
Discrete Event Dynamic Systems
https://doi.org/10.1007/s10626-023-00386-8

On tolerance of discrete systems with respect to transition
perturbations

Rômulo Meira-Góes1 · Eunsuk Kang2 · Stéphane Lafortune3 · Stavros Tripakis4

Received: 13 October 2022 / Accepted: 19 September 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Control systems should enforce a desired property for both expected/modeled situations
as well as unexpected/unmodeled environmental situations. Existing methods focus on
designing controllers to enforce the desired property only when the environment behaves
as expected. However, these methods lack discussion on how the system behaves when the
environment is perturbed. In this paper, we propose an approach for analyzing discrete-state
control systems with respect to their tolerance against environmental perturbations. We for-
mally define this notion of tolerance and describe a general technique to compute it, for any
given regular property. We also present a more efficient method to compute tolerance with
respect to invariance properties. Moreover, we show that there exists an inherent trade-off
between permissiveness and tolerance that we capture via Pareto optimality conditions. We
also study the problem of synthesizing Pareto optimal controllers that achieve a minimum
level of tolerance and permissiveness.We demonstrate our framework on examples involving
surveillance protocols and robotic motion planning.

Keywords Tolerance · Discrete transition systems · Model uncertainty · Labeled transition
systems

1 Introduction

In control systems, a controller is designed to enforce a desired property over the environment
that it controls. Controller synthesis methods provide means to synthesize controllers that
ensure a desired property expressed in formal logic (Ramadge and Wonham 1987; Pnueli
and Rosner 1989; Cassandras and Lafortune 2021; Tabuada 2009; Belta et al. 2017). These
controllers are usually synthesized to maximize the behavior of the closed-loop systemwhile
satisfying the property, i.e., the most permissive controllers. However, these methods rely

This work has been supported by the US National Science Foundation under awards CNS-1801342,
CNS-1801546, CCF-1918140, and ECCS-2144416.

B Rômulo Meira-Góes
romulo@psu.edu

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10626-023-00386-8&domain=pdf
http://orcid.org/0000-0003-3567-9685

Discrete Event Dynamic Systems

heavily on assumptions about the behavior and properties of the environment—themselves
specified as part of a formal environment model.

In practice, building a perfectly faithful model of the environment is difficult, if not
impossible, and the actual environment may behave differently from the model; we call the
differences between the actual and modeled environments perturbations. A perturbation in
the environment model may result in a violation of one or more assumptions and possibly
jeopardize the correctness of the controller. Thus, in addition to being correct, an ideal
controller must be capable of tolerating certain reasonable perturbations in the environment
model, in that it is capable of guaranteeing a desired property even under those perturbations.

In this paper, we investigate the problem of analyzing the tolerance of a controller against
environmental perturbations. We study this problem under controllers and environments that
aremodeled as discrete transition systems. At a highlevel, consider controller f , environment
E , and desired property P such that E | f |� P , i.e., the controller is correct, in that it guar-
antees P under E . In our approach, perturbations are modeled as additional transitions to the
original environment model E , resulting in a new perturbed model, E ′. Then, the controller
f is said to be tolerant against these perturbations if it is still capable of guaranteeing P
even under this new perturbed system, i.e., E ′| f |� P . Based on this intuition, we define the
notion of tolerance level of a controller, denoted by Δ, as the set of all perturbations against
which the controller is tolerant. The tolerance level is an intrinsic property of a controller that
can be computed algorithmically. We show how the problem of computing tolerance can be
reduced to model checking problems for discrete systems. For a general ω-regular property
P , this algorithm is brute-force in nature, as it enumerates the set of all possible tolerable
perturbations.

This brute-force algorithm motivates us to investigate more efficient algorithms for com-
puting the tolerance level Δ. We do that by restricting our attention to the special case where
P is an invariance property. Invariance properties are an important class of properties that
constitute many of the applications of formal verification techniques in industry (Newcombe
et al. 2015; Ball et al. 2011). Intuitively, invariance ensures that the environment remains
within a set of safe states. In this case, we show that there exists a unique maximal set of
perturbations for which the controller is tolerant. This result allows us to reduce the problem
of computing the tolerance level Δ to a reachability analysis problem.

We also study an inherent trade-off between tolerance of controllers and their permis-
siveness. Intuitively, to achieve more tolerance, the controller needs to restrict the behavior
of the controlled system, reducing permissiveness. On the other hand, to increase permis-
siveness, the controller enlarges the behavior of the controlled system leading to a reduction
of tolerance. We formally characterize the trade-off between permissiveness and tolerance
for invariance properties using Pareto optimality conditions. We show that memoryless con-
trollers are sufficient to describe the Pareto front for invariance properties. Furthermore, we
study and provide a solution to the problem of synthesizing Pareto optimal controllers that
achieve a minimum level of tolerance and permissiveness.

After presenting a motivating example (Section 2) and preliminary definitions (Section 3),
wedefine a newnotion of tolerance of controllers to environmental perturbations and a general
technique to automatically compute it (Section 4). In Section 5, we investigate this notion
of tolerance with respect to invariance properties and devise a more efficient algorithm to
compute it.We investigate the tradeoff between tolerance and permissiveness and solve a new
synthesis problem in Section 6. Section 7 demonstrates our approach to examples involving
surveillance protocols and robotic motion planning. Lastly, related work and conclusions are
discussed in Sections 8-9, respectively. An earlier version of this paper appeared in Meira-
Góes et al. (2022).

123

Discrete Event Dynamic Systems

2 Motivating example

As a motivating example, we consider a surveillance scenario of two autonomous drones,
ego and srv. These drones monitor the surroundings of a building as depicted in Fig. 1a.
Ego desires to obtain information about the building without being captured by srv, where
“captured” means that both drones are in the same location. It also assumes that srv surveils
the building by following the strategy depicted in Fig. 1b, i.e., srv surveils the building by
always moving in the clockwise direction.

Classical reactive synthesis techniques can synthesize a controller for ego that guarantees
the satisfaction of its property (Pnueli 1977; Pnueli and Rosner 1989; Alur and La Torre
2001; Bloem et al. 2012; Grädel et al. 2002). For example, we can synthesize two controllers
that guarantee that srv does not capture ego: controller 1 maintains ego most of the time
in location 1 but it allows ego to visit location 2 when srv is in location 4, and controller
2 ensures that ego trails two steps behind srv. These controllers, however, may no longer
guarantee the property if the model of the system changes.

