether S satisfies �; and if it does

not, explain why. S is a mathematical model of the sys-

tem (the one produced by the modeling process). � is

also a mathematical statement capturing the specifica-
tion of the system (or parts of it) in a rigorous and un-

ambiguous manner. Formal specification languages such

as temporal logics are the languages of choice when

writing �, especially in the case of dynamical systems,

where we want to specify properties about the behavior

of the system in time. Temporal logics have the advan-

tage of being rigorous on the one hand, and relatively

close to natural language, e.g., English (in fact translat-
ing natural language to temporal logic is an active area

of research).

An example specification, written in so-called linear-

temporal logic (LTL), is the formula Ìp (always p) which
states that p holds all along a given execution of the sys-

tem, i.e., at every state visited during the execution.

Here, p is an atomic proposition which can be evaluated

on a single state (either it holds on that state, or it does
not). For example, p might model all “legal” states of a

program, where no exception has been thrown. Ìp is a

safety property. Safety properties, roughly speaking, state

that the system must never do anything wrong. The dual

class of liveness properties state that the system must do

something right. For example, the LTL formula �p (even-

tually p) states that some state where p holds will be

reached during the system execution. This can be used
to model, for example, program termination. Both safety

and liveness are necessary, since requirements from one

class alone can be satisfied by trivial systems. For exam-

ple, the system that does nothing (deadlocks immedi-

ately) never does anything wrong, and therefore trivially

satisfies all safety properties.

Notions such as safety and liveness are generic and

apply to all kinds of systems, just like determinism and
receptiveness. We therefore view topics such as safety

and liveness as an integral part of the foundations of sys-

tem design.

Another way to specify and verify systems is by com-

paring them to each other using equivalence and other

relations on transition systems, such as bisimulation [17].

This is another fundamental topic in system design, as

such relations can also serve to define abstractions of sys-
tems and to reduce their size. Bisimulation has been

used, for instance, to collapse infinite timed or hybrid

transition systems to finite ones, amenable to verification

[12], [14].

The biggest drawback in formal verification is that it

is computationally very expensive. Model checking is of-

ten plagued by the state explosion problem. Model

checking algorithms work by exploring, in one way or
another, the state space of the system, that is, the set of

all reachable states. State explosion refers to the fact

that this state space is typically huge and impossible to

exhaustively explore in a reasonable amount of time, or

within the available memory of the computing platform.

For example, a program with ten 32-b integer variables

has potentially ð232Þ10 ¼ 2320 reachable states. The situ-

ation is even worse in the context of CPSs where
models also involve continuous variables, with an infi-

nite state space. In fact, verification problems are typi-

cally undecidable for hybrid system models [30].

Nevertheless, advances are constantly being made in the

verification field, and many practical verification tools

currently exist, for the hardware, software, and CPS

domains.

964 Proceedings of the IEEE | Vol. 104, No. 5, May 2016

Tripakis: Compositionality in the Science of System Design

For a detailed exposition of the topics of verification,
model checking, temporal logics, etc., we refer the

reader to the textbooks [16], [17], as well as [31] which

is more practice-oriented focusing on the widespread

model checker Spin. Several verification success stories

have been reported in the literature, for instance, see

[32]–[35]. Verification methods for CPS and hybrid sys-

tems are discussed in [12] and [36]. An introduction to

several of these topics (as well as other fundamental
topics in CPS, such as real-time scheduling) is provided

in [11].

C. Implementation
Implementation is a primary challenge in MBD

since, in the end, building models is not enough. A real

system also needs to be built. The challenge here is

twofold: first, how to generate systems automatically
from models; second, how to guarantee that the proper-

ties of the model are preserved in the generated system.

On the first point, we envisage computer-aided tech-

niques such as code generation, which already exist and

are widely available in the industry. Regarding the sec-

ond point, the key requirement is semantical preserva-

tion: the generated system must behave equivalently to

the original model, otherwise, the analysis results ob-
tained from the model are rendered meaningless. Strict

semantical preservation is an ideal which is difficult if

not impossible to achieve in most cases. For instance,

a controller developed in theory as a function on real

numbers does not admit a strictly equivalent imple-

mentation on a computer using finite-precision arith-

metic. Luckily, strict semantical preservation is not

always required. In many cases, techniques can be de-
veloped to preserve the essential properties of the orig-

inal model which are required to achieve some overall

goal. The remaining properties of the original model,

those not contributing to this goal, can be relaxed dur-

ing implementation. Examples of this approach are the

works [37] and [38] which propose semantics-preserving

techniques for the implementation of synchronous

models on different types of asynchronous (distributed,
or multitasking) execution platforms.

V. COMPOSITIONALITY

The generic definition system¼stateþdynamics (Section II)

is not entirely satisfactory. It is too monolithic, in the

sense that it requires to capture the entire system in

“one shot.” This is possible only for small systems. Imag-
ine having to describe the entire set of states as well as

the dynamics of a large system, e.g., a car, an airplane, a

biological cell, or even an entire organism. Such complex

systems nevertheless have a certain structure, and can be

better understood and described as systems of systems,

that is, compositions of subsystems, each of which may

itself be composed of subsubsystems, and so on. Given

this observation, we can provide a nonmonolithic defini-

tion of systems as follows:

system ¼ atomic system j composite system

atomic system ¼ stateþ dynamicsðþ inputs/outputsÞ
composite system ¼ set of subsystemsþ composition

dynamics ¼ rules defining how state evolves

in time

composition ¼ rules defining how subsystems

interact.

Just like there are many kinds of system dynamics,
there are many types of system interaction, studied in

the (broadly speaking) theory of concurrent systems. At

the basic level of transition systems, two composition

paradigms are fundamental: synchronous and asynchro-

nous. In synchronous composition, all subsystems move

in “lock step,” that is, they all perform a transition simul-

taneously. In asynchronous composition, also called inter-

leaving, only one subsystem makes a move (transition) at
a time, while the states of the others remains unchanged.

