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Abstract—This paper explores novel research directions arising
from the revolutions in artificial intelligence and the related fields
of machine learning, data science, etc. We identify opportunities
for system design to leverage the advances in these disciplines,
as well as to identify and study new problems. Specifically, we
propose Data-driven and Model-based Design (DMD) as a new
system design paradigm, which combines model-based design
with classic and novel techniques to learn models from data.

Index Terms—System design, formal methods, machine learn-
ing, verification, synthesis

I. INTRODUCTION

A. Artificial Intelligence

Computers and an abundance of data from all sorts of
sources are revolutionizing many fields of science and tech-
nology, from biology and medicine, to astronomy and the
social sciences. The so-called (new) artificial intelligence (AI)
revolution is also changing our industry, society, and everyday
lives. We use the term AI in a broad sense, to include many
related fields and buzzwords, such as machine learning, big
data, data science, and so on. In fact, it is reasonable to argue
that after a long “winter”, AI is once again blooming thanks
to the recent advances in machine learning and data science.

B. System Design

The field of system design is equally broad, and includes
classic (continuous) and modern (discrete, hybrid, and cyber-
physical) system theory, modeling, simulation, testing, formal
verification, scheduling, and other topics [1], [10], [33], [34],
[40], [43], [49], [53], [57], [68], [69], [73].

C. Two Interesting Questions

The ongoing AI revolution is raising the following ques-
tions, in terms of the two fields discussed above:

• Can AI benefit from system design, and how?
• Can system design benefit from AI, and how?
We believe that the answer to both questions is yes, and

outline some ideas supporting our claim in Sections II and III,
respectively. Section III also identifies DMD as a fundamen-
tally new approach to system design. Key elements of DMD
are presented in Section IV. Section V concludes the paper.

II. SYSTEM DESIGN FOR AI

As AI systems become parts of our daily routine (e.g., in
self-driving cars) we need to trust those systems with our
lives. AI systems of today rely on so-called learning-enabled
components (LECs) [48]. For example, a self-driving car may
rely on a LEC performing visual recognition. In order to trust

the AI system, we must also trust its LECs. However, today’s
machine learning systems are highly unpredictable [66]. Pro-
totyping such systems may seem quick and easy, but it incurs a
high cost, called technical debt [58]. These problems are not
theoretical. Numerous traffic violations, accidents, and even
human casualties have resulted as the fault of LECs. It is
therefore correctly and widely recognized that AI systems are
not dependable [23].

How to achieve dependability of LECs? “Manual” reason-
ing about these systems is prohibitive. Systems like neural
networks become incomprehensible as their size grows [59].
Moreover, using a trial-and-error approach (testing) does not
scale [38].

We argue that we need rigorous, formal modeling and
verification techniques, in order to

1) model AI systems, and in particular their LECs;
2) specify what properties these systems have, or should

have;
3) reason about such properties and ultimately verify that

they are satisfied.
Indeed, these research areas are currently emerging, see for
instance [36], [39], [54], [59]. Although the problems out-
lined above are far from being solved, it is our belief that
they will become key problems in the near future, and will
attract significant interest from researchers, as well as major
investments from funding agencies. We also believe that the
field of formal methods has a lot to contribute in this line of
research, although it is likely that existing methods may fall
short in being able to cope with LECs in the near term. This
will create opportunities for the discovery of novel methods.
We do not discuss these issues further here, as our focus in
this paper is on the second question posed above, namely, how
can system design benefit from AI. This is discussed next.

III. AI FOR SYSTEM DESIGN

Can we leverage the advances in AI in order to improve,
and perhaps even revolutionize the way we design systems?
How can we use the methods of AI, machine learning, data
science, etc., in order to advance the methodology and science
of system design?

A. Traditional Approaches to System Design: Trial-and-error
and Model-based Design

Traditionally, there have been essentially two approaches
to system design [73]: (1) design by trial-and-error, and (2)
model-based design (MBD).