Suppose that srv does not conform with the strategy assumed by ego, e.g., srv decides
to go counter-clockwise to monitor the building. Then, we must validate these controllers
against these perturbations with an extra verification step. For example, if srv moves counter-
clockwise, controller 1 still guarantees that ego is not captured but controller 2 no longer
does. Another option is to synthesize a new controller based on the model of the system
augmented with the possible “known” perturbations (Topcu et al. 2012).

In comparison, we pose the following question: For which model perturbations will a
controller ensure the given property?Our notion of tolerance level,Δ, answers this question.
Δ is useful for system designers in a number of ways:

(1) Understanding controller tolerance Δ exactly captures the set of all perturbations
under which the system can (and cannot) guarantee a given property. For example, our
notion of tolerance explicitly states that controller 1 ensures ego’s property even when srv
moves counter-clockwise. On the other hand, the tolerance of controller 2 states that ego
will collide with srv when srv moves counter-clockwise. The designer can analyze these
controllers before their deployment. If Δ does not include certain perturbations of interest,
e.g., srv moving counter-clockwise, the designer may revise the controller to increase its
tolerance to a desired level.

(2) Comparing tolerance and permissiveness of different controllers Our notion of toler-
ance also allows comparison between controllers (f1 and f2) with respect to their tolerance
levels, e.g., Δ1 ⊂ Δ2? For example, this comparison allows us to affirm that controller 1 is

Fig. 1 Motivating example of a surveillance scenario

123

Discrete Event Dynamic Systems

more tolerant than controller 2. This tolerance comparison can be enhanced with the notion
of permissiveness. For instance, although controller 1 is more tolerant than controller 2, this
additional tolerance comes at the cost of permissiveness. Controller 1 only allows ego to visit
location 2 while controller 2 allows ego to visit locations 2-5. The designer can analyze this
trade-off between permissiveness and tolerance using our Pareto optimality conditions. In
this manner, the designer may decide which controller to deploy based on both the tolerance
and permissiveness of controllers by comparing different design choices.

(3) Synthesizing tolerant and permissive controllers Since we develop mechanisms to
compare different controllers based on tolerance and permissiveness, our framework also
allows the designer to automatically synthesize controllers that achieve desired levels of
tolerance and permissiveness by construction. For example, a possible design flow using
our synthesis result is as follows. The designer starts with the initial controller design of
controller 2. After analyzing the tolerance of controller 2, the designer realizes that this
controller is not tolerant when srv moves counter-clockwise. Next, the designer uses our
synthesis tool to specify that ego must be tolerant when srv moves counter-clockwise and
it should visit at least one of the states in 2-5. Our synthesis tool automatically computes
controller 1 which satisfies by construction the above requirements.

3 Discrete-state systems

This section describes the underlying formalism used to model the environment, controlled
systems, and the properties enforced by them.

3.1 Labeled transition systems

In this work, we use labeled transition systems to model the behavior of the environment.

Definition 1 A labeled transition system (LTS) T is a tuple 〈Q, Act, R, I 〉, where Q is a
finite set of states, Act is a finite set of actions, R ⊆ Q × Act × Q is the transition relation
of T , and I ⊆ Q is a nonempty set of initial states.

Let PostT (q, a) denote the set of immediate successor states from state q ∈ Q and action
a ∈ Act , i.e., PostT (q, a) := {q ′ ∈ Q | (q, a, q ′) ∈ R}. A run of T starts at an initial state in
I and is followed by a finite or infinite alternating sequence of actions and states complying
with the transitions in R, e.g., x0a0x1a1 . . . xn such that xi+1 ∈ PostT (xi , ai) for all i < n
and x0 ∈ I . The set of all runs in T is denoted by Runs(T). A path of T is the sequence
of states in a run of T , e.g., for x0a0x1 ∈ Runs(T), then x0x1 is a path of T . The set of all,
finite or infinite, paths in T is denoted by Paths(T). We also denote the set of finite paths
as Paths f in(T).

Example 1 We model the motivating example in Section 2 using LTS. The states represent
the discrete locations of ego, {1, 2, 3, 4, 5} and srv, {2, 3, 4, 5}. The possible actions of the
system consist of ego selecting its desired next location, i.e., Act = {m1, . . . ,m5} where
mi means that ego moves to location i . The transition relation is defined by a few update
rules and assumptions. The two drones move synchronously to their next location. Next,
both drones can only move to locations that are connected by an edge in Fig. 1a. Lastly, we
assume that srv surveils the building using the strategy defined in Fig. 1b, e.g., srv moves to
location 2 when 5 is its current location, and so forth. The system is initialized in state (1, 5),

123

Discrete Event Dynamic Systems

i.e., ego in location 1 and srv in location 5. Figure 2a partially depicts the LTS T defined by
this example.

Remark 1 Our definition of LTS assumes that all elements of the set of actions Act are
“controllable” actions, that can be acted upon by a controller (defined below). However,
the nondeterministic transition relation of T can be used to model uncontrollable actions of
the environment. After an action a is selected by the controller at state q , the environment
decides which state the system will be in; this is similar to two-player games (Grädel et al.
2002). This can be modeled by adding several transitions from q , all labeled with the same
action a.

Given a finite set A, the usual notations |A|, A∗, A+, and Aω denote the cardinality of
A, the set of all finite sequences, the set of all non-empty finite sequences, and the set of all
infinite sequences of elements in A, respectively. For convenience, we write x0...n for any
finite sequence of states x0 . . . xn .

3.2 Control strategy

Given an LTS T , a control strategy, or simply controller, for T is a function that maps a
finite sequence of states to a set of actions, i.e., f : Q+ → 2Act . A controlled run of
T is a run of T , x0a0 · · · ∈ Runs(T), such that ai ∈ f (x0...i) for any i ≥ 0, i.e., the
controller constrains which actions are executed by T . The set of all controlled runs, denoted
by Runs(T | f), defines the closed-loop system of f controlling T . For convenience, this
closed-loop system is denoted by T | f . The set of all, finite and infinite, controlled paths is
denoted by Paths(T | f). We also denote the set of finite controlled paths as Paths f in(T | f).
A controller has finite memory if its decisions depend only on a finite number of states. It is
memoryless if its decisions depend only on the current state, f Q → 2Act . When f has finite
memory, T | f can be represented by an LTS; see the Appendix for details.

Example 2 Back to our motivating example, we give an example of a simple memoryless
controller that is set to maintain ego in location 1. Formally, the controller is defined as
f (1, i) = f (2, i) = {m1} for i ∈ {2, . . . , 5}, f (3, 4) = f (5, 4) = {m2}, f (3, 5) =
f (4, 5) = {m3}, f (3, 2) = f (4, 2) = f (5, 2) = {m4}, f (4, 3) = f (5, 3) = {m5},
otherwise f (q) = ∅. Figure 2b shows the reachable states of the LTS representation of T | f
when I = {(1, 5)}.