When systems are viewed denotationally, they can be

composed in series, in parallel, or in feedback,5 as illus-

trated in Fig. 1. But this is only a high-level, structural

view of composition, which does not provide all the nec-

essary information in order to derive the behavior of the

product system. For instance, we may ask: What do the

connections in Fig. 1 represent? In some models they
represent “wires” with zero delay, so that in serial com-

position the output of A is immediately available as an

input to B. This can be seen as a synchronous mode of

composition. In other models like dataflow the connec-

tions represent first-in–first-out (FIFO) queues [40].

Since writing to a queue is decoupled from reading, the

composition here is asynchronous. Yet in other models,

5Our discussion focuses on composition of systems with static
structure, where the set of subsystems and the interaction rules are
constant over time. Systems with dynamic structure are also very im-
portant, especially in certain application domains, e.g., biology. State-
transition models can be extended to deal with dynamic reconfiguration
and creation/death of subsystems [37].

Fig. 1. Composition in series (left), in parallel (middle), and by

feedback (right).

Vol. 104, No. 5, May 2016 | Proceedings of the IEEE 965

Tripakis: Compositionality in the Science of System Design

there are no explicit connections and interaction be-

tween subsystems is achieved by shared memory. This is

the model typically used for concurrent software: asyn-

chronous threads communicating via shared variables.

Properly defining the semantics of composition is of-
ten nontrivial, in particular if one wants to obtain a com-

positional theory where composition operators form an

algebra with some natural and desirable properties. For

instance, one such property is associativity, illustrated in

Fig. 2 for the case of serial composition. Here, the prop-

erty states that composing first A with B, and then their

product with C, should be equivalent to composing A
with the product of B and C.

Associativity is only one example of a compositional-

ity property. Compositionality itself is an overloaded

term with many meanings. Without attempting to be ex-

haustive, we discuss several other types of compositional-

ity in the rest of the paper. Generally speaking, we can

view compositionality as having two aims: first, to master

complexity by allowing complex systems to be con-

structed from simpler components (e.g., see [41]); sec-
ond, to master heterogeneity by allowing to compose

systems of different kinds (e.g., see [42] and [43]).

Composition and compositionality should probably be

the most important concepts in modern system thinking.

Unfortunately, they are not always easy to achieve, and

are therefore often neglected in system design methods

and tools. It is important to emphasize that we do not

view compositional methods as an alternative to MBD,
but as an integral part of it [20]. Compositional methods

add new tools to the panoply of MBD tools. Using these

new tools may incur some extra cost, but it also enables

to do things that could not be done without them. In the

rest of this section, we illustrate some of these composi-

tional tools, from our own work.

A. Interfaces for Compositionality of Hierarchical
Modeling Languages and for Modular Code
Generation

Successful tools such as Simulink from the industry

(Mathworks) and Ptolemy from the academia (University

of California Berkeley) use hierarchical modeling as a

powerful mechanism for structuring large models and

managing their complexity. For example, in a language

based on block diagrams, hierarchy allows to encapsulate

a block diagram into a composite block (sometimes

called subsystem). The internals of the composite block

can then be hidden, and the composite block can be fur-

ther connected and encapsulated. Hierarchies of arbi-

trary depth can be built in this manner. Unfortunately,

the way hierarchy is handled in state-of-the-art tools is

limited, because the encapsulation process may lose in-
formation. The reason for this is that several of the

models on which these tools are based are noncomposi-

tional in a fundamental sense [44]–[47].

To illustrate the problem consider the example in

Fig. 3. The hierarchical block diagram shown to the left

corresponds to the parallel composition of blocks A and B.
The product is block P. Suppose we now want to connect

P in feedback, as shown in the middle of the figure. One
expects this composition to be equivalent to the serial

composition of A and B, which is indeed obtained if one

“flattens” the hierarchy as shown to the right. Unfortu-

nately, this is not always the case. The model with feed-

back is often considered illegal, since it appears to

contain a cyclic dependency (sometimes called an alge-

braic loop). Indeed, without knowing the internals of

block P, it appears that its output y1 depends on its input
x2, and therefore cannot be connected in feedback.

The problem arises from a fundamental limitation of

the basic model of Mealy machines, which are not closed

under parallel composition. A Mealy machine is typically

defined as a tuple ðI;O; S; s0; �; �Þ, where I is the set of

input values, O is the set of output values, S is the set of

states, s0 2 S is the initial state, � : S� I ! S the transi-

tion function, and � : S� I ! O is the output function.
The functions � and � can be viewed as the interface

with which an external user interacts with the machine.

This is much like the notion of interfaces in object-

oriented programming.

The signature of � indicates that generally the out-

put depends instantaneously on the input. When com-

posing two machines, the sets of inputs, outputs, and

states of the product machine are typically defined to
be the Cartesian products of the corresponding sets of

the composed machines, thus I1 � I2, O1 � O2, and

S1 � S2. Then, the product machine is defined to have

a single-output function with signature ðS1 � S2Þ�
ðI1 � I2Þ ! ðO1 � O2Þ. This “monolithic” interface loses

Fig. 3. Hierarchical block diagram (left), a possible way to

connect product block P (middle), and the same model after

flattening P (right).

Fig. 2. Associativity implies that the composition on the left and

the one on the right should be equivalent.

966 Proceedings of the IEEE | Vol. 104, No. 5, May 2016

Tripakis: Compositionality in the Science of System Design

input–output (non)dependency information. For exam-
ple, it does not allow to capture the fact that, in

Fig. 3, output y1 does not depend on input x2.
A solution to this problem is to consider nonmonolithic

interfaces [44], [46], that is, Mealy machines with several

output functions, as many as needed to accurately repre-

sent the input–output dependencies of the original model.

In the example of Fig. 3, P needs to have two output func-

tions, one representing the dependency of y1 on x1, and an-
other the dependency of y2 on x2. Interesting questions

arise, such as how many output functions does a system

generally need, how to generate them automatically from

its submodels, etc. These questions are intrinsically related

to the problem of modular code generation, that is, genera-

tion of code from blocks such as P, independently from

context, and without flattening. In fact, modular code gen-

eration was the original motivation behind our work [44],
[46], where the details on how the above questions are an-

swered can be found. Lublinerman et al. [46] also report

on several case studies of automatic generation of nonmo-

nolithic interfaces and code from real-life Simulink models

from the automotive domain.