Design by trial-and-error essentially proceeds as follows:
build a prototype system; test it; find bugs; fix them; repeat.



The hope is that progressively fewer and fewer bugs are found.
The process stops when no bugs are found, or the deadline
to release the project is reached, or some other criterion,
technical- or business-driven. In the age of software, design
by trial-and-error does not scale: as software becomes more
and more complex, the number of tests needed to achieve even
rudimentary coverage becomes astronomical. Design by trial-
and-error is also unsafe. In the age of cyber-physical systems,
which closely interact with humans in safety-critical ways,
trial-and-error is not a good option.

Model-based design [49], [67] improves trial-and-error by
building models instead of system prototypes. Models are
sometimes called virtual systems or virtual prototypes. Using
models instead of prototypes has several advantages:

• Models are safer than prototypes: a self-driving car model
can cause no casualties.

• Models are cheaper and faster to build, cheaper and faster
to modify/repair, cheaper and faster to maintain, etc.

• Models are cheaper and (sometimes) faster to simulate.
Simulating a model is analogous to testing a prototype.
Using parallelism and other techniques, it is possible to
run many more simulations in a model than tests in a real
prototype.

• Beyond simulation, models are amenable to more rig-
orous, formal, and exhaustive types of analysis, such
as static analysis and formal verification. In addition to
finding bugs, these analyses, if they succeed, can prove
the absence of bugs, which can never be done by testing
a prototype [19].

An obvious challenge in the MBD paradigm is how to make
the proof of correctness promise of formal methods a reality
in practice. Steady advances in the field keep bringing us
closer to this goal (see [73] and references therein for a more
extended discussion on this topic). But in addition to the
formal verification challenge, using models raises several other
serious concerns:

1) Where do the models come from?
2) How does one go from a model to a real system?

In fact, the second question has been easier to address. The
success that MBD enjoys in the industry is very much due
to the ability to address this question. Indeed, this has been
achieved by building various types of code generators which
take as input models and generate automatically implementa-
tions in various forms (e.g., C software code, HDL or FPGA
hardware code, etc.). Automatically generating implementa-
tions from models is by no means an easy problem. It is
analogous to the problem solved by compilers, which generate
machine code (assembly) from a high-level programming
language such as C or Java. Moreover, in the case of real-
time, embedded, and safety-critical systems, code generators
face new challenges, such as:

• How to meet real-time, memory, energy, and other re-
source constraints?

• How to ensure that safety and other properties established
at the model level carry over to the real system?

Many years of research have been devoted to addressing these
questions, in the related fields of (real-time) scheduling [10],
[11], [31], [65], semantics-preserving code generation [12],
[13], [15], [30], [32], [63], [72], and system design in gen-
eral [43], [49], so that the research problem can be today
considered more or less solved.

B. MBD as System Programming

The question where do the models come from, on the other
hand, has not been adequately addressed. Here, it is useful
to make a distinction between two types of models: system
models, and environment models. The former are models of
the system to be built, denoted S. The latter are models of
the environment which S is supposed to operate in (typically
in a closed-loop configuration). Thinking of MBD as system
programming, and of verification and code generation tools as
parts of system compilers, it is natural to also think of system
models as system programs. Just like standard programmers
need to write programs in C or Java, it is natural to expect sys-
tem programmers to write the system models. The difference,
however, is that standard programmers do not typically need to
write extra code for the environment in which their programs
operate: typically, this environment is a set of other programs
which are interfaced with the program under development.
In the case of embedded and cyber-physical systems, the
situation is different. Here, the environment is the physical
world, including humans (pilots, drivers, pedestrians, patients,
nurses, etc.). It is too complicated and difficult to capture the
environment in a detailed and accurate manner. Thus, building
good environment models, that strike a good balance between
tradeoffs such as precision, size, and complexity, is an art.
Most companies spend considerable resources to build their
environment models (e.g., engine models in the automotive
industry) and cherish them as their most important intellectual
property (of higher importance than their controllers).