Fig. 2 LTSs of the surveillance scenario

123

Discrete Event Dynamic Systems

3.3 Property

In this work, we consider the class of linear-time (LT) properties over the set of states Q of
a given LTS T (Baier and Katoen 2008). In words, an LT property is a set of infinite or finite
sequences of states that represents an “admissible/desired” set of paths of T . We recall some
definitions of LT properties (Baier and Katoen 2008).

Definition 2 A linear-time (LT) property over the set of states Q is a subset P ⊆ Qω ∪ Q∗.

Example 3 Using our surveillance example, we want ego to not be captured by srv. We can
formally define an LT property to capture this behavior. Based on the LTS model given in
Example 1, we assume that srv captures ego when they share the same location, e.g., state
(2, 2). Let Quns = {(2, 2), (3, 3), (4, 4), (5, 5)} be the set of unsafe states. The property
Psrv = (Q \ Quns)

ω ∪ (Q \ Quns)
∗ defines the property that ego is not captured by srv.

Based on an LT property, we can verify if an LTS satisfies this property. Intuitively, the LTS
satisfies a property if its paths are all contained in the desired property. Formally, we have:

Definition 3 An LTS T satisfies property P , denoted by T |� P , if and only if
Paths(T) ⊆ P .

Similarly, a controlled system T | f satisfies property P if Paths(T | f) ⊆ P . The problem
of finding a controller f such that T | f |� P has been widely investigated (Ramadge and
Wonham 1987; Pnueli and Rosner 1989; Ehlers et al. 2017).

Example 4 Using our surveillance example, one can verify that the controlled system T | f in
Fig. 2b satisfies property Psrv , i.e., T | f |� Psrv .

4 Tolerance against perturbations

4.1 Perturbations

Model-based control theory methods are grounded on a model of the environment under
control. This model is always an approximation of the true system. For this reason, we
must take into account possible mismatches between the model of the environment and the
true environment when designing a controller. In the case of LTS, we model these possible
mismatches, called perturbations, as additional transitions.

Adding transitions to the original environment introduces new behaviors to the envi-
ronment that can potentially generate unsafe behavior in the controlled system. For this
reason, we only consider adding new transitions to the environment. For example, transition(
(1, 2),m1, (1, 5)

)
represents a perturbation to the strategy of srv, as depicted in Fig. 1b:

srv goes back to position 5 instead of going to position 3. This type of perturbation can
potentially catch ego off-guard and lead to its capture since ego expects srv to move to
position 3. A second type of perturbation is transition

(
(1, 2),m1, (2, 3)

)
where ego gets

pushed to location 2, e.g., by a wind gust, even though it has selected to stay in location 1.
Formally, a perturbation is a set of transitions d ⊆ (Q × Act × Q). For simplicity, we

define perturbations without removing the transition relation R to not overload our definitions
with the removal of R. All of our results hold when perturbations are defined as d ⊆ (Q ×
Act × Q) \ R. Given a perturbation set, we can define the perturbed system by augmenting
the transition relation of the LTS with the perturbation set.

123

Discrete Event Dynamic Systems

Definition 4 Let an LTS T = 〈Q, Act, R, I 〉 and a perturbation d ⊆ Q× Act × Q be given.
We define the perturbed system Td as Td := 〈Q, Act, R ∪ d, I 〉.

A controller f that guarantees property P for system T , T | f |� P , might violate this
property for the perturbed system Td . Thus, one needs to check if f continues to satisfy P
for Td , i.e., if Td | f |� P or not.

Definition 5 Controller f is a tolerant controller with respect to an LTS T , a perturbation d ,
and a property P if Td | f |� P . Perturbation d is a tolerable perturbation with respect to T ,
f , and P if f is a tolerant controller with respect to T , d , and P .

Remark 2 Our definition of perturbed systems only allows adding transitions to the original
environment. We do not consider perturbations that remove transitions from the original
environment. However, the results in this section can be generalized to consider removing
transitionswithminormodifications to our definitions.Oneof the reasons to only allowadding
transitions is related to safety-critical systems. When dealing with safety properties as we
will in Section 5, it is sufficient to only consider adding new transitions to the environment. If
a controlled system is safe, then deleting transitions from the environment preserves safety.

4.2 Comparing perturbations

Given perturbations d1 and d2 such that d1 ⊆ d2, d2 perturbs LTS T more than d1 since
Runs(Td1) ⊆ Runs(Td2). Our definition of tolerable perturbations takes into account not
only the perturbed system, but a controller f and its controlled behavior, e.g., Td1 | f . By
including the controller to close the loop, two incomparable perturbations can generate a
comparable set of runs, i.e., itmight be that Runs(Td1 | f) ⊆ Runs(Td2 | f) evenwhen d1 � d2
and d2 � d1. In this scenario, d2 perturbs the controlled system more than d1 since d2 has
more influence on the controlled behavior. Moreover, whenever d1 ⊆ d2, it follows that
Runs(Td1 | f) ⊆ Runs(Td2 | f) for any controller f . Based on this discussion, we propose a
novel definition that captures formally the notion of a perturbation being more “powerful”
than another one.

Definition 6 Let an LTS T , a controller f , and perturbations d1 and d2 be given. We say d1
is at least as powerful as d2 with respect to f , denoted by d2 � f d1, if

(i) Runs(Td2 | f) ⊂ Runs(Td1 | f); or
(ii) Runs(Td2 | f) = Runs(Td1 | f) ∧ d2 ⊆ d1.

Whenever the controller f is clear from the context, we write � instead of � f .

Intuitively, perturbation d1 is at least as powerful as perturbation d2 with respect to con-
troller f , if the controlled perturbed system Td1 | f can generate strictly more runs than Td2 | f ,
or the two controlled systems generate exactly the same set of runs and d2 ⊆ d1. The ordering
� forms a partial order over the set of perturbations of T . To provide more intuition on �,
we give the following example.

Example 5 Consider the LTS T shown in Fig. 3a and the property defined by all sequence of
states that do not reach state 3, e.g., the sequence 143 violates this property. We define the
memoryless controller f as f (q) = {b} if q �= 3, and f (3) = ∅. It follows that f satisfies
the stated property, i.e., T | f |� P .