Closure under composition is a type of a composition-

ality property. As the discussion above shows, the stan-

dard Mealy machine model (with a single-output
function) is not closed under parallel composition, in the

sense that the parallel composition of two Mealy ma-

chines cannot be represented by an equivalent Mealy

machine. On the other hand, Mealy machines with

multiple-output functions are closed under parallel

composition, and therefore can be considered a “more

compositional” model than standard Mealy machines. It

is worth noting that Moore machines are closed under
parallel composition. In Moore machines, the output

function depends only on the current state and not on

the input, i.e., it has signature � : S ! O. For this rea-

son, Moore machines cannot express stateless (“combi-

national”) components such as input–output functions.

Noncompositionality problems (in the sense of non-

closure under composition) arise not just in the model

discussed so far (essentially, hierarchical block diagrams
with synchronous semantics á la Simulink), but in other

hierarchical models as well. For instance, the hierarchi-

cal version of the popular dataflow model SDF [48] is

shown to be noncompositional in [47], using the example

reproduced here in Fig. 4.

A hierarchical SDF graph is shown to the left of

Fig. 4, consisting of two SDF actors A and B connected

in series. A needs one token in order to fire, consumes
it, and produces two tokens each time it fires. B con-

sumes three tokens and produces one token each time it

fires. In SDF, as in dataflow models in general, connec-

tions represent FIFO queues, so that when connecting A
to B in series, the tokens produced by A are stored in the

input queue of B. When enough tokens are available

(three in this case) B can fire.

We would like to represent the product actor P as an

atomic SDF actor. The natural way to do so is to con-

sider that P consumes three tokens and produces two to-
kens each time it fires. This corresponds to P internally

firing A three times, followed by B two times. Doing so,

the queue connecting A and B remains empty after every

firing of P, since the total number of tokens produced by

A ð3� 2 ¼ 6Þ equals the total number of tokens con-

sumed by B ð2� 3 ¼ 6Þ.
Now, suppose we connect P with another SDF actor

C, as shown in the middle of Fig. 4. The “bullets” in this
figure represent initial tokens, so that the queue from C
to P contains two initial tokens, and the one from P to C
contains one initial token. This model deadlocks: P can-

not fire, because it needs three tokens, but only two are

initially available; C cannot fire either, because it needs

two tokens, but only one is available.

But consider what happens when we flatten P, as

shown to the right of Fig. 4. In this model, there is no
deadlock. Indeed, A can fire twice, consuming the two

initial tokens and producing four tokens for B. B can

then fire once, consuming three out of these four tokens,

and producing one at each output queue, which now has

two tokens in total, including the initial one. This allows

C to fire, consuming these two tokens and producing

three. A and B can fire once each after that, bringing the

system to its initial state, from which the same sequence
of firings can repeat indefinitely.

At a fundamental level, the problem here is again a

problem of noncompositionality, as in the example of

Fig. 3. Just like Mealy machines are not closed under

parallel composition, SDF actors are noncompositional,

in the sense that the serial composition of two SDF ac-

tors is not an SDF actor. (In fact neither is the parallel

composition [47].) And just like Mealy machines can be
made compositional by extending their interface to a

nonmonolithic one, the model of SDF can be extended

to become compositional. This extension is too involved

to summarize here: see [47] for details.

B. Interfaces for Incremental Design and
Verification

Suppose we have designed a system P consisting of

three subsystems, A, B, and C, connected in some way.

Fig. 4. Hierarchical SDF graph (left), a possible way to connect

product block P with another SDF actor C (middle), and the same

model after flattening P (right). Bullets represent initial tokens.

Example taken from [45].

Vol. 104, No. 5, May 2016 | Proceedings of the IEEE 967

Tripakis: Compositionality in the Science of System Design

Suppose further that we have verified that P satisfies
some specification �. As is often the case, at some point

in the lifecycle of P, we may need to replace one of its

components with another one. Suppose we want to re-

place component B with a new component B0, yielding a

new system P0. Suppose that the overall specification

does not change, and is still �. The problem that the de-

signer faces is that P0 does not necessarily satisfy �. The
question then becomes how to avoid rechecking � on the
new system P0 from scratch? This question is important,

since verification is expensive no matter what form it

takes (simulation, testing, or model checking). It would

be therefore quite beneficial to have incremental verifi-

cation methods, which allow us to reuse the fact that P
satisfies � when verifying P0.

A class of compositional frameworks well suited both

for incremental design and verification are theories
which include a notion of refinement. The essential ele-

ments of these theories are: 1) a notion of component;

2) one or more composition operators; and 3) a notion

of refinement, which is a binary relation between com-

ponents. In addition, the theories often include standard

verification notions, such as properties, satisfaction of

properties by components, etc. In what follows, let us as-

sume for simplicity a single composition operator, which
we denote �. Refinement is denoted by v and satisfac-

tion of properties by �. Refinement theories provide two

fundamental theorems.

1) Preservation of properties by refinement, which

can be stated as follows: if component A satisfies

property �, and A0 refines A, then A0 also sat-

isfies �. Using our notation

ðA � � ^ A0 v AÞ) A0 � �:

2) Preservation of refinement by composition,

which can be stated as: if A0 refines A and B0 re-
fines B, then the composition of A0 and B0 re-
fines the composition of A and B. Using our
notation

ðA0 v A ^ B0 v BÞ) A0 � B0 v A � B:

Preservation of refinement by composition can

be seen as another type of compositionality

property.

Combined these two theorems are powerful, and can

be used, for instance, to reduce the incremental verifica-

tion problem to a problem of checking refinement be-

tween two components. To illustrate this, consider again

the example of replacing B by B0, discussed in the begin-

ning of this section. We know that P � �, i.e., A � B �
C � � (note that we implicitly assume associativity here,

so that ðA � BÞ � C ¼ A � ðB � CÞ). Suppose we can prove
that B0 v B, i.e., B0 refines B. Then, by preservation of re-

finement by composition, we can deduce that

A � B0 � C v A � B � C, i.e., that P0 v P (here we implic-

itly assume that every component refines itself, i.e., A v
A for every A). Now, by preservation of properties by re-

finement we can conclude that P0 � �. What is interest-

ing in this approach is that the verification question

A � B0 � C � � is reduced to the refinement-checking
question B0 v B. The latter is presumably easier to an-

swer, e.g., less computationally expensive, since the com-

ponents B and B0 are typically small, whereas the

composition of a number of them can be large.

