
A Theory of Synchronous Relational Interfaces

Stavros Tripakis, Ben Lickly, Thomas A. Henzinger, Edward A. Lee

Compositional theories are crucial when designing large and complex systems from smaller compo-

nents. In this work we propose such a theory for synchronous concurrent systems. Our approach

follows so-called interface theories, which use game-theoretic interpretations of composition and
refinement. These are appropriate for systems with distinct inputs and outputs, and explicit con-

ditions on inputs that must be enforced during composition. Our interfaces model systems that

execute in an infinite sequence of synchronous rounds. At each round, a contract must be satisfied.
The contract is simply a relation specifying the set of valid input/output pairs. Interfaces can be

composed by parallel, serial or feedback composition. A refinement relation between interfaces is

defined, and shown to have two main properties: (1) it is preserved by composition, and (2) it
is equivalent to substitutability, namely, the ability to replace an interface by another one in any

context. Shared refinement and abstraction operators, corresponding to greatest lower and least
upper bounds with respect to refinement, are also defined. Input-complete interfaces, that impose

no restrictions on inputs, and deterministic interfaces, that produce a unique output for any legal

input, are discussed as special cases, and an interesting duality between the two classes is exposed.
A number of illustrative examples are provided, as well as algorithms to compute compositions,

check refinement, and so on, for finite-state interfaces.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Design Tools and Tech-

niques—Modules and interfaces; D.2.13 [Software Engineering]: Reusable Software

General Terms: Algorithms, Design, Languages, Theory, Verification

Additional Key Words and Phrases: Compositionality, Interfaces, Refinement, Substitutability

1. INTRODUCTION

Compositional methods, which allow one to assemble smaller components into
larger systems both efficiently and correctly, are not simply a desirable feature

This report is a revised version of [Tripakis et al. 2009a; 2009b]. This work was supported

in part by the Center for Hybrid and Embedded Software Systems (CHESS) at UC Berkeley,

which receives support from the National Science Foundation (NSF awards #CCR-0225610 (ITR),
#0720882 (CSR-EHS: PRET) and #0931843 (ActionWebs)), the U. S. Army Research Office

(ARO #W911NF-07-2-0019), the U. S. Air Force Office of Scientific Research (MURI #FA9550-

06-0312 and AF-TRUST #FA9550-06-1-0244), the Air Force Research Lab (AFRL), the Multiscale
Systems Center (MuSyC) and the following companies: Bosch, National Instruments, Thales, and

Toyota. This work was also supported by the COMBEST and ArtistDesign projects of the Euro-
pean Union, and the Swiss National Science Foundation.

Tripakis, Blickly and Lee are with the Department of Electrical Engineering and Computer Sci-
ences at the University of California, Berkeley. Henzinger is with the Institute of Science and
Technology Austria. Authors’ emails: {stavros,blickly,eal}@eecs.berkeley.edu, tah@ist.ac.at. Cor-
responding author’s address: Stavros Tripakis, 545Q, DOP Center, Cory Hall, EECS Department,

University of California, Berkeley, CA 94720-1772, USA.
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0164-0925/20YY/0500-0111 $5.00

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY, Pages 111–0??.

stavros
Typewritten Text
Preprint accepted in ACM TOPLAS (Transactions onProgramming Languages and Systems), March 1, 2011.

112 ·
in system design: they are a must for designing large and complex systems. A
compositional theory provides means for reasoning formally about components and
their compositions. It also typically provides sufficient and/or necessary conditions
for substitutability: when can a certain component be replaced by another one with-
out compromising the correctness of the overall system? This property is clearly
extremely important, in particular for incremental design.

The goal of this work is to develop a compositional theory for synchronous con-
current systems, systems where a set of components execute in an infinite sequence
of global rounds. This is a fundamental model of computation with traditionally
strong application in the hardware domain (digital circuits). Today the synchronous
paradigm is also becoming widespread in software, in particular, in the domains of
embedded and cyber-physical systems [Henzinger and Sifakis 2007; Lee 2008]. Tools
such as Simulink from The MathWorks1, SCADE from Esterel Technologies2, or
Ptolemy from Berkeley3, and languages such as the synchronous languages [Ben-
veniste et al. 2003] are important players in this field [Miller et al. 2010]. The
semantics used in these models are synchronous.

Our work is situated in the context of interface theories [de Alfaro and Hen-
zinger 2001a; 2001b]. An interface can be seen as an abstraction of a component:
on one hand, it captures information that is essential in order to use the component
in a given context; on the other hand, it hides unnecessary information, making
reasoning simpler and more efficient. Interface theories typically define a set of
composition operators and a refinement relation on interfaces, and provide theo-
rems of preservation of correctness by refinement and preservation of refinement
by composition, from which substitutability guarantees can be derived. These con-
cepts are common to most compositional theories. What distinguishes interface
theories is a game-theoretic interpretation of the basic concepts, namely, composi-
tion and refinement. The need for a game-theoretic interpretation has been argued
extensively in previous works on interface theories [de Alfaro and Henzinger 2001a;
2001b; de Alfaro 2004]. In order to make this paper more self-contained, we also
discuss the motivations behind this choice here, in Section 2.

The type of information about a component that is exposed in an interface varies
depending on the application. For instance, in standard programming languages
such as C or Java, the signature of a given method can be seen as an interface
for that method. This interface provides sufficient information for type checking,
but usually does not provide enough information for more detailed analysis, e.g.,
checking that a method computing division never attempts a division by zero. As
this simple example illustrates, we should not expect a single “fits-all” interface
theory, but multiple theories that are more or less suitable for different purposes.
Suitability metrics could include expressiveness and ease of modeling in particular
application domains, as well as tractability of the computational problems involved.

In our theory, an interface consists of a set of input variables X, a set of output
variables Y , and a set of contracts. Semantically, a contract is simply a set of
assignments of values to variables in X∪Y . Syntactically, we use a logical formalism

1See http://www.mathworks.com/products/simulink/.
2See http://www.esterel-technologies.com/products/scade-suite/.
3See http://ptolemy.eecs.berkeley.edu/.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

· 113

such as first-order logic to represent and manipulate contracts. For example, the
predicate x2 6= 0 ∧ y = x1

x2
can be used to represent the contract of a component

that performs division, with input variables x1 and x2 and output variable y. The
contract here is the set of all assignments to variables x1, x2 and y that satisfy the
predicate. The assignment (x1 := 6, x2 := 2, y := 3) satisfies the contract, while any
assignment where x2 := 0 violates the contract. A more abstract contract for the
same component, which only gives some information about the sign of the output
based on the sign of the inputs, is x2 6= 0∧

(
y < 0 ≡ (x1 < 0 < x2 ∨ x2 < 0 < x1)

)
.

An even more abstract contract is x2 6= 0. The latter guarantees nothing about the
output, however, it still enforces that requirement that when performing division
the denominator should be non-zero. We should note that these contracts implicitly
use the fact that variables are numbers, symbols like = for equality, and arithmetic
operations such as division. Our theory does not depend on these, and works with
variables of any domain, without assuming any properties on such domains. In
practice, however, we often use such properties implicitly for convenience.

Contracts govern the operation of a component, which evolves in a sequence of
synchronous rounds. Within a round, values are assigned to the input variables
of the component by its environment, and the component assigns values to its
output variables. Together the two assignments form a complete assignment over
all variables. This assignment must satisfy the contract. A new assignment is found
at each round. Interfaces can be stateless or stateful. In the stateless case, there is a
single contract that must hold at every round (the assignments may still differ). In
the general, stateful case, a different contract may be specified for each round. The
contract in this case depends on the history of assignments observed so far, which
we call a state. The set of states, as well as the set of contracts, can be infinite.
When the set of contracts is finite, we have a finite-state interface (note that the
domains of variables could still be infinite). Finite-state interfaces are represented
as finite automata whose locations are labeled by contracts.

Interfaces can be composed by connection or by feedback (see Section 6). Con-
nection essentially corresponds to serial (cascade) composition, however, it can also
capture parallel composition as a special case (empty connection). Composition by
connection is generally not the same as composition of relations. Section 2 discusses
this choice extensively. Feedback is allowed only for Moore interfaces, where the
contract does not depend on the current values of the input variables that are back-
fed (although it may depend on past values of such variables). A hiding operator
(Section 7) can be used to eliminate redundant or intermediate output variables.
Hiding is always possible for stateless interfaces and corresponds to existentially
quantifying variables in the contract. The situation is more subtle in the stateful
case, where we need to ensure that the “hidden” variables do not influence the
evolution of the contract from one state to the next. This is necessary to ensure
preservation of refinement by hiding.

Our theory includes explicit notions of environments, pluggability and substi-
tutability (Section 8). An environment E for an interface I is simply an interface
whose input and output variables “mirror” those of I. I is pluggable to E (and
vice versa) iff the closed-loop system formed by connecting the two is well-formed,
that is, never reaches a state with an unsatisfiable contract. Substitutability means

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

114 ·
that an interface I ′ can replace another interface I in any environment. That is,
for any environment E, if I is pluggable to E then I ′ is also pluggable to E.

Our refinement relation is similar in spirit to existing relations, such as function
subtyping in type theory [Pierce 2002], behavioral subtyping [Liskov and Wing
1994], conformation in trace theory [Dill 1987], and alternating refinement [Alur
et al. 1998]. All these, roughly speaking, state that I ′ refines I if I ′ accepts more
inputs and produces fewer outputs than I. This requirement is easy to formalize as
in→ in′∧out′ → out when the input assumptions, in, are separated from the output
guarantees, out. When the constraints on the inputs and outputs are mixed in the
same contract φ, a more careful definition is needed, namely: in(φ)→ (in(φ′)∧(φ′ →
φ)), where in(φ) characterizes the set of legal input assignments specified by φ. An
input assignment is legal if there exists an output assignment such that together
the two assignments satisfy the contract. For example, if φ is x2 6= 0∧ y = x1

x2
then

in(φ) is x2 6= 0.

The above definition of refinement applies to the stateless case where an interface
has a single contract φ. The definition can be extended to the stateful case as shown
in Section 9. Refinement is a partial order with the following main properties: (1) it
is preserved by composition and hiding; and (2) it is essentially equivalent to substi-
tutability (Theorem 15). It is worth noting that reasonable alternative definitions
of refinement result in sufficient but not necessary conditions for substitutability
(see discussions in Sections 2.4 and 9.2). Our notion of refinement thus seems to
be “the best match” for substitutability.

Our theory supports shared refinement (Section 10), which is important for com-
ponent reuse as argued in [Doyen et al. 2008]. Shared refinement of two interfaces
I and I ′, when defined, is a new interface that refines both I and I ′, in fact, it is
their greatest lower bound with respect to the refinement order, and is therefore
denoted I u I ′. In this paper we also propose shared abstraction I t I ′, which is
shown to be the least upper bound with respect to refinement.

As a special case, we discuss input-complete (sometimes also called receptive)
interfaces, where contracts are total relations, and deterministic interfaces, where
contracts are partial functions. These two subclasses of interfaces are interesting,
first, because the theory is greatly simplified in those cases (refinement becomes
language containment, composition becomes relational, etc.), and second, because
there is an interesting duality between the two subclasses, as shown in Sections 11
and 12.

Examples illustrating the concepts of the theory are provided throughout the
paper. An application to the hardware domain is described in Section 13.

The main features of the theory are summarized in Table I. This table is given
merely for reference and contains only a partial view. The precise definitions and
complete set of results are given in the sections that follow.

One of the appealing features of our theory is that it allows a declarative way
of specifying contracts, and a symbolic way of manipulating them, as logical for-
mulas. For this reason, it is relatively straightforward to develop algorithms that
implement the theory for finite-state interfaces. Throughout the text we provide
such algorithms, for composing interfaces, checking refinement, and so on. These
algorithms compute some type of product of the automata that represent the in-

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

· 115

M
o
d

el
s

Relational Stateless: contracts (predicates) on input/output variables,
interfaces e.g., x2 6= 0 ∧ y = x1

x2
.

Legal input assignments in contract φ:
in(φ) := (∃y1, y2, ..., yn : φ),
where {y1, ..., yn} is the set of output variables,

e.g., in(x2 6= 0 ∧ y = x1
x2

) ≡ x2 6= 0.

Stateful: automata whose states are labeled with
contracts (set of states may be infinite).

Moore w.r.t. input x Contract does not depend on current value

of variable x (can still depend on previous values of x).
Input-complete All input values are legal: in(φ) ≡ true.
Deterministic Given legal inputs, outputs are unique.
Well-formed All reachable contracts are satisfiable.
Well-formable Can be made well-formed by restricting the inputs.

Environments They are interfaces.

C
o
m

p
o
si

ti
o
n

s Connection Parallel: conjunction of contracts: φ := φ1 ∧ φ2.
Commutative & associative.
Serial: game, environment vs. source interface:

φ := φ1 ∧ φ2 ∧ ∀y1, ..., yn :
(
φ1 → in(φ2)

)
, where {y1, ..., yn}

is the set of output variables of the source interface.
Associative.

Feedback Interface must be Moore w.r.t. input variable x
that is connected to output y. Commutative & associatve.

Pluggability: I � E Closed-loop composition of I and E must be well-formed

Substitutability: I →e I′ For any E, if I is pluggable to E then I′ is pluggable to E

C
o
m

p
o
si

ti
o
n

a
li
ty

Refinement For stateless: φ′ v φ :=
(
in(φ)→

(
in(φ′) ∧ (φ′ → φ)

))
.

Similar for stateful. v is partial order. false is top element.
Preservation Refinement preserves well-formability.

Refinement is preserved by both connection and feedback.

Refinement sufficient for substitutability:
if I′ v I then I →e I′.
Refinement necessary for substitutability, in that:

if I′ 6v I and I is well-formed, then I 6→e I′.
Special case: If φ2 is input-complete then serial composition is conjunction.
input-complete Refinement becomes: φ′ v φ ≡

(
φ′ → φ

)
.

Special case: If φ1 is deterministic then serial composition is conjunction.
deterministic Refinement becomes: φ′ v φ ≡

(
φ→ φ′

)
.

Table I. Summary of the main concepts and results of this paper.

terfaces and syntactically manipulate their contracts. Solving problems such as
quantifier elimination and satisfiability checking on the formulas representing the
contracts are crucial elements of the algorithms. Decidability of these problems
will of course depend on the types of formulas used. Recent advances in SMT
(Satisfiability Modulo Theory) solvers can be leveraged for this task.

2. MOTIVATION FOR THE DESIGN CHOICES

As mentioned in the introduction, our theory uses a game-theoretic interpretation
of composition and refinement. These interpretations are by no means new (see
Section 3) and have been extensively motivated in previous works. For the sake of
self-containment, in this section we also motivate these choices in our setting.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

116 ·
2.1 A general model for contracts: relational, non-deterministic, non-input-complete

Consider a component performing division. One possible interface for this compo-
nent is the following:

Div := ({x1, x2}, {y}, φ1Div)

φ1Div := x2 6= 0 ∧ φsign
φsign := (y = 0 ≡ x1 = 0) ∧

(
y < 0 ≡ (x1 < 0 < x2 ∨ x2 < 0 < x1)

)
Div has two input variables x1, x2, one output variable y, and a contract represented
by the predicate φ1Div . Interpreting x1 to be the dividend and x2 the divisor, and y
to be the result of the division, φ1Div states that the divisor must be non-zero and
also provides guarantees on the sign of the output depending on the sign of the
inputs.

The following points are worth making about contract φ1Div . First, it is relational,
in the sense that the value of the output depends on the values of the inputs. A
non-relational contract that could be used is, for instance, x2 6= 0, which represents
only an assumption on the input. Another non-relational contract, for a slightly
more restrictive component that does not accept negative inputs, would be x1 ≥
0 ∧ x2 > 0 ∧ y ≥ 0. This is non-relational in the sense that the guarantee on the
output does not depend on the value of the inputs. The second point about φ1Div

is that it is non-deterministic: the output y is not uniquely determined for a given
input (unless x1 = 0). The final point about φ1Div is that it is non-input-complete:
all inputs where x2 = 0 are illegal in the sense that they violate the contract.

As this example illustrates, “rich” contracts, that is, relational, non-deterministic,
and non-input-complete, arise even in simple situations. The need to capture rela-
tions between inputs and outputs should be clear: if we separate input assumptions
from output guarantees (as done in [Doyen et al. 2008], for instance) then we can-
not state input-output properties about our system. The need for non-determinism
should also be clear: non-determinism is useful when abstracting low-level details
that would be too difficult to obtain or too expensive to use. For instance, in our
example, we could use a deterministic contract for Div :

φ2Div := x2 6= 0 ∧ x1 = y · x2
But we may opt for φ1Div , since φ1Div can be handled by an SMT solver that can
only deal with linear constraints, whereas φ2Div cannot.

The need for non-input-completeness may be less obvious. Why can’t we replace
the non-input-complete contract φ1Div by the input-complete contract

φ3Div := x2 6= 0→ φsign ?

There are several reasons. First, note that φ3Div allows inputs where x2 = 0 (since
an implication A → B is trivially satisfied when A is false) and in that case the
output y may take any value. However, the implicit assumption is that y will take
some value. In other words, a “real” component (in SW or HW) that implements
φ3Div must be “input-complete” in the sense that it always produces some output,
even when given illegal inputs. But not all real systems have this property. For
example, a program may not terminate on illegal inputs; and a circuit may burn

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

· 117

up if an incorrect voltage is applied to it. These systems are not “input-complete”,
thus cannot be described by input-complete interfaces.

But even when a system is “input-complete”, we may still want to capture it
with a non-input-complete interface. Indeed, suppose we connect Div to another
component C, as shown to the left of Figure 1. Our intention is for C to output the
constant 2, so that the composition implements a division by 2. But suppose that
due to a design error C outputs zero instead. That is, the contract of C is x2 = 0.
Combining the latter with φ1Div , by taking the conjunction of the two, gives false,
which means that two interfaces are incompatible. Catching this incompatibility
early on, i.e., when attempting to compose C with Div , is useful, since it permits
to localize and correct the error easily.

x3
C

Div

x1

x2

y
Div

x1

x2

y

D

Fig. 1. Connecting C to Div (left) and D to Div (right).

Suppose we used the input-complete contract φ3Div , instead of φ1Div . Then, the
composition of C and Div would result in the contract true (after hiding variable
x2). How should we interpret this result? We cannot in general interpret true as
indicating incompatibility, since it might simply be the result of lack of information,
i.e., trivial contracts. In a large system, there will generally be many components
for which we have no information, and others for which we do. We want a system-
atic (or even automatic) method that distinguishes between “no information” and
“incompatible composition”.

We could of course perform a “local” verification task, in order to prove that
the composition of C and Div implements the intended division by 2, namely, the
property φP := (y · 2 = x1). Contract true fails to imply this, which indicates
an error. The problem with this approach is that it requires φP to be specified.
This may not always be an easy task. First, formal verification may not be part
of the design process. Second, even if it is, it may be the case that only a global,
end-to-end specification is available, for the top-level component within which the
composition of C and Div is embedded. “Decomposing” such a global specification
into local specifications such as φP is not always straightforward.

With non-input-complete interfaces, such local specifications are not required.
Instead, a compatibility check is performed to ensure that a composition such as
the one between C and Div is valid. This is a more light-weight verification process,
akin to type checking (but with types that are quite richer than usual). In fact, the
goal may not be verification at all, but rather synthesis of component interfaces, in
a bottom-up fashion: given interfaces for atomic components C and Div , compute
an interface for their composition. Instead of type-checking, this is akin to type-
inference. Once an interface for a complete hierarchical model is computed, and
assuming no incompatibilities have been found during the process, that interface
can be checked against a global specification, if the latter is available. But the

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

118 ·
interface provides useful information that can be helpful even in the absence of
such a specification.

2.2 On the definition of serial composition

Consider again interface Div , and suppose we connect it to another interface D, as
shown to the right of Figure 1. Suppose that the contract of D is φD := true. If D
abstracts a certain component, this may mean that we have no knowledge about
this component (e.g., our automated abstraction tool gave us a trivial answer).

What should the contract of the composition of D and Div be? Standard com-
position of relations corresponds to taking the conjunction φD ∧ φ1Div , and then
eliminating x2. This yields the formula ∃x2 : φ1Div , which is equivalent to the
predicate y = 0 ≡ x1 = 0, asserting that y is zero iff x1 is zero. This assertion
is satisfiable (there are inputs and outputs that make it true), therefore, it would
appear that the composition of D and Div is valid.

Now, suppose that we want to replace D by E, which has the same structure as D
(i.e., same input and output variables) but a different contract, namely, φE := x2 =
0. φE provides stronger output guarantees than φD, and in any standard framework
this means that E refines D (this is also true in our framework). But clearly the
composition of E and Div is not valid. This violates one of the main properties of
any compositional theory, namely, that a component should be replaceable by any
component that refines it.

We are therefore forced to revise our assumption that the composition of D
and Div is valid. The problem is that we interpreted the non-determinism of D
as “angelic”, or “controllable”. We should instead interpret it as “demonic”, or
“uncontrollable”. We should accept the composition as valid only if there exist
input values at x3 for which it can be guaranteed that any possible output of D
satisfies x2 6= 0. Since D does not guarantee anything, no such input at x3 can
be found. Therefore, the composition of D and Div should be considered invalid.
Logically, we achieve this by adding the term ∀x2 : φD → x2 6= 0 to the conjunction
φD ∧ φ1Div , in the definition of the composite contract. The above term reduces to
∀x2 : true→ x2 6= 0, or ∀x2 : x2 6= 0, which is false.

2.3 On the definition of refinement

Once we accept the “demonic” interpretataion of non-determinism in composition,
as described above, the choice of refinement appears to be inevitable. Indeed, we
seek a refinement relation that is equivalent to substitutability. This means that
refinement must be both sufficient for substitutability (i.e., if interface I ′ refines
interface I, then I ′ can replace I in any context) as well as necessary (i.e., if I ′ does
not refine I, then there is a context where I works but I ′ does not). As it turns out,
the definition that has these properties is the following: contract φ′ refines contract
φ, denoted φ′ v φ, iff the condition in(φ)→

(
in(φ′) ∧ (φ′ → φ)

)
is satisfied for any

input/output assignment (this is the simplified definition for stateless interfaces, the
general definition is given in Section 9). Alternative definitions can be given, which
result in sufficient but not necessary conditions for substitutability, as discussed in
Sections 2.4 and 9.2.

Refinement is not the same as logical implication. As an example, consider three

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

· 119

possible contracts for our division component:

φ1Div := x2 6= 0 ∧ (y = 0 ≡ x1 = 0) ∧
(
y < 0 ≡ (x1 < 0 < x2 ∨ x2 < 0 < x1)

)
φ2Div := x2 6= 0 ∧ x1 = y · x2
φ4Div := x2 6= 0→ x1 = y · x2

It can be verified that φ4Div v φ2Div v φ1Div . Yet observe that φ2Div → φ1Div and
φ2Div → φ4Div .