In the era of machine learning, an obvious idea is: instead
of building environment (and perhaps other kinds of) models
“by hand,” can we learn such models automatically? This is
one of several questions that motivate the novel system design
paradigm that we propose in this paper, discussed next.

C. Data-driven and Model-based Design (DMD)

This paper advocates a third and fundamentally new ap-
proach to system design, which we call Data-driven and
Model-based Design (DMD). DMD can be seen as a hybrid
approach which seeks

• to combine the best of both worlds, namely trial-and-error
and model-based design;

• to leverage the advances of AI, in particular, in machine
learning and data science; and

• to complement existing AI methods with novel machine
learning and synthesis techniques, developed specifically
for system design.

In the sequel, we elaborate on the above points, and present a
list of the elements of DMD. This list is by no means claimed
to be exhaustive, and is necessarily partial.



IV. ELEMENTS OF DMD

A. Formal Modeling and Verification

DMD extends MBD. Therefore, all elements of MBD are
also elements of DMD. In particular, formal modeling and ver-
ification [7], [16] are the most important elements of MBD, as
argued in [73]. We will not repeat this discussion here. Suffice
it to say that we consider formal modeling and verification,
and in general formal methods, i.e., mathematically rigorous
design methods, a key element also of DMD. The goal is to
enhance those methods with data-driven techniques, without
sacrificing mathematical rigor, so that we get the benefits of
both worlds as mentioned above.

B. Machine Learning, Model Learning, System Identification

The crucial new element that DMD adds to MBD is learning
models from data. As of today, learning models from data
is not a single, cohesive, discipline. It is a broad set of
techniques, fragmented and spread over many communities
and disciplines, from machine learning and data mining to
theoretical computer science and even to more traditional fields
like control theory.

There are many variants of the learning models from data
problem, because there are many practical instances where
solving such problems can be extremely useful. The different
variants arise from variations along two primary dimensions:
(1) what kind of data is provided as input, and (2) what type
of model is expected as output. (A third but less important
dimension is what kind of method is used to do the learning.)

In control theory, the area of system identification is con-
cerned with “building mathematical models of dynamical
systems based on observed data from the systems” [44]. In this
context, “models of dynamical systems” is taken to mean the
kinds of models usually studied in signals, systems and control
theory, such as differential or difference equations [50].

But dynamical systems can also be modeled differently. In
computer science, which for the most part studies discrete
systems, dynamical systems are typically modeled using au-
tomata, state machines and transition systems [7], [16], [41].
Recently, Vaandrager used the term model learning to describe
the problem of building different types of “state diagram
models of software and hardware systems by providing inputs
and observing outputs” [75]. Model learning has a long history
that goes back to early works on passive learning (only from
examples) and active learning (with the aid of a teacher) of
finite automata and other models of formal languages [6], [18],
[27]. These techniques have been extended over the years
to models such as input/output state machines (Moore and
Mealy) [26], [61], as well as symbolic or extended machines
with variables and other types of data [9], [14], [20], [35], [37].
The field of model learning is closely related to the fields of
testing [42] and of synthesis (discussed further below), as well
as to optimization and games [77].

Machine learning is a vast field with the ambitious ultimate
goal of understanding “how to program computers to learn
– to improve automatically with experience” [47]. As such,

machine learning has close ties with artificial intelligence,
and may also help us understand the mechanisms of human
learning. As stated in [47], machine learning is inherently
multidisciplinary and draws results from many disciplines,
from statistics to neuroscience.

Machine learning studies several instances of the generic
problem of learning models from data. Examples include:
learning classifiers or decision trees, training (i.e., learning the
weights of) a neural network, deriving confidence intervals,
learning probabilities (Bayesian inference), and so on. It is
interesting to note that much of the machine learning corpus
of knowledge focuses on learning stateless models such as
classifiers or decision trees. This is contrary to model learning
which focuses on learning models with state such as automata
and state machines. However, there exist subareas of machine
learning which focus on stateful models, such as reinforcement
learning and recurrent neural networks.