Compositional frameworks with refinement abound,

e.g., [49]–[51] to mention only a few. Here, we focus

our attention on so-called interface theories [52], [53],

which have the additional characteristic of composition
being a partial operation. This is important, as it allows

to express incompatibility, that is, the notion that two

components are not compatible, and thus their composi-

tion is illegal. Checking compatibility in system design is

as useful as type checking in programming languages.

Type checking can be seen as an inexpensive, “light-

weight” verification method. The reason is not only that

verification algorithms are typically more computation-
ally expensive than type-checking algorithms. It is also

the fact that verification requires a property to be

checked, in addition to the program on which to check

it, whereas type checking only requires the program.

Thus, type checking places no extra burden on the pro-

grammer. Interface theories can be seen as type theories

for dynamical systems.

To be able to express compatibility, it is essential that
systems be allowed to be non-input-receptive, that is,

able to declare certain inputs as illegal (at certain times).

See [54] for an extensive discussion of this point. Here,

we illustrate what this means by example.

Consider Fig. 5. The figure shows two (separate)

block diagrams. Each diagram uses the block labeled
ffiffiffiffip

which computes the square root function. Such blocks

are common in tools like Simulink. In the leftmost dia-
gram, the square-root block is connected in series to a

block producing the constant �1. Assuming we are not

dealing with imaginary numbers, the square root block

requires its input x to be nonnegative. Therefore, the

Fig. 5. Two block diagrams where the square root block is

connected in series with two other blocks (the constant �1, left; a

block for which nothing is known, right). Relational interfaces

[52] can be used to specify input–output relationships and illegal

inputs, and to detect incompatibility in both connections.

968 Proceedings of the IEEE | Vol. 104, No. 5, May 2016

Tripakis: Compositionality in the Science of System Design

connection in the leftmost diagram is illegal, i.e., the
two blocks are incompatible.

To catch such incompatibilities, we can use the

framework of relational interfaces [54] and specify each

block using a logical formula on its input and output var-

iables, called a contract. The constant block has only an

output variable x, and is specified by the contract

x ¼ �1. The square root block has input x and output y,
and can be specified by the contract

x � 0 ^ y ¼ ffiffiffi
x

p
(1)

where ^ denotes logical conjunction. Contracts of this

kind can be seen as rich component types (richer than,
say, the function signature real�> real).

It is important to emphasize the use of conjunction

rather than implication in (1). We could have written

the contract as x � 0 ! y ¼ ffiffiffi
x

p
, but the meaning would

be different. Formula x � 0 ! y ¼ ffiffiffi
x

p
states that if the

input x is nonnegative, then the output will be the cor-

rect square root value. This formula is trivially satisfied

when x is negative (in which case y can be anything). On
the other hand, contract (1) states explicitly that all in-

puts x G 0 are illegal, because (1) in conjunction with

x G 0 is unsatisfiable. This is how incompatibility can be

detected automatically in this example: by forming the

conjunction ðx ¼ �1Þ ^ ðx � 0 ^ y ¼ ffiffiffi
x

p Þ and checking

satisfiability of the resulting formula.

Interestingly, conjunction is not always sufficient for

detecting incompatibility. To see this, consider the right-
most diagram of Fig. 5. Here, the constant block is re-

placed by a block about which very little is known. In

particular, we cannot guarantee anything about its output

x, and thus define its contract to be the formula true,

meaning that any value for x is possible, independently

of the value of the input z. Clearly, this diagram also

contains an incompatibility: if nothing can be guaranteed

about x, then x might be negative, which violates the in-
put requirements of the square-root block. However, the

conjunction ðtrueÞ ^ ðx � 0 ^ y ¼ ffiffiffi
x

p Þ is satisfiable,

which does not indicate any incompatibility a priori.
The solution is to add extra constraints to the con-

junction above, specifically, the term

8 x : true ! x � 0 (2)

and in general

8 x : �1 ! ð9y : �2Þ
� �

(3)

for two components with contracts �1 and �2 connected

in series [54]. Intuitively, the subformula 9y : �2 in (3)

is a constraint on x, characterizing the set of legal inputs

of the downstream component. Overall, (3) states that,

given input z, every output x that the upstream compo-

nent �1 may produce, is a legal input for the downstream

component �2. If this is not the case, z cannot be consid-

ered a legal input of the overall system, since it cannot
ensure the compatibility of the subsystems.

In our example, formula (2) is obtained from (3) by

replacing �1 with true and �2 with (1). Then, subformula

9y : �2 becomes 9y : x � 0 ^ y ¼ ffiffiffi
x

p
, which is equiva-

lent to x � 0. Next, (2) becomes 8 x : true ! x � 0.

This simplifies to 8 x : x � 0 since true ! � is equivalent

to �. And 8 x : x � 0 is equivalent to false (i.e., unsatisfi-

able), since it states that all numbers are non-negative. In
this way, we are able to detect incompatibility in the

rightmost diagram.

Detecting such incompatibilities is akin to type

checking, as mentioned above. The same techniques can

be used to infer new constraints on the inputs, which is

akin to type inference. Consider the example of Fig. 6.

The block diagram shown to the left is similar to the one

on the right of Fig. 5, except that now something is
known about the leftmost block: namely, that its output

x is guaranteed to be no less than its input z. This is

specified as the relational interface x � z for this block.

The question is: Are the two blocks compatible? The

answer is yes: although x might be negative (for in-

stance, z ¼ x ¼ �1 satisfies x � z), there is a way to

constrain external input z so as to guarantee that x is

nonnegative. The weakest such constraint on z is
z � 0. Interestingly, this is obtained directly from (3)

by replacing �1 with x � z and �2 with (1). Then, (3)

becomes 8 x : x � z ! x � 0, which after quantifier elim-

ination is found equivalent to z � 0. The final contract of

the product system is shown to the right of Fig. 6. It is

obtained by taking the conjunction of the two original

contracts and (3), and then eliminating internal variable

x by existential quantification: 9x : ð�1 ^ �2 ^ ð3ÞÞ.
As a final example, we illustrate how refinement can

be used in this framework. Consider a new square root

component, capable of handling negative inputs. Denote

this new component by
ffiffip �. Its contract is defined to be

y ¼ ffiffiffi
x

p
, where y will be an imaginary number when

x G 0. Now, according to the definition of refinement in

the relational interface theory, we can prove that
ffiffip � re-

fines
ffiffiffiffip
. This in turn implies that

ffiffip � can replace
ffiffiffiffip

while preserving properties of the original system. In

particular, if the system with
ffiffip � has no incompatibili-

ties, then the system with
ffiffiffiffip

is guaranteed to have no

incompatibilities either.