2.4 Error-complete interfaces

Illegal inputs can also be captured using input-complete interfaces that have a
special boolean output variable e, denoting an “error”. In particular, a contract φ
over input and output variables X ∪ Y can be transformed into an input-complete
contract EC(φ) over X ∪ Y ∪ {e}, called the error-completion of φ. EC(φ) sets e to
false when the input is legal for φ, and to true otherwise:

EC(φ) := (φ ∧ ¬e) ∨ (¬in(φ) ∧ e) (1)

For example, the error-completion of the division interface Div1 yields:

Div1
e := ({x1, x2}, {y, e}, φe), where φe := EC(φ1Div)

φe ≡ (x2 6= 0 ∧ φ1 ∧ ¬e) ∨ (x2 = 0 ∧ e)

We can retrieve φ from EC(φ) using the inverse transformation:

EC−1(φe) := (∃e : φe) ∧ (∀Y ∪ {e} : φe → ¬e) (2)

It can be shown that, if φe is of the form described in (1), then (∃e : φe) ≡
(φ ∨ ¬in(φ)) and (∀Y ∪ {e} : φe → ¬e) ≡ in(φ). That is, the first term is the
input-completion of φ which adds all its illegal inputs in its domain, whereas the
second term isolates the legal inputs. The conjunction of these two terms gives φ.
Therefore, for any contract φ, we have:

φ ≡ EC−1(EC(φ)) (3)

On the other hand, for contracts φe over X ∪ Y ∪ {e}, EC(EC−1(φe)) is not
always equivalent to φe. For example, if φe := y ≡ e and y is an output, then
EC−1(φe) ≡ false, and EC(EC−1(φe)) ≡ e. Indeed, EC is injective but not surjective.
It is unclear what is the meaning of a contract such as y ≡ e. This contract appears
to “misuse” the error variable e which is supposed to capture validity of inputs.

It appears that game-theoretic serial composition of two contracts can be per-
formed as a sequence of steps: error-completion, standard relational composition,
and inverse error-completion. We illustrate this with an example. Consider the
composition of interfaces D and Div discussed above. D is already input-complete,
so its error-completion is unnecessary (EC(φD) would still extend φD with an ad-
ditional error output variable, but we omit this for the sake of simplicity). Let
φe := EC(φ1Div). Let φerr be the relational composition of φD and φe, that is:
φerr := ∃x2 : (true ∧ φe). It can be verified that φerr ≡ true. Then:

EC−1(φerr) ≡ (∃e : true) ∧ (∀e : true→ ¬e) ≡ true ∧ false ≡ false

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

120 ·
This is indeed the same as the result obtained in Section 2.2 and indicating that
the composition of D and Div is invalid.

Refinement between two contracts is different from logical implication of their
error-transformed versions, that is, φ2 v φ1 is not equivalent to EC(φ2)→ EC(φ1).
In particular, although validity of EC(φ2) → EC(φ1) is a sufficient condition for
φ2 v φ1, it is not a necessary condition. To see why, consider two interfaces that
only model assumptions on an input variable x, and having contracts x > 0 and true,
respectively. true accepts more inputs than x > 0, therefore we have true v x > 0.
Now consider ψ1 := EC(x > 0) and ψ2 := EC(true). We have:

ψ1 ≡ (x > 0 ∧ ¬e) ∨ (x ≤ 0 ∧ e)
ψ2 ≡ ¬e

Clearly, ψ2 6→ ψ1. Because of Theorem 15, which states equivalence of refinement
and substitutability, this example also shows that EC(φ2) → EC(φ1) is a sufficient
but not necessary condition for substitutability.

In summary, it appears that: (1) Error-complete interfaces can be used to capture
the same information as that contained in relational interfaces. However, the class
of error-complete interfaces is larger, and some of these interfaces have no direct
meaning as relational interfaces. Thus, relational interfaces appear to be a more
“canonical” representation. Moreover, relational interfaces avoid the overhead of
designating special error outputs whose semantics differ from other outputs. (2)
Composition of relational interfaces can be defined as standard relational compo-
sition of their error-complete counterparts. However, in order to check whether
such a composition is valid, the inverse transformation needs to be computed. This
inverse transformation involves solving a game, therefore, the game-theoretic in-
terpretation of composition is not avoided. (3) Implication of their error-complete
counterparts is a strictly stronger condition than refinement/substitutability be-
tween two interfaces.

Based on these observations, it appears that our theory could be formulated
essentially equivalently in terms of error-complete interfaces. We do not pursue this
option, however, as relational interfaces without special error outputs seem more
elegant to us. On the other hand, error-complete interfaces are worth studying in
greater depth, since error variables can be used for additional purposes than simply
indicating illegal inputs. For instance, they may be used to indicate faulty behavior
of a component. An in-depth study of these possibilities is beyond the scope of the
current paper and part of future work.

3. RELATED WORK

Most of the ideas upon which this work is based, such as stepwise refinement,
interfaces, design-by-contract, and game semantics, are by no means new. The
main contribution of this paper is the application of these ideas to the development
of a working theory for synchronous concurrent systems.

In particular, abstracting components in some mathematical framework that of-
fers stepwise refinement and compositionality guarantees is an idea that goes back
to the work of Floyd and Hoare on proving program correctness using pre- and
post-condititions [Floyd 1967; Hoare 1969] and the work of Dijkstra and Wirth on

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

· 121

stepwise refinement as a method for gradually developing programs from their speci-
fications [Dijkstra 1972; Wirth 1971]. A pair of pre- and post-conditions can be seen
as a contract for a piece of sequential code. These ideas were further developed in a
large number of works, including the Z notation [Spivey 1989], the B method [Abrial
1996], CLU [Liskov 1979], Eiffel and the design-by-contract paradigm [Meyer 1992],
the refinement calculus [Back and Wright 1998], Larch [Guttag and Horning 1993;
Leavens 1994; Cheon and Leavens 1994], and JML [Leavens and Cheon 2006].
Viewing programs as predicates or relations is also not new, for instance, see [Hoare
1985], [Parnas 1983], [Frappier et al. 1998], and [Kahl 2003].

The above works are primarily about sequential programs and therefore are not
directly comparable with our framework which is about synchronous concurrent
systems. For instance, our model has distinct notions of input and output variables,
whereas sequential programs operate on a set of shared variables, i.e., a global,
shared state. A program can be modeled as a relation between values of these
global variables before and after program execution, i.e., “pre” and “post” variables.
However, it seems that our composition operators cannot be directly mapped to
those aiming to capture typical constructs in sequential programs, such as “if-then-
else” or “while” statements. Consider feedback composition, for example. One
might attempt to map this to some form of while statement. But while statements
operate on the same set of global variables, which could be seen as a special case
of feedback where there is a 1-1 correspondence between inputs and outputs (i.e.,
pre and post variables). In the general case, an arbitrary output variable can be
connected to an arbitrary input, which seems to make denotational approaches such
as lifting to powersets inapplicable.

In fact, many of the above works start with a programming language in mind, and
then define the pre/post-conditions, abstractions, or interfaces, for this particular
language. As is characteristically stated in [Hoare 1985], programs are predicates,
but not all predicates are programs. In contrast, our framework is “implementation-
agnostic” in the sense that we are not concerned with whether components are
implemented in HW or in SW, or in which programming language. For this reason,
as well as the fact that non-implementable predicates such as false may arise as a
result of composition, we do not attempt to restrict the set of predicates that we
consider as contracts.

Another difference regards concerns about program termination, which naturally
arise in sequential programs that contain “while” loops. How can non-termination
be modeled when programs are captured by relations? This question has received a
lot of attention in the literature (an excellent survey can be found in [Nelson 1989])
and has also generated some controversy [Hehner and Parnas 1985]. Our take on
this is simple: if a component S may not terminate on a given input value a, then
the contract for S should reject a as illegal. That is, the input-output relation
for S is partial. In terms of Nelson’s classification, our model can be seen as an
instance of the “partial correctness model” [Nelson 1989]. This model does not
allow to distinguish a component S that never terminates on input a, from another
component S′ that may or may not terminate on a. We do not worry about this
loss of expressiveness, however, because in our context, all components must be
guaranteed to terminate and produce a value at every synchronous round. As a

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

122 ·
result, if an input may result in non-termination, it is appropriate to consider this
input as illegal. Therefore, S′ can be safely abstracted by the same interface as S.

Despite these differences, our approach follows many of the principles advo-
cated in the works mentioned above. In particular, we abide to the design-by-
contract paradigm and the well-known principle of refinement by weakening the pre-
condition and strengthening the post-condition (although “strengthening the post
condition” must be defined carefully in the general, non-input-complete case, as dis-
cussed in Section 9.2). Also, we use a “demonic” interpretation of non-determinism
during composition, as some of the works above also do [Back and Wright 1998;
Frappier et al. 1998]. Computing composition then amounts to finding strategies
in a game, or equivalently, solving a controller synthesis problem [de Alfaro 2004].

Interfaces can be viewed as “rich”, behavioral types, as suggested in [Lee and
Xiong 2001; de Alfaro and Henzinger 2001a]. Behavioral types have been studied
in a number of works in the context of sequential and object-oriented program-
ming, such as [Nierstrasz 1993; Liskov and Wing 1994; Dhara and Leavens 1996].
Behavioral subtyping notions defined in the above works follow the same prin-
ciple of input-contravariance/output-covariance also in our refinement, but there
are subtle differences in their definitions. For instance, both the “Post-condition
rule” mσ.post⇒ mτ .post and the “Constraint rule” Cσ ⇒ Cτ , defined in Figure 4
of [Liskov and Wing 1994] as requirements for type σ to be a subtype of type τ ,
appear to follow the rule φ′ → φ rather than the rule (in(φ) ∧ φ′) → φ which is
used in our refinement. As explained in Section 9.2, φ′ → φ is too strong in the
sense that it is not a necessary condition for substitutability. [Dhara and Leavens
1996] weaken the subtyping requirements of [Liskov and Wing 1994], but maintain
the φ′ → φ rule.

The works mentioned so far focus on sequential programs. In a concurrency
setting, a powerful compositional framework is Focus [Broy 1997; Broy and Stølen
2001]. Focus is a relational framework where specifications are relations on input-
output streams. The Focus framework is in many respects more general than ours,
in that it can capture relations that do not preserve the length of input streams.
For this reason, Focus is applicable also to asynchronous systems. On the other
hand, Focus targets mainly the input-complete case. I/O automata [Lynch and
Tuttle 1989] are also related to our work, but are input-complete by definition.
Reactive modules [Alur and Henzinger 1999] are also input-complete.

Dill’s trace theory is another compositional framework for concurrent systems,
focusing on asynchronous concurrency and motivated in particular by the design of
asynchronous circuits [Dill 1987]. In trace theory, a component is described using
a pair of sets of traces, called successes and failures, for legal and illegal behaviors,
respectively. A trace is a sequence of events, and an event is a change in the value
of an input or output variable. Because no synchrony is assumed, the number of
input and output events in a trace can be arbitrary. Trace theory considers prefix-
closed trace structures, where the success and failure sets are prefix-closed regular
sets, aimed at verification of safety properties, as well as complete trace structures,
where these are general sets of infinite traces, aimed at liveness properties. Our
theory is currently restricted to prefix-closed sets and therefore cannot handle live-
ness properties. However, it is worth noting that, contrary to prefix-closed trace

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

· 123

structures, our theory avoids the problem of trivial implementations that achieve
the specification by “doing nothing”.

In trace theory, refinement is called conformation and is achieved by restricting
the set of failures as well as the global set of traces (failures can be turned into
successes during refinement). Conformation follows the “accept more inputs, pro-
duce less outputs” principle that has later been studied in the context of alternating
refinement relations [Alur et al. 1998]. It is worth noting that conformation induces
a lattice on prefix-closed trace structures, whereas our refinement relation is only a
partial order and in particular has no “bottom” element.

Like trace structures, the framework of interface automata [de Alfaro and Hen-
zinger 2001a] uses an asynchronous model of concurrency. Compared to trace struc-
tures, interface automata are more “syntactic” in nature since the interface is the
automaton itself (as opposed to, say, a set of traces that can be represented by an au-
tomaton). Modal interfaces [Raclet et al. 2010] also focus on asynchronous systems
and work directly with an automata representation. It is an interesting question to
what extent these automata-based models can be used to capture synchronous sys-
tems and input-output relations within a synchronous round. If possible to do so,
the result would most likely have an operational flavor, contrary to our framework,
which is of a more declarative, denotational and symbolic nature. For instance, to
express variables with infinite domains in the above formalisms, one would typically
need an infinite set of events; to express a relation such as y = x + 1 one would
need an infinite set of transitions; and so on.

Our theory can be used as a behavioral type theory for Simulink and related
models, in the spirit of [Roy and Shankar 2010]. In the latter work, Simulink
blocks are annotated with constraints on input and output variables much like the
stateless contracts considered in our work. Our framework provides an extension
of such types to the stateful case, as well as the formalization of compositions and
refinement which are not considered in [Roy and Shankar 2010].

Within the domain of interface theories, [de Alfaro and Henzinger 2001b] defines
relational nets, which are networks of processes that non-deterministically relate
input values to output values. [de Alfaro and Henzinger 2001b] does not provide
an interface theory for the complete class of relational nets. Instead it provides in-
terface theories for subclasses, in particular: rectangular nets which have no input-
output dependencies; total nets which can have input-output dependencies but are
input-complete; and total and rectangular nets which combine both restrictions
above. The interfaces provided in [de Alfaro and Henzinger 2001b] for rectangular
nets are called assume/guarantee (A/G) interfaces. A/G interfaces form a strict
subclass of the relational interfaces that we consider in this paper: A/G interfaces
separate the assumptions on the inputs from the guarantees on the outputs, and
as such cannot capture input-output relations; on the other hand, every A/G con-
tract can be trivially captured as a relational contract by taking the conjunction of
the assume and guarantee parts. [de Alfaro and Henzinger 2001b] studies stateless
A/G interfaces, while [Doyen et al. 2008] studies also stateful A/G interfaces, in a
synchronous setting similar to the one considered in this paper. [Doyen et al. 2008]
also discusses extended interfaces which are essentially the same as the relational
interfaces that we study in this paper. However, difficulties with synchronous feed-

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

124 ·
back loops (see discussion below) lead [Doyen et al. 2008] to conclude that extended
interfaces are not appropriate.

[Chakrabarti et al. 2002] considers synchronous Moore interfaces, defined by two
formulas φi and φo that specify the legal values of the input and output variables,
respectively, at the next round, given the current state. This formulation does not
allow to describe relations between inputs and outputs within the same round, as
our relational theory allows.

Both [de Alfaro and Henzinger 2001b] and [Doyen et al. 2008] can handle very
general compositions of interfaces, that can be obtained via parallel composition
and arbitrary connection (similar to the denotational composition framework of [Lee
and Sangiovanni-Vincentelli 1998]). This allows, in particular, arbitrary feedback
loops to be created. In a relational framework, however, synchronous feedback
loops can be problematic, as discussed in Example 14 (see also Section 14).

Interface theories are naturally related to work on compositional verification,
where the main purpose is to break down the task of checking correctness of a large
model into smaller tasks, that are more amenable to automation. A very large body
of research exists on this topic. Some of this work is based on an asynchronous,
interleaving based concurrency model, e.g., see [Misra and Chandy 1981; Stark
1985; Jonsson 1994], some on a synchronous model, e.g., see [Grumberg and Long
1994; McMillan 1997], while others are done within a temporal logic framework,
e.g., see [Barringer et al. 1984; Abadi and Lamport 1995]. Many of these works
are based on the assume-guarantee paradigm, and they typically use some type
of trace inclusion or simulation as refinement relation [Jones 1983; Stark 1985;
Shankar 1998; Henzinger et al. 1998].

4. PRELIMINARIES, NOTATION

We use first-order logic (FOL) notation throughout the paper. For an introduction
to FOL, see, for instance, [Tourlakis 2008]. We use true and false for logical con-
stants true and false, ¬,∧,∨,→,≡ for logical negation, conjunction, disjunction,
implication, and equivalence, and ∃ and ∀ for existential and universal quantifica-
tion, respectively. We use := when defining concepts or introducing new notation:
for instance, x0 := max{1, 2, 3} defines x0 to be the maximum of the set {1, 2, 3}.

Let V be a finite set of variables. A property over V is a FOL formula φ such that
any free variable of φ is in V . The set of all properties over V is denoted F(V). Let
φ be a property over V and V ′ be a finite subset of V , V ′ = {v1, v2, ..., vn}. Then,
∃V ′ : φ is shorthand for ∃v1 : ∃v2 : ... : ∃vn : φ. Similarly, ∀V ′ : φ is shorthand for
∀v1 : ∀v2 : ... : ∀vn : φ.

We will implicitly assume that variables are typed, meaning that every variable
is associated with a certain domain. An assignment over a set of variables V is
a (total) function mapping every variable in V to a certain value in the domain
of that variable. The set of all assignments over V is denoted A(V). If a is an
assignment over V1 and b is an assignment over V2, and V1, V2 are disjoint, we use
(a, b) to denote the combined assignment over V1 ∪ V2. A formula φ is satisfiable
iff there exists an assignment a over the free variables of φ such that a satisfies φ,
denoted a |= φ. A formula φ is valid iff it is satisfied by every assignment.

There is a natural mapping from formulas to sets of assignments, that is, from

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

· 125

F(V) to 2A(V). In particular, a formula φ ∈ F(V) can be interpreted as the set of
all assignments over V that satisfy φ. Conversely, we can map a subset of A(V)
to a formula over V , provided this subset is representable in FOL. Because of this
correspondence, we use set-theoretic or logical notation, as is more convenient. For
instance, if φ and φ′ are formulas or sets of assignments, we write φ ∧ φ′ or φ ∩ φ′
interchangeably.

If S is a set, S∗ denotes the set of all finite sequences of elements of S. S∗ includes
the empty sequence, denoted ε. If s, s′ ∈ S∗, then s · s′ is the concatenation of s
and s′. |s| denotes the length of s ∈ S∗, with |ε| = 0 and |s · a| = |s| + 1, for
a ∈ S. If s = a1a2 · · · an, then the i-th element of the sequence, ai, is denoted si,
for i = 1, ..., n. A prefix of s ∈ S∗ is a sequence s′ ∈ S∗ such that there exists
s′′ ∈ S∗ such that s = s′ · s′′. We write s′ ≤ s if s′ is a prefix of s. s′ < s means
s′ ≤ s and s′ 6= s. A subset L ⊆ S∗ is prefix-closed if for all s ∈ L, for all s′ ≤ s,
s′ ∈ L.

5. RELATIONAL INTERFACES

Definition 1 Relational interface. A relational interface (or simply inter-
face) is a tuple I = (X,Y, f) where X and Y are two finite and disjoint sets of
input and output variables, respectively, and f is a non-empty, prefix-closed subset
of A(X ∪ Y)∗.

Note that A(X ∪ Y) can be infinite. In the case variables in X and Y have finite
domains, A(X ∪ Y) is finite and can be seen as a finite alphabet. In that case, f is
a non-empty, prefix-closed language over that alphabet.

We write InVars(I) for X and f(I) for f . We allow X or Y to be empty: if X is
empty then I is a source interface; if Y is empty then I is a sink. An element of
A(X ∪ Y)∗ is called a state. That is, we identify states with observation histories.
The initial state is the empty sequence ε. The states in f are also called the
reachable states of I. f defines a total function that maps a state to a set of input-
output assignments. We use the same symbol f to refer to this function. For
s ∈ A(X ∪ Y)∗, f(s) is defined as follows:

f(s) := {a ∈ A(X ∪ Y) | s · a ∈ f}.
We view f(s) as a contract between a component and its environment at that state.
The contract changes dynamically, as the state evolves.

Conversely, if we are given a function f : A(X ∪ Y)∗ → 2A(X∪Y), we can define
a non-empty, prefix-closed subset of A(X ∪ Y)∗ as follows:

f := {a1 · · · ak | ∀i = 1, ..., k : ai ∈ f(a1 · · · ai−1)}
Notice that ε ∈ f because the condition above trivially holds for k = 0. Also note
that if s 6∈ f then f(s) = ∅. This is because f is prefix-closed.

Because of the above 1-1 correspondence, in the sequel, we treat f either as a
subset of A(X ∪ Y)∗ or as a function that maps states to contracts, depending
on what is more convenient. We will assume that f(s) is representable by a FOL
formula. Therefore, f(s) can be seen also as an element of F(X ∪ Y).

Definition 2 Input assumptions. Given a contract φ ∈ F(X ∪Y), the input
assumption of φ is the formula in(φ) := ∃Y : φ. Note that in(φ) is a property over

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

126 ·
X. Also note that φ→ in(φ) is a valid formula for any φ.

A relational interface I = (X,Y, f) can be seen as specifying a game between a
component and its environment. The game proceeds in a sequence of rounds. At
each round, an assignment a ∈ A(X∪Y) is chosen, and the game moves to the next
round. Therefore, the history of the game is the sequence of rounds played so far,
that is, a state s ∈ A(X∪Y)∗. Suppose that at the beginning of a round the state is
s. Typically, the environment plays first, by choosing aX ∈ A(X). If aX 6∈ in(f(s))
then this is not a legal input and the environment loses the game. Otherwise, the
component plays by choosing aY ∈ A(Y). If (aX , aY) 6∈ f(s) then this is not a legal
output for this input, and the component loses the game. Otherwise, the round
is complete, and the game moves to the next round, with new state s · (aX , aY).
There are cases when the interface is Moore in the sense that its current outputs
do not depend on its current inputs (the formal definition is given in Section 6.2).
In this case, the component plays first. More general games can also be considered
where the assignments of values to input and output variables are interleaved in
an arbitrary order. The study of such a generalization is beyond the scope of the
current work.

An input-complete interface is one that does not restrict its inputs:

Definition 3 Input-complete interface. An interface I = (X,Y, f) is input-
complete if for all s ∈ A(X ∪ Y)∗, in(f(s)) is valid.

It is important to note that in our framework, input assumptions (“pre-conditions”)
and output guarantees (“post-conditions”) are not separated. It is then crucial to
distinguish a non-input-complete interface with a contract of the form φpre ∧φ and
its input-complete version with contract φpre → φ. These contracts are different
(as we will show in Section 11, the latter refines the former). As mentioned in
Section 3, our theory is mostly implementation-agnostic, and therefore does not
prescribe how illegal inputs should be interpreted in the “real” component that an
interface abstracts. As stated in Section 2, an illegal input may correspond to an
input that results in non-termination of a SW component, or it may be an input
that must be avoided by design, as in a type-checking setting.

A deterministic interface is one that maps every input assignment to at most one
output assignment:

Definition 4 Determinism. An interface I = (X,Y, f) is deterministic if for
all s ∈ f , for all aX ∈ in(f(s)), there is a unique aY ∈ A(Y) such that (aX , aY) ∈
f(s).

The specializations of our theory to input-complete and deterministic interfaces
are discussed in Sections 11 and 12, respectively.

A stateless interface is one where the contract is independent from the state:

Definition 5 Stateless interface. An interface I = (X,Y, f) is stateless if
for all s, s′ ∈ A(X ∪ Y)∗, f(s) = f(s′).

For a stateless interface, we can treat f as a subset of A(X ∪ Y) instead of a
subset of A(X ∪ Y)∗. For clarity, if I is stateless, we write I = (X,Y, φ), where φ
is a property over X ∪ Y .

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

· 127

Example 1 Stateless interfaces. Consider a component which is supposed
to take as input a positive number n and return n or n + 1 as output. We can
capture such a component in different ways. One way is to use the following stateless
interface:

I1 := ({x}, {y}, x > 0 ∧ (y = x ∨ y = x+ 1)}).
Here, x is the input variable and y is the output variable. The contract of I1
explicitly forbids zero or negative values for x. Indeed, we have in(f(I1)) ≡ x > 0.

Another possible stateless interface for this component is:

I2 := ({x}, {y}, x > 0→ (y = x ∨ y = x+ 1)}).
The contract of I2 is different from that of I1: it allows x ≤ 0, but makes no
guarantees about the output y in that case. I2 is input-complete, whereas I1 is not.
Both I1 and I2 are non-deterministic.