All this multidisciplinary panoply of somewhat heteroge-
neous learning techniques forms an important part of what we
call DMD. In a system design context, several of these learning
methods may be useful, and even necessary, in a single
project. For example, system identification may be necessary
to identify the parameters of a continuous-time plant model, in
an embedded-control system. Model learning techniques may
be used to build state machine models of the behavior of an
(human) operator. If the embedded control system is part of,
say, a robot, reinforcement learning may be used to learn the
strategy to accomplish certain missions. Statistical methods
may be used to predict probabilities of failure, maintenance
events, etc. Even specifications of what the system is supposed
to be doing can be “mined” from data [5], [45].

In addition to providing possible answers to questions
such as where do models (and specifications) come from?,
learning techniques can be useful in improving the MBD
processes that follow even after models become available. For
example, learning techniques can be used in verification, to
automatically synthesize invariants or other conditions from
examples or counter-examples [25], [62].

C. Synthesis

As mentioned above, learning is related to the area of
synthesis, which is generally concerned with automatically
generating, given a formal specification φ, a program that
satisfies φ by construction [22], [28]. (We use the term
synthesis broadly, to encompass the somewhat disparate fields
of deductive program synthesis [46], reactive synthesis [22],
[51], controller synthesis [21], [55], and modern program
synthesis [28].) As with learning, there are many variants of
the synthesis problem, depending on the type of specifications
used as input, and the type of programs expected as output.

Synthesis is a key element of MBD, and also of DMD.
However, synthesis has scalability limitations which have so
far made it difficult to apply in practice. These limitations are
both methodological in nature (it is difficult to write complete
formal specifications of real-world systems), and algorithmic
(many synthesis problems have a prohibitive computational



complexity or are even undecidable [52], [70], [71]). In what
follows, we propose a way of remedying these concerns by
mixing synthesis and learning into a powerful combination.

D. Synthesis from Examples and Requirements

Before presenting the combined method, let us summarize
the synthesis and learning problems, in semi-formal notation.
This will reveal their similarities but also some important
differences, and lead to a new proposal that we present below.

Problem 1 (Synthesis): Given specification φ, synthesize
system S such that S satisfies φ, denoted S |= φ.

We will not define formally what φ and S are, neither the
satisfaction relation |=. As we said above, there are many
variants of the problem. We refer the reader to the literature.

Problem 2 (Learning): Given set of examples E, synthesize
system S such that S is consistent with E and generalizes well.

Let us explain the terms consistent with and generalizes well
via an example. Consider an image classifier S which has been
trained to distinguish between, say, bicyclists and pedestrians.
The set of examples E contains the training images and
their correct classification. After the classifier is trained, we
expect it to work correctly, at the very least, on the examples
it has been trained with. That is, given an image in E, S
must classify it correctly. This is what we mean by S being
consistent with E.

But in reality, we expect S to do much more than that.
Not only should it work correctly on the images it has been
trained with, it should also work well on images it has never
encountered before. That is, S should generalize well. It is
important to note that what exactly well means depends on the
application, and is often difficult if not impossible to formalize.
For instance, well could mean as well as a typical adult human,
or as well as an experienced driver, or at least as well as the
previous version of the self-driving car. One of the difficulties
in formalizing learning problems comes from the difficulty of
formalizing generalization. In some cases, principles such as
Occam’s razor are used. For example, in automata learning,
we might require not just any automaton which is consistent
with the examples, but also a minimal automaton (in terms
of number of states). Problem 3 proposed next offers, among
other benefits, an alternative definition of generalization, with
several benefits.

Problem 3 (Synthesis from Examples and Specification):
Given set of examples E and specification φ, synthesize
system S such that: (1) S is consistent with E, and (2) S |= φ.