Consider the tolerable perturbations d1 = {(1, b, 2)}, d2 = {(1, b, 4)}, d3 = {(2, b, 3)},
and d4 = {(4, b, 3)}. Perturbations d1 and d2 are at least as powerful as d3 and d4, i.e.,

123

Discrete Event Dynamic Systems

Fig. 3 Tolerable perturbations

d3 � d1, d4 � d1, d3 � d2, and d4 � d2. On the other hand, d1 and d2 are incomparable with
respect to � as their perturbed controlled systems generate incomparable runs. Perturbations
d3 and d4 are also incomparable even though Runs(Td3 | f) = Runs(Td4 | f). In this case,
condition (ii) in Definition 6 is violated as d3 � d4 and d4 � d3.

4.3 Tolerance

Intuitively, we search for all possible tolerable perturbations d with respect to LTS T , con-
troller f , and property P .

Definition 7 Let an LTS T , a property P , and a controller f such that T | f |� P be given.
The tolerance of f with respect to P and T , denoted by Δ(T , f , P), is a set of perturbations
Δ(T , f , P) ⊆ 2Q×Act×Q . Δ(T , f , P) is defined to be the set of perturbations satisfying the
following conditions:

1. ∀d ∈ Δ(T , f , P). Td | f |� P [d is tolerable];
2. ∀d ⊆ Q × Act × Q. Td | f |� P ⇒ ∃d ′ ∈ Δ(T , f , P). d � d ′ [d is represented];
3. ∀d, d ′ ∈ Δ(T , f , P). d �= d ′ ⇒ d � d ′ [unique representation].

Conditions 2 and 3 in Definition 7 enforce that only maximal tolerable perturbations
with respect to � are in Δ. Formally, the set Δ defines an antichain, with respect to �, of
maximal tolerable perturbations. Intuitively, the setΔ defines an upper bound on the possible
perturbations from T that controller f tolerates. Note that Δ is always nonempty since we
assume that T | f |� P , i.e., R is always tolerable. In order for the definition of Δ to be
valid, we must show that there is a unique set of perturbations that satisfies the conditions of
Definition 7. This is ensured by the following result:

Lemma 1 Given an LTS T , a controller f , and a property P, there is a unique Δ(T , f , P)

that satisfies the conditions in Definition 7.

Proof By contradiction. Assume that there exist Δ1,Δ2 ⊆ 2Q×Act×Q such that they satisfy
conditions 1, 2, and 3 inDefinition 7 andΔ1 �= Δ2.Without loss of generality, we assume that
∃d1 ∈ Δ1 \ Δ2. Since d1 ∈ Δ1, we have that Td1 | f |� P as Δ1 satisfies 1. As Δ2 satisfies 2
and d1 /∈ Δ2, we have that ∃d2 ∈ Δ2 such that Td2 | f |� P and Runs(Td1 | f) ⊂ Runs(Td2 | f)
or d1 ⊆ d2 (d1 � d2). Since d1 ∈ Δ1 \ Δ2, it follows that Runs(Td1 | f) ⊂ Runs(Td2 | f) or
d1 ⊂ d2. Back to Δ1, condition 3 implies that d2 /∈ Δ1 since d1 ∈ Δ1 and Runs(Td1 | f) ⊆
Runs(Td2 | f). Furthermore, it does not exist d ∈ Δ1 such that Runs(Td2 | f) ⊂ Runs(Td | f)

123

Discrete Event Dynamic Systems

Fig. 4 LTS in Examples 6 and 7

or d2 ⊆ d , because d1 ∈ Δ1 and Runs(Td1 | f) ⊆ Runs(Td2 | f) ⊆ Runs(Td | f), and Δ1

satisfies condition 3. Consequently, the perturbation d2 is a witness of the Δ1 violating
condition 2, which contradicts our assumption that Δ1 satisfies conditions 1, 2, and 3. ��
Example 6 Consider the same setup as in Example 5. The four perturbations in Example 5 are
tolerable. Therefore, they must be represented inΔ as stated in condition (2) in the definition
of Δ. At this moment, we simply provide Δ for this example and in Section 5 we provide
the formal results on efficiently obtaining this Δ. The set Δ in this example is given by
Δ = {Q × Act × Q \ {(1, b, 3), (2, b, 3), (4, b, 3)}}. Intuitively, Δ is defined by a single
perturbation set that contains all possible transitions except the ones from states 1, 2, 4 to
state 3with action b. Adding any of thesemissing transitionsmake the perturbation set inΔ to
be intolerable. The perturbed system defined by this perturbation is depicted in Fig. 4a where
we highlight the new transitions in blue1. Any other tolerable perturbation is represented in
Δ. For example, perturbations d1, d2 ⊆ d = Q × Act × Q \ {(1, b, 3), (2, b, 3), (4, b, 3)}
which implies that d1, d2 � f d . And although d3 and d4 are not subsets of d , it also follows
that d3 � d and d4 � d since Runs(Td3 | f) = Runs(Td4 | f) ⊂ Runs(Td | f).

4.4 Computing tolerance for general properties

The tolerance of controller f is defined by the set of maximal tolerable perturbations with
respect to property P . The first problem we investigate is to compute the set Δ given T , f ,
and P .

Problem 1 Given an LTS T , a property P , and a controller f , compute Δ(T , f , P).

Assuming that P is either a regular language or an ω-regular language, and that f has
finite memory, Problem 1 is decidable; and Algorithm 1 provides a brute force solution to this
problem. Intuitively, Algorithm1 is broken into (i) finding the set of all tolerable perturbations
(lines 2-4) and (ii) identifying the maximal ones within this set (lines 5-6). The verification
tasks in lines 3 and 5 can be solved using standard model checking techniques (Baier and
Katoen 2008).

Although Algorithm 1 computes the tolerance of f , this brute force method will not
scale for large LTS. For this reason, we investigate more efficient ways to compute the set

1 For simplicity, we do not show the transitions starting in state 3.

123

Discrete Event Dynamic Systems

Δ(T , f , P). In the next section, we provide a more efficient algorithm for the case where P
is an invariance property.

Algorithm 1 Compute-tolerance.

Input: T , f , and P
Output: Δ

1: Δ := ∅
2: for all perturbations d ⊆ Q × Act × Q do
3: if Td | f |� P then
4: Δ := Δ ∪ {d}
5: while ∃d1, d2 ∈ Δ s.t. d1 � f d2 do
6: Δ := Δ \ {d1}

return Δ

5 Tolerance with respect to invariance properties

Invariance properties are an important class of properties in industrial practice (Newcombe
et al. 2015; Ball et al. 2011). An invariance property P for an LTS T can be represented
by a subset of safe states Qinv ⊆ Q (Baier and Katoen 2008). Formally, a property P is an
invariance property if there exists a set of safe states Qinv such that P = Q∗

inv ∪ Qω
inv . For

instance, Qinv = {1, 2, 4} in Example 5. An LTS satisfies an invariance property if and only
if the LTS only reaches states in Qinv (Baier and Katoen 2008). For convenience, we assume
that the safe set of states always contains the set of initial states.