In general, the state space of an interface is infinite. In some cases, however, only
a finite set of states is needed to specify f . In particular, f may be specified by a
finite-state automaton:

Definition 6 Finite-state interface. A finite-state interface is specified by
a finite-state automaton M = (X,Y, L, `0, C, T). X and Y are sets of input and
output variables, respectively. L is a finite set of locations and `0 ∈ L is the initial
location. C : L → 2A(X∪Y) is a labeling function that labels every location with a
set of assignments over X ∪ Y , the contract at that location. T ⊆ L× 2A(X∪Y)×L
is a set of transitions. A transition t ∈ T is a tuple t = (`, g, `′) where `, `′ are the
source and destination locations, respectively, and g ⊆ A(X ∪ Y) is the guard of
the transition. We require that, for all ` ∈ L:

C(`) =
⋃

(`,g,`′)∈T

g (4)

∀(`, g1, `1), (`, g2, `2) ∈ T : `1 6= `2 → g1 ∩ g2 = ∅ (5)

These conditions ensure that there is a unique outgoing transition for every assign-
ment that satisfies the contract of the location. Given a ∈ C(`), the a-successor of
` is the unique location `′ for which there exists transition (`, g, `′) such that a ∈ g.
A location ` is called reachable if, either ` = `0, or there exists a reachable location
`′, a transition (`′, g, `), and an assignment a such that ` is the a-successor of `′.
M defines interface I = (X,Y, f) where f is the set of all sequences a1 · · · ak ∈

A(X ∪ Y)∗, such that for all i = 1, ..., k, ai ∈ C(`i−1), where `i is the ai-successor
of `i−1.

Note that a finite-state interface can still have variables with infinite domains. If
the domains of variables are finite, however, then a finite-state interface can be seen
as a prefix-closed regular language. Also notice that we allow C(`), the contract at
location `, to be empty. This simply means that the interface is not well-formed
(see Definition 7 that follows). Finally, although the guard of an outgoing transition
from a certain location must be a subset of the contract of that location, we will
often abuse notation and violate this constraint in the examples that follow, for the

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

128 ·
sake of simplicity. Implicitly, all guards should be understood in conjunction with
the contracts of their source locations.

It is also worth noting that although the finite-state automaton defining a finite-
state interface is deterministic, this does not mean that the interface itself is deter-
ministic. Indeed, in general, it is not, since contracts that label locations are still
non-deterministic input-output relations.

Example 2 Stateful interface. Figure 2 shows a finite-state automaton defin-
ing a finite-state interface that captures a single-place buffer. The interface has two
input variables, write and read, and two output variables, empty and full. All vari-
ables are boolean. The automaton has two locations, `0 (the initial location) and `1.
Each location is implicitly annotated by the conjunction of a global contract, that
must hold at all locations, and a local contract, specific to a location. The global
contract specifies that the buffer cannot be both empty and full (this is a guarantee
on the outputs) and that a user of the buffer cannot read and write at the same
round (this is an assumption on the inputs). The global contract also specifies that
if the buffer is full then writing is not allowed, and if the buffer is empty then read
is not allowed. The local contract at `0 states that the buffer is empty and at `1
that it is full.

Fig. 2. Stateless and finite-state interfaces for a buffer of size 1.

Definition 7 Well-formedness. An interface I = (X,Y, f) is well-formed
iff for all s ∈ f , f(s) is non-empty.

Well-formed interfaces can be seen as describing components that never “dead-
lock”. If I is well-formed then for all s ∈ f there exists assignment a such that
s ·a ∈ f . Moreover, f is non-empty and prefix-closed by definition, therefore, ε ∈ f .
This means that there exists at least one state in f which can be extended to arbi-
trary length. In a finite-state interface, checking well-formedness amounts to check-
ing that the contract of every reachable location of the corresponding automaton is
satisfiable. If contracts are specified in a decidable logic, checking well-formedness
of finite-state interfaces is thus decidable.

Example 3. Let I be the finite-state interface represented by the left-most au-
tomaton shown in Figure 3. I is assumed to have two boolean variables, an input

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

· 129

x, and an output y. I is not well-formed, because it has reachable states with
contract false (all states starting with x being false). I can be transformed into a
well-formed interface by strengthening the contract of the initial state from true to
x, thus obtaining interface I ′ shown to the right of the figure.

¬x
I ′:

x

x
I:

true false

x

Fig. 3. A well-formable interface I and its well-formed witness I′.

Example 3 shows that some interfaces, even though they are not well-formed,
can be turned into well-formed interfaces by appropriately restricting their inputs.
This motivates the following definition:

Definition 8 Well-formability. An interface I = (X,Y, f) is well-formable
if there exists a well-formed interface I ′ = (X,Y, f ′) such that: for all s ∈ f ′,
f ′(s) ≡ f(s) ∧ φs, where φs is some property over X.

Lemma 1. Let I = (X,Y, f) be a well-formable interface and let I ′ = (X,Y, f ′)
be a witness to the well-formability of I. Then f ′ ⊆ f .

Proofs can be found in the appendix.
Clearly, every well-formed interface is well-formable, but the opposite is not true

in general, as Example 3 shows. For stateless or source interfaces, however, the two
notions coincide:

Theorem 1. A stateless or source interface I is well-formed iff it is well-formable.

For an interface that is finite-state and whose contracts are written in a logic
for which satisfiability is decidable, there is an algorithm to check whether the
interface is well-formable, and if this is the case, to transform it into a well-formed
interface. The algorithm essentially attempts to find a winning strategy in a game,
and as such is similar in spirit to algorithms proposed in [de Alfaro and Henzinger
2001a]. The algorithm starts by marking all locations with unsatisfiable contracts
as illegal. Then, a location ` is chosen such that ` is legal, but has an outgoing
transition (`, g, `′), such that `′ is illegal. If no such ` exists, the algorithm stops.
Otherwise, the contract of ` is strengthened to

C(`) := C(`) ∧ (∀Y : C(`)→ ¬g) (6)

∀Y : C(`)→ ¬g is a property on X. An input assignment aX satisfies this formula
iff, for any possible output assignment aY that the contract C(`) can produce given
aX , the complete assignment (aX , aY) violates g. This means that there is a way
of restricting the inputs at `, so that `′ becomes unreachable from `. Notice that,
in the special case where g is a formula over X, (6) simplifies to C(`) := C(`)∧¬g.

If, during the strengthening process, the contract of a location becomes unsat-
isfiable, this location is marked as illegal. The process is repeated until no more

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

130 ·
strengthening is possible, whereupon the algorithm stops. Termination is guaran-
teed because each location has a finite number of successor locations, therefore, can
only be strengthened a finite number of times. If, when the algorithm stops, the
initial location `0 has been marked illegal, then the interface is not well-formed.
Otherwise, the modified automaton specifies a well-formed interface, which is a
witness for the original interface.

For the above class of interfaces there is also an algorithm to check equality, i.e.,
given two interfaces I1, I2, check whether I1 = I2. Let Mi = (X,Y, Li, `0,i, Ci, Ti) be
finite-state automata representing Ii, for i = 1, 2, respectively. We first build a syn-
chronous product M := (X,Y, L1×L2∪{`bad}, (`0,1, `0,2), C, T), where C(`1, `2) :=
C1(`1) ∨ C2(`2) for all (`1, `2) ∈ L1 × L2, C(`bad) := false, and:

T := {((`1, `2), (C1(`1) ≡ C2(`2)) ∧ g1 ∧ g2, (`′1, `′2)) | (`i, gi, `′i) ∈ Ti, for i = 1, 2}
∪ {((`1, `2), C1(`1) 6≡ C2(`2), `bad)} (7)

It can be checked that I1 = I2 iff location `bad is unreachable.

6. COMPOSITION

We define two types of composition: by connection and by feedback.

6.1 Composition by connection

First, we can compose two interfaces I1 and I2 “in sequence”, by connecting some
of the output variables of I1 to some of the input variables of I2. One output can
be connected to many inputs, but an input can be connected to at most one out-
put. Parallel composition is a special case of composition by connection, where the
connection is empty. The connections define a new interface. Thus, the composi-
tion process can be repeated to yield arbitrary (for the moment, acyclic) interface
diagrams. Composition by connection is associative (Theorem 3), so the order in
which interfaces are composed does not matter.

Two interfaces I = (X,Y, f) and I ′ = (X ′, Y ′, f ′) are called disjoint if they have
disjoint sets of input and output variables: (X ∪ Y) ∩ (X ′ ∪ Y ′) = ∅.

Definition 9 Composition by connection. Let Ii = (Xi, Yi, fi), for i =
1, 2, be two disjoint interfaces. A connection θ between I1, I2, is a finite set of pairs
of variables, θ = {(yi, xi) | i = 1, ...,m}, such that: (1) ∀(y, x) ∈ θ : y ∈ Y1∧x ∈ X2,
and (2) there do not exist (y, x), (y′, x) ∈ θ such that y and y′ are distinct. Define:

InVars(θ) := {x | ∃y : (y, x) ∈ θ} (8)

Xθ(I1,I2) := (X1 ∪X2) \ InVars(θ) (9)

Yθ(I1,I2) := Y1 ∪ Y2 ∪ InVars(θ) (10)

The connection θ defines the composite interface θ(I1, I2) := (Xθ(I1,I2), Yθ(I1,I2), f),
where, for every s ∈ A(Xθ(I1,I2) ∪ Yθ(I1,I2))∗:

f(s) := f1(s1) ∧ f2(s2) ∧ ρθ ∧ ∀Yθ(I1,I2) : Φ

Φ := (f1(s1) ∧ ρθ)→ in(f2(s2)) (11)

ρθ :=
∧

(y,x)∈θ

y = x

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

· 131

and, for i = 1, 2, si is defined to be the projection of s to variables in Xi ∪ Yi.
Note that Xθ(I1,I2)∪Yθ(I1,I2) = X1∪Y1∪X2∪Y2. Also notice that InVars(θ) ⊆ X2.

This implies that X1 ⊆ Xθ(I1,I2), that is, every input variable of I1 is also an input
variable of θ(I1, I2). Also note that ∀Yθ(I1,I2) : Φ is equivalent to ∀Y1∪ InVars(θ) : Φ
because Φ does not contain any Y2 variables. The term ∀Yθ(I1,I2) : Φ is a condition
on Xθ(I1,I2), the free inputs of the composite interface. This term states that, no
matter which outputs I1 chooses to produce for a given input, all such outputs
are legal inputs for I2. This condition is essential for preservation of compatibility
by refinement as discussed in Section 2.2, and more generally, for preservation of
refinement by composition (Theorem 12).

Example 4. We repeat the example in Section 2.2 while being more pedantic.
Let Div be the interface defined in Section 2.1 and let D be the interface D :=
({x3}, {y2}, true). Let θ := {(y2, x2)}. Then the term ∀Yθ(D,Div) : Φ instantiates
to ∀y2, y : (true ∧ y2 = x2) → x2 6= 0, or equivalently, ∀y2 : y2 6= 0, which is false,
meaning that D and Div are “incompatible”. This notion is formalized next.

Contrary to other works [de Alfaro and Henzinger 2001a; 2001b; Doyen et al.
2008], we do not impose an a-priori compatibility condition on connections. Not
doing so allows us to state more general results (Theorem 12). Having said that,
compatibility is a useful concept therefore we define it explicitly.

Definition 10 Compatibility. Let I1, I2 be two disjoint interfaces and θ a
connection between them. I1, I2 are said to be compatible with respect to θ iff
θ(I1, I2) is well-formable.

For finite-state interfaces, connection is computable. LetMi = (Xi, Yi, Li, `0,i, Ci, Ti)
be finite-state automata representing Ii, for i = 1, 2, respectively. The composite in-
terface θ(I1, I2) can be represented asM := (Xθ(I1,I2), Yθ(I1,I2), L1×L2, (`0,1, `0,2), C, T),
where C(`1, `2) is defined as f(s) is defined in (11), replacing fi(`i) by Ci(`i), and
T is defined as follows:

T := {((`1, `2), g1 ∧ g2, (`′1, `′2)) | (`i, gi, `′i) ∈ Ti, for i = 1, 2} (12)

That is, M is essentially a synchronous product of M1,M2.
Checking compatibility of two finite-state interfaces can be effectively done by

first computing an automaton representing the composite interface θ(I1, I2) and
then checking well-formability of the latter, using the algorithms described earlier.

A connection θ is allowed to be empty. In that case, ρθ ≡ true, and the compo-
sition can be viewed as the parallel composition of two interfaces. If θ is empty, we
write I1‖I2 instead of θ(I1, I2). As may be expected, the contract of the parallel
composition at a given global state is the conjunction of the original contracts at the
corresponding local states, which implies that parallel composition is commutative:

Lemma 2. Consider two disjoint interfaces, Ii = (Xi, Yi, fi), i = 1, 2. Then
I1‖I2 = (X1∪X2, Y1∪Y2, f), where f is such that for all s ∈ A(X1∪X2∪Y1∪Y2)∗,
f(s) ≡ f1(s1) ∧ f2(s2), where, for i = 1, 2, si is the projection of s to Xi ∪ Yi.

A corollary of Lemma 2 is Theorem 2:

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

132 ·
Theorem 2 Commutativity of parallel composition. Let I1 and I2 be two

disjoint interfaces. Then:

I1‖I2 = I2‖I1.
Theorem 3 Associativity of connection. Let I1, I2, I3 be pairwise disjoint

interfaces. Let θ12 be a connection between I1, I2, θ13 a connection between I1, I3,
and θ23 a connection between I2, I3. Then:

(θ12 ∪ θ13) (I1, θ23(I2, I3)) = (θ13 ∪ θ23) (θ12(I1, I2), I3) .

Example 5. Consider the diagram of stateless interfaces shown in Figure 4,
where:

Iid := ({x1}, {y1}, y1 = x1)

I+1,2 := ({x2}, {y2}, x2 + 1 ≤ y2 ≤ x2 + 2)

I≤ := ({z1, z2}, {}, z1 ≤ z2)

This diagram can be modeled as any of the two following equivalent compositions:

θ2
(
I+1,2, θ1(Iid, I≤)

)
= (θ1 ∪ θ2)

(
(Iid‖I+1,2), I≤

)
where θ1 := {(y1, z1)} and θ2 := {(y2, z2)}.

We proceed to compute the contract of the interface defined by the diagram. It is
easier to consider the composition (θ1 ∪ θ2)((Iid‖I+1,2), I≤). Define θ3 := θ1 ∪ θ2.
From Lemma 2 we get:

Iid‖I+1,2 = ({x1, x2}, {y1, y2}, y1 = x1 ∧ x2 + 1 ≤ y2 ≤ x2 + 2)

Then, for θ3((Iid‖I+1,2), I≤), Formula (11) gives:

Φ := (y1 = x1 ∧ x2 + 1 ≤ y2 ≤ x2 + 2 ∧ y1 = z1 ∧ y2 = z2)→ z1 ≤ z2
By quantifier elimination, we get

∀y1, y2, z1, z2 : Φ ≡ x1 ≤ x2 + 1

therefore

θ3((Iid‖I+1), I≤) = ({x1, x2}, {y1, y2, z1, z2},
y1 = x1 ∧ x2 + 1 ≤ y2 ≤ x2 + 2 ∧ z1 ≤ z2
∧y1 = z1 ∧ y2 = z2 ∧ x1 ≤ x2 + 1).

Notice that in(θ3((Iid‖I+1), I≤)) ≡ x1 ≤ x2 + 1. That is, because of the connec-
tion θ, new assumptions have been generated for the external inputs x1, x2. These
assumptions are stronger than those generated by simple composition of relations,
which are x1 ≤ x2 + 2 in this case.

A composite interface is not guaranteed to be well-formed, neither well-formable,
even if all its components are well-formed:

Example 6. Consider the composite interface θ3((Iid‖I+1,2), I≤) from Exam-
ple 5, and suppose we connect its open inputs x1, x2 to outputs v1, v2, respectively,
of some other interface that guarantees v1 > v2 + 1. Clearly, the result is false,
since the constraint x1 > x2 + 1 ∧ x1 ≤ x2 + 1 is unsatisfiable.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

· 133

I+1,2

Iid
- -x1 y1

I≤
-
-

z1

z2- -x2 y2

Fig. 4. The interface diagram of Example 5.

6.2 Composition by feedback

Our second type of composition is feedback composition, where an output variable
of an interface I is connected to one of its input variables x. For feedback, I is
required to be Moore with respect to x. The term “Moore interfaces” has been
introduced in [Chakrabarti et al. 2002]. Our definition is similar in spirit, but less
restrictive than the one in [Chakrabarti et al. 2002]. Both definitions are inspired
by Moore machines, where the outputs are determined by the current state alone
and do not depend directly on the input. In our version, an interface is Moore with
respect to a given input variable x, meaning that the contract may depend on the
current state as well as on input variables other than x. This allows to connect an
output to x to form a feedback loop without creating causality cycles.

Definition 11 Moore interfaces. An interface I = (X,Y, f) is called Moore
with respect to x ∈ X iff for all s ∈ f , f(s) is a property over (X ∪ Y) \ {x}. I is
called simply Moore when it is Moore with respect to every x ∈ X.

Note that a source interface is by definition Moore, since it has no input variables.
Note also that although the contract of a Moore interface should not depend on the
current value of an input variable, it may very well depend on past values of such
a variable, which influence the state s. An example where this occurs is the unit
delay:

Example 7 Unit delay. A unit delay is a basic building block in many model-
ing languages (including Simulink and SCADE). Its specification is roughly: “output
at time k the value of the input at time k − 1; at time k = 0 (initial time), output
some initial value v0”. We can capture this specification as an interface:

Iud := ({x}, {y}, fud),
where fud is defined as follows:

fud(ε) := (y = v0)

fud(s · a) := (y = a(x))

That is, initially the contract guarantees y = v0. Then, when the state is some
sequence s·a, the contract guarantees y = a(x), where a(x) is the last value assigned
to input x. Iud is Moore (with respect to its unique input variable) since all its
contracts are properties over y only.

Definition 12 Composition by feedback. Let I = (X,Y, f) be an interface.
A feedback connection κ on I is a pair (y, x) ∈ Y × X. κ is valid if I is Moore

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

134 ·
with respect to x. Define ρκ := (x = y). A valid feedback connection κ defines the
interface:

κ(I) := (X \ {x}, Y ∪ {x}, fκ) (13)

fκ(s) := f(s) ∧ ρκ, for all s ∈ A(X ∪ Y)∗ (14)

In the sequel, when we talk about feedback connections we implicitly assume
they are valid.

For finite-state interfaces, feedback is computable. Let M = (X,Y, L, `0, C, T)
be a finite-state automaton representing I. First, to check whether M represents
a Moore interface w.r.t. a given input variable x ∈ X, it suffices to make sure
that for every location ` ∈ L, C(`) does not refer to x. Then, if κ = (y, x), the
interface κ(I) can be represented as M ′ := (X \ {x}, Y ∪ {x}, L, `0, C ′, T), where
C ′(`) := C(`) ∧ x = y, for all ` ∈ L.

Theorem 4 Commutativity of feedback. Let I = (X,Y, f) be Moore with
respect to both x1, x2 ∈ X, where x1 6= x2. Let κ1 = (y1, x1) and κ2 = (y2, x2) be
feedback connections. Then

κ1(κ2(I)) = κ2(κ1(I)).

Let K be a set of feedback connections, K = {κ1, ..., κn}, such that κi = (yi, xi),
and all xi are pairwise distinct, for i = 1, ..., n. Let I be an interface that is Moore
with respect to all x1, ..., xn. We denote by K(I) the interface κ1(κ2(· · ·κn(I) · · ·)).
By commutativity of feedback composition, the resulting interface is independent
from the order of application of feedback connections. We will use the notation
InVars(K) := {xi | (yi, xi) ∈ K}, for the set of input variables connected in K.

Theorem 5 Commutativity between connection and feedback. Let I1, I2
be disjoint interfaces and let θ be a connection between I1, I2. Let κ1, κ2 be valid
feedback connections on I1, I2, respectively. Suppose that InVars(κ2)∩ InVars(θ) = ∅.
Then:

κ1(θ(I1, I2) = θ(κ1(I1), I2) and κ2(θ(I1, I2) = θ(I1, κ2(I2)).

Theorem 6 Preservation of Mooreness by connection. Let I1, I2 be dis-
joint interfaces such that Ii = (Xi, Yi, fi), for i = 1, 2. Let θ be a connection between
I1, I2.

(1) If I1 is Moore w.r.t. x1 ∈ X1 then θ(I1, I2) is Moore w.r.t. x1.

(2) If I1 is Moore and InVars(θ) = X2 then θ(I1, I2) is Moore.

(3) If I2 is Moore w.r.t. x2 ∈ X2 and x2 6∈ InVars(θ), then θ(I1, I2) is Moore
w.r.t. x2.

An interesting question is to what extent and how to transform a given diagram
of interfaces, such as the one shown in Figure 5, to a valid expression of interface
compositions. This cannot be done for arbitrary diagrams, due to restrictions on
feedback, but it can be done for diagrams that satisfy the following condition: every
dependency cycle in the diagram, formed by block connections, must visit at least
one input variable x of some interface I, such that I is Moore w.r.t. x. If this
condition holds, then we say that the diagram is causal. For example, the diagram
in Figure 5 is causal iff I1 is Moore w.r.t. x2 or I2 is Moore w.r.t. x4.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

· 135

x3

-

-

- -

-

-

- -
I1

y1

y2

y3
I3

y4
x1

I2

x2

x4

Fig. 5. An interface diagram with feedback.

We can systematically transform causal interface diagrams into expressions of
interface compositions as follows. First, we remove from the diagram any Moore
connections. A connection from output variable y to input variable x is a Moore
connection if the interface I where x belongs to is Moore w.r.t. x. Because the orig-
inal diagram is by hypothesis causal, the diagram obtained after removing Moore
connections is guaranteed to have no dependency cycles. This acyclic diagram can
be easily transformed into an expression involving only interface compositions by
connection. By associativity of connection (Theorem 3), the order in which these
connections are applied does not matter. Call the resulting interface Ic. Then, the
removed Moore connections can be turned into feedback compositions, and applied
to Ic. Because Mooreness is preserved by connection (Theorem 6), Ic is guaran-
teed to be Moore w.r.t. any input variable x that is the destination of a Moore
connection. Therefore, the above feedback compositions are valid for Ic. Moreover,
because of commutativity of feedback (Theorem 4), the resulting interface is again
uniquely defined.

Example 8. Consider the diagram of interfaces shown in Figure 5. Suppose
that I1 is Moore with respect to x2. Then, the diagram can be expressed as any of
the two compositions

κ
(
θ1
(
I1, (I2‖I3)

))
= θ3

(
κ
(
θ2(I1, I2)

)
, I3

)
where θ1 := {(y1, x4), (y2, x3)}, θ2 := {(y1, x4)}, θ3 := {(y2, x3)}, and κ := (y4, x2).

The two expressions are equivalent, since, by Theorem 5, θ3

(
κ
(
θ2(I1, I2)

)
, I3

)
=

κ
(
θ3
(
θ2(I1, I2), I3

))
, and by Theorem 3, θ3

(
θ2(I1, I2), I3

)
= θ1

(
I1, (I2‖I3)

)
.

Lemma 3. Let I = (X,Y, f) be a Moore interface with respect to x ∈ X. Let
κ = (y, x) be a feedback connection on I. Let κ(I) = (X \ {x}, Y ∪ {y}, fκ). Then:

(1) fκ ⊆ f .

(2) For any s ∈ fκ, in(fκ(s)) ≡ in(f(s)).

Theorem 7 Feedback preserves well-formedness. Let I be a Moore in-
terface with respect to some of its input variables, and let κ be a valid feedback
connection on I. If I is well-formed then κ(I) is well-formed.