We call Problem 3 the synthesis from examples and speci-
fication paradigm (SES). SES is powerful in many respects:

(1) The synthesizer is provided with more information than
in both the synthesis and learning problems. It is provided
with both a set of examples and a specification. Having both
pieces of information opens up many possibilities for better
and more efficienly computed solutions.

(2) In particular, the examples can be sometimes used
to bootstrap the synthesizer with an easily produced albeit
incomplete solution S0. S0 may be easy to construct to be
consistent with the examples, although it might not satisfy

the entire specification. Then, the problem becomes one of
completing S0 while taking care to satisfy the specification.
This completion problem is often easier to tackle than the
synthesis problem [4].

(3) The specification φ can be seen as a generalization
boundary. The possible completions of the initial solution S0

can be seen as all possible generalizations of systems con-
sistent with the examples E. Among all these generalizations,
which ones are good generalizations? SES offers a natural, and
also formal, answer to this question: a good generalization is
a completion that satisfies φ.

(4) Having a formal specification φ also paves the way to
making AI systems more dependable. For instance, φ might
be used to encode certain safety properties. Doing so, we
require the synthesizer to give us a solution which is not only
consistent with the examples and generalizes well, but is also
safe (since it must satisfy φ).

Our previous work on synthesizing distributed proto-
cols [2]–[4] can be seen as a concrete instance of the
SES paradigm, which inspired the generic formulation of
Problem 3. The distributed protocol synthesis problem from
specifications only is generally undecidable [52], [70], [71].
SES turns this undecidable synthesis problem into a decidable
one by providing to the synthesizer with a set of example
scenarios E (in addition to φ). In our case, E was represented
as a set of message sequence charts, but the precise choice of
representation is not that important. Our experiments showed
that the distributed protocol SES is not only decidable in
theory, but also tractable in practice for several interesting
protocols [2]–[4].

In addition to being algorithmically tractable, SES also
alleviates the methodological problems of synthesis mentioned
earlier. In SES, the specification φ does not have to be a
complete specification of the system. It simply has to constrain
the set of possible generalizations. For example, φ might
state that any generalization is acceptable as long as it is
deadlock-free. This is much easier to write, compared to a
full specification required for synthesis without examples.

Other instances and variations of the SES problem have
been studied in several recent works, including for instance
in the contexts of FSM identification [74], and path plan-
ning [76].

The SES formulation draws inspiration from our own work
as explained above. But it is also related to other recent ideas
that emerged in the field of synthesis. One is counter-example
guided inductive synthesis (CEGIS) [64]. CEGIS is based on
reducing the synthesis problem to a combination of search
and verification. A search is done over possible candidate
solutions, and each candidate is checked for correctness using
a verifier (e.g., a model-checker [7], [16]). If the candidate
is correct, a solution is found. If not, the verifier returns
a counterexample, which can be used to prune the search
space. SES is also related to sciduction [60] which proposes
to provide to the synthesizer additional information about the
system structure. In our case, we assume that such information
is “hardwired” into the problem (the space of systems S is



fixed by definition of the problem).
Similar ideas have appeared also in the field of machine

learning. [47] distinguishes inductive learning methods (from
examples) and analytical learning methods, where the learner
is provided, in addition to examples, with a domain theory
B representing “background knowledge”. For example, in
developing a program that learns to play chess, B may encode
the rules of chess. B can be viewed as the specification φ in
our formulation of SES, although the completion and CEGIS
based algorithms are different.

V. CONCLUSION

Science is knowledge that can help us make predictions.
The stronger the science, the stronger the predictions it allows
to make. In [73] we argued for a science of system design
based on MBD and formal verification, which allows to
make stronger predictions than trial-and-error methods based
on simulation and testing. In this paper, we argue for a
further development towards DMD, which extends MBD with
techniques and tools for learning models from data. DMD
attempts to exploit the big data revolution and use information
contained in data from all types of sources, including data from
legacy systems, already deployed systems, prototypes, or even
models and simulations, as well as software repositories [29],
[56]. DMD also seeks to exploit the recent advances in data
science and machine learning, but also other types of learning,
such as model learning. DMD seeks to do all this while at the
same time preserving the rigour and guarantees of MBD, by
relying on solid mathematical foundations.