Fig. 6. Serial composition of two relational interfaces (left) and

resulting relational interface (right).

Vol. 104, No. 5, May 2016 | Proceedings of the IEEE 969

Tripakis: Compositionality in the Science of System Design

Formally, for two components A and A0 with contracts
� and �0, and assuming for simplicity that both compo-

nents have a single input variable x and a single-output

variable y, A0 refines A iff the following conditions hold:

8 x : ð9y : �Þ ! ð9y : �0Þ� �
(4)

8 x : ð9y : �Þ ! ð8 y : �0 ! �Þ� �
: (5)

Intuitively, condition (4) states that if an input value is

legal in A then it is also legal in A0. Observe that this is
the case in

ffiffiffiffip
and

ffiffip �: every legal input of
ffiffiffiffip

(i.e.,

every nonnegative real number) is also legal for
ffiffip � (i.e.,

is a real number). Condition (5) states that, for those

inputs which are legal in A, every output that A0 may

produce is also a possible output of A. Again, this holds

for
ffiffiffiffip

and
ffiffip � since for every nonnegative number x

their outputs are identical and equal to
ffiffiffi
x

p
.

Note that refinement allows A0 to accept inputs which
are illegal for A, and places no requirements on what A0

outputs when given these extra inputs. This is correct

since, when we replace A with A0, the upstream compo-

nent feeding inputs to A0 is guaranteed not to provide

these extra inputs (otherwise the original composition

with A would be incompatible). Indeed, as shown in [54],

this notion of refinement captures substitutability (when

can A0 replace A) in a necessary and sufficient way.
Automating the techniques presented above requires

algorithms and tools for checking satisfiability of formu-

las, as well as auxiliary methods for quantifier elimina-

tion and formula simplification. These techniques are

generally available in constraint solvers, SAT (satisfiabil-

ity) and SMT (SAT modulo theory) solvers, theorem

provers, and similar tools. The computational complexity

in theory and practice varies depending on the type of
logic used. In the examples above, we used first-order

logic with arithmetic constraints. These examples also fo-

cus on simple, stateless components. The theory of [54]

can handle components with state, but is limited to

safety properties. Extensions of the theory to handle live-

ness properties have been proposed in [55], so that con-

tracts can be written, for example, in temporal logic.

Applications of the theory to Simulink models from the
automotive domain are reported in [56].

C. Interfaces for Cosimulation
We end this section by briefly mentioning another im-

portant muse of interfaces for compositionality, from the

domain of simulation. There, designers often find them-
selves with a plethora of models, developed using differ-

ent modeling and simulation tools. The problem is how

to somehow “connect” these models (and the correspond-

ing tools) and simulate them together, without translating

all models into the language of a single tool. Such a trans-

lation is not always possible, since different tools special-

ize in different domains. Even when possible, translation

can be costly and brittle, and may result in nonoptimal
models (or models not exploiting the optimized engine of

a certain tool).

Cosimulation refers to performing simulation with

multiple, interoperating tools. Recently, the functional

mockup interface (FMI) has been proposed as a cosimu-

lation standard (see https://www.fmi-standard.org/). FMI

defines a standard API (i.e., an interface) which submo-

del components [called functional mockup units
(FMUs)] must implement. Different FMUs can be gener-

ated from different tools and loaded to a master simula-

tion engine (also called a master algorithm). Since all

the FMUs implement the same API, the master algo-

rithm does not need to know what is the internal model

within each FMU. The master only knows the FMI API,

and executes the FMUs via method calls to this API.

There are several challenges with cosimulation in gen-
eral and FMI in particular. One important question is

what is the right interface? This question applies to mod-

ular simulation approaches in general, and has received

different answers in FMI but also in tools such as Simu-

link or Ptolemy [42], [43]. Understanding the pros and

cons of these different solutions is an interesting prob-

lem. One criterion is to what extent the interface can be

used to capture different modeling languages. This is not
simply a software engineering problem, as there exist sev-

eral semantic gaps between the source modeling language

and the target API. How to close such semantic gaps is an

interesting problem, studied in [57] for the FMI API. An-

other problem is, given an interface, how to design a mas-

ter simulation algorithm with good properties, such as

determinism and reproducibility of simulation results.

Such a master algorithm is proposed in [58], in the con-
text of FMI. The FMI framework and this master algo-

rithm have been used to connect timed and hybrid

system modeling tools for cosimulation case studies [59].

VI. CONCLUSION

Separate disciplines have emerged to study systems of

different kinds, but is there a science of design which ap-
plies to engineering systems in general? We do not an-

swer the question in this paper, but provide some food

for thought and for follow-up work. Our view of systems

is influenced from our own computer science back-

ground and work in formal methods and verification. We

believe that these fields have a lot to contribute to the

design of CPSs, not only because many of these systems

are safety critical, but also because these fields provide
some fundamental system principles (e.g., see discus-

sions in Sections II and IV-B, and also [2], [11], and

[62]). Our discussion focused on compositionality as a

key principle in system design, and on interfaces as a

versatile tool with many uses in system composition. In-

terfaces abstract components, hiding internal information

and exposing only what is relevant for composability. We

970 Proceedings of the IEEE | Vol. 104, No. 5, May 2016

Tripakis: Compositionality in the Science of System Design

note that although our discussion in Section V focused
on an input–output view of systems, this is by no means

the only possible view. Another widely used view, espe-

cially useful for modeling physical systems, is acausal

(or equational) modeling, adopted in languages like

Modelica [60].

Abstraction itself is another key principle which plays

a prominent role in system design, beyond interfaces.