Feedback does not preserve well-formability:

Example 9. Consider a finite-state interface If with two states, s0 (the initial
state) and s1, one input variable x and one output variable y. If remains at state s0

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

136 ·
when x 6= 0 and moves from s0 to s1 when x = 0. Let φ0 := y = 0 be the contract
at state s0 and let φ1 := false be the contract at state s1. If is not well-formed
because φ1 is unsatisfiable while state s1 is reachable. If is well-formable, however:
it suffices to restrict φ0 to φ′0 := y = 0 ∧ x 6= 0. Denote the resulting (well-formed)
interface by I ′f . Note that If is Moore with respect to x, whereas I ′f is not. Let
κ be the feedback connection (y, x). Because If is Moore, κ(If) is defined, and is
such that its contract at state s0 is y = 0 ∧ x = y, and its contract at state s1 is
false ∧ x = y ≡ false. κ(If) is not well-formable: indeed, y = 0 ∧ x = y implies
x = 0, therefore, state s1 cannot be avoided.

7. HIDING

As can be seen in Example 5, composition often creates redundant output variables,
in the sense that some of these variables are equal to each other. This happens
because input variables that get connected become output variables. To remove
redundant output variables, we propose a hiding operator. Hiding may also be
used to remove other output variables that may not be redundant, provided they
do not influence the evolution of contracts, as we shall see below.

For a stateless interface I = (X,Y, φ), the (stateless) interface resulting from
hiding an output variable y ∈ Y can simply be defined as:

hide(y, I) := (X,Y \ {y},∃y : φ)

This definition does not directly extend to the general case of stateful interfaces,
however. The reason is that the contract of a stateful interface I may depend on the
history of y. Then, hiding y is problematic because it results in the environment not
being able to uniquely determine the contract based on the history of observations.
This results in particular in refinement not being preserved by hiding, as we show
later in Example 15. To avoid these problems, we allow hiding only for those
outputs which do not influence the evolution of the contract.

Given s, s′ ∈ A(X ∪ Y)∗ such that |s| = |s′| (i.e., s, s′ have same length), and
given Z ⊆ X ∪ Y , we say that s and s′ agree on Z, denoted s =Z s′, when for
all i ∈ {1, ..., |s|}, and all z ∈ Z, si(z) = s′i(z). Given interface I = (X,Y, f), we
say that f is independent from z if for every s, s′ ∈ f , s =(X∪Y)\{z} s

′ implies
f(s) = f(s′). That is, the evolution of z does not affect the evolution of f .

Notice that f being independent from z does not imply that f cannot refer
to variable z. Indeed, all stateless interfaces trivially satisfy the independence
condition: their contracts are invariant in time, i.e., they do not depend on the
evolution of variables. Clearly, the contract of a stateless interface can refer to any
of its variables. Conversely, even if the contracts specified by f do not refer to z,
f may still depend on z, because the evolution of contracts may depend on z. For
example, suppose that f(ε) ≡ true, and that f(z = 0) is different from f(z = 1),
although no contract refers to z. Here, f(z = k) denotes the contract at a state
where z = k. In this case, f depends on z since the value z assumes at the first
round determines the contract to be used in the second round.

The above notion of independence is weaker than redundancy in variables, as we
show next. First, we formalize redundancy in variables. Given z ∈ X ∪ Y , we say
that z is redundant in f if there exists z′ ∈ X ∪ Y such that z′ 6= z, and for all
s ∈ f , for all i ∈ {1, ..., |s|}, si(z) = si(z

′). It should be clear that all outputs in

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

· 137

InVars(θ) in an interface obtained by connection θ are redundant (see Definition 9).
Similarly, in an interface obtained by feedback κ = (y, x), newly introduced output
variable x is redundant (see Definition 12).

Lemma 4. If z is redundant in f then f is independent from z.

When f is independent from z, f can be viewed as a function from A((X ∪ Y) \
{z})∗ to F(X ∪ Y) instead of a function from A(X ∪ Y)∗ to F(X ∪ Y). We use
this when we write f(s) for s ∈ A((X ∪ Y) \ {z})∗ in the following definition:

Definition 13 Hiding. Let I = (X,Y, f) be an interface and let y ∈ Y , such
that f is independent from y. Then hide(y, I) is defined to be the interface

hide(y, I) := (X,Y \ {y}, f ′) (15)

such that for any s ∈ A(X ∪ Y \ {y})∗, f ′(s) := ∃y : f(s).

For finite-state interfaces, hiding is computable. Let M = (X,Y, L, `0, C, T) be a
finite-state automaton representing I. We first need to ensure that the contract of
I is independent from y. A simple way to do this is to check that no guard of M
refers to y. This condition is sufficient, but not necessary. Consider, for example,
two complementary guards y < 1 and y ≥ 1 whose transitions lead to locations
with identical contracts. Then the two locations may be merged to a single one,
and the two transitions to a single transition with guard true. Another situation
where the above condition may be too strict is when a guard refers to y but y
is redundant. In that case, all occurrences of y in guards of M can be replaced
by its equal variable y′. Once independence from y is ensured, hide(y, I) can be
represented as M ′ := (X,Y \ {y}, L, `0, C ′, T), where C ′(`) := ∃y : C(`), for all
` ∈ L.

8. ENVIRONMENTS, PLUGGABILITY AND SUBSTITUTABILITY

We wish to formalize the notion of interface contexts and substitutability, and
we introduce environments for that purpose. Environments are interfaces. An
interface I can be connected to an environment E to form a closed-loop system,
as illustrated in Figure 6. E acts both as a controller and an observer for I. It is
a controller in the sense that it “steers” I by providing inputs to it, depending on
the outputs it receives. At the same time, E acts as an observer, that monitors the
inputs consumed and outputs produced by I, and checks whether a given property
is satisfied. These notions are formalized in Definition 14 that follows.

ŷ2

- - --
- - --

E I
x1

x2

y1

y2

x̂1

x̂2

ŷ1

Fig. 6. Illustration of pluggability.

Before giving the definition, however, a remark is in order. Interfaces and envi-
ronments are to be connected in a closed-loop, as illustrated in Figure 6. In order

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

138 ·
to do this in our setting, every dependency cycle must be “broken” by a Moore con-
nection, as prescribed by the transformation of interface diagrams to composition
expressions, given in Section 6.2. It can be seen that, in the case of two interfaces
connected in closed-loop, the above requirement implies that one of the two inter-
faces is Moore. For instance, consider Figure 6. If I is not Moore w.r.t. x2, then
E must be Moore w.r.t. to both ŷ1 and ŷ2, so that both feedback connections can
be formed. Similarly, if E is not Moore w.r.t. ŷ2, say, then I must be Moore w.r.t.
both x1, x2. This remark justifies the definition below:

Definition 14 Environments and pluggability. Consider interfaces I =
(X,Y, f) and E = (Ŷ , X̂, fe). E is said to be an environment for I if there exist
bijections between X and X̂, and between Y and Ŷ . X̂ are called the mirror variables
of X, and similarly for Ŷ and Y . For x ∈ X, we denote by x̂ the corresponding (by
the bijection) variable in X̂, and similarly with y and ŷ. I is said to be pluggable
to E, denoted I � E, iff the following conditions hold:

—I is Moore or E is Moore.

—If E is Moore then the interface K(θ(E, I)) is well-formed, where θ := {(x̂, x) |
x ∈ X} and K := {(y, ŷ) | y ∈ Y }. Notice that, because E is Moore and
InVars(θ) = X, part 2 of Theorem 6 applies, and guarantees that θ(E, I) is Moore.
Therefore, K(θ(E, I)) is well-defined.

—If I is Moore then the interface K(θ(I, E)) is well-formed, where θ := {(y, ŷ) |
y ∈ Y } and K := {(x̂, x) | x ∈ X}.
Note that, by definition, I is pluggable to E iff E is pluggable to I.

x̂ ≥ 0
E1:

x̂ > 0 false
E2:

falsex̂ ≥ 0

ŷ ≤ 0

ŷ > 0 ŷ > 0

ŷ ≤ 0
E3:

Fig. 7. Three environments.

Example 10. Consider interfaces I1 and I2 from Example 1 and environments
E1, E2, E3 of Figure 7 (implicitly, transitions without guards are assumed to have
guard true). It can be checked that both I1 and I2 are pluggable to E1. I1 is not
pluggable to neither E2 nor E3: indeed, the output guarantee x̂ ≥ 0 of these two
environments is not strong enough to meet the input assumption x > 0 of I1. I2
is not pluggable to E2: although the input assumption of I2 is true, I2 guarantees
y > 0 only when x > 0. Therefore the guard ŷ ≤ 0 of E2 is enabled in some cases,
leading to location with contract false, which means that the closed-loop interface is
not well-formed. On the other hand, I2 is pluggable to E3.

Theorem 8 Pluggability and well-formability.

—If an interface I is well-formable then there exists an environment E for I such
that I � E.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

· 139

—If there exists an environment E for interface I such that I � E and I is not
Moore then I is well-formable.

Example 11. Consider interfaces I and E shown in Figure 8. Observe that I
is Moore and I � E. However, I is not well-formable.

x 6≡ y
I: E:

x̂ ≡ ŷtrue false

x ≡ y

Fig. 8. A Moore interface I and a non-Moore environment E.

Example 11 shows that the non-Mooreness assumption on I is indeed necessary
in part 2 of Theorem 8. This example also illustrates an aspect of our definition
of well-formability, which may appear inappropriate for Moore interfaces: indeed,
interface I of Figure 8 is non-well-formable, yet there is clearly an environment
that can be plugged to I so that false location is avoided. An alternative definition
of well-formability for an interface I would have been existence of an environment
that can be plugged to I. This would make Theorem 8 a tautology. Nevertheless,
we opt for Definition 8, which allows to transform interfaces into a “canonical form”
where all contracts are satisfiable.

Definition 15 Substitutability. We say that interface I ′ may replace inter-
face I (or I ′ may be substituted for I), denoted I →e I

′, iff for any environment E,
if I is pluggable to E then I ′ is pluggable to E. We say that I and I ′ are mutually
substitutable, denoted I ≡e I ′, iff both I →e I

′ and I ′ →e I hold.

As we shall show in Theorem 16, for well-formed interfaces, mutual substitutabil-
ity coincides with interface equality.

9. REFINEMENT

Definition 16 Refinement. Consider two interfaces I = (X,Y, f) and I ′ =
(X ′, Y ′, f ′). We say that I ′ refines I, written I ′ v I, iff X ′ = X, Y ′ = Y , and for
any s ∈ f ∩ f ′, the following formula is valid:

in(f(s))→
(

in(f ′(s)) ∧
(
f ′(s)→ f(s)

))
(16)

Condition 16 can be rewritten equivalently as the conjunction of the following two
conditions:

in(f(s))→ in(f ′(s)) (17)(
in(f(s)) ∧ f ′(s)

)
→ f(s) (18)

Condition (17) states that every input assignment that is legal in I is also legal in
I ′. This guarantees that, for any possible input assignment that can be provided
to I by a context C, if this assignment is accepted by I then it is also accepted
by I ′. Condition (18) states that, for every input assignment that is legal in I, all

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

140 ·
output assignments that can be possibly produced by I ′ from that input, can also
be produced by I. This guarantees that if C accepts the assignments produced by
I then it also accepts those produced by I ′.

It should be noted that the refinement conditions are required only for states
that belong in both f and f ′. The intuition for this choice is as follows. The initial
state is ε and by definition ε ∈ f ∩ f ′. At this state, we only wish to consider legal
inputs for I, that is, aX ∈ in(f(ε)). Otherwise, I ′ is free to behave as it wishes since
the behavior is not possible in I. Condition (17) then implies that aX ∈ in(f ′(ε)).
Next, we wish to consider only outputs that I ′ may produce given aX , that is, aY
such that (aX , aY) ∈ f ′(ε). Otherwise, I is free to behave as it wishes, since the
behavior is not possible in I ′. Condition (18) then implies that (aX , aY) ∈ f(ε).
Therefore, (aX , aY) ∈ f ∩ f ′, that is, the requirements should be applied only to
states of length one that belong in both f and f ′. Reasoning inductively, the same
can be derived for states of arbitrary length.

A remark is in order regarding the constraint X ′ = X and Y ′ = Y imposed
during refinement. This constraint may appear as too strict, but we argue that
it is not. To begin, recall that I ′ v I should imply that I ′ can replace I in any
context. In our setting, contexts are formalized as environments. Consider such an
environment with controller C. C provides values to the input variables of I, and
requires values from the output variables of I. Suppose I ′ has an input variable
x that I does not have, that is, there exists x ∈ X ′ \ X. In general, C may not
provide x. In that case, I ′ cannot replace I, because by doing so, input x would
remain free. Therefore, X ′ ⊆ X must hold. Similarly, suppose that there exists
y ∈ Y \ Y ′. In general, C may require y, that is, y may be a free input for C. In
that case, I ′ cannot replace I, because by doing so, y would remain free. Therefore,
Y ⊆ Y ′ must hold.

Now, suppose that X ′ is a strict subset of X or Y ′ is a strict superset of Y
(or both). Then, we can easily modify I and I ′ as follows: we add to X ′ all
the input variables missing from I ′, so that X ′ = X, and we add to Y all the
output variables missing from I, so that Y = Y ′. While doing so, we do not
change the contracts of either I or I ′: the contracts simply ignore the additional
variables, that is, do not impose any constraints on their values. It can be seen
that this transformation preserves the validity of refinement Condition 16. Indeed,
in(φ) → (in(φ′) ∧ (φ′ → φ)) holds when φ is over X ∪ Y and φ′ is over X ′ ∪ Y ′ iff
it holds when both φ and φ′ are taken to be over X ∪ Y ′, provided X ′ ⊆ X and
Y ′ ⊇ Y . Therefore, without loss of generality, we require X = X ′ and Y = Y ′.

Example 12 Buffer interface refinements. This example builds on Ex-
ample 2. Consider Figure 9. It depicts a variant of the single-place buffer interface,
where the buffer may fail to complete a read or write operation. This interface has
one more boolean output variable, namely, ack, in addition to those of Example 2,
and two more locations, after read and after write. Its global contract is identical
to that of Example 2. So are local contracts at locations `0 and `1. After a write op-
eration, the interface moves to location after write, where it non-deterministically
chooses to set ack to true or false: setting it to true means the write was successful,
false means the write failed. The meaning is symmetric for read. This particular
interface does not allow read or write operations in the two intermediate locations.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

· 141

Fig. 9. Interface for a buffer of size 1 that may fail to do a read or write.

It is natural to expect that a buffer that never fails can replace a buffer that may
fail. We would like to have a formal guarantee of this, in terms of refinement of
their corresponding interfaces. That is, we would like the interface of Figure 2
to refine the one of Figure 9. This does not immediately hold, since ack is not
a variable of the former. We can easily add it however, obtaining the interface
shown in Figure 10. This buffer never fails, therefore, ack is always true. With this
modification, the interface of Figure 10 refines the one of Figure 9. On the other
hand, the converse is not true: the interface of Figure 9 does not refine the one of
Figure 10, because in the latter output ack is always true, whereas in the former in
can also be false.

With respect to the above discussion on the X = X ′ and Y = Y ′ requirements,
note that in this example the condition X ′ ⊆ X and Y ⊆ Y ′ does not hold: indeed,
Y (the outputs of Figure 9) includes ack whereas Y ′ (the outputs of Figure 2) does
not. For this reason, ack is not simply a “dummy” variable in this case, and we
need to specify a contract for it, as done in the revised interface of Figure 10.

This example also illustrates the fact that our notion of refinement is different
from language inclusion. For instance, the following sequence:

(empty, ¬full, ack, write, ¬read) · (¬empty, full, ack, ¬write, read)

belongs in the language (i.e., contract) of the interface of Figure 10, but not in the
language of the interface of Figure 9. This is because the latter does not allow a
“read” to happen at state “after write”.

For finite-state interfaces, refinement can be checked as follows. Let Mi =
(X,Y, Li, `0,i, Ci, Ti) be finite-state automata representing Ii, for i = 1, 2, respec-
tively. We first build a synchronous product

M := (X,Y, L1 × L2 ∪ {`good, `bad}, (`0,1, `0,2), C, T),

where C(`1, `2) := in(C1(`1)) for all (`1, `2) ∈ L1×L2, C(`good) := true, C(`bad) :=

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

142 ·
false, and:

T := {((`1, `2), gboth ∧ g1 ∧ g2, (`′1, `′2)) | (`i, gi, `′i) ∈ Ti, for i = 1, 2}
∪ {((`1, `2), gbad, `bad), ((`1, `2), ggood, `good), (`good, true, `good)} (19)

gboth := C1(`1) ∧ C2(`2) (20)

ggood := in(C1(`1)) ∧ in(C2(`2)) ∧ ¬C2(`2) (21)

gbad := in(C1(`1)) ∧
(
¬in(C2(`2)) ∨

(
C2(`2) ∧ ¬C1(`1)

))
(22)

Notice that guard gbad encodes the negation of the refinement Condition (16). Also
note that gboth, ggood, gbad are pairwise disjoint, and such that gboth∨ggood∨gbad ≡
in(C1(`1)), for all (`1, `2) ∈ L1 × L2. This ensures determinism of M . It can be
checked that I2 v I1 iff location `bad is unreachable.

Fig. 10. Buffer interface of Figure 2 with additional output variable ack.

9.1 Properties of the refinement relation

We proceed to state the main properties of refinement. First, observe that, per-
haps surprisingly, interfaces with false contracts (i.e., f = {ε}) are “top” elements
with respect to the v order, that is, they are refined by any interface that has the
same input and output variables. This is in accordance with the spirit of refine-
ment as a condition for substitutability. The false interface is not pluggable to any
environment, therefore, it can be replaced by any interface.

We next provide a result used in the proof of the theorems that follow.

Lemma 5. Let I = (X,Y, f), I ′ = (X,Y, f ′), I ′′ = (X,Y, f ′′) be interfaces such
that I ′′ v I ′ and I ′ v I. Then f ∩ f ′′ ⊆ f ′.

An illustration of the above lemma can be found in the division example in
Section 2.3, where φ1 ∧ φ4 ≡ φ2.

Theorem 9 Partial order. v is a partial order, that is, a reflexive, antisym-
metric and transitive relation.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

· 143

Theorem 10. Let I, I ′ be stateless interfaces such that I ′ v I. If I is well-
formed then I ′ is well-formed.

Theorem 10 does not generally hold for stateful interfaces: the reason is that,
because I ′ may accept more inputs than I, there may be states that are reachable
in I ′ but not in I, and the contract of I ′ in these states may be unsatisfiable.
When this situation does not occur, refinement preserves well-formedness also in
the stateful case. Moreover, refinement always preserves well-formability:

Theorem 11 Refinement and well-formedness/-formability. Let I, I ′ be
interfaces such that I ′ v I.

(1) If I is well-formed and f(I ′) ⊆ f(I) then I ′ is well-formed.

(2) If I, I ′ are sources and I is well-formed, then I ′ is also well-formed.

(3) If I is well-formable then I ′ is well-formable.

The following lemma is used in the proof of Theorem 12 that follows.

Lemma 6. Consider two disjoint interfaces I1 and I2, and a connection θ be-
tween I1, I2. Let f1 and f2 be the projections of f(θ(I1, I2)) to states over the
variables of I1 and I2, respectively. Then f1 ⊆ f(I1) and f2 ⊆ f(I2).

Theorems 12 and 13 that follow state a major property of our theory, namely,
that refinement is preserved by composition.

Theorem 12 Connection preserves refinement. Consider two disjoint in-
terfaces I1 and I2, and a connection θ between I1, I2. Let I ′1, I

′
2 be interfaces such

that I ′1 v I1 and I ′2 v I2. Then, θ(I ′1, I
′
2) v θ(I1, I2).

Notice that Theorem 12 holds independently of whether the connection yields
a well-formed interface or not, that is, independently of whether the composed
interfaces are compatible. This is a reason why we do not impose compatibility
as a condition for composition, as we mentioned earlier. Together with Theo-
rems 10 and 11, Theorem 12 guarantees that if the refined composite interface is
well-formed/formable, then so is the refining one. In particular, if I1 and I2 are
compatible with respect to θ, then so are I ′1 and I ′2.

Theorem 13 Feedback preserves refinement. Let I, I ′ be interfaces such
that I ′ v I. Suppose both I and I ′ are Moore interfaces with respect to one of their
input variables, x. Let κ = (y, x) be a feedback connection. Then κ(I ′) v κ(I).

Note that the assumption that I ′ be Moore w.r.t. x in Theorem 13 is essential.
Indeed, Mooreness is not generally preserved by refinement:

Example 13. Consider the stateless interfaces Ieven := ({x}, {y}, y ÷ 2 = 0),
where ÷ denotes the modulo operator, and I×2 := ({x}, {y}, y = 2x). Ieven is
Moore. I×2 is not Moore. Yet I×2 v Ieven.

It is instructive at this point to justify our restrictions regarding feedback compo-
sition, by illustrating some of the problems that would arise if we allowed arbitrary
feedback:

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

144 ·
Example 14. This example is borrowed from [Doyen et al. 2008]. Suppose Itrue

is an interface on input x and output y, with trivial contract true, making no as-
sumptions on the inputs and no guarantees on the outputs. Suppose Iy 6=x is another
interface on x and y, with contract y 6= x, meaning that it guarantees that the value
of the output will be different from the value of the input. As expected, Iy 6=x refines
Itrue: because Iy 6=x is “more deterministic” than Itrue, that is, the output guarantees
of Iy 6=x are stronger. Now, consider the feedback connection x = y. This could be
considered an allowed connection for Itrue, since it does not contradict its contract:
the resulting interface would be Ix=y with contract x = y. But the same feedback
connection contradicts the contract of Iy 6=x: the resulting interface would be Ifalse
with contract false. Although Iy 6=x refines Itrue, Ifalse does not refine Ix=y, therefore,
allowing arbitrary feedback would violate preservation of refinement by feedback.
Notice that both Itrue and Iy 6=x are input-complete, which means that this problem
is present also in that special case.

Theorem 14 Hiding preserves refinement. Let I1 = (X,Y, f1) and I2 =
(X,Y, f2) be two interfaces such that I2 v I1. Let y ∈ Y be such that both f1 and
f2 are independent from y. Then hide(y, I2) v hide(y, I1).

It is worth noting that the above theorem would not hold if we were to define
hiding without requiring independence of contracts from hidden variables. The
example that follows illustrates this:

Example 15. Consider the interfaces shown in Figure 11. I1 and I2 have a
single input variable x and a single output y. It can be verified that I2 v I1. I2
is independent from y, whereas I1 is not. Therefore, hide(y, I2) is defined (and
shown in the figure), whereas hide(y, I1) is not defined. Suppose we were to define
the latter as interface I ′1 shown in the figure, which corresponds to existentially
quantifying away y from all contracts, as is usually done. Then hiding would not
preserve refinement. Indeed, hide(y, I2) 6v I ′1, because x·¬x is a legal input sequence
in I ′1 but not in hide(y, I2).

hide(y, I2)

x

y

¬y ¬x ∧ ¬y

x ∧ y

I1

x ¬x

x

I ′1

x ∧ y

I2

x

Fig. 11. Example illustrating the need for independence from hidden variables.

Theorem 15 Refinement and substitutability. Let I, I ′ be two interfaces.

(1) If I ′ v I then I ′ can replace I.

(2) If I ′ 6v I and I is well-formed, then I ′ cannot replace I.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

· 145

The requirement that I be well-formed in part 2 of Theorem 15 is necessary, as
the following example shows.

Example 16. Consider the finite-state interfaces I and I ′ defined by the au-
tomata shown in Figure 3. Both have a single boolean input variable x. I ′ is
well-formed but I is not (I is well-formable, however, and I ′ is a witness). I ′ 6v I,
because at the initial state the input x = false is legal for I but not for I ′. But there
is no environment E such that I |= E but I ′ 6|= E.