5.1 Supremum tolerable perturbation

Usually when dealing with invariance properties, one can show the existence of a single
supremum element that satisfies the desired investigated property. In our scenario, we want
to show that the tolerance of f with respect to an invariance property is represented by a
unique tolerable perturbation, i.e., |Δ(T , f , P)| = 1. Although Δ in Example 6 has a single
element, the following counterexample illustrates that in general |Δ(T , f , P)| ≥ 1.

Example 7 Consider the setup of Example 5 with the LTS defined in Fig. 3a and Qinv =
{1, 2, 4}, but under control of the following controller: f (1214) = {a} and f (x0...n) = {b}
for any x0...n ∈ Q+ other than 1214. Perturbations d1 = {(1, b, 2)} and d2 = {(1, b, 4)}
remain tolerable with respect to this new controller. And although these perturbations are
tolerable, their union is not tolerable since path 1214 becomes feasible in Td1∪d2 as seen in
Fig. 4b. The size of Δ(T , f , P) must be at least two since we cannot combine d1 and d2 as
a single tolerable perturbation that generates the behavior of Td1 | f and Td2 | f .

5.1.1 Invariant controllers

The counterexample in Example 7 sheds light on the problem of the controller f selecting
“bad” control decisions for paths outside of Paths f in(T | f). This problem can be easily fixed
for invariance properties by introducing the notion of invariant control actions and invariant
controllers.

123

Discrete Event Dynamic Systems

Definition 8 Let an LTS T and an invariance property P with set of safe states Qinv be given.
The set of invariant control actions is defined as Ainv(q) := {a ∈ Act | PostT (q, a) ⊆
Qinv} if q ∈ Qinv and Ainv(q) := ∅ if q /∈ Qinv . Moreover, we say that f is an invariant
controller with respect to T and P if f (x0...n) ⊆ Ainv(xn) for any sequence x0...n ∈ Q+.

Informally, invariant control actions characterize the “good” actions with respect to LTS
T and invariance property P . Therefore, all invariant controllers satisfy invariance property
P as stated in Lemma 2.

Lemma 2 Any invariant controller f with respect to T and an invariance property P satisfies
P, i.e., T | f |� P.

Proof It directly follows from the definition of invariant controllers (Definition 8). ��

Tolerance of invariant controllers

Under the assumption of invariant controllers, the tolerance of a given controller f is com-
pletely defined by a unique tolerable perturbation, i.e., |Δ(T , f , T)| = 1 for any invariant
controller f . We formalize this statement in the following theorem.

Theorem 1 Let an LTS T , an invariance property P with set of safe states Qinv , and an
invariant controller f be given. It follows that Δ(T , f , P) = {� f �}, where � f � is defined
as:

� f � := (Q × Act × Q) \ {(q, a, q ′) ∈ Qinv × F(q) × (Q \ Qinv)}
where F(q) := {a ∈ Act | ∃x0...n ∈ Paths f in(TΩ | f). a ∈ f (x0...n) ∧ q = xn} and where
Ω := Qinv × Act × Qinv .

Proof We first show by contradiction that |Δ(T , f , P)| = 1. For simplicity, we write Δ

instead of Δ(T , f , P). Since ∅ is always a tolerable perturbation, it follows that |Δ| ≥ 1.
Assume that |Δ| > 1 and let d1, d2 ∈ Δ. In the definition of Δ, condition (3) states that
d1 � d2 and d2 � d1. We define dinv

i := {(q, a, q ′) ∈ di | q, q ′ ∈ Qinv ∧ a ∈ Ainv(q)} for
i ∈ {1, 2}. By construction, the controlled system Tdinv

i
| f generates the same runs as Tdi | f

for i ∈ {1, 2} otherwise di is not tolerable. As d1, d2 ∈ Δ, it must be that dinv
1 and dinv

2 are
incomparable, otherwise d1 � d2 or d2 � d1. Because dinv

1 and dinv
2 only define transitions

within Qinv and f is invariant, we have that dinv
1 ∪ dinv

2 is a tolerable perturbation, i.e.,
Tdinv

1 ∪dinv
2

| f |� P . Theperturbationdinv
1 ∪dinv

2 must be represented inΔ as statedby condition

(2) in Definition 7. Since dinv
1 and dinv

2 are incomparable, the representation of dinv
1 ∪ dinv

2
must be different than d1 and d2. Thus, there exist d3 ∈ Δ different than d1 and d2 such that
dinv
1 ∪dinv

2 � d3. Since the condition Runs(Tdinv
1

| f) = Runs(Td1 | f) ⊂ Runs(Tdinv
1 ∪dinv

2
| f),

it follows that d1 � d3, which violates condition (3) in the definition of Δ. That is, we have
two perturbation sets in Δ that are comparable via � f . We reached a contradiction.

Next, we show by contradiction that � f � ∈ Δ. Assume that perturbation d �= � f � satisfies
Td | f |� P and d ∈ Δ. By construction of � f �, the runs generated by T� f �| f are the same
as the ones generated by TΩ | f . Therefore, the perturbation � f � is tolerable. We have shown
previously that |Δ| = 1, which ensures that � f � � d since d ∈ Δ. Therefore, it must
be that Runs(T� f �| f) ⊂ Runs(Td | f) or Runs(T� f �| f) = Runs(Td | f) and � f � ⊂ d . If
Runs(T� f �| f) ⊂ Runs(Td | f), then d is not a tolerable perturbation since Runs(T� f �| f) =
Runs(TΩ | f). If Runs(T� f �| f) = Runs(Td | f) and � f � ⊂ d , then there exists a transition
in d that is not in � f � and this transition is not active in any run. However, by the definition

123

Discrete Event Dynamic Systems

of � f �, any transition in d that is not in � f � implies that Runs(T� f �| f) ⊂ Runs(Td | f) and
d not being a tolerable perturbation. It follows that d is not a tolerable perturbation, which
contradicts our assumption that d ∈ Δ. ��

Theorem 1 states that the tolerance of f has a single perturbation, i.e., there exists a supre-
mal element within the set of tolerable perturbations with respect to � f . This perturbation is
defined by removing transitions that are not tolerable from the set of all possible transitions.
For this reason, the removed transitions are from states in Qinv to states outside of Qinv .