Abstraction is essential to reduce complexity and make
system models and designs more understandable. At the

same time, it is necessary to qualify which properties are

preserved by different types of abstraction. Systematic

studies of this problem have been motivated by and

found several usages in the field of formal verification

(e.g., see [34] and [61]).

Compositionality also goes beyond the logical setting

that we discussed here. Compositional frameworks exist
for performance, schedulability, and other types of analy-

sis (e.g., see [63]–[66]). Compositionality can also be ex-

tended beyond the standard notion of composition of

components, e.g., to a notion of superposition of views

[17]. Finally, compositionality has been studied in the

context of continuous-time and control systems. Recent

work in that context includes the work on passivity for
compositional control design [67].

In addition to the above, important topics in system de-

sign include: the interface between discrete and continu-

ous systems, which raises interesting questions on how to

best integrate physical notions such as time and robustness

into the computational world [68], [69]; design-space

exploration [70]; and the related topic of system synthe-

sis. Traditionally, synthesis emerged as a formal method
to generate automatically correct-by-construction systems

from their specifications [71]. This facing the same (or

worse) scalability problems than verification, a less “purist”

approach to synthesis is now emerging. Examples of this

approach are automatic completion of incomplete pro-

grams or protocols (e.g., [72]–[75]).

Clearly, many other disciplines are also essential to

system design, such as game and decision theory, optimi-
zation theory, scheduling theory, operations research,

and many more. Sometimes these theories take a macro-

scopic view of systems (which is only fitting to master

complexity of large systems). It is an interesting chal-

lenge to combine this view with the more microscopic

view of engineering disciplines. h

REFERENCES

[1] T. A. Henzinger and J. Sifakis, “The
embedded systems design challenge,” in FM
2006: Formal Methods, vol. 4085, LNCS,
J. Misra, T. Nipkow, and E. Sekerinski,
Eds. Berlin, Germany: Springer-Verlag,
2006, pp. 1–15.

[2] T. A. Henzinger and J. Sifakis, “The
discipline of embedded systems design,”
IEEE Computer, vol. 40, no. 10, pp. 32–40,
2007.

[3] E. Lee, “Cyber physical systems: Design
challenges,” in Proc. 11th IEEE Int. Symp.
Object Oriented Real-Time Distrib. Comput.,
May 2008, pp. 363–369.

[4] L. Sha, S. Gopalakrishnan, X. Liu, and
Q. Wang, “Cyber-physical systems: A new
frontier,” in Proc. IEEE Int. Conf. Sensor
Netw. Ubiquitous Trustworthy Comput.,
Jun. 2008, pp. 1–9.

[5] R. Rajkumar, I. Lee, L. Sha, and
J. Stankovic, “Cyber-physical systems: The
next computing revolution,” in Proc. 47th
ACM/IEEE Design Autom. Conf., Jun. 2010,
pp. 731–736.

[6] K.-D. Kim and P. Kumar, “Cyber-physical
systems: A perspective at the centennial,”
Proc. IEEE, vol. 100, no. Special Centennial
Issue, pp. 1287–1308, May 2012.

[7] R. Poovendran et al., “Special issue on
cyber-physical systems,” Proc. IEEE,
vol. 100, no. 1, pp. 6–12, Jan. 2012.

[8] D. G. Luenberger, Introduction to Dynamic
Systems—Theory, Models & Applications.
New York, NY, USA: Wiley, 1979.

[9] A. V. Oppenheim, A. S. Willsky, and
I. T. Young, Signals and Systems.
Prentice-Hall, 1983.

[10] Z. Manna and A. Pnueli, Temporal
Verification of Reactive Systems: Safety.
New York, NY, USA: Springer-Verlag, 1995.

[11] R. Alur, Principles of Cyber-Physical Systems.
Cambridge, MA, USA: MIT Press, 2015.

[12] P. Tabuada, Verification and Control of
Hybrid Systems: A Symbolic Approach.
New York, NY, USA: Springer-Verlag, 2009.

[13] Z. Kohavi, Switching and Finite Automata
Theory, 2nd. New York, NY, USA:
McGraw-Hill, 1978.

[14] R. Alur and D. Dill, “A theory of timed
automata,” Theor. Comput. Sci., vol. 126,
pp. 183–235, 1994.

[15] J. Brock and W. Ackerman, “Scenarios: A
model of non-determinate computation,” in
Proc. Int. Colloq. Formalization Programming
Concepts, London, U.K., 1981, pp. 252–259.

[16] E. Clarke, O. Grumberg, and D. Peled,
Model Checking. Cambridge, MA, USA:
MIT Press, 2000.

[17] C. Baier and J.-P. Katoen, Principles of
Model Checking. Cambridge, MA, USA:
MIT Press, 2008.

[18] D. Broman, E. Lee, S. Tripakis, and
M. Törngren, “Viewpoints, formalisms,
languages, tools for cyber-physical systems,”
in Proc. 6th Int. Workshop Multi-Paradigm
Model., 2012.

[19] J. Reineke and S. Tripakis, “Basic problems
in multi-view modeling,” in Proc. Tools
Algorithms Construction Anal. Syst., 2014.

[20] S. Tripakis, “Foundations of compositional
model-based system design,” in Cyber-
Physical Systems: From Theory to Practice
D. Rawat, J. Rodrigues, and
I. Stojmenovic, Eds., Boca Raton, FL, USA:
CRC Press. [Online]. Available: https://www.
crcpress.com/Cyber-Physical-Systems-From-
Theory-to-Practice/Rawat-Rodrigues-
Stojmenovic/9781482263329.

[21] R. N. Charette, “This car runs on code,”
IEEE Spectrum, Feb. 2009. [Online].
Available: http://spectrum.ieee.org/
transportation/systems/this-car-runs-on-code.

[22] M. Broy, I. Kruger, A. Pretschner, and
C. Salzmann, “Engineering automotive
software,” Proc. IEEE, vol. 95, no. 2,
pp. 356–373, Feb. 2007.

[23] J. Gorzelany, “What to do (and how to find
out) if your car is being recalled-updated,”
Forbes, 2014. [Online]. Available: http://
www.forbes.com/sites/jimgorzelany/2014/10/
23/what-to-do-if-your-car-is-being-recalled/.