We next state a result that is not about refinement, but follows from properties
of refinement:

Theorem 16. Let I, I ′ be well-formed interfaces. Then I ≡e I ′ iff I = I ′.

Proof. By Theorem 15, I ≡e I ′ implies I ′ v I and I v I ′. The result follows
by antisymmetry of refinement (Theorem 9).

9.2 Discussion: alternative definition of refinement

The reader may wonder why Condition (18) could not be replaced with the simpler
condition:

f ′(s′)→ f(s) (23)

Indeed, for input-complete interfaces, Condition (16) reduces to Condition (23) –
see Theorem 26 in Section 11. In general, however, Condition (16) is too strong in
the sense that it results in a refinement condition that is sufficient but not necessary
for substitutability, as the following example demonstrates:

Example 17. Consider interface Iid := ({x}, {y}, x = y), and interface I1 from
Example 1. It can be checked that Iid v I1. If we used Condition (23) instead of
Condition (18) in the definition of refinement, then Iid would not refine I1: this is
because x = y 6→ x > 0. Yet, by Theorem 15, Iid can replace I1, that is, there is no
environment E such that I1 |= E but Iid 6|= E.

10. SHARED REFINEMENT AND SHARED ABSTRACTION

A shared refinement operator u is introduced in [Doyen et al. 2008] for A/G inter-
faces, as a mechanism to combine two such interfaces I and I ′ into a single interface
I u I ′ that refines both I and I ′: I u I ′ is able to accept inputs that are legal in
either I or I ′, and provide outputs that are legal in both I and I ′. Because of
this, I u I ′ can replace both I and I ′, which, as argued in [Doyen et al. 2008], is
important for component reuse. A similar mechanism called fusion has also been
proposed in [Benveniste et al. 2008].

[Doyen et al. 2008] also discusses shared refinement for extended (i.e., relational)
interfaces and conjectures that it represents the greatest lower bound with respect
to refinement. We show that this holds only if a certain condition is imposed. We
call this condition shared refinability. It states that for every inputs that is legal in
both I and I ′, the corresponding sets of outputs of I and I ′ must have a non-empty
intersection. Otherwise, it is impossible to provide an output that is legal in both
I and I ′.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

146 ·
Definition 17 Shared refinement. Two interfaces I = (X,Y, f) and I ′ =

(X ′, Y ′, f ′) are shared-refinable if X = X ′, Y = Y ′ and the following formula is
true for all s ∈ f ∩ f ′:

∀X :
(
in(f(s)) ∧ in(f ′(s))

)
→ ∃Y : (f(s) ∧ f ′(s)) (24)

In that case, the shared refinement of I and I ′, denoted I u I ′, is the interface
defined as follows:

I u I ′ := (X,Y, fu)

fu(s) :=
(
in(f(s)) ∨ in(f ′(s))

)
∧
(
in(f(s))→ f(s)

)
∧
(
in(f ′(s))→ f ′(s)

)
(25)

Example 18. Consider interfaces I00 := ({x}, {y}, x = 0 → y = 0) and I01 :=
({x}, {y}, x = 0→ y = 1). I00 and I01 are not shared-refinable because there is no
way to satisfy y = 0 ∧ y = 1 when x = 0.

For finite-state interfaces, shared refinement is computable. Let Mi =
(X,Y, Li, `0,i, Ci, Ti) be finite-state automata representing Ii, for i = 1, 2, respec-
tively. Suppose I1, I2 are shared-refinable. Then, I1 u I2 can be represented as the
automaton M := (X,Y, L1 × L2 ∪ L1 ∪ L2, (`0,1, `0,2), C, T), where C and T are
defined as follows (guard gboth is defined as in (20)):

C(`) :=

(
in(C1(`1)) ∨ in(C2(`2))

)
∧
(
in(C1(`1))→ C1(`1)

)
∧
(
in(C2(`2))→ C2(`2)

)
,

if ` = (`1, `2) ∈ L1 × L2

C1(`), if ` ∈ L1

C2(`), if ` ∈ L2

(26)

T := {((`1, `2), gboth ∧ g1 ∧ g2, (`′1, `′2)) | (`i, gi, `′i) ∈ Ti, for i = 1, 2}
∪ {((`1, `2),¬C2(`2) ∧ g1, `′1) | (`1, g1, `′1) ∈ T1} ∪ T1
∪ {((`1, `2),¬C1(`1) ∧ g2, `′2) | (`2, g2, `′2) ∈ T2} ∪ T2

As long as the contracts of both M1 and M2 are satisfied, M behaves as a syn-
chronous product. If the contract of one automaton is violated, then M continues
with the other.

Lemma 7. If I and I ′ are shared-refinable interfaces then

f(I) ∩ f(I ′) ⊆ f(I u I ′) ⊆ f(I) ∪ f(I ′)

Lemma 8. Let I and I ′ be shared-refinable interfaces such that I = (X,Y, f),
I ′ = (X,Y, f ′) and I u I ′ = (X,Y, fu). Then for all s ∈ f ∩ f ′:

in(fu(s)) ≡ in(f(s)) ∨ in(f ′(s))

Theorem 17 Greatest lower bound. If I and I ′ are shared-refinable inter-
faces then (I u I ′) v I, (I u I ′) v I ′, and for any interface I ′′ such that I ′′ v I and
I ′′ v I ′, we have I ′′ v (I u I ′).

Shared-refinability is a sufficient, but not necessary condition to existence of an
interface I ′′ that refines both I and I ′. The following example illustrates this fact.

Example 19. Consider interfaces I and I ′ shown in Figure 12. They have a
single output variable y, and no inputs. I and I ′ are not shared-refinable. Indeed,

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

· 147

y = 1 is initially possible in both interfaces, but after that, I requires y = 0 whereas
I ′ requires y = 1, and there is no way of satisfying both. Nevertheless, an interface
I ′′ exists that refines both I and I ′: I ′′ is the stateless interface with contract y = 0.

y = 1
I ′:

y ∈ {0, 1} y = 1

y = 0

I:
y ∈ {0, 1} y = 0

y = 0

y = 1

Fig. 12. Two interfaces that are not shared-refinable.

Theorem 18. If I and I ′ are shared-refinable interfaces and both are well-
formed, then I u I ′ is well-formed.

It is useful to consider the dual operator to u, that we call shared abstraction
and denote t. Contrary to u, t is always defined, provided the interfaces have the
same input and output variables:

Definition 18 Shared abstraction. Two interfaces I = (X,Y, f) and I ′ =
(X ′, Y ′, f ′) are shared-abstractable if X = X ′ and Y = Y ′. In that case, the shared
abstraction of I and I ′, denoted I t I ′, is the interface:

I t I ′ := (X,Y, ft)

ft(s) :=

 in(f(s)) ∧ in(f ′(s)) ∧
(
f(s) ∨ f ′(s)

)
if s ∈ f ∩ f ′

f(s) if s ∈ f \ f ′
f ′(s) if s ∈ f ′ \ f

(27)

Notice that it suffices to define ft(s) for s ∈ f ∪ f ′. Indeed, the above definition
inductively implies ft ⊆ f ∪ f ′:

Lemma 9. If I and I ′ are shared-abstractable interfaces then

f(I) ∩ f(I ′) ⊆ f(I t I ′) ⊆ f(I) ∪ f(I ′)

For finite-state interfaces, shared abstraction is computable. Let Mi =
(X,Y, Li, `0,i, Ci, Ti) be finite-state automata representing Ii, for i = 1, 2, respec-
tively. Suppose I1, I2 are shared-abstractable. Then, I1 t I2 can be represented as
the automaton M := (X,Y, L1×L2 ∪L1 ∪L2, (`0,1, `0,2), C, T), where C and T are
defined as follows (guard gboth is defined as in (20)):

C(`) :=

 in(C1(`1)) ∧ in(C2(`2)) ∧
(
L1(`1) ∨ C2(`2)

)
, if ` = (`1, `2) ∈ L1 × L2

C1(`), if ` ∈ L1

C2(`), if ` ∈ L2

(28)

T := {((`1, `2), gboth ∧ g1 ∧ g2, (`′1, `′2)) | (`i, gi, `′i) ∈ Ti, for i = 1, 2}
∪ {((`1, `2), in(C1(`1)) ∧ in(C2(`2)) ∧ ¬C2(`2) ∧ g1, `′1) | (`1, g1, `′1) ∈ T1} ∪ T1
∪ {((`1, `2), in(C1(`1)) ∧ in(C2(`2)) ∧ ¬C1(`1) ∧ g2, `′2) | (`2, g2, `′2) ∈ T2} ∪ T2
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

148 ·
Like the automaton for I u I ′, M behaves as the synchronous product of M1 and
M2, as long as the contracts of both are satisfied. When the contract of one is
violated, then M continues with the other.

Theorem 19 Least upper bound. If I and I ′ are shared-abstractable inter-
faces then I v (I t I ′), I ′ v (I t I ′), and for any interface I ′′ such that I v I ′′ and
I ′ v I ′′, we have (I t I ′) v I ′′.

Notice that, even when I, I ′ are both well-formed, ItI ′ may be non-well-formed,
or even non-well-formable. This occurs, for instance, when I and I ′ are stateless
with contracts φ and φ′ such that in(φ) ∧ in(φ′) is false. This does not contradict
Theorem 19 since false is refined by any contract, as observed earlier.

11. THE INPUT-COMPLETE CASE

Input-complete interfaces do not restrict the set of input values, although they may
provide no guarantees when the input values are illegal. Although input-complete
interfaces are a special case of general interfaces, it is instructive to study them
separately for two reasons: first, input-completeness makes things much simpler,
thus easier to understand and implement; second, some interesting properties hold
for input-complete interfaces but not in general.

Theorem 20. Every well-formed Moore interface is input-complete.

Note that source interfaces are Moore by definition, therefore every well-formed
source interface is also input-complete.

Theorem 21. Every input-complete interface is well-formed.

Every interface I can be transformed into an input-complete interface IC(I). The
illegal inputs of I become legal in IC(I), but IC(I) guarantees nothing about the
value of the outputs when given such inputs. This transformation idea is well-
known, for instance, it is called chaotic closure in [Broy and Stølen 2001].

Definition 19 Input-completion. Consider an interface I = (X,Y, f). The
input-completion of I, denoted IC(I), is the interface IC(I) := (X,Y, fic), where
fic(s) := f(s) ∨ ¬in(f(s)), for all s ∈ A(X ∪ Y)∗.

Theorem 22 Input-completion refines original. If I is an interface then:

(1) IC(I) is an input-complete interface.

(2) IC(I) v I.

Theorems 22 and 15 imply that for any environment E, if I |= E then IC(I) |= E.
The converse does not hold in general (see Examples 1 and 10, and observe that I2
is the input-complete version of I1).

Composition by connection reduces to conjunction of contracts for input-complete
interfaces, and preserves input-completeness:

Theorem 23. Let Ii = (Xi, Yi, fi), i = 1, 2, be disjoint input-complete inter-
faces, and let θ be a connection between I1, I2. Then the contract f of the composite
interface θ(I1, I2) is such that for all s ∈ A(Xθ(I1,I2) ∪ Yθ(I1,I2))∗

f(s) ≡ f1(s) ∧ f2(s) ∧ ρθ
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

· 149

Moreover, θ(I1, I2) is input-complete.

Input-complete interfaces alone do not help in avoiding problems with arbitrary
feedback compositions: indeed, in the example given in the introduction both in-
terfaces Itrue and Iy 6=x are input-complete.4 This means that in order to add a
feedback connection (y, x) in an input-complete interface, we must still ensure that
this interface is Moore w.r.t. input x. In that case, feedback preserves input-
completeness.

Theorem 24. Let I = (X,Y, f) be an input-complete interface which is also
Moore with respect to some x ∈ X. Let κ = (y, x) be a feedback connection on I.
Then κ(I) is input-complete.

Theorem 25. Let I = (X,Y, f) be an input-complete interface and let y ∈ Y ,
such that f is independent from y. Then, hide(y, I) is input-complete.

Theorem 26 follows directly from Definitions 16 and 3:

Theorem 26. Let I and I ′ be input-complete interfaces. Then I ′ v I iff f(I ′) ⊆
f(I).

For input-complete interfaces, the shared-refinability condition, i.e., Condition (24),
simplifies to

∀X : ∃Y : f(s) ∧ f ′(s)
Clearly, this condition does not always hold. Indeed, the interfaces of Example 18
are not shared-refinable, even though they are input-complete. For shared-refinable
input-complete interfaces, shared refinement reduces to intersection. Dually, for
shared-abstractable input-complete interfaces, shared abstraction reduces to union.

Theorem 27 follows directly from Definitions 17, 18 and 3:

Theorem 27. Let I and I ′ be input-complete interfaces.

(1) If I and I ′ are shared-refinable then f(I u I ′) = f(I) ∩ f(I ′).

(2) If I and I ′ are shared-abstractable then f(I t I ′) = f(I) ∪ f(I ′).

12. THE DETERMINISTIC CASE

Deterministic interfaces produce a unique output for each legal input. As in the case
of input-complete interfaces, it is instructive to study this sub-class of deterministic
interfaces because the theory becomes simpler. Moreover, there is an interesting
duality between the deterministic and input-complete case.

To begin, note that sink interfaces are by definition deterministic:

Theorem 28. All sink interfaces are deterministic.

Composition by connection reduces to composition of relations when the source
interface is deterministic:

4It is not surprising that input-complete interfaces alone cannot solve the problems with arbitrary

feedback compositions, since these are general problems of causality, not particular to interfaces.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

150 ·
Theorem 29. Consider two disjoint interfaces, Ii = (Xi, Yi, fi), i = 1, 2, and a

connection θ between I1, I2. Let θ(I1, I2) = (X,Y, f). If I1 is deterministic, then
f(s) ≡ f1(s1) ∧ f2(s2) ∧ ρθ for all states s.

Theorem 30 Hiding preserves determinism. Let I = (X,Y, f) be a deter-
ministic interface and let y ∈ Y , such that f is independent from y. Then, hide(y, I)
is deterministic.

Theorem 31 Refinement for deterministic interfaces. Let I and I ′ be
deterministic interfaces. Then I ′ v I iff f(I ′) ⊇ f(I).

A corollary of Theorems 26 and 31 is that refinement for input-complete and
deterministic interfaces is equality.

For deterministic interfaces, the shared-refinability condition, i.e., Condition (24),
simplifies to

∀X,Y :
(
in(f(s)) ∧ in(f ′(s))

)
→
(
f(s) ∧ f ′(s)

)
Again, this condition does not always hold. For shared-refinable deterministic in-
terfaces, shared refinement reduces to union. Dually, for shared-abstractable deter-
ministic interfaces, shared abstraction reduces to intersection.

Theorem 32. Let I and I ′ be deterministic interfaces.

(1) If I and I ′ are shared-refinable then f(I u I ′) = f(I) ∪ f(I ′).

(2) If I and I ′ are shared-abstractable then f(I t I ′) = f(I) ∩ f(I ′).

Notice that Theorems 31 and 32 are duals of Theorems 26 and 27.

13. APPLICATION: NON-DEFENSIVE HARDWARE DESIGN

The theory developed in the previous sections is directly applicable to the domain of
synchronous systems, which covers a broad class of applications, both in software
and hardware. In particular, it applies to the class of applications captured in
synchronous embedded software environments, as mentioned in the introduction.
For instance, it can be used as a behavioral type theory for Simulink and other
related models, in the spirit of [Roy and Shankar 2010].

Synchronous hardware is another important application domain for our work. To
illustrate this, we consider non-defensive hardware design, which is an application
of Meyer’s ideas of non-defensive programming in the HW setting. To paraphrase
Meyer, defensive programming consists in making SW modules input-complete,
to guard against all possible inputs, including undesirable inputs that should not
arise in principle [Meyer 1992]. Meyer argues that this is bad SW design practice,
and we agree. Meyer proposes design-by-contract as an alternative. In a HW
setting, the same defensive design practice is often encountered. Important benefits
are to be obtained by abandoning this practice and by following the design-by-
contract paradigm instead, to which our theory subscribes. We illustrate these
points through an example.

Consider two HW components, Prod and Cons, having the input and output
variables shown in Figure 13. Prod models a producer and Cons a consumer.
Suppose that Cons requires that, once data starts being delivered at its input (i.e.,
once validin becomes true), data continues to be delivered for 8 consecutive clock

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

· 151

cycles. This is a typical requirement in HW “IP” (“intellectual property”) blocks
that perform signal processing [Ravindran and Yang 2010].

validin

Prod ConsCons BuffProd

datain

validout

dataout
ready

Fig. 13. Connecting a producer and a consumer.

We would like to connect Prod and Cons directly, as shown to the left of Figure 13.
If we have no knowledge about Prod, however, we cannot do that, because Prod
may produce data only intermittently, in which case the requirement of Cons is
violated. Instead, we can insert a third component, Buff, to act as a mediator, as
shown to the right of Figure 13. Buff acts as a temporary buffer that stores 8 values
produced by Prod, and once 8 values become available, it signals and delivers them
to Cons. The implementation details of Buff are not needed in this discussion.
What is important is that Buff is an extra component that results in additional
cost, both in terms of circuit size and performance (Cons must wait for Buff to
accumulate 8 values before it starts processing them). We would like to avoid this
cost. We can do this if we know that Prod conforms to the requirements of Cons:
namely, that once Prod starts outputting data (i.e., once it sets validout to true) it
will continue to do so for 8 consecutive cycles. In that case, the direct connection
of Prod to Cons is valid, and Buff becomes redundant.

The above situations can all be formally captured in our framework. Stateful
interfaces can be used to model Prod and Cons, as shown in Figure 14. Interface
Prod1 models a producer for which we have no knowledge, as in the first scenario
described above. Interface Prod2 captures a different scenario where the producer is
guaranteed to produce 16 consecutive outputs once it starts producing data. Prod2
is captured as an automaton extended with an integer counter i ranging between 1
and 15. Since the domain of i is finite, Prod2 is a finite-state interface.5

¬ready
∧

(j < 7 → ¬ready)
∧

(j = 7 → ready)

true
Prod1:

validin

j := 1

j ++

j = 7

Cons:

¬validin
j < 7

true

validout

i := 1

i++
i < 15

i = 15

Prod2:

¬validout

validout validin

Fig. 14. Stateful interfaces for a producer and a consumer.

5Note that i is initialized to 1 and not to 0 when Prod2 switches from the initial location (with

contract true) to the location with contract validout . This is because at this point one round
where validout was true already elapsed, namely, the round that triggered this transition when the

automaton was at the initial location.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

152 ·
The interface Cons for the consumer is also shown in Figure 14. The structure

of Cons is similar to that of Prod2. Cons requires that validin remains true for 8
consecutive rounds once it has been set to true. At the end of this period, the output
ready of Cons is set to true in order to signal that a batch of 8 consecutive inputs
have been processed. Typically, Cons would also produce a value, but data values
are completely abstracted in these interfaces. This results in simpler interfaces (with
only a few states each), that can still be quite useful as this example illustrates.

Having these interfaces, we can formally state the fact that the unknown producer
cannot be directly connected to our consumer. This is formalized by the fact that
Prod1 and Cons are incompatible, that is, their serial composition is not well-formed
(it is not well-formable either, since Prod1 has no inputs). On the other hand, we
can formally state that Prod2 and Cons are compatible, therefore, an intermediate
buffer is redundant in this case.

Note that the standard synchronous parallel composition of automata Prod1 and
Cons does not reveal their incompatibility, since the conjunction of contracts true
of Prod1 and validin of Cons at its rightmost state, results in a satisfiable contract
for the product state. On the other hand, a “demonic” interpretation of the non-
determinism of contract true of Prod1 reveals the error. In this simple example,
where Prod1 has no inputs, this demonic interpretation can be easily captured
by transforming Cons to an automaton Cons’ with an additional error location.
This is similar to the error-completion transformation discussed in Section 2.4.
Cons’ moves to the error location when an illegal input is received, i.e., when
validin becomes false before 8 consecutive rounds have elapsed. Then, compatibility
of Prod1 and Cons can be stated as a simple safety property on the standard
parallel composition of Prod1 and Cons’, namely, that the error location of Cons’
is unreachable. This can be checked using a standard finite-state model-checker.
In the general case, where Prod1 has inputs, compatibility cannot be stated as
reachability and controller-synthesis algorithms must be used instead.

14. CONCLUSION AND PERSPECTIVES

We have proposed an interface theory that allows to reason formally about com-
ponents and offers guarantees of substitutability. The framework we propose is
general, and can be applied to a wide spectrum of cases, in particular within the
synchronous model of computation. We are currently implementing our theory
on the open-source Ptolemy software, and experimenting with different kinds of
applications.

One major avenue for future work is to examine the current limitations on feed-
back compositions. Requiring feedback loops to contain Moore interfaces that
“break” potential causality cycles is arguably a reasonable restriction in practice.
After all, arbitrary feedback loops in synchronous models generally result in am-
biguous semantics [Malik 1994; Berry 1999]. In many languages and tools these
problems are avoided by making restrictions similar to (and often stricter than)
ours. For example, Simulink and SCADE generally require a unit-delay to be
present in every feedback loop. Similar restrictions are used in the synchronous
language Lustre [Caspi et al. 1987].

Still, it would be interesting to study to what extent the current restrictions can

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

· 153

be weakened. One possibility could be to refine the definition of Moore interfaces
to include dependencies between specific pairs of input and output variables. For
example, this would allow one to express the fact that in the parallel composition
of ({x1}, {y1}, x1 = y1) and ({x2}, {y2}, x2 = y2), y1 does not depend on x2 and
y2 does not depend on x1 (and therefore one of the feedbacks (y1, x2) or (y2, x1)
can be allowed). Such an extension could perhaps be achieved by combining our
relational interfaces with the causality interfaces of [Zhou and Lee 2008], input-
output dependency information such as that used in reactive modules [Alur and
Henzinger 1999], or the coarser profiles of [Lublinerman and Tripakis 2008]. A more
general solution could involve studying fixpoints in a relational context, as is done,
for instance, in [Desharnais and Möller 2005].

In the current version of our theory contracts are prefix-closed sets, and therefore
cannot express liveness properties. For instance, in the example of the buffer that
may fail (Figure 9), we cannot express the requirement that if writes are attempted
infinitely often then they must eventually succeed. In the future we plan to study
extensions of the theory to handle liveness properties. It is worth noting, however,
that the current theory already avoids the problem of trivial implementations that
achieve the specification by “doing nothing”. An interface that “does nothing” is
false, but false refines no other interface but itself. More generally, if an interface
I is well-formed, then any refinement of I is well-formable, which means it can be
executed forever without deadlocks.

Other directions of future work include examining canonical/minimal finite-state
interfaces, as well as how non-deterministic automata can be used as representations
of interfaces.

Acknowledgments

We are grateful to Jan Reineke, for helpful discussions on the definition of envi-
ronments and on error-complete interfaces, to Marc Geilen, who observed that the
deterministic case is a dual of the input-complete case, and to Kaushik Ravindran
and Guang Yang, for motivating the buffer examples. We would also like to thank
Albert Benveniste, Manfred Broy, Rupak Majumdar and Slobodan Matic for their
valuable feedback. We finally would like to thank the anonymous Reviewers for
their careful reading and comments that have greatly helped to improve this paper.

REFERENCES

Abadi, M. and Lamport, L. 1995. Conjoining specifications. ACM Trans. Program. Lang.
Syst. 17, 3, 507–535.

Abrial, J.-R. 1996. The B-book: assigning programs to meanings. Cambridge University Press,
New York, NY, USA.

Alur, R. and Henzinger, T. 1999. Reactive modules. Formal Methods in System Design 15,

7–48.