It is not the ambition of this paper to give a complete
roadmap of DMD. We expect DMD to form into a dynamically
evolving research area. At the same time, we identified a set
of elements which we believe are crucial for DMD, in partic-
ular, the combination of synthesis and learning into the SES
approach, which already appears innovative and promising.

DMD provides only one possible answer to the question
how can system design benefit from the AI/machine learning
revolution? There are many other ways to leverage learning
techniques for system design. For instance, [17] uses machine
learning techniques to improve nonlinear constraint solving.

The question how can AI benefit from system design? is
also of great interest. As we discussed, today’s AI systems
are unsafe, insecure, and unreliable in general. Remedying
this requires advances in formal modeling and verification
of learning-enabled systems, a next challenge for the field of
formal methods.
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[25] P. Garg, C. Löding, P. Madhusudan, and D. Neider, “ICE: A Robust
Framework for Learning Invariants,” in Computer Aided Verification,
A. Biere and R. Bloem, Eds. Springer, 2014, pp. 69–87.



[26] G. Giantamidis and S. Tripakis, “Learning Moore Machines from Input-
Output Traces,” in 21st International Symposium on Formal Methods
(FM 2016), ser. Lecture Notes in Computer Science, J. S. Fitzgerald,
C. L. Heitmeyer, S. Gnesi, and A. Philippou, Eds., vol. 9995, 2016, pp.
291–309.

[27] E. M. Gold, “Language identification in the limit,” Information and
Control, vol. 10, no. 5, pp. 447–474, 1967.

[28] S. Gulwani, O. Polozov, and R. Singh, “Program synthesis,” Foundations
and Trends in Programming Languages, vol. 4, no. 1-2, pp. 1–119, 2017.

[29] T. Gvero and V. Kuncak, “Synthesizing java expressions from free-
form queries,” in 2015 ACM SIGPLAN Intl. Conf. on Object-Oriented
Programming, Systems, Languages, and Applications, ser. OOPSLA.
ACM, 2015, pp. 416–432.

[30] G. Han, M. D. Natale, H. Zeng, X. Liu, and W. Dou, “Optimizing the
implementation of real-time Simulink models onto distributed automo-
tive architectures,” Journal of Systems Architecture - Embedded Systems
Design, vol. 59, no. 10-D, pp. 1115–1127, 2013.

[31] M. Harbour, M. Klein, R. Obenza, B. Pollak, and T. Ralya, A Prac-
titioner’s Handbook for Real-Time Analysis: Guide to Rate-Monotonic
Analysis for Real-Time Systems. Kluwer, 1993.

[32] T. Henzinger, C. Kirsch, M. Sanvido, and W. Pree, “From control
models to real-time code using Giotto,” IEEE Control Systems Magazine,
vol. 23, no. 1, pp. 50–64, 2003.

[33] T. Henzinger and J. Sifakis, “The discipline of embedded systems
design,” IEEE Computer, vol. 40, no. 10, pp. 32–40, 2007.

[34] T. A. Henzinger, “Two challenges in embedded systems design: pre-
dictability and robustness,” Philosophical Transactions of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences,
vol. 366, no. 1881, pp. 3727–3736, 2008.

[35] F. Howar, B. Steffen, B. Jonsson, and S. Cassel, “Inferring Canonical
Register Automata,” in VMCAI, 2012, pp. 251–266.

[36] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety verification
of deep neural networks,” CoRR, vol. abs/1610.06940, 2016. [Online].
Available: http://arxiv.org/abs/1610.06940

[37] B. Jonsson, “Learning of Automata Models Extended with Data,” in
SFM 2011, Advanced Lectures, 2011, pp. 327–349.