[24] G. Nicolescu and P. J. Mosterman,
Eds., Model-Based Design for Embedded
Systems, Boca Raton, FL, USA: CRC Press,
2010.

[25] I. Lee, J. Leung, and S. Son,
Eds., Handbook of Real-Time and Embedded
Systems, London, U.K.: Chapman & Hall,
2007.

[26] X. Jin, J. V. Deshmukh, J. Kapinski,
K. Ueda, and K. Butts, “Powertrain control
verification benchmark,” in Proc. 17th Int.
Conf. Hybrid Syst., Comput. Control, 2014,
pp. 253–262.

[27] X. Jin, J. Deshmukh, J. Kapinski,
K. Ueda, and K. Butts, “Benchmarks for
model transformations and conformance
checking,” in Proc. 1st Int. Workshop Appl.
Verif. Continuous Hybrid Syst., 2014.
[Online]. Available: http://alumni.cs.ucr.
edu/~jinx/.

[28] J. V. Deshmukh et al., “Piecewise affine
approximations for a powertrain control
benchmark,” in Proc. 2nd Int. Workshop
Appl. Verif. Continuous Hybrid Syst., 2015,
[Online]. Available: http://alumni.cs.ucr.
edu/~jinx/.

[29] J. Fisher and T. A. Henzinger, “Executable
cell biology,” Nature Biotechnol., vol. 25,
no. 11, pp. 1239–1249, Nov. 2007.

[30] T. A. Henzinger, P. W. Kopke, A. Puri,
and P. Varaiya, “What’s decidable about
hybrid automata?” J. Comput. Syst. Sci.,
vol. 57, no. 1, pp. 94–124, 1998.

[31] G. Holzmann, The Spin Model Checker.
Reading, MA, USA: Addison-Wesley, 2003.

[32] R. Kaivola et al., “Replacing testing with
formal verification in Intel Core TM i7
processor execution engine validation,” in
Proc. 21st Int. Conf. Comput. Aided Verif.,
2009, pp. 414–429.

Vol. 104, No. 5, May 2016 | Proceedings of the IEEE 971

Tripakis: Compositionality in the Science of System Design

[33] G. Klein et al., “Sel4: Formal verification of
an operating-system kernel,” Commun. ACM,
vol. 53, no. 6, pp. 107–115, Jun. 2010.

[34] T. Ball, V. Levin, and S. K. Rajamani, “A
decade of software model checking with
SLAM,” Commun. ACM, vol. 54, no. 7,
pp. 68–76, Jul. 2011.

[35] C. Newcombe et al., “How amazon web
services uses formal methods,” Commun.
ACM, vol. 58, no. 4, pp. 66–73, Mar. 2015.

[36] S. Mitra, T. Wongpiromsarn, and
R. Murray, “Verifying cyber-physical
interactions in safety-critical systems,”
IEEE Security Privacy, vol. 11, no. 4,
pp. 28–37, Jul. 2013.

[37] S. Tripakis et al., “Implementing
synchronous models on loosely time-
triggered architectures,” IEEE Trans.
Comput., vol. 57, no. 10, pp. 1300–1314,
Oct. 2008.

[38] P. Caspi, N. Scaife, C. Sofronis, and
S. Tripakis, “Semantics-preserving multitask
implementation of synchronous programs,”
ACM Trans. Embedded Comput. Syst., vol. 7,
no. 2, pp. 1–40, Feb. 2008.

[39] J. Fisher et al., “Dynamic reactive modules,”
in Proc. CONCUR, 2011, pp. 404–418.

[40] G. Kahn, “The semantics of a simple
language for parallel programming,” in Proc.
IFIP Congr. Inf. Process., 1974.

[41] W. de Roever, H. Langmaack, and
A. E. Pnueli, Compositionality: The Significant
Difference, Lecture Notes in Computer
Science, Berlin, Germany: Springer-Verlag,
1998.

[42] J. Eker et al., “Taming heterogeneity—The
Ptolemy approach,” Proc. IEEE, vol. 91,
no. 1, pp. 127–144, Jan. 2003.

[43] S. Tripakis, C. Stergiou, C. Shaver, and
E. A. Lee, “A modular formal semantics for
Ptolemy,” Math. Struct. Comput. Sci., vol. 23,
pp. 834–881, Aug. 2013.

[44] R. Lublinerman and S. Tripakis,
“Modularity vs. reusability: Code generation
from synchronous block diagrams
modularity,” in Proc. ACM Design Autom.
Test Eur., Mar. 2008, pp. 1504–1509.

[45] R. Lublinerman and S. Tripakis, “Modular
code generation from triggered and timed
block diagrams,” in Proc. 14th IEEE
Real-Time Embedded Technol. Appl. Symp.,
Apr. 2008, pp. 147–158.

[46] R. Lublinerman C. Szegedy, and
S. Tripakis, “Modular code generation from
synchronous block diagrams—Modularity vs.
code size,” in Proc. 36th ACM SIGPLAN-
SIGACT Symp. Principles Programm. Lang.,
Jan. 2009, pp. 78–89.

[47] S. Tripakis, D. Bui, M. Geilen,
B. Rodiers, and E. A. Lee,
“Compositionality in synchronous data flow:
Modular code generation from hierarchical

SDF graphs,” ACM Trans. Embed. Comput.
Syst., vol. 12, no. 3, pp. 83:1–83:26,
Mar. 2013.

[48] E. Lee and D. Messerschmitt,
“Synchronous data flow,” Proc. IEEE,
vol. 75, no. 9, pp. 1235–1245, 1987.

[49] N. Lynch and M. Tuttle, “An introduction
to input/output automata,” CWI Quart.,
vol. 2, pp. 219–246, 1989.

[50] M. Broy, “Compositional refinement of
interactive systems,” J. ACM, vol. 44, no. 6,
pp. 850–891, 1997.

[51] R. Alur and T. Henzinger, “Reactive
modules,” Formal Methods Syst. Design,
vol. 15, pp. 7–48, 1999.

[52] L. de Alfaro and T. Henzinger, “Interface
automata,” in Foundations of Software
Engineering (FSE), New York, NY, USA:
ACM, 2001.