Alur, R., Henzinger, T., Kupferman, O., and Vardi, M. 1998. Alternating refinement rela-
tions. In CONCUR’98. LNCS, vol. 1466. Springer.

Back, R.-J. and Wright, J. 1998. Refinement Calculus. Springer.

Barringer, H., Kuiper, R., and Pnueli, A. 1984. Now you may compose temporal logic spec-
ifications. In STOC ’84: 16th ACM Symposium on Theory of Computing. ACM, New York,
NY, USA, 51–63.

Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., and Sofronis,

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

154 ·
C. 2008. Multiple viewpoint contract-based specification and design. In Formal Methods for

Components and Objects: 6th International Symposium, FMCO 2007. Springer, 200–225.

Benveniste, A., Caspi, P., Edwards, S., Halbwachs, N., Le Guernic, P., and de Simone, R.
2003. The synchronous languages 12 years later. Proceedings of the IEEE 91, 1 (Jan.), 64–83.

Berry, G. 1999. The Constructive Semantics of Pure Esterel.

Broy, M. 1997. Compositional refinement of interactive systems. J. ACM 44, 6, 850–891.

Broy, M. and Stølen, K. 2001. Specification and development of interactive systems: focus on

streams, interfaces, and refinement. Springer.

Caspi, P., Pilaud, D., Halbwachs, N., and Plaice, J. 1987. Lustre: a declarative language for

programming synchronous systems. In 14th ACM Symp. POPL. ACM.

Chakrabarti, A., de Alfaro, L., Henzinger, T., and Mang, F. 2002. Synchronous and bidi-
rectional component interfaces. In CAV. LNCS 2404. Springer, 414–427.

Cheon, Y. and Leavens, G. 1994. The Larch/Smalltalk interface specification language. ACM

Trans. Softw. Eng. Methodol. 3, 3, 221–153.

de Alfaro, L. 2004. Game models for open systems. In Verification: Theory and Practice,

N. Dershowitz, Ed. Lecture Notes in Computer Science, vol. 2772. Springer, 192–213.

de Alfaro, L. and Henzinger, T. 2001a. Interface automata. In Foundations of Software
Engineering (FSE). ACM Press.

de Alfaro, L. and Henzinger, T. 2001b. Interface theories for component-based design. In

EMSOFT’01. Springer, LNCS 2211.

Desharnais, J. and Möller, B. 2005. Least reflexive points of relations. Higher Order Symbol.
Comput. 18, 1-2, 51–77.

Dhara, K. and Leavens, G. 1996. Forcing behavioral subtyping through specification inheritance.

In ICSE’96: 18th Intl. Conf. on Software Engineering. IEEE Computer Society, 258–267.

Dijkstra, E. 1972. Notes on structured programming. In Structured programming, O. Dahl,

E. Dijkstra, and C. Hoare, Eds. Academic Press, London, UK, 1–82.

Dill, D. 1987. Trace theory for automatic hierarchical verification of speed-independent circuits.
MIT Press, Cambridge, MA, USA.

Doyen, L., Henzinger, T., Jobstmann, B., and Petrov, T. 2008. Interface theories with com-

ponent reuse. In 8th ACM & IEEE International conference on Embedded software, EMSOFT.

79–88.

Floyd, R. 1967. Assigning meanings to programs. In In. Proc. Symp. on Appl. Math. 19.
American Mathematical Society, 19–32.

Frappier, M., Mili, A., and Desharnais, J. 1998. Unifying program construction and modifi-

cation. Logic Journal of the IGPL 6, 317–340.

Grumberg, O. and Long, D. 1994. Model checking and modular verification. ACM Trans.

Program. Lang. Syst. 16, 3, 843–871.

Guttag, J. and Horning, J. 1993. Larch: languages and tools for formal specification. Springer.

Hehner, E. and Parnas, D. 1985. Technical correspondence. Commun. ACM 28, 5, 534–538.

Henzinger, T., Qadeer, S., and Rajamani, S. 1998. You assume, we guarantee: Methodology
and case studies. In CAV’98. LNCS, vol. 1427. Springer-Verlag.

Henzinger, T. and Sifakis, J. 2007. The discipline of embedded systems design. IEEE Com-
puter 40, 10, 32–40.

Hoare, C. A. R. 1969. An axiomatic basis for computer programming. Comm. ACM 12, 10,

576–580.

Hoare, C. A. R. 1985. Programs are predicates. In Proc. of a discussion meeting of the Royal So-
ciety of London on Mathematical logic and programming languages. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 141–155.

Jones, C. B. 1983. Tentative steps toward a development method for interfering programs. ACM

Transactions on Programming Languages and Systems 5, 4.

Jonsson, B. 1994. Compositional specification and verification of distributed systems. ACM
Trans. Program. Lang. Syst. 16, 2, 259–303.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

· 155

Kahl, W. 2003. Refinement and development of programs from relational specifications. Elec-

tronic Notes in Theoretical Computer Science 44, 3, 51 – 93. RelMiS 2001, Relational Methods
in Software (a Satellite Event of ETAPS 2001).

Leavens, G. 1994. Inheritance of interface specifications. SIGPLAN Not. 29, 8, 129–138.

Leavens, G. and Cheon, Y. 2006. Design by Contract with JML. Available at http://www.

jmlspecs.org/jmldbc.pdf.

Lee, E. 2008. Cyber physical systems: Design challenges. Tech. Rep. UCB/EECS-2008-8, EECS

Department, University of California, Berkeley. Jan.

Lee, E. and Sangiovanni-Vincentelli, A. 1998. A unified framework for comparing models
of computation. IEEE Trans. on Computer Aided Design of Integrated Circuits and Sys-

tems 17, 12 (Dec.), 1217–1229.

Lee, E. and Xiong, Y. 2001. System-level types for component-based design. In EMSOFT’01:

1st Intl. Workshop on Embedded Software. Springer, 237–253.

Liskov, B. 1979. Modular program construction using abstractions. In Abstract Software Speci-
fications. Lecture Notes in Computer Science, vol. 86. Springer, 354–389.

Liskov, B. and Wing, J. 1994. A behavioral notion of subtyping. ACM Trans. Program. Lang.

Syst. 16, 6, 1811–1841.

Lublinerman, R. and Tripakis, S. 2008. Modularity vs. Reusability: Code Generation from
Synchronous Block Diagrams. In Design, Automation, and Test in Europe (DATE’08). ACM.

Lynch, N. and Tuttle, M. 1989. An introduction to input/output automata. CWI Quarterly 2,

219–246.

Malik, S. 1994. Analysis of cyclic combinational circuits. IEEE Trans. Computer-Aided De-

sign 13, 7, 950–956.

McMillan, K. 1997. A compositional rule for hardware design refinement. In Computer Aided
Verification (CAV’97). LNCS, vol. 1254. Springer-Verlag.

Meyer, B. 1992. Applying ”design by contract”. Computer 25, 10, 40–51.

Miller, S., Whalen, M., and Cofer, D. 2010. Software model checking takes off. Comm.

ACM 53, 2, 58–64.

Misra, J. and Chandy, K. 1981. Proofs of networks of processes. IEEE Transactions on Software

Engineering 7, 4 (July), 417–426.

Nelson, G. 1989. A generalization of dijkstra’s calculus. ACM Trans. Program. Lang. Syst. 11, 4,
517–561.

Nierstrasz, O. 1993. Regular types for active objects. SIGPLAN Not. 28, 10, 1–15.

Parnas, D. 1983. A generalized control structure and its formal definition. Commun. ACM 26, 8,

572–581.

Pierce, B. 2002. Types and Programming Languages. MIT Press.

Raclet, J.-B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., and Passerone, R.

2010. A modal interface theory for component based design. Available at http://www.irisa.

fr/distribcom/benveniste/pub/Fundamenta2010.html.

Ravindran, K. and Yang, G. 2010. Personal communication.

Roy, P. and Shankar, N. 2010. SimCheck: An expressive type system for Simulink. In 2nd
NASA Formal Methods Symposium (NFM 2010), NASA/CP-2010-216215, C. Muñoz, Ed.

NASA, Langley Research Center, Hampton VA 23681-2199, USA, 149–160.

Shankar, N. 1998. Lazy compositional verification. In Compositionality: The Significant Differ-
ence (COMPOS’97). Springer, 541–564.

Spivey, J. M. 1989. The Z notation: a reference manual. Prentice-Hall, Inc., Upper Saddle River,

NJ, USA.

Stark, E. 1985. A proof technique for rely/guarantee properties. In Fifth Conference on Foun-
dations of Software Technology and Theoretical Computer Science. LNCS. Springer-Verlag.

Tourlakis, G. 2008. Mathematical Logic. Wiley.

Tripakis, S., Lickly, B., Henzinger, T., and Lee, E. 2009a. On relational interfaces. Tech.
Rep. UCB/EECS-2009-60, EECS Department, University of California, Berkeley. May.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

156 ·
Tripakis, S., Lickly, B., Henzinger, T., and Lee, E. 2009b. On Relational Interfaces. In

Proceedings of the 7th ACM International Conference on Embedded Software (EMSOFT’09).
ACM, 67–76.

Wirth, N. 1971. Program development by stepwise refinement. Comm. ACM 14, 4, 221–227.

Zhou, Y. and Lee, E. 2008. Causality interfaces for actor networks. ACM Trans. Embed. Comput.

Syst. 7, 3, 1–35.

A. PROOFS

Proof of Lemma 1. By induction. ε belongs in both f and f ′. Suppose s ·a ∈
f ′. Thus s ∈ f ′. By the induction hypothesis, s ∈ f . From s · a ∈ f ′ we get
a ∈ f ′(s). Since f ′(s) = f(s) ∩ φs, we have a ∈ f(s), therefore s · a ∈ f .

Proof of Theorem 1. Well-formedness implies well-formability for all inter-
faces. For the converse, let I = (X,Y, f) be a well-formable interface. Then there
exists a witness I ′ = (X,Y, f ′) such that I ′ is well-formed.

First, suppose that I is stateless. Then f(s) = f(ε) for any s. Since I ′ is a
witness, f ′(ε) = f(ε) ∧ φε, for some property φε over X. Since I ′ is well-formed,
f ′(ε) is non-empty, thus, f(ε) is also non-empty, thus, so is f(s) for any s.

Second, suppose that I is a source, that is, X = ∅. Since I ′ is a witness, for
any state s, f ′(s) = f(s) ∧ φs, where φs is a property over X. Since X is empty,
φs can be either true or false. Since f ′(s) is non-empty, φs must be true for any s.
Therefore, f(s) = f ′(s) for any s, thus, f(s) is non-empty for all s.

Proof of Lemma 2. Following Definition 9, we have:

I1‖I2 = (X1 ∪X2, Y1 ∪ Y2, f)

where for all s ∈ A(X1 ∪X2 ∪ Y1 ∪ Y2)∗

f(s) = f1(s1) ∧ f2(s2) ∧
(
∀Y1 ∪ Y2 : f1(s1)→ in(f2(s2))

)
Observe that in(f2(s2)) is a formula over X2, that is, does not depend on Y1 ∪ Y2.
Therefore,(

∀Y1 ∪ Y2 : f1(s1)→ in(f2(s2))
)
≡ ¬(∃Y1 ∪ Y2 : f1(s1) ∧ ¬in(f2(s2))) ≡

¬(¬in(f2(s2)) ∧ ∃Y1 ∪ Y2 : f1(s1)) ≡
(
in(f2(s2)) ∨ ¬∃Y1 ∪ Y2 : f1(s1)

)
Now, observe that φ → in(φ) and φ → (φ ∨ φ′) are valid formulas for any φ, φ′.
Therefore, f2(s2)→ in(f2(s2)) is valid and so is in(f2(s2))→ in(f2(s2))∨¬∃Y1∪Y2 :
f1(s1), which gives(

f1(s1) ∧ f2(s2) ∧ ∀Y1 ∪ Y2 : f1(s1)→ in(f2(s2))
)
≡ (f1(s1) ∧ f2(s2))

Proof of Theorem 3. For simplicity of notation, we conduct the proof assum-
ing the interfaces are stateless. The proof is almost identical for general interfaces,
except that f(s) replaces φ, f ′(s) replaces φ′, and so on.

Suppose the setting is as illustrated in Figure 15. That is, I1 = (X1, Y1 ∪ Y12 ∪
Y13, φ1); I2 = (X2 ∪ X12, Y2 ∪ Y23, φ2); I3 = (X3 ∪ X13 ∪ X23, Y3, φ3); and θ12
connects X12 and Y12; θ13 connects X13 and Y13; θ23 connects X23 and Y23.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

· 157

Our first step is to clearly express what the definitions tell us about I := (θ12 ∪
θ13) (I1, θ23(I2, I3)) and I ′ := (θ13 ∪ θ23) (θ12(I1, I2), I3).

For simplicity, we will use the notation ρθ to refer to
∧

(y,x)∈θ y = x. We also

refer to the outputs of θ12(I1, I2) as P = Y1 ∪ Y12 ∪ Y13 ∪ X12 ∪ Y2 ∪ Y23 and
the outputs of θ23(I2, I3) as Q = Y2 ∪ Y23 ∪ X23 ∪ Y3 and the overall outputs as
O = Y1 ∪ Y2 ∪ Y3 ∪ Y12 ∪ Y13 ∪ Y23 ∪X12 ∪X13 ∪X23.

The definitions are as follows:

θ12(I1, I2) = (X1 ∪X2, P, φ1 ∧ φ2 ∧ ρθ12 ∧ ∀P : φ1 ∧ ρθ12 → in(φ2))

θ23(I2, I3) = (X2 ∪X12 ∪X3 ∪X13, Q, φ2 ∧ φ3 ∧ ρθ23 ∧ ∀Q : φ2 ∧ ρθ23 → in(φ3))

Let φ12 and φ23 be the contracts of θ12(I1, I2) and θ23(I2, I3), respectively. Then:

I = (X1 ∪X2 ∪X3, O, φ12 ∧ φ3 ∧ ρθ13 ∧ ρθ23 ∧ ∀O : φ12 ∧ ρθ13 ∧ ρθ23 → in(φ3))

I ′ = (X1 ∪X2 ∪X3, O, φ1 ∧ φ23 ∧ ρθ12 ∧ ρθ13 ∧ ∀O : φ1 ∧ ρθ12 ∧ ρθ13 → in(φ23))

Let φ and φ′ be the contracts of I and I ′, respectively. Letting θ = θ12 ∪ θ13 ∪ θ23
and substituting, we get:

φ ≡ φ1 ∧ φ2 ∧ φ3 ∧ ρθ ∧ (∀P : φ1 ∧ ρθ12 → in(φ2)) ∧ (∀O : φ12 ∧ ρθ13 ∧ ρθ23 → in(φ3))

φ′ ≡ φ1 ∧ φ2 ∧ φ3 ∧ ρθ ∧ (∀Q : φ2 ∧ ρθ23 → in(φ3)) ∧ (∀O : φ1 ∧ ρθ12 ∧ ρθ13 → in(φ23))

In order to simplify discussion, we will name the subformulae as follows:

C := ∀P : φ1 ∧ ρθ12 → in(φ2)

D := ∀O : φ12 ∧ ρθ13 ∧ ρθ23 → in(φ3)

E := ∀Q : φ2 ∧ ρθ23 → in(φ3)

F := ∀O : φ1 ∧ ρθ12 ∧ ρθ13 → in(φ23)

Then, we have

φ ≡ φ1 ∧ φ2 ∧ φ3 ∧ ρθ ∧ C ∧D
φ′ ≡ φ1 ∧ φ2 ∧ φ3 ∧ ρθ ∧ E ∧ F

Also note that

ρθ ≡ ρθ12 ∧ ρθ13 ∧ ρθ23
In order to prove equivalence of I and I ′, we need to prove that the following

four formulae are valid:

φ→ E, φ→ F, φ′ → C, and φ′ → D

Proof of φ→ E: Let (x, q, o) be an arbitrary assignment such that (x, q, o) |= φ,
where x ∈ X1∪X2∪X3, q ∈ Q, and o ∈ O\Q. We want to show that (x, q, o) |= E,
i.e., that (x, o) |= E, since E has no free variables in Q. Expanding E, we must
show (x, o) |= ∀Q : φ2 ∧ ρθ23 → in(φ3). Let q′ be an arbitrary assignment over
Q such that (x, q′, o) |= φ2 ∧ ρθ23 . We want to show that (x, q′, o) |= in(φ3). We
will use the fact D which is implied by φ. We will first show that (x, q′, o) |= φ12.
Expanding φ12, we must show:

(x, q′, o) |= φ1 ∧ φ2 ∧ ρθ ∧ (∀P : φ1 ∧ ρθ12 → in(φ2))

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

158 ·
or equivalently

(x, q′, o) |= φ1 ∧ φ2 ∧ ρθ ∧ C.
Clearly, we have (x, q′, o) |= φ2 ∧ ρθ23 by construction of q′. Also (x, o) satisfies
φ1∧ρθ12∧ρθ13∧C since this formula contains no free variables in Q and (x, q, o) |= φ.
Thus we have shown (x, q′, o) |= φ12, and, by D, we have (x, q′, o) |= in(φ3). Thus
we have (x, o) |= E. End of proof of φ→ E.

Proof of φ→ F : Suppose we are given an assignment (x, q, o) |= φ where x is over
X1 ∪X2 ∪X3, q is over Q, and o is over O \Q. We want to show that (x, q, o) |= F
(i.e. x |= F).

Let (q′, o′) be an arbitrary assignment over O such that (x, q′, o′) |= φ1∧ρθ12∧ρθ23 .
We want to now show that (x, q′, o′) |= in(φ23). To do so, we first expand in(φ23):

in(φ23) ≡ (∃Q : φ2 ∧ φ3 ∧ ρθ23) ∧ (∀Q : φ2 ∧ ρθ23 → in(φ3))

Thus we can reduce the proof to two parts:

(a) (x, o′) |= (∃Q : φ2 ∧ φ3 ∧ ρθ23), and

(b) (x, o′) |= (∀Q : φ2 ∧ ρθ23 → in(φ3))

For part (a), we want to show that for any assignment qa over Q: (x, qa, o
′) |=

φ2 ∧ ρθ23 ⇒ (x, qa, o
′) |= in(φ3). We start with such an assignment qa. Combining

this with the fact that (x, o′) |= φ1 ∧ ρθ12 ∧ ρθ23 , we get (x, qa, o
′) |= φ1 ∧ φ2 ∧ ρθ.

Combined with the fact that x |= C, we get (x, qa, o
′) |= φ1 ∧ φ2 ∧ ρθ ∧ C. This is

exactly the premise of D. Since x |= D, this gives us (x, qa, o
′) |= in(φ3), which is

exactly what we wanted to prove.
For part (b), we want to show that there exists an assignment over Q that models

φ2∧φ3∧ρθ23 . For our purposes, we will divide this assignment into qY 2 over Y2∪Y23,
qX3 over X23, and qY 3 over Y3. First, since x |= C and (x, o′) |= φ1 ∧ ρθ12 ∧ ρθ23 we
have that (x, o′) |= in(φ2). Expanding the definition of in, this means that ∃Y2 : φ2.
Using this as our assignment of qY 2, we have that (x, qY 2, o

′) |= φ2. We can set
the values of X23 to those of Y23 in order to get an assignment of qX3 that satisfies
ρθ23 . Combining the definition of o′ with the assignments to qY 2, qX3 with the fact
that x |= C, gives us:

(x, qY 2, qX3, o
′) |= (φ1 ∧ ρθ12 ∧ ρθ23) ∧ (φ2 ∧ ρθ23) ∧ C

Since this is exactly the premise of D, we get (x, qY 2, qX3, o
′) |= in(φ3). But this

means that ∃Y3 : φ3. Using this as our assignment to qY 3, we get (x, qY 2, qX3, qY 3, o
′) |=

φ3. Combining the terms that we have satisfied over the course of our assignment,
we get (x, qY 2, qX3, qY 3, o

′) |= φ2 ∧ φ3 ∧ ρθ23 , which is what we wanted to prove.
Combining our results from part (a) and part (b) we get (x, o′) |= in(φ23). Thus

(x, q, o) |= F . End of proof of φ→ F .
Proof of φ′ → C: Suppose (x, p, o) |= B where x ∈ X1 ∪ X2 ∪ X3, p ∈ P , and

o ∈ O \ P . We want to show that (x, p, o) |= C (i.e. (x, o) |= C).
Let p′ be an assignment over P such that (x, p′, o) |= φ1 ∧ ρθ12 . Now take o′

over O \ P such that (x, p′, o′) |= φ1 ∧ ρθ12 ∧ ρθ13 . This can be done by setting the
variables of Y13 to those of X13. By F , we have that (x, p′, o′) |= in(φ23), so in
particular, (x, p′, o′) |= in(φ2). Since in(φ2) does not contain free variables in O \P ,
this means (x, p′, o) |= in(φ2). Thus we have (x, o) |= C. End of proof of φ′ → C.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

· 159

Y3

-

-

-

- -

-

- -

-

- -

X12 Y23

I2

I1

X3

X1

X2

Y1

Y2

X23θ23

I3
Y13

Y12 θ12

θ13 X13

-

Fig. 15. Setting used in the proof of Theorem 3.

Proof of φ′ → D: Suppose (x, o) |= φ′, where x is over X1 ∪ X2 ∪ X3, and o is
over O.

Let o′ be an arbitrary assignment over O with (x, o′) |= φ12 ∧ ρθ13 ∧ ρθ23 . Clearly
(x, o′) |= φ1∧ρθ12 ∧ρθ13 . By F , we have (x, o′) |= in(φ23). But this also means that
(x, o′) |= in(φ3) Thus we have (x, o) |= D. End of proof of φ′ → D.

Proof of Theorem 4. Following Definition 12, we derive

κ1(κ2(I)) = (X \ {x1, x2}, Y ∪ {x1, x2}, f1)

κ2(κ1(I)) = (X \ {x1, x2}, Y ∪ {x1, x2}, f2)

where for all s ∈ A(X ∪ Y)∗

f1(s) ≡ (f(s) ∧ y1 = x1 ∧ y2 = x2) ≡ f2(s)

Proof of Theorem 5. Let Ii = (Xi, Yi, fi), for i = 1, 2. Let κi = (yi, xi), for
i = 1, 2. Then, since κi are valid feedback connections, Ii must be Moore w.r.t. xi,
for i = 1, 2.