[38] N. Kalra and S. M. Paddock, “Driving to safety – how many miles of
driving would it take to demonstrate autonomous vehicle reliability?”
RAND Research Report RR-1478-RC, Tech. Rep., 2016. [Online].
Available: https://www.rand.org/pubs/research reports/RR1478.html

[39] G. Katz, C. W. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,
“Reluplex: An efficient SMT solver for verifying deep neural
networks,” CoRR, vol. abs/1702.01135, 2017. [Online]. Available:
http://arxiv.org/abs/1702.01135

[40] K. Keutzer, A. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli,
“System-level design: orthogonalization of concerns and platform-based
design,” Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transact ions on, vol. 19, no. 12, pp. 1523–1543, Dec 2000.

[41] Z. Kohavi, Switching and finite automata theory, 2nd ed. McGraw-Hill,
1978.

[42] D. Lee and M. Yannakakis, “Principles and methods of testing finite state
machines - A survey,” Proceedings of the IEEE, vol. 84, pp. 1090–1126,
1996.

[43] I. Lee, J. Leung, and S. Son, Eds., Handbook of Real-Time and
Embedded Systems. Chapman & Hall, 2007.

[44] L. Ljung, System Identification: Theory for the User, 2nd ed. Prentice
Hall, 1999.

[45] D. Lo, S.-C. Khoo, J. Han, and C. Liu, Mining Software Specifications:
Methodologies and Applications. CRC Press, 2011.

[46] Z. Manna and R. Waldinger, “A deductive approach to program synthe-
sis,” ACM Trans. Program. Lang. Syst., vol. 2, no. 1, pp. 90–121, Jan.
1980.

[47] T. M. Mitchell, Machine Learning. McGraw-Hill, 1997.
[48] S. Neema, “Assured autonomy,” DARPA Research Program. [Online].

Available: https://www.darpa.mil/program/assured-autonomy
[49] G. Nicolescu and P. J. Mosterman, Eds., Model-Based Design for

Embedded Systems. CRC Press, 2010.
[50] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals &Amp;

Systems, 2nd ed. Prentice-Hall, 1996.
[51] A. Pnueli and R. Rosner, “On the synthesis of a reactive module,” in

ACM Symp. POPL, 1989.
[52] ——, “Distributed reactive systems are hard to synthesize,” in Proceed-

ings of the 31th IEEE Symposium on Foundations of Computer Science,
1990, pp. 746–757.

[53] R. Poovendran, K. Sampigethaya, S. K. S. Gupta, I. Lee, K. V. Prasad,
D. Corman, and J. Paunicka, “Special Issue on Cyber-Physical Systems,”
Proceedings of the IEEE, vol. 100, no. 1, pp. 6–12, Jan. 2012.

[54] L. Pulina and A. Tacchella, “An abstraction-refinement approach to ver-
ification of artificial neural networks,” in Computer Aided Verification:
CAV 2010, T. Touili, B. Cook, and P. Jackson, Eds., 2010, pp. 243–257.

[55] P. Ramadge and W. Wonham, “The control of discrete event systems,”
Proceedings of the IEEE, Jan. 1989.

[56] V. Raychev, M. Vechev, and A. Krause, “Predicting program properties
from ”big code”,” in 42nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL’15. ACM, 2015, pp.
111–124.

[57] A. Sangiovanni-Vincentelli, “Quo Vadis SLD: Reasoning about Trends
and Challenges of System-Level Design,” Proceedings of the IEEE,
vol. 95, no. 3, pp. 467–506, Mar. 2007.

[58] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner,
V. Chaudhary, M. Young, J.-F. Crespo, and D. Dennison, “Hidden
technical debt in machine learning systems,” in 28th International
Conference on Neural Information Processing Systems - Volume 2, ser.
NIPS’15. MIT Press, 2015, pp. 2503–2511.