Discussing � f � in more detail, the function F(q) restricts attention to paths in TΩ | f .
Recall that relation � f prioritizes the behavior generated by a perturbed controlled system,
i.e., Td | f . The tolerable perturbation Ω is selected since it can make every state in the the
safe set reachable, i.e., more behavior can be generated. Next, we investigate which actions
the controller uses in the safe states reached in TΩ | f . Intuitively, if the controller uses action
a in a reachable safe state q , then the transitions in {q} × {a} × Q \ Qinv are not tolerable
and thus they must be removed from � f �.
Example 8 We return to Example 6 to discuss Theorem 1. The LTS T is depicted in Fig. 3a,
the invariance property P is defined by the set Qinv = {1, 2, 4}, and invariant controller f
is defined as f (q) = {b} if q ∈ Qinv and f (3) = ∅. It follows that F(q) is equal to f (q) for
any q ∈ Q. Intuitively, the function F defines which actions the controller uses in each safe
state, e.g., action b is used in state 1. Since the controller uses action b in state 1, the system
is not tolerant if it is perturbed by transition (1, b, 3). Similarly, action b is also used in states
2 and 4 which results in � f � = Q × Act × Q \ {(1, b, 3), (2, b, 3), (4, b, 3)}. Figure 4a
depicts the perturbed system T� f �.

5.2 Computing tolerance for invariance properties

Problem 1 investigates the computation of the set Δ for a general property P . We specialize
Problem 1 to invariance properties as to use the results of Theorem 1.

Problem 2 Given an LTS T , an invariance property P , and an invariant controller f , compute
Δ(T , f , P).

According to Theorem 1, for invariance property P and invariant controller f ,
Δ(T , f , P) = {� f �}. Therefore, it suffices to compute � f �. For simplicity, we describe
the computation of � f � for memoryless controllers, but our algorithm can be extended to
controllers with memory using the LTS definition of T | f in the Appendix. Intuitively, Algo-
rithm 2 performs a reachability analysis of the perturbed system TΩ | f as to compute the
function F(q). Algorithm 2 is linear in the number of states and transitions of the LTS TΩ

(Baier and Katoen 2008).

Remark 3 The verification of regular safety properties can usually be transformed into a prob-
lem of verification of an invariance property. This invariance property is obtained by first
composing the environment with the safety property (Baier and Katoen 2008). In this com-
posed system, an invariance property is simply defined by a set of safe states. Unfortunately,
computing robustness for safety properties does not directly reduce to computing robustness
for invariance properties. The states in the composed system are tuples (Envstate, Pstate).
Thus, the transformation procedure introduces memory to the environment to differentiate
when the safety property is violated or not. This memory is not part of the environment and
prevents the direct use of Algorithm 2. We leave investigating the computation of robustness
for regular safety properties to future work.

123

Discrete Event Dynamic Systems

Algorithm 2 compute-invariance-tolerance.

Input: T , f , and Qinv

Output: � f �
1: � f � := Q × Act × Q; U := R := {q0}
2: while U �= ∅ do
3: pick some q ∈ U ; U := U \ {q}
4: for all a ∈ f (q) do
5: � f � := � f � \ {{q} × {a} × (Q \ Qinv)}
6: for all q ′ ∈ PostTΩ

(q, a) do
7: if q ′ /∈ R then
8: R := R ∪ {q ′}; U := U ∪ {q ′}

return � f �

5.3 The least andmost tolerant invariant controllers

There is an inherent trade-off between tolerance and the restriction controller f imposes on
LTS T . Controllers that are more permissive (Cassandras and Lafortune 2021), i.e., that allow
more behaviors on T , are necessarily less tolerant and vice-versa. The two extremes of this
trade-off are the least and the most tolerant invariant controllers. These are controllers f1 and
f2 that satisfy � f1� ⊆ � f � ⊆ � f2� for any other invariant controller f .

Definition 9 Wedefine controllers f inv and f ∅ with respect to LTS T and invariance property
P as: f inv(q) := Ainv(q) and f ∅(q) := ∅ for any q ∈ Q.

The controller f inv selects the invariant control actions of each state as its decisionwhereas
f ∅ disables every action. We can show that f inv is the least tolerant controller whereas f ∅
is the most tolerant among all invariant controllers.

Theorem 2 Let an LTS T and an invariance property P be given. For any invariant controller
f with respect to T and P, it follows that � f inv� ⊆ � f � ⊆ � f ∅�.
Proof It follows from Finv(q) ⊆ F(q) ⊆ F∅ for any invariant controller f where Finv , F∅,
and F are defined as in Theorem 1 for controllers f ∅, f inv , and f , respectively. ��

Intuitively, controller f ∅ blocks the system from executing any action regardless of the
perturbation. For this reason, f ∅ provides the largest tolerance set at the trade-off of blocking
any run to be generated. On the other hand, controller f inv allows the maximum possible
set of runs of T that do not violate property P . Consequently, f inv is more susceptible
to perturbations and provides the smallest tolerance set at the trade-off of allowing more
behavior to be generated. We provide a more thorough study on this trade-off in the next
section.

6 Synthesis of tolerant and permissive controllers

6.1 Permissiveness

Permissiveness measures the “restrictiveness” of the controller with the given LTS, i.e., the
behavior of the controlled system T | f (Cassandras and Lafortune 2021). Although we could
define permissiveness based on Runs(T | f), this definitionwould omit possible perturbations

123

Discrete Event Dynamic Systems

in the system, see Remark 4. Since every invariant controller tolerates perturbation set Ω =
Qinv × Act × Qinv , we define permissiveness based on Runs(TΩ | f). Thus, permissiveness
is defined based on the perturbed environment similar to the definition in Takai (2004).

Definition 10 Given invariant controllers f1 and f2 for LTS T and invariance property
Qinv , we say that f1 is more permissive than f2, denoted by f2 ⊆ f1, if Runs(TΩ | f2) ⊆
Runs(TΩ | f1). We write f1 ≡ f2 when we have Runs(TΩ | f2) = Runs(TΩ | f1).
Remark 4 Defining permissiveness over Runs(TΩ | f) also allows a finer comparison of con-
trollers. There might be many controllers that generate the same runs in T | f , but they, in
general, will generate different runs in TΩ | f .
Example 9 We return to the Example 8, where we defined controller f : f (q) = {b} if
q ∈ Qinv and f (3) = ∅. We define another invariant controller: f ′(1) = f (2) = {b} and
f ′(3) = f ′(4) = ∅. Since f ′(q) ⊆ f (q), it follows that f is more permissive than f ′. Note
that Runs(T | f ′) = Runs(T | f), but Runs(TΩ | f ′) ⊂ Runs(TΩ | f).