[53] L. de Alfaro and T. Henzinger, “Interface
theories for component-based design,” in
EMSOFT’01, Lecture Notes in Computer
Science, Berlin, Germany: Springer-Verlag,
2001, vol. 2211.

[54] S. Tripakis, B. Lickly, T. A. Henzinger,
and E. A. Lee, “A theory of synchronous
relational interfaces,” ACM Trans. Programm.
Lang. Syst., vol. 33, no. 4, pp. 14:1–14:41,
Jul. 2011.

[55] V. Preoteasa and S. Tripakis, “Refinement
calculus of reactive systems,” in Proc. 14th
ACM/IEEE Int. Conf. Embedded Softw., 2014.

[56] I. Dragomir, V. Preoteasa, and S. Tripakis,
“Compositional semantics and analysis of
hierarchical block diagrams,” in 23rd Int.
SPIN Symposium on Model Checking of
Software, LNCS, Springer, 2016.

[57] S. Tripakis, “Bridging the semantic gap
between heterogeneous modeling
formalisms and FMI,” in Proc. Int. Conf.
Embedded Comput. Syst., Architect. Model.
Simul., 2015.

[58] D. Broman, C. Brooks, L. Greenberg,
E. A. Lee, S. Tripakis, M. Wetter, and
M. Masin, “Determinate composition of
FMUs for co-simulation,” in Proc. 13th
ACM/IEEE Int. Conf. Embedded Softw., 2013.

[59] S. Bogomolov et al., “Co-simulation of
hybrid systems with SpaceEx and Uppaal,”
in Proc. 11th Int. Modelica Conf., 2015.
[Online]. Available: http://www.ep.liu.se/
ecp_article/index.en.aspx?issue=118;
article=017.

[60] P. Fritzson, Principles of Object-Oriented
Modeling and Simulation With Modelica 3.3:
A Cyber-Physical Approach, 2nd. New York,
NY, USA: Wiley, 2014.

[61] P. Cousot and R. Cousot, “Abstract
interpretation: A unified lattice model for
static analysis of programs by construction
or approximation of fixpoints,” in Proc. 4th
ACM Symp. POPL, 1977.

[62] P. Caspi et al., “Guidelines for a graduate
curriculum on embedded software and
systems,” ACM Trans. Embedded Comput.
Sys., vol. 4, no. 3, pp. 587–611, 2005.

[63] L. Thiele, S. Chakraborty, and
M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in Proc.
Int. Symp. Circuits Syst., 2000.

[64] I. Shin and I. Lee, “Compositional
real-time scheduling framework with
periodic model,” ACM Trans. Embed.
Comput. Syst., vol. 7, no. 3, pp. 30:1–30:39,
May 2008.

[65] A. Basu, M. Bozga, and J. Sifakis,
“Modeling heterogeneous real-time
components in BIP,” in 4th IEEE Int. Conf.
Softw. Eng. Formal Methods (SEFM 2006),
Sept. 11–15, 2006, Pune, India, pp. 3–12,
2006.

[66] M. Geilen, S. Tripakis, and M. Wiggers,
“The earlier the better: A theory of timed
actor interfaces,” in Proc. 14th Int. Conf.
Hybrid Syst., Comput. Control, 2011.

[67] J. Sztipanovits et al., “Toward a science of
cyber-physical system integration,” Proc.
IEEE, vol. 100, no. 1, pp. 29–44, Jan. 2012.

[68] T. A. Henzinger, “Two challenges in
embedded systems design: Predictability and
robustness,” Philosoph. Trans. Roy. Soc. Lond.
A, Math. Phys. Eng. Sci., vol. 366, no. 1881,
pp. 3727–3736, 2008.

[69] E. A. Lee, “Computing needs time,”
Commun. ACM, vol. 52, no. 5, pp. 70–79,
May 2009.

[70] A. Sangiovanni-Vincentelli, “Quo vadis SLD:
Reasoning about trends and challenges of
system-level design,” Proc. IEEE, vol. 95,
no. 3, pp. 467–506, Mar. 2007.

[71] A. Pnueli and R. Rosner, “On the synthesis
of a reactive module,” in Proc. ACM Symp.
POPL, 1989.

[72] A. Solar-Lezama, L. Tancau, R. Bodik,
S. Seshia, and V. Saraswat, “Combinatorial
sketching for finite programs,” SIGOPS Oper.
Syst. Rev., vol. 40, no. 5, pp. 404–415,
Oct. 2006.

[73] V. Raychev, M. T. Vechev, and E. Yahav,
“Code completion with statistical language
models,” in Proc. ACM SIGPLAN Conf.
Programm. Lang. Design Implement., 2014.

[74] R. Alur et al., “Synthesizing finite-state
protocols from scenarios and requirements,”
in Hardware and Software: Verification and
TestingLecture Notes in Computer Science,
Berlin, Germany: Springer-Verlag, 2014,
vol. 8855, pp. 75–91.

[75] R. Alur, M. Raghothaman, C. Stergiou,
S. Tripakis, and A. Udupa, “Automatic
completion of distributed protocols with
symmetry,” in Proc. 27th Int. Conf. Comput.
Aided Verif., 2015.

ABOUT THE AUTHOR

Stavros Tripakis received the Ph.D. degree in

computer science from the Verimag Laboratory,

Joseph Fourier University, Grenoble, France, in

1998.

He is an Associate Professor at Aalto Univer-

sity, Espoo, Finland and an Adjunct Associate Pro-

fessor at the University of California at Berkeley,

Berkeley, CA, USA. He was a Postdoctoral Re-

searcher at the University of California Berkeley

from 1999 to 2001, a CNRS Research Scientist at

Verimag from 2001 to 2006, and a Research Scientist at Cadence Re-

search Labs, Berkeley, from 2006 to 2008. His research interests include

formal methods, computer-aided system design, and cyber–physical

systems.

Dr. Tripakis was Co-Chair of the 10th ACM & IEEE Conference on Em-

bedded Software (EMSOFT 2010), and Secretary/Treasurer (2009–2011)

and Vice-Chair (2011–2013) of ACM SIGBED. His h-index is 40 (Google

Scholar).

972 Proceedings of the IEEE | Vol. 104, No. 5, May 2016

Tripakis: Compositionality in the Science of System Design

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