Claim 1: κ1(θ(I1, I2)) = θ(κ1(I1), I2). We have:

θ(I1, I2) =
(
Xθ(I1,I2), Yθ(I1,I2), ft(s)

)
κ1(θ(I1, I2)) =

(
Xθ(I1,I2) \ {x1}, Yθ(I1,I2) ∪ {x1}, f1kt(s)

)
κ1(I1) =

(
X1 \ {x1}, Y1 ∪ {x1}, f1k (s)

)
θ(κ1(I1), I2) =

(
Xθ(I1,I2) \ {x1}, Yθ(I1,I2) ∪ {x1}, f1tk(s)

)
where the contracts are as follows:

ft(s) = f1(s) ∧ f2(s) ∧ ρθ ∧ ∀Yθ(I1,I2) :
(
(f1(s) ∧ ρθ)→ in(f2(s))

)
f1kt(s) = ft(s) ∧ x1 = y1

= f1(s) ∧ f2(s) ∧ ρθ ∧ ∀Yθ(I1,I2) :
(
(f1(s) ∧ ρθ)→ in(f2(s))

)
∧ x1 = y1

f1k (s) = f1(s) ∧ x1 = y1

f1tk(s) = f1k (s) ∧ f2(s) ∧ ρθ ∧ ∀Yθ(I1,I2) ∪ {x1} :
(
(f1k (s) ∧ ρθ)→ in(f2(s))

)
= (f1(s) ∧ x1 = y1) ∧ f2(s) ∧ ρθ ∧

∀Yθ(I1,I2) ∪ {x1} : ((f1(s) ∧ x1 = y1 ∧ ρθ)→ in(f2(s)))

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

160 ·
Since θ only changes input variables of I2 to outputs, and κ1 only changes an

input port of I1 to an output, the composition of these two connections in either
order is well formed, and will result in an interface with the same input and output
variables. Thus, it remains to prove that the resulting contract is also the same,
i.e. that f1tk(s) = f1kt(s). Let Y = Yθ(I1,I2). We have:

f1tk(s) = (f1(s) ∧ x1 = y1) ∧ f2(s) ∧ ρθ ∧
∀Y ∪ {x1} : ((f1(s) ∧ x1 = y1 ∧ ρθ)→ in(f2(s)))

= (f1(s) ∧ x1 = y1) ∧ f2(s) ∧ ρθ ∧
∀Y ∪ {x1} : (¬f1(s) ∨ x1 6= y1 ∨ ¬ρθ ∨ in(f2(s)))

= (f1(s) ∧ x1 = y1) ∧ f2(s) ∧ ρθ ∧
∀Y : (¬f1(s) ∨ ¬ρθ ∨ in(f2(s)) ∨ ∀x1 : x1 6= y1)

= (f1(s) ∧ x1 = y1) ∧ f2(s) ∧ ρθ ∧
∀Y : (¬f1(s) ∨ ¬ρθ ∨ in(f2(s)) ∨ false)

= f1(s) ∧ f2(s) ∧ ρθ ∧ ∀Y : ((f1(s) ∧ ρθ)→ in(f2(s))) ∧ x1 = y1

= f1kt(s)

Claim 2: κ2(θ(I1, I2)) = θ(I1, κ2(I2)). We have:

θ(I1, I2) =
(
Xθ(I1,I2), Yθ(I1,I2), ft(s)

)
κ2(θ(I1, I2)) =

(
Xθ(I1,I2) \ {x2}, Yθ(I1,I2) ∪ {x2}, f2kt(s)

)
κ2(I2) =

(
X2 \ {x2}, Y2 ∪ {x2}, f2k (s)

)
θ(I1, κ1(I2)) =

(
Xθ(I1,I2) \ {x2}, Yθ(I1,I2) ∪ {x2}, f2tk(s)

)

where the new contracts are as follows:

f2kt(s) = f1(s) ∧ f2(s) ∧ ρθ ∧ ∀Yθ(I1,I2) : ((f1(s) ∧ ρθ)→ in(f2(s))) ∧ x2 = y2

f2k (s) = f2(s) ∧ x2 = y2

f2tk(s) = f1(s) ∧ (f2(s) ∧ x2 = y2) ∧ ρθ ∧
∀Yθ(I1,I2) ∪ {x2} : ((f1(s) ∧ ρθ)→ in(f2(s) ∧ x2 = y2))

Here we need to rely on the assumption InVars(κ2) ∩ InVars(θ) = ∅ to prove that
the composition by κ2 and θ in either order is well formed, and that the input and
output variables of the resulting interface are the same. Thus, it remains to prove
that the resulting contract is also the same, i.e. that f2tk(s) = f2kt(s). As before, let

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

· 161

Y = Yθ(I1,I2). We have:

f2tk(s) = f1(s) ∧ (f2(s) ∧ x2 = y2) ∧ ρθ ∧
∀Y ∪ {x2} : ((f1(s) ∧ ρθ)→ in(f2(s) ∧ x2 = y2))

= (f1(s) ∧ x2 = y2) ∧ f2(s) ∧ ρθ ∧
∀Y : ((f1(s) ∧ ρθ)→ ∃Y2 ∪ {x2} : (f2(s) ∧ x2 = y2))

= (f1(s) ∧ x2 = y2) ∧ f2(s) ∧ ρθ ∧
∀Y : ((f1(s) ∧ ρθ)→ ∃Y2 : (f2(s) ∧ ∃x2 : x2 = y2))

= (f1(s) ∧ x2 = y2) ∧ f2(s) ∧ ρθ ∧
∀Y : ((f1(s) ∧ ρθ)→ ∃Y2 : (f2(s) ∧ true))

= f1(s) ∧ f2(s) ∧ ρθ ∧ ∀Y : ((f1(s) ∧ ρθ)→ in(f2(s))) ∧ x2 = y2

= f2kt(s)

Proof of Theorem 6.

(1) The contract f of θ(I1, I2) is defined as f(s) := f1(s1)∧f2(s2)∧ρθ∧∀Yθ(I1,I2) : Φ,
where Φ := (f1(s1) ∧ ρθ) → in(f2(s2)). Because I1 is Moore w.r.t. x1, f1(s1)
does not refer to x1. Because I2 is disjoint from I1, f2(s2) does not refer to x1
either. ρθ refers to outputs of I1 and inputs of I2, thus does not refer to x1.
Because none of f1(s1), f2(s2) or ρθ refer to x1, Φ does not refer to x1 either.
Therefore, f(s) does not refer to x1, thus θ(I1, I2) is Moore w.r.t. x1.

(2) By definition, the set of input variables of the composite interface θ(I1, I2) is
Xθ(I1,I2) = (X1 ∪X2) \ InVars(θ) = X1. By hypothesis, I1 is Moore w.r.t. all
x1 ∈ X1. By part 1, θ(I1, I2) is also Moore w.r.t. all x1 ∈ X1, thus θ(I1, I2) is
Moore.

(3) Since x2 6∈ InVars(θ), x2 is an input variable of θ(I1, I2) and ρθ does not refer
to x2. The result follows by a reasoning similar to that of part 1.

Proof of Lemma 3.

(1) Proof is by induction on the length of states. Basis: the result holds for the
empty state ε, because ε ∈ f for any contract f . Induction step: let s · a ∈ fκ.
Then a |= f(s) ∧ x = y, thus a |= f(s). s · a ∈ fκ implies s ∈ fκ, thus, by the
induction hypothesis, s ∈ f . This and a |= f(s) imply s · a ∈ f .

(2) Let s ∈ fκ. Note that in(fκ(s)) ≡ in(f(s)) is a formula over X: in(fκ(s)) is a
formula over X \ {x} and in(f(s)) is a formula over X.
To show that in(fκ(s))→ in(f(s)) is valid, we need to show that every assign-
ment over X that satisfies in(fκ(s)) also satisfies in(f(s)). Consider such an
assignment (a, p), where a is an assignment over X \{x} and p is an assignment
over {x}. (a, p) |= in(fκ(s)) means (a, p) |= ∃Y ∪ {x} : f(s) ∧ x = y. There-
fore, there exists assignment b over Y ∪ {x} such that (a, b) |= f(s) ∧ x = y.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

162 ·
Let b′ be the restriction of b to Y . We claim that (a, p, b′) |= f(s). Indeed,
since I is Moore w.r.t. x, f(s) does not depend on x, therefore, we can assign
any value to x, in particular, the value assigned by p. (a, p, b′) |= f(s) implies
(a, p) |= ∃Y : f(s) ≡ in(f(s)).
To show that in(f(s))→ in(fκ(s)) is valid, we need to show that every assign-
ment over X that satisfies in(f(s)) also satisfies in(fκ(s)). Consider such an
assignment (a, p), where a is an assignment over X \ {x} and p is an assign-
ment over {x}. (a, p) |= in(f(s)) means (a, p) |= ∃Y : f(s). Therefore, there
exists assignment b over Y such that (a, p, b) |= f(s). Let p′ be the assignment
over {x} such that p′(x) := b(y). Since I is Moore w.r.t. x, f(s) does not
depend on x, therefore, (a, p′, b) |= f(s). Moreover, (a, p′, b) |= x = y, therefore
(a, p′, b) |= f(s)∧x = y ≡ fκ(s). This implies a |= ∃X \{x} : fκ(s) ≡ in(fκ(s)).
Therefore (a, p) |= in(fκ(s)).

Proof of Theorem 7. Let I = (X,Y, f) and κ = (y, x). Let s ∈ f(κ(I)). We
must show that f(s) ∧ x = y is satisfiable. By part 1 of Lemma 3, s ∈ f . Since
I is well-formed, f(s) is satisfiable. Let a be an assignment such that a |= f(s).
Consider the assignment a′ which is identical to a, except that a′(x) := a(y).
Since I is Moore w.r.t. x, the satisfaction of f(s) does not depend on the value
x. Therefore, a′ |= f(s). Moreover, by definition, a′ |= x = y, and the proof is
complete.

Proof of Lemma 4. Since z is redundant in f there exists z′ 6= z such that
∀s ∈ f : ∀i ∈ {1, ..., |s|} : si(z) = si(z

′). Let s, s′ ∈ f such that s =(X∪Y)\{z} s
′.

This means that for any v ∈ X ∪ Y if v 6= z then ∀i ∈ {1, ..., |s|} : si(v) = s′i(v).
But z′ is such a v, therefore, ∀i ∈ {1, ..., |s|} : si(z

′) = s′i(z
′). Since si(z

′) = si(z)
and s′i(z

′) = s′i(z) for all i, we get that ∀i ∈ {1, ..., |s|} : si(z) = s′i(z). Therefore,
s = s′, which trivially implies f(s) = f(s′).

Proof of Theorem 8.

—Let I = (X,Y, f) be a well-formable interface. Then there exists I ′ = (X,Y, f ′)
such that I ′ is well-formed, and for all s ∈ f ′, f ′(s) ≡ f(s) ∧ φs, where φs
is some property over X. Slightly abusing notation, we define environment E
with contract function fe(s) := in(f ′(s)) ≡ in(f(s)) ∧ φs, for any state s. In
this definition we implicitly use the mapping between variables of I and mirror
variables of E. We claim that I � E. Indeed, E is Moore, therefore fe(s) refers
to no input variables, therefore in(fe(s)) has no free variables, thus it is equivalent
to either true or false. E is well-formed, so in(fe(s)) must be true for all s. That
is, E is input-complete. Also, fe(s) → in(f(s)), therefore, any output of E is a
legal input for I. Finally, the behavior of the closed-loop system of E and I is
equivalent to I ′, therefore, it is well-formed.

—Conversely, suppose there exists environment E such that I � E. We prove that
I is well-formable. Let fe be the contract function of E. Since I is not Moore,
E must be Moore. Therefore, fe(s) is essentially a property over X for any s.
We define I ′ = (X,Y, f ′) such that f ′(s) := f(s)∧ fe(s). I ′ must be well-formed,

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

· 163

because the closed-loop composition of I and E is well-formed. Thus, I ′ is a
witness for I, which is well-formable.

Proof of Lemma 5. By induction on the length of states. Basis: ε ∈ f ′. In-
duction step: suppose s · a ∈ f ∩ f ′′. Then s ∈ f ∩ f ′′. From the induction
hypothesis, s ∈ f ′. s · a ∈ f ∩ f ′′ implies a |= f(s) ∧ f ′′(s). a |= f(s) implies
a |= in(f(s)). The latter and I ′ v I imply a |= in(f ′(s)). The latter, together with
I ′′ v I ′ and a |= f ′′(s), imply a |= f ′(s). This and s ∈ f ′ imply s · a ∈ f ′.

Proof of Theorem 9. v is reflexive because Condition 16 clearly holds when
f = f ′. To show that v is transitive, let I = (X,Y, f), I ′ = (X ′, Y ′, f ′), I ′′ =
(X ′′, Y ′′, f ′′), and suppose I ′′ v I ′ and I ′ v I. We must prove I ′′ v I. Suppose
s ∈ f ∩ f ′′. By Lemma 5, s ∈ f ∩ f ′ and s ∈ f ′ ∩ f ′′. These facts together with
I ′′ v I ′ and I ′ v I imply in(f(s))→ in(f ′(s)), in(f(s)) ∧ f ′(s)→ f(s), in(f ′(s))→
in(f ′′(s)), and in(f ′(s)) ∧ f ′′(s) → f ′(s). These imply in(f(s)) → in(f ′′(s)) and
in(f(s)) ∧ f ′′(s) → f(s). To show that v is antisymmetric suppose I ′ v I and
I v I ′. We must prove I = I ′. By Lemma 5 and setting I ′′ := I we get f ⊆ f ′. By
the same lemma and reversing the roles of I and I ′ we get f ′ ⊆ f .

Proof of Theorem 10. Let I = (X,Y, φ) and I ′ = (X ′, Y ′, φ′). I is well-
formed, thus φ is satisfiable. Let a be an assignment satisfying φ and let aX
and aY be the restrictions of a to X and Y , respectively. By definition of in(φ),
aX |= in(φ). By Condition (17), aX |= in(φ′) ≡ ∃Y ′ : φ′. Therefore, there exists
a′Y ′ such that (aX , a

′
Y ′) |= φ′. Thus, φ′ is satisfiable. Thus, I ′ is well-formed.

Proof of Theorem 11. Let I = (X,Y, f) and I ′ = (X ′, Y ′, f ′).

(1) Suppose I is well-formed and f ′ ⊆ f . We need to show that for any s ∈ f ′,
f ′(s) is non-empty. By hypothesis, s ∈ f and I is well-formed, therefore, f(s)
is non-empty. Reasoning as in the proof of Theorem 10, we can show that f ′(s)
is also non-empty.

(2) This is a special case of part 1 of the theorem: I is source, therefore f(s)
refers to no input variables, therefore in(f(s)) has no free variables, thus it is
equivalent to either true or false. I is well-formed, so in(f(s)) must be true for
all s. That is, I is input-complete. This and the hypothesis I ′ v I imply that
I ′ is also input-complete. For input-complete interfaces, I ′ v I is equivalent to
f ′ ⊆ f . Therefore, part 1 applies.

(3) Suppose I is well-formable. Then there exists I1 = (X,Y, f1) such that I1 is
well-formed, and for all s ∈ f1, f1(s) ≡ f(s)∧φs, for some property φs over X.
Since f1 strengthens f , f1 ⊆ f . Since f(s) ∧ φs ≡ f(s) ∧ in(f(s)) ∧ φs, we can
assume without loss of generality that φs → in(f(s)). We define I2 := (X,Y, f2)
such that f2(s) := f ′(s) ∧ φs, if s ∈ f1, and f2(s) := f ′(s), if s 6∈ f1.
Claim 1: f2 ⊆ f1. By induction on the length of a state s. The result holds
for s = ε. Suppose s · a ∈ f2. Then s ∈ f2 and from the induction hypothesis,
s ∈ f1. Also, a |= f2(s) ≡ f ′(s) ∧ φs (because s ∈ f1). Since φs → in(f(s)),
a |= in(f(s)) ∧ f ′(s). This and I ′ v I imply a |= f(s), thus, a |= f(s) ∧ φs ≡
f1(s). Thus, s · a ∈ f1.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

164 ·

Z
- -

-
-

-
-θX

I1

Y
I2

W
U

V

Fig. 16. Setting used in the proof of Theorem 12.

Claim 2: f2 ⊆ f ′. Because f2 is a strengthening of f ′.
Claim 3: I2 v I1. Suppose s ∈ f1 ∩ f2. By Claim 2 and the fact f1 ⊆ f , we
have s ∈ f ∩ f ′. Then: in(f1(s)) ≡ in(f(s)) ∧ φs. Since I ′ v I and s ∈ f ∩ f ′,
in(f(s)) → in(f ′(s)). Therefore in(f(s)) ∧ φs → in(f ′(s)) ∧ φs. The latter
formula is equivalent to in(f2(s)) because s ∈ f1. Also, in(f1(s)) ∧ f2(s) ≡
in(f(s)) ∧ f ′(s) ∧ φs → f(s) ∧ φs ≡ f1(s). This completes Claim 3.
Claim 4: for all s ∈ f2, f2(s) ≡ f ′(s) ∧ φs. Follows by definition of f2 and
Claim 1.
Claim 1 and Claim 3, together with the fact that I1 is well-formed, and by the
part 1 of this theorem, imply that I2 is well-formed. Claim 4 implies that I2 is
a witness for I ′, thus, I ′ is well-formable.

Proof of Lemma 6. Let f := f(θ(I1, I2)). Proof is by induction on the length
of states. Basis: the result holds for ε. Induction step: Let s1 · a1 ∈ f1. This
means that there exists state s · a ∈ f such that s1 · a1 is the projection of s · a to
the variables of I1. From s · a ∈ f , we get a |= f(s) i.e. a |= f1(s1) ∧ f2(s2) ∧ · · · .
Therefore, a |= f1(s1), which means a1 |= f1(s1). By the induction hypothesis,
s1 ∈ f(I1). These two facts imply s1 ·a ∈ f(I1). This proves f1 ⊆ f(I1). The proof
of f2 ⊆ f(I2) is similar.

Proof of Theorem 12. Let I1 = (X,Y ∪ V, f1) and I2 = (Z ∪W,U, f2), so
that Y ∩V = Z ∩W = ∅, Z = InVars(θ) and Y = {y | ∃(y, x) ∈ θ}. In other words,
Y represents the set of output variables of I1 that are connected to input variables
of I2. V is the set of the rest of the output variables of I1. Z represents those
input variables of I2 that are connected to outputs of I1 and W those that are not
connected. Any of the sets X,Y, V, Z,W,U may be empty. Let I ′1 = (X,Y ∪ V, f ′1)
and I ′2 = (Z ∪W,U, f ′2). The composition setting is illustrated in Figure 16.

Given the above, and Definition 9, we have, for s ∈ A(X ∪W ∪Y ∪V ∪Z ∪U)∗,
s1 the projection of s to X ∪ Y ∪ V , and s2 the projection of s to W ∪ Z ∪ U :

θ(I1, I2) := (X ∪W,Y ∪ V ∪ Z ∪ U, f) (29)

f(s) := f1(s1) ∧ f2(s2) ∧ ρθ ∧Ψ (30)

Ψ := ∀Y ∪ V ∪ Z ∪ U : (f1(s1) ∧ ρθ)→ in(f2(s2)) (31)

θ(I ′1, I
′
2) := (X ∪W,Y ∪ V ∪ Z ∪ U, f ′) (32)

f ′(s) := f ′1(s1) ∧ f ′2(s2) ∧ ρθ ∧Ψ′ (33)

Ψ′ := ∀Y ∪ V ∪ Z ∪ U : (f ′1(s1) ∧ ρθ)→ in(f ′2(s2)) (34)

Let s ∈ f ∩ f ′. To prove θ(I ′1, I
′
2) v θ(I1, I2) we need to prove that: (A) in(f(s))→

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

· 165

in(f ′(s)) is valid; and (B) (in(f(s))∧f ′(s))→ f(s) is valid. Note that, by Lemma 6,
s1 ∈ f1 ∩ f ′1 and s2 ∈ f2 ∩ f ′2. We use these two facts without mention in the rest
of the proof. We proceed in proving claims (A) and (B).

(A): in(f(s))→ in(f ′(s)) is valid: Suppose the result does not hold. This means
that in(f(s)) ∧ ¬in(f ′(s)) is satisfiable, i.e.,

ψ1 := (∃Y ∪ V ∪ Z ∪ U : f1(s1) ∧ f2(s2) ∧ ρθ ∧Ψ)

∧(∀Y ∪ V ∪ Z ∪ U : ¬f ′1(s1) ∨ ¬f ′2(s2) ∨ ¬ρθ ∨ ¬Ψ′)

is satisfiable. Note that ψ1, Ψ and Ψ′ are all formulae over X ∪W , therefore, ψ1 is
equivalent to:

ψ2 := Ψ ∧ (∃Y ∪ V ∪ Z ∪ U : f1(s1) ∧ f2(s2) ∧ ρθ)
∧
(
¬Ψ′ ∨ (∀Y ∪ V ∪ Z ∪ U : ¬f ′1(s1) ∨ ¬f ′2(s2) ∨ ¬ρθ)

)
Let a be an assignment over X ∪ W satisfying ψ2. We claim that a |= ¬Ψ′.

Suppose not, i.e., a |= Ψ′. Then, from a |= ψ2, we derive a |= ∀Y ∪ V ∪ Z ∪ U :
¬f ′1(s1) ∨ ¬f ′2(s2) ∨ ¬ρθ. Also, a |= in(f1(s1)). Since I ′1 v I1, a |= in(f ′1(s1)).
This means that there exists an assignment c over Y ∪ V such that (a, c) |= f ′1(s1).
Let d be an assignment over Z such that (c, d) |= ρθ: that is, we set an input
variable z of I2 to the value c(y) of the output variable y of I1 that z is connected
to. Combining, we have (a, c, d) |= f ′1(s1) ∧ ρθ. This and a |= Ψ′ imply that
(a, c, d) |= in(f ′2(s2)). Therefore, there exists an assignment e over U such that
(a, c, d, e) |= f ′2(s2). Combining, we have (a, c, d, e) |= f ′1(s1) ∧ f ′2(s2) ∧ ρθ, which
contradicts a |= ∀Y ∪V ∪Z ∪U : ¬f ′1(s1)∨¬f ′2(s2)∨¬ρθ. Thus, the claim a |= ¬Ψ′

is proven and we have that a satisfies:

ψ3 := Ψ ∧ ¬Ψ′ ∧ (∃Y ∪ V ∪ Z ∪ U : f1(s1) ∧ f2(s2) ∧ ρθ)
Since a does not satisfy Ψ′, there exists an assignment b over Y ∪ V ∪ Z ∪ U ,

such that (a, b) |= f ′1(s1) ∧ ρθ ∧ ¬in(f ′2(s2)). Since I ′2 v I2, in(f2(s2))→ in(f ′2(s2)),
or ¬in(f ′2(s2)) → ¬in(f2(s2)). Therefore, (a, b) |= ¬in(f2(s2)). Now, from a |= ψ3,
we get (a, b) |= in(f1(s1)). From I ′1 v I1 we have in(f1(s1)) ∧ f ′1(s1) → f1(s1).
Therefore, (a, b) |= f1(s1). This, together with a |= Ψ and (a, b) |= ρθ, imply
(a, b) |= in(f2(s2)). Contradiction. This completes the proof of Part (A).