6.2 Pareto optimality

We want to identify controllers that cannot be more permissive without losing tolerance and
vice-versa, i.e., identify the Pareto front of this trade-off. First, we formally characterize
Pareto optimality with respect to permissiveness and tolerance.

Definition 11 Let an LTS T and an invariance property Qinv be given. An invariant controller
f1 and perturbation set d1 such that Td1 | f1 |� Qinv is Pareto optimal if there does not exist
invariant controller f2 and perturbation d2 such that:

Td2 | f2 |� Qinv ∧ f1 ⊆ f2 ∧ d1 ⊆ d2 ∧ (f1 �≡ f2 ∨ d1 �= d2)

Intuitively, the pair (f1, d1) is not Pareto optimal if we can improve permissiveness without
compromising tolerance or vice-versa. Figure 5a helps us understandPareto optimality,where
the points in blue are Pareto optimal. Note that we identify controllers f inv and f ∅ in Fig. 5a
due to Theorem 2. Based on this result, we establish the first Pareto optimal pairs.

Proposition 1 The pairs (f inv, � f inv�) and (f ∅, � f ∅�) are Pareto optimal.
Proof By Theorem 2, f ∅ and f inv are the most and the least tolerant controllers. We can
then show that we cannot modify their permissiveness without compromising tolerance and
vice-versa. ��

6.3 Synthesis of Pareto controllers

The focus of this section is on synthesizing controllers that generate Pareto optimal pairs,
i.e.,Pareto optimal controllers. Specifically, we want to synthesize Pareto optimal controllers
that achieve a desired minimum level of permissiveness and tolerance. Figure 5b helps us
explain the investigated problem. Note that, the permissiveness axis is defined based on
Runs(TΩ). The desired minimum permissiveness and tolerance are given by a set of runs N
and a perturbation set d . Intuitively, we search for a controller f ∗ that has permissiveness at
least N , has tolerance at least d , and (f ∗, � f ∗�) is Pareto optimal, i.e., (f ∗, � f ∗�) is a blue
point within the shaded region in Fig. 5b. Formally, the problem is stated as follows.

123

Discrete Event Dynamic Systems

Fig. 5 Pictorial explanation of Pareto optimality and Problem 3

Problem 3 Given an LTS T , an invariance property Qinv , an set of runs N ⊆ Runs(TΩ),
and perturbation d , synthesize controller f ∗, if it exists, such that (i) (f ∗, � f ∗�) is Pareto
optimal; and (ii) d ⊆ � f ∗� and N ⊆ Runs(TΩ | f ∗).

Problem 3 might not have, in general, a solution for any given sets d and N . For example,
if a run in N visits a state outside of Qinv , i.e., it violates the invariance property, then
Problem 3 does not have a solution. In the case where a solution exists, Problem 3 might not,
in general, have a unique solution. Therefore, we focus on two solutions for this problem,
points B and C in Fig. 5b. Point B describes the most tolerant controller within the solution
space. To obtain this solution, we add a third condition to ensure we obtain the most tolerant
controller. Formally, we have the following problem:

Problem 4 Given an LTS T , an invariance property Qinv , a set of runs N ⊆ Runs(TΩ),
and a perturbation d , synthesize controller f ∗, if it exists, such that (i) (f ∗, � f ∗�) is Pareto
optimal; (ii) d ⊆ � f ∗� and N ⊆ Runs(TΩ | f ∗); and (Tol) ∀ f ′ that satisfies (i) and (ii),
� f ′� ⊆ � f ∗�.

On the other hand, point C defines the most permissive controller within the solution
space. Again, we add a third condition to ensurewe obtain themost permissiveness controller.
Formally, we have the following problem:

Problem 5 Given an LTS T , an invariance property Qinv , a set of runs N ⊆ Runs(TΩ),
and a perturbation d , synthesize controller f ∗, if it exists, such that (i) (f ∗, � f ∗�) is Pareto
optimal; (ii) d ⊆ � f ∗� and N ⊆ Runs(TΩ | f ∗); and (Perm) ∀ f ′ that satisfies (i) and (ii),
f ′ ⊆ f ∗.

Remark 5 In Problem 3, we assume that the set of runs N is given. It is also possible to
assume that instead of N , we are given an invariant controller f that achieves this set of runs,
i.e., the set N can be defined as N := Runs(TΩ | f).

123

Discrete Event Dynamic Systems

6.4 Memoryless controllers

We already established that the pairs (f inv, � f inv�) and (f ∅, � f ∅�) are Pareto optimal.
Now, we focus on identifying other Pareto optimal controllers. We start by showing that
every memoryless invariant controller and their tolerance form a Pareto optimal pair.

Lemma 3 Let an LTS T , an invariance property Qinv , and an invariant controller f be given.
If f is memoryless, then the pair (f , � f �) is Pareto optimal.

Proof We prove the theorem by contradiction. Assume that f is invariant and memoryless
and that (f , � f �) is not Pareto optimal. Itmeans that ∃(f1, d1) such that Td1 | f1 |� Qinv∧ f ⊆
f1 ∧ � f � ⊆ d1 ∧ (f �≡ f1 ∨ � f � �= d1).
Since f ⊆ f1, it follows fromDefinition 7 that � f1� ⊆ � f �. As we assume that � f � ⊆ d1,

it must be that � f1� ⊆ d1. Since � f1� is the largest tolerable perturbation with respect to f1,
the equality d1 = � f1� = � f � holds.

As d1 = � f1� = � f �, we have that F(q) = F1(q) for any q ∈ Q, where F and F1 are
defined as in Definition 7 for f and f1, respectively. The equality of functions F and F1 and
the fact that f is memoryless imply that Runs(TΩ | f1) ⊆ Runs(TΩ | f), i.e., f1 ⊆ f . As we
assumed that f ⊆ f1, we have the equality f ≡ f1, which results in a contradiction of the
third clause in the definition of Pareto optimality. ��

According to Lemma 3, (f , � f �) is Pareto optimal when f is memoryless and invariant.
Controllers with memory and their level of tolerance, in general, do not form a Pareto optimal
pair. Ideally, wewould like to show the converse of Lemma 3, i.e., memoryless controllers are
the only Pareto optimal points. However, the generality of our controller definition prevents
us making such a claim. For example, controller f defined as f (q) = ∅ for q ∈ I and
f (x0...n) = Ainv(xn) for x0...n ∈ Q+ \ I and its tolerance � f � form a Pareto optimal pair
equivalent to (f ∅, � f ∅�), i.e., � f � = � f ∅� and f ≡ f ∅; and f has, in general, memory.
Thus, controllers f and f ∅ with their tolerance generate the same Pareto optimal pair.