[59] D. Selsam, P. Liang, and D. L. Dill, “Developing bug-free machine
learning systems with formal mathematics,” in 34th International Con-
ference on Machine Learning, D. Precup and Y. W. Teh, Eds., vol. 70.
PMLR, 2017, pp. 3047–3056.

[60] S. A. Seshia, “Sciduction: Combining induction, deduction, and structure
for verification and synthesis,” in Proceedings of the Design Automation
Conference (DAC), June 2012, pp. 356–365.

[61] M. Shahbaz and R. Groz, “Inferring Mealy Machines,” in FM 2009,
2009, pp. 207–222.

[62] R. Sharma, S. Gupta, B. Hariharan, A. Aiken, and A. V. Nori, “Verifi-
cation as learning geometric concepts,” in Static Analysis, F. Logozzo
and M. Fähndrich, Eds. Springer, 2013, pp. 388–411.

[63] J. Sifakis, S. Tripakis, and S. Yovine, “Building Models of Real-Time
Systems from Application Software,” Proceedings of the IEEE, Special
issue on Modeling and Design of Embedded Software, vol. 91, no. 1,
pp. 100–111, Jan. 2003.

[64] A. Solar-Lezama, “Program synthesis by sketching,” Ph.D. dissertation,
University of California at Berkeley, 2008.

[65] J. Stankovic, M. Spuri, K. Ramamritham, and G. Buttazzo, Dead-
line Scheduling For Real-Time Systems: EDF and Related Algorithms.
Kluwer Academic Publishers, 1998.

[66] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. J. Goodfellow, and R. Fergus, “Intriguing properties of neural
networks,” CoRR, vol. abs/1312.6199, 2013. [Online]. Available:
http://arxiv.org/abs/1312.6199

[67] J. Sztipanovits and G. Karsai, “Model-integrated computing,” Computer,
vol. 30, no. 4, pp. 110 –111, apr 1997.

[68] J. Sztipanovits, X. Koutsoukos, G. Karsai, N. Kottenstette, P. Antsaklis,
V. Gupta, B. Goodwine, J. Baras, and S. Wang, “Toward a science of
cyber-physical system integration,” IEEE Proc., vol. 100, no. 1, pp. 29–
44, Jan. 2012.

[69] P. Tabuada, Verification and Control of Hybrid Systems: A Symbolic
Approach. Springer, 2009.

[70] J. Thistle, “Undecidability in decentralized supervision.” Systems &
Control Letters, vol. 54, no. 5, pp. 503–509, 2005.

[71] S. Tripakis, “Undecidable Problems of Decentralized Observation and
Control on Regular Languages,” Information Processing Letters, vol. 90,
no. 1, pp. 21–28, Apr. 2004.

[72] S. Tripakis, C. Pinello, A. Benveniste, A. Sangiovanni-Vincentelli,
P. Caspi, and M. D. Natale, “Implementing Synchronous Models on
Loosely Time-Triggered Architectures,” IEEE Transactions on Comput-
ers, vol. 57, no. 10, pp. 1300–1314, Oct. 2008.

[73] S. Tripakis, “Compositionality in the Science of System Design,”
Proceedings of the IEEE, vol. 104, no. 5, pp. 960–972, May 2016.

[74] V. Ulyantsev, I. Buzhinsky, and A. Shalyto, “Exact finite-state machine
identification from scenarios and temporal properties,” STTT, vol. 20,
no. 1, pp. 35–55, 2018.

[75] F. Vaandrager, “Model learning,” Commun. ACM, vol. 60, no. 2, pp.
86–95, Jan. 2017.

[76] M. Wen, I. Papusha, and U. Topcu, “Learning from demonstrations with
high-level side information,” in IJCAI, 2017, pp. 3055–3061.

[77] M. Yannakakis, “Testing, optimization, and games,” Invited talk at
ICALP-LICS’04.