(B): (in(f(s)) ∧ f ′(s)) → f(s) is valid: Suppose the result does not hold. This
means that in(f(s)) ∧ f ′(s) ∧ ¬f(s) is satisfiable, i.e.,

ψ4 := (∃Y ∪ V ∪ Z ∪ U : f1(s1) ∧ f2(s2) ∧ ρθ ∧Ψ)

∧(f ′1(s1) ∧ f ′2(s2) ∧ ρθ ∧Ψ′) ∧ (¬f1(s1) ∨ ¬f2(s2) ∨ ¬ρθ ∨ ¬Ψ)

is satisfiable. Because Ψ and Ψ′ are formulae over X ∪W , ψ4 simplifies to:

ψ5 := Ψ ∧Ψ′ ∧ (∃Y ∪ V ∪ Z ∪ U : f1(s1) ∧ f2(s2) ∧ ρθ)
∧(f ′1(s1) ∧ f ′2(s2) ∧ ρθ) ∧ (¬f1(s1) ∨ ¬f2(s2))

Let a be an assignment over X ∪ W such that a |= ψ5. Then a |= in(f1(s1)) ∧
in(f2(s2)) ∧ f ′1(s1) ∧ f ′2(s2). From the hypotheses I ′1 v I1 and I ′2 v I2, we get
in(f1(s1)) ∧ f ′1(s1) → f1(s1) and in(f2(s1)) ∧ f ′2(s2) → f2(s2). Therefore a |=
f1(s1) ∧ f2(s2), which contradicts a |= ψ5. This completes the proof of Part (B)
and of the theorem.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

166 ·
Proof of Theorem 13. Let I = (X,Y, f). Because I ′ v I, I ′ = (X,Y, f ′) for

some f ′. Then: κ(I) = (X \ {x}, Y ∪ {x}, fκ) and κ(I ′) = (X \ {x}, Y ∪ {x}, f ′κ),
where fκ(s) := f(s) ∧ x = y and f ′κ(s) := f ′(s) ∧ x = y, for all s ∈ A(X ∪ Y)∗. To
show that κ(I ′) v κ(I), we need to prove that for any s ∈ fκ ∩ f ′κ, the following
formulae are valid:

in(fκ(s))→ in(f ′κ(s))(
in(fκ(s)) ∧ f ′κ(s)

)
→ fκ(s)

By part 1 of Lemma 3, s ∈ fκ ∩ f ′κ implies s ∈ f ∩ f ′. By part 2 of Lemma 3,
in(fκ(s)) ≡ in(f(s)) and in(f ′(s)) ≡ in(f ′κ(s)). This and in(f(s))→ in(f ′(s)) imply
in(fκ(s))→ in(f ′κ(s)). Moreover:(

in(fκ(s)) ∧ f ′κ(s)
)
≡
(
in(f(s)) ∧ f ′(s) ∧ x = y

)
→ (f(s) ∧ x = y) ≡ fκ(s)

Proof of Theorem 14. Recall that hide(y, Ii) = (X,Y \ {y}, f ′i), such that
for any s ∈ A(X ∪ Y \ {y})∗, f ′i(s) ≡ ∃y : fi(s). To show hide(y, I2) v hide(y, I1)
we need to show that for any s ∈ f ′1 ∩ f ′2, we have in(f ′1(s)) → in(f ′2(s)) and
in(f ′1(s)) ∧ f ′2(s) → f ′1(s). The first proof obligation becomes (∃Y \ {y} : ∃y :
f1(s))→ (∃Y \ {y} : ∃y : f2(s)), or equivalently, in(f1(s))→ in(f2(s)), which holds
by hypothesis I2 v I1. Note that although s is a state in A(X ∪ Y \ {y})∗, we can
write f1(s) and f2(s), because both f1 and f2 are independent from y.

The second proof obligation becomes (∃Y \{y} : ∃y : f1(s))∧ (∃y : f2(s))→ (∃y :
f1(s)), or equivalently, in(f1(s)) ∧ (∃y : f2(s)) → (∃y : f1(s)). Let (aX , aY \{y}) ∈
A(X ∪ Y \ {y}) be such that aX ∈ in(f1(s)) and (aX , aY \{y}) ∈ (∃y : f2(s)). Then
there exists aY ∈ A(Y) such that (aX , aY) ∈ f2(s) and aY \{y} is the projection
of aY to Y \ {y}. From hypothesis I2 v I1, it must be that (aX , aY) ∈ f1(s).
Therefore (aX , aY \{y}) ∈ (∃y : f1(s)).

Proof of Theorem 15.

(1) Suppose I ′ v I and let E be an environment such that I � E. We prove
that I ′ � E. Clearly, E is an environment for I ′, since the input and output
variables of I ′ are the same as those of I. We distinguish cases:
—E is Moore. Then we must prove that K(θ(E, I ′)) is well-formed, assuming

that K(θ(E, I)) is well-formed. By Theorems 12 and 13, K(θ(E, I ′)) v
K(θ(E, I)). Both K(θ(E, I)) and K(θ(E, I ′)) are source interfaces, therefore,
by part 2 of Theorem 11, K(θ(E, I ′)) is well-formed.

—E is not Moore, therefore I is Moore. Then we must prove that K(θ(I ′, E))
is well-formed, assuming that K(θ(I, E)) is well-formed. The argument is
similar to the previous case.

(2) Let I = (X,Y, f) and I ′ = (X ′, Y ′, f ′) and suppose I ′ 6v I. If X 6= X ′ or
Y 6= Y ′ then we can find, by Theorem 8, environment E for I such that I � E,
and E is not an environment for I ′, thus I ′ 6� E. We concentrate on the
case X = X ′ and Y = Y ′. Then I ′ 6v I means there exists s ∈ f ∩ f ′ such
that Condition (16) does not hold. Define environment E for I with contract
function fe where fe(r) := in(f(r)) for all states r. (Again we are slightly
abusing notation: in(f(r)) is a property over X, but fe(r) is a property over

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

· 167

X̂, the output variables of E.) By definition, E is Moore. Because I is well-
formed, I � E. We claim that I ′ 6� E. We distinguish cases:
—in(f(s)) 6→ in(f ′(s)): Observe that, in the contract of the connection of E

and I ′, the term Φ of (11) evaluates to false at state s: this is because
fe(s) 6→ in(f ′(s)). Therefore, the entire contract of the connection is also
false at s, which means that the connection of I ′ and E is not well-formed.

—in(f(s)) → in(f ′(s)) but in(f(s)) ∧ f ′(s) 6→ f(s): At state s, there exists
input aX ∈ in(f(s)) = fe(s), for which I ′ can produce output aY such
that a := (aX , aY) ∈ f ′(s) \ f(s). Since a 6∈ f(s), f(s · a) is empty, thus
fe(s ·a) ≡ false, thus, again, the composition of I ′ with E is not well-formed.

Proof of Lemma 7. Let I = (X,Y, f) and I ′ = (X ′, Y ′, f ′).
f ∩ f ′ ⊆ f(I u I ′): By induction on the length of states. It holds for the state of

length zero, i.e., the empty state ε, because ε is reachable in any interface. Suppose
s · a ∈ f ∩ f ′. Then s ∈ f ∩ f ′, and from the induction hypothesis, s ∈ f(I u I ′).
Since s · a ∈ f , a |= f(s). Since s · a ∈ f ′, a |= f ′(s). Thus a |= f(s) ∧ f ′(s). Thus
a |= (in(f(s)) ∨ in(f ′(s))) ∧ (in(f(s))→ f(s)) ∧ (in(f ′(s))→ f ′(s)) ≡ fu(s).
f(I u I ′) ⊆ f ∪ f ′: By induction on the length of states. Basis: It holds for the

empty state ε. Induction step: Suppose s · a ∈ f(I u I ′). Then a |= fu(s). Also,
s ∈ f(I u I ′), and from the induction hypothesis, s ∈ f ∪ f ′. Suppose s ∈ f (the
other case is symmetric). There are two sub-cases:

Case 1: s ∈ f ′: Then fu(s) ≡ (in(f(s)) ∨ in(f ′(s))) ∧ (in(f(s)) → f(s)) ∧
(in(f ′(s)) → f ′(s)). Since a |= fu(s), a |= (in(f(s)) ∨ in(f ′(s))). Suppose a |=
in(f(s)) (the other case is symmetric). Then, since a |= in(f(s)) → f(s), we have
a |= f(s), thus, s · a ∈ f .

Case 2: s 6∈ f ′: Then fu(s) ≡ f(s), therefore, a |= f(s), thus, s · a ∈ f .

Proof of Lemma 8. By Lemma 7, s ∈ fu. Using the fact that in(f(s)) and
in(f ′(s)) are properties over X, and the fact that the existential quantifier dis-
tributes over disjunctions, we can show the following equivalences:

in(fu(s)) ≡
∃Y :

((
in(f(s)) ∨ in(f ′(s))

)
∧
(
in(f(s))→ f(s)

)
∧
(
in(f ′(s))→ f ′(s)

))
≡(

in(f(s)) ∨ in(f ′(s))
)
∧ ∃Y :

((
¬in(f(s)) ∨ f(s)

)
∧
(
¬in(f ′(s)) ∨ f ′(s)

))
Clearly, the last formula implies in(f(s)) ∨ in(f ′(s)). For the converse, we need to
show that in(f(s)) ∨ in(f ′(s)) implies

∃Y :
(
¬in(f(s)) ∨ f(s)

)
∧
(
¬in(f ′(s)) ∨ f ′(s)

)
(35)

Now, in(f(s)) ∨ in(f ′(s)) is equivalent to(
¬in(f(s)) ∧ in(f ′(s))

)
∨
(

in(f(s)) ∧ ¬in(f ′(s))
)
∨
(

in(f(s)) ∧ in(f ′(s))
)

and clearly both the first two disjuncts imply Condition (35). It remains to show
that in(f(s)) ∧ in(f ′(s)) implies Condition (35). This holds thanks to shared-
refinability Condition (24).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

168 ·
Proof of Theorem 17. Since I and I ′ are shared-refinable, they have the

same sets of input and output variables. Let I = (X,Y, f) and I ′ = (X,Y, f ′).
Let I u I ′ = (X,Y, fu). To prove (I u I ′) v I, we need to show that for all
s ∈ fu ∩ f :

in(f(s))→ in(fu(s))(
in(f(s)) ∧ fu(s)

)
→ f(s)

The first condition follows from Lemma 8 and the second by definition of fu. The
proof for (I u I ′) v I ′ is symmetric. Thus, I u I ′ is a lower bound of I and I ′.

To show that I u I ′ is the greatest lower bound, let I ′′ = (X,Y, f ′′). To prove
I ′′ v (I u I ′) we must prove in(fu(s)) → in(f ′′(s)) and in(fu(s)) ∧ f ′′(s) → fu(s).
By Lemma 8 and the definition of fu, these conditions become:(

in(f(s)) ∨ in(f ′(s))
)
→ in(f ′′(s))((

in(f(s)) ∨ in(f ′(s))
)
∧ f ′′(s)

)
→((

in(f(s)) ∨ in(f ′(s))
)
∧
(
in(f(s))→ f(s)

)
∧
(
in(f ′(s))→ f ′(s)

))
From hypotheses I ′′ v I and I ′′ v I ′ we get in(f(s)) → in(f ′′(s)) and in(f ′(s)) →
in(f ′′(s)), from which the first condition follows. We also get in(f(s))∧f ′′(s)→ f(s)
and in(f ′(s)) ∧ f ′′(s)→ f ′(s), therefore,(

in(f(s)) ∨ in(f ′(s))
)
∧ f ′′(s)→

(
f(s) ∧ f ′(s)

)
,

from which the second condition follows.

Proof of Theorem 18. Let I = (X,Y, f), I ′ = (X,Y, f ′) and IuI ′ = (X,Y, fu).
Let s ∈ fu. By Lemma 7, s ∈ f ∪ f ′. Suppose s ∈ f . By hypothesis, f(s) 6= ∅.
Let a ∈ f(s) and a = (aX , aY) where aX ∈ A(X) and aY ∈ A(Y). Clearly,
aX ∈ in(f(s)). If aX 6∈ in(f ′(s)) then a clearly satisfies Formula (25), thus a ∈ fu(s).
If aX ∈ in(f ′(s)) then aX ∈ in(f(s)) ∩ in(f ′(s)), therefore, by shared-refinability
Condition (24), there must exist a′Y ∈ A(Y) such that (aX , a

′
Y) ∈ f(s)∩f ′(s). Then

(aX , a
′
Y) clearly satisfies Formula (25), thus (aX , a

′
Y) ∈ fu(s). The case s ∈ f ′ is

symmetric.

Proof of Lemma 9. Let I = (X,Y, f), I ′ = (X,Y, f ′) and I t I ′ = (X,Y, ft).
We prove ft ⊆ f ∪ f ′ by induction on the length of states. Basis: it holds for
ε. Step: let s · a ∈ ft. Then a ∈ ft(s). Thus s ∈ ft and from the induction
hypothesis, s ∈ f ∪ f ′. There are three cases:

—s ∈ f ∩ f ′: Then a |= in(f(s)) ∧ in(f ′(s)) ∧
(
f(s) ∨ f ′(s)

)
, thus, a ∈ f(s) ∪ f ′(s).

Thus s · a ∈ f ∪ f ′.
—s ∈ f \ f ′: Then a |= f(s), thus s · a ∈ f .

—s ∈ f ′ \ f : Then a |= f ′(s), thus s · a ∈ f ′.
The proof f ∩f ′ ⊆ ft is also by induction. Let s ·a ∈ f ∩f ′. Then a ∈ f(s)∩f ′(s),
so s ∈ f ∩ f ′. Clearly then, a |= ft(s), thus s · a ∈ ft.

Proof of Theorem 19. Let I = (X,Y, f), I ′ = (X,Y, f ′) and ItI ′ = (X,Y, ft).
Consider s ∈ f ∩ ft. There are two cases:

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

· 169

—s ∈ f ′: Then

in(ft(s)) ≡ in
(

in(f(s)) ∧ in(f ′(s)) ∧ (f(s) ∨ f ′(s))
)
≡

in(f(s)) ∧ in(f ′(s)) ∧ in(f(s) ∨ f ′(s)) ≡
in(f(s)) ∧ in(f ′(s)) ∧

(
in(f(s)) ∨ in(f ′(s))

)
≡ in(f(s)) ∧ in(f ′(s))

and the refinement conditions for I v (I t I ′) become(
in(f(s)) ∧ in(f ′(s))

)
→ in(f(s))(

in(f(s)) ∧ in(f ′(s)) ∧ f(s)
)
→
(

in(f(s)) ∧ in(f ′(s)) ∧
(
f(s) ∨ f ′(s)

))
which clearly hold.

—s 6∈ f ′: Then in(ft(s)) ≡ in(f(s)), and the refinement conditions for I v (I t I ′)
become in(f(s))→ in(f(s)) and in(f(s)) ∧ f(s)→ f(s), which clearly hold.

This proves I v (I t I ′). Similarly we show I ′ v (I t I ′).
Now, let I ′′ = (X,Y, f ′′) and consider s ∈ ft∩f ′′. By Lemma 9, s ∈ (f∪f ′)∩f ′′.

To show (ItI ′) v I ′′, we need to show in(f ′′(s))→ in(ft(s)) and in(f ′′(s))∧ft(s)→
f ′′(s). We reason by cases:

—s ∈ f ∩ f ′ ∩ f ′′: then the proof obligations above become: in(f ′′(s))→ in(f(s))∧
in(f ′(s)) and in(f ′′(s)) ∧ in(f(s)) ∧ in(f ′(s)) ∧

(
f(s) ∨ f ′(s)

)
→ f ′′(s). From

hypotheses s ∈ f ∩ f ′, I v I ′′ and I ′ v I ′′ we get in(f ′′(s)) → in(f(s))
and in(f ′′(s)) → in(f ′(s)), from which the first condition follows. We also get
in(f ′′(s)) ∧ f(s) → f ′′(s) and in(f ′′(s)) ∧ f ′(s) → f ′′(s), therefore, in(f ′′(s)) ∧(
f(s) ∨ f ′(s)

)
→ f ′′(s), from which the second condition follows.

—s ∈ (f \ f ′) ∩ f ′′: then the proof obligations become: in(f ′′(s)) → in(f(s)) and
in(f ′′(s)) ∧ f(s)→ f ′′(s), which hold from hypotheses s ∈ f ∩ f ′′ and I v I ′′.

—s ∈ (f ′ \ f) ∩ f ′′: similar to the previous case.

Proof of Theorem 20. Let I be a well-formed interface with contract f . If
I is Moore then f(s) refers to no input variables, therefore, in(f(s)) has no free
variables, thus, it is equivalent to either true or false. I is well-formed, so in(f(s))
must be true for all s.

Proof of Theorem 21. Let I = (X,Y, f) be an input-complete interface. Then
in(f(s)) is valid for all s ∈ A(X ∪ Y)∗, i.e., ∃Y : f(s) ≡ true for any assignment
over X. Let aX be an assignment over X (note that aX is defined even when X is
empty). Then there exists an assignment aY on Y such that the combined assign-
ment (aX , aY) on X ∪ Y satisfies f(s). Thus, f(s) is satisfiable, which means I is
well-formed.

Proof of Theorem 22. Let I = (X,Y, f) and IC(I) = (X,Y, fic). Let s ∈
A(X ∪ Y)∗.

(1) in(fic(s)) ≡ ∃Y : (f(s) ∨ ¬in(f(s))) ≡ (∃Y : f(s)) ∨ ¬in(f(s)) ≡ in(f(s)) ∨
¬in(f(s)) ≡ true, thus, IC(I) is input-complete.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

170 ·
(2) Obviously, in(f(s)) → in(fic(s)). We need to show that (in(f(s)) ∧ (f(s) ∨
¬in(f(s)))) → f(s). The premise can be rewritten as (in(f(s)) ∧ f(s)) ∨
(in(f(s)) ∧ ¬in(f(s))) ≡ in(f(s)) ∧ f(s), which clearly implies f(s).

Proof of Theorem 23. In f , the term Φ defined in Formula (11) is equivalent
to true because in(f2(s2)) ≡ true. To see that θ(I1, I2) is input-complete, consider
a state s ∈ A(Xθ(I1,I2) ∪ Yθ(I1,I2))∗ and let a be an assignment over Xθ(I1,I2).
Since in(f1(s1)) ≡ true, and X1 ⊆ Xθ(I1,I2), there exists an assignment b over
Y1 such that (a, b) |= f1(s1). Let c be an assignment over InVars(θ) such that
(b, c) |= ρθ: such an assignment can always be found by setting c(x) to the value
that b assigns to y, where (y, x) ∈ θ. Since in(f2(s2)) ≡ true, there exists an
assignment d over Y2 such that (a, c, d) |= f2(s2). Combining the assignments we
get (a, b, c, d) |= f1(s1)∧f2(s2)∧ρθ ≡ f(s), therefore, θ(I1, I2) is input-complete.

Proof of Theorem 24. By definition, κ(I) = (X \ {x}, Y ∪ {x}, fκ), where
fκ(s) ≡ f(s) ∧ (x = y), for all s ∈ A(X ∪ Y)∗. Let s ∈ A(X ∪ Y)∗. We must show
that in(fκ(s)) ≡ ∃Y ∪ {x} : f(s) ∧ (x = y) is valid. Because f(s) does not refer to
x, we have ∃Y ∪{x} : f(s)∧ (x = y) ≡ ∃Y : ∃x : f(s)∧ (x = y) ≡ ∃Y : (f(s)∧ (∃x :
x = y)) ≡ ∃Y : f(s) ≡ in(f(s)) ≡ true.

Proof of Theorem 25. I is input-complete means in(f(s)) is valid for all s ∈
A(X ∪ Y)∗. We must show that ∃Y \ {y} : (∃y : f(s)) is valid: the latter formula
is equivalent to ∃Y : f(s), i.e., in(f(s)).

Proof of Theorem 29. Following Definition 9, it suffices to prove that the
formula

(f1(s1) ∧ f2(s2) ∧ ρθ)→
(
∀Yθ(I1,I2) : (f1(s1) ∧ ρθ)→ in(f2(s2))

)
is valid for any s1, s2. Let a ∈ A(X1 ∪ Y1 ∪ X2 ∪ Y2) such that a |= f1(s1) ∧
f2(s2) ∧ ρθ. We need to prove that a |= ∀Yθ(I1,I2) : (f1(s1) ∧ ρθ)→ in(f2(s2)). Let
b ∈ A(Yθ(I1,I2)) such that (a|b) |= f1(s1) ∧ ρθ. Here, (a|b) denotes the assignment
obtained by replacing in a the values of all variables of b (i.e., variables in Yθ(I1,I2))
by the values assigned to them by b. We need to prove that (a|b) |= in(f2(s2)).
Observe that, because X1∩Yθ(I1,I2) = ∅, for all x1 ∈ X1, we have a(x1) = (a|b)(x1).
This and the fact that I1 is deterministic imply that for all y1 ∈ Y1, we have a(y1) =
(a|b)(y1). This and the facts a |= ρθ and (a|b) |= ρθ imply that for all x2 ∈ InVars(θ),
we have a(x2) = (a|b)(x2). Finally observe that, because (X2\InVars(θ))∩Yθ(I1,I2) =
∅, for all x′2 ∈ X2 \ InVars(θ), we have a(x′2) = (a|b)(x′2). Collecting the last two
results, we get that for all x2 ∈ X2, we have a(x2) = (a|b)(x2). This and a |= f2(s2)
imply (a|b) |= in(f2(s2)).

Proof of Theorem 30. Recall that hide(y, I) = (X,Y \ {y}, f ′), such that
for any s ∈ A(X ∪ Y \ {y})∗, f ′(s) ≡ ∃y : f(s). If Y = {y} then hide(y, I)
is a sink, therefore, deterministic by Theorem 28. Otherwise, let s ∈ f ′ and let
aX ∈ in(f ′(s)) ≡ ∃Y \ {y} : ∃y : f(s) ≡ in(f(s)). Since I is deterministic, there
is a unique aY ∈ A(Y) such that (aX , aY) ∈ f(s). Therefore, there is a unique
aY \{y} ∈ A(Y \ {y}), where aY \{y} is the projection of aY to Y \ {y}, such that
(aX , aY \{y}) ∈ f ′(s), which proves determinism of hide(y, I).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

· 171

Proof of Theorem 31. Let I = (X,Y, f) and I ′ = (X,Y, f ′).
First, suppose I ′ v I. To prove f ⊆ f ′, it suffices to show that for all s ∈ f ,

f(s) → f ′(s) is valid. Let a ∈ A(X ∪ Y) such that a ∈ f(s). Let a = (aX , aY)
where aX ∈ A(X) and aY ∈ A(Y). Then aX ∈ in(f(s)), and by Definition 16,
aX ∈ in(f ′(s)). Therefore there exists a′Y ∈ A(Y) such that (aX , a

′
Y) ∈ f ′(s).

By Definition 16, (aX , a
′
Y) ∈ f(s). Since I is deterministic, a′Y = aY . Thus,

a = (aX , aY) ∈ f ′(s).
Conversely, suppose f ⊆ f ′. To prove I ′ v I, it suffices to show that for all

s ∈ f , the formulas in(f(s)) → in(f ′(s)) and in(f(s)) ∧ f ′(s) → f(s) are valid.
Let aX ∈ in(f(s)). Then there exists aY ∈ A(Y) such that a := (aX , aY) ∈ f(s).
Thus, s · a ∈ f , and by hypothesis, s · a ∈ f ′, therefore, a ∈ f ′(s). This implies
aX ∈ in(f ′(s)). This proves in(f(s)) → in(f ′(s)). Now consider (aX , a

′
Y) ∈ f ′(s)

such that aX ∈ in(f(s)). The latter fact and determinism of I imply that (aX , a
′
Y) ∈

f(s), which proves in(f(s)) ∧ f ′(s)→ f(s).

Proof of Theorem 32. Let f := f(I), f ′ := f(I ′), fu := f(I u I ′) and ft :=
f(I t I ′).
(1) The containment fu ⊆ f ∪ f ′ follows from Lemma 7. The converse is proven

by induction on the length of states. Basis: ε ∈ fu. Induction step: Suppose
s · a ∈ f ∪ f ′. WLOG, assume s · a ∈ f . Then a ∈ f(s). Let a = (aX , aY)
with aX ∈ in(f(s)). If aX 6∈ in(f ′(s)), then clearly a ∈ fu(s). Otherwise,
there exists a′Y such that (aX , a

′
Y) ∈ f ′(s). Since I ′ is deterministic, and by

the shared-refinability hypothesis, aY = a′Y . Therefore a ∈ f(s) ∩ f ′(s), or
s · a ∈ f ∩ f ′, thus, by Lemma 7, s · a ∈ fu.

(2) The containment f ∩f ′ ⊆ ft follows from Lemma 9. The converse is proven by
induction on the length of states. Basis: ε ∈ f ∩ f ′. Induction step: Suppose
s · a ∈ ft, thus, a ∈ ft(s). By the induction hypothesis, s ∈ ft implies
s ∈ f ∩ f ′. Thus, a |= in(f(s))∧ in(f ′(s))∧

(
f(s)∨ f ′(s)

)
. Because I and I ′ are

deterministic, this implies a |= f(s) ∧ f ′(s), therefore, s · a ∈ f ∩ f ′.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