We show that there always exists a memoryless controller with its tolerance that generates
the same Pareto optimal pair as a controller with memory. In other words, given a Pareto
optimal pair (f , � f �), we can always define a memoryless controller fm such that f ≡ fm
and � f � = � fm�. If controller f is already memoryless, then fm and f are identical. On the
other hand, if f has memory, then fm flattens the memory used in f .

Lemma 4 Consider an LTS T , an invariance property Qinv , and an invariant controller f .
We define the memoryless controller fm as follows

fm(q) :=
⋃

x0...n∈Ω
q=xn

f (x0...n)

If (f , � f �) is Pareto optimal, then (fm, � fm�) is also Pareto optimal with f ≡ fm and
� fm� = � f �.

Proof We prove the theorem by a direct proof. By the definition of fm , the functions F and
Fm defined as in Definition 7 based on f and fm , respectively, are equal, i.e., F(q) = Fm(q)

for any q ∈ Q. Therefore, we have that � f � = � fm�. Again by the definition of fm , it
follows that Runs(TΩ | f) ⊆ Runs(TΩ | fm). As (f , � f �) is assumed to be Pareto optimal,
then Runs(TΩ | fm) ⊆ Runs(TΩ | f). Therefore, we have that f ≡ fm . ��

123

Discrete Event Dynamic Systems

While not being the converse of Lemmas 3, 4 is an important sufficient result. Combining
these two lemmas tells us that memoryless controllers are sufficient for Pareto optimality
when considering Pareto pairs of the type (f , � f �).
Theorem 3 Let an LTS T and an invariance property Qinv be given. It is sufficient to search
among invariant memoryless controllers for Pareto optimal pairs of the type (f , � f �).
Remark 6 Since invariance properties are defined by partitioning the LTS state set, memory
does not provide any additional information to controllers to satisfy an invariance property.
Similarly, memory does not provide any leverage to violate an invariance property. For this
reason, we can show that memoryless controllers are sufficient to describe the Pareto optimal
pair of the type (f , � f �).

6.5 Existence of controllers

As we mentioned earlier, Problem 3 might not have a solution. In this section, we provide
necessary and sufficient conditions for the existence of solutions. Thanks to Theorem 3, we
can focus on memoryless controllers.

The existence of a solution to Problem 3 mainly depends on sets N and d . The first
condition for the existence of a solution states that the runs in N do not violate the invariance
property Qinv . The second condition checks that it is feasible to generate N and have tolerance
d by constructing a controller f that minimally ensures the runs in N and checking if f is
invariant and d ⊆ � f �. We start by defining this controller that minimally encompasses N .

Definition 12 Assume the premises of Problem 3. We define memoryless controller f N for
each state q ∈ Q as follows:

f N (q) := {a ∈ Act | [(∃x0a0 . . . xn ∈ N∧i < n).(a = ai∧q = xi)}∪{a ∈ Act | [(∃x0a0 · · · ∈ N∧i ≥ 0)].(a = ai∧q = xi)}

Intuitively, the controller f N ensures N ⊆ Runs(TΩ | f N) by construction. Moreover, it
ensures this condition by only including actions used in N , i.e., the above construction is a
minimal construction in the sense that f N disconsidered actions not used in N . Based on
f N , we can state the necessary and sufficient conditions for the existence of a solution to
Problem 3.

Theorem 4 Problem 3 has a solution if and only if (a) the runs in N remain in Qinv , (b) f N

is an invariant controller, and (c) d ⊆ � f N �.
Proof (Only if) Assume that f ∗ is a solution to Problem 3. We show that (a), (b), and
(c) hold. As f ∗ is a solution to Problem 3, it follows that N ⊆ Runs(TΩ | f ∗) and N
remains inQinv .Next,we show that Runs(TΩ | f N) ⊆ Runs(TΩ | f ∗)by contradiction.Let us
assume that Runs(TΩ | f N) � Runs(TΩ | f ∗), which provides us a run ρ ∈ Runs(TΩ | f N) \
Runs(TΩ | f ∗). By construction of f N , ρ is either a run or a prefix of a run in N . In either
case, it follows that N � Runs(TΩ | f ∗), which contradicts our assumption that f ∗ is a
solution to Problem 3. Based on the definitions of invariant controller and tolerance together
with Runs(TΩ | f N) ⊆ Runs(TΩ | f ∗), we can conclude that f N is an invariant controller
and d ⊆ � f N �.

[If] We show that f N is a solution to Problem 3 when (a), (b), and (c) hold. Condition (b)
provides that f N is invariant. By construction of f N and condition (a), we have that f N is
memoryless as well as N ⊆ Runs(TΩ | f N). Lastly, condition (c) provides that d ⊆ � f N �.

��

123

Discrete Event Dynamic Systems

Example 10 The LTS T is depicted in Fig. 3a and Qinv = {1, 2, 4}. We want to synthesize
a controller that reaches all three states without any perturbation, i.e., N = {1a4b2b1}.
Moreover, we want a controller that is tolerant against the following perturbation set d =
{(2, a, 3)}. The only run in N stays within Qinv which satisfies condition (a) in Theorem 4.
FollowingTheorem4,we construct f N : f N (1) = {a}, f N (2) = f N (4) = {b}, and f N (3) =
∅. It follows that � f N � = (Q × Act × Q) \ {(1, a, 3), (2, b, 3), (4, b, 3)} and d ⊆ � f N �.
Therefore, Problem 3 has a solution.

Ifwe consideredperturbation setd ′ = {(2, a, 3), (2, b, 3)}, thenProblem3has no solution.
In this latter scenario, the sets N and d ′ disagree in state 2 with respect to action b, i.e., d ′
disallows the use of action b in state 2 while N allows this action.

Beyond the existence conditions, Theorem 4 also provides a solution to Problem 3 when
a solution exists. Controller f N is a solution to Problem 3 when the conditions in Theorem 4
are satisfied. We develop this result in the next section since f N is a special solution to
Problem 3.

6.6 Tolerant and permissive controllers

Our first solution to Problem 3 is a controller that is the most tolerant within the solution
space (point B in Fig. 5b), i.e., a solution to Problem 4. We show that controller f N defined
in Definition 12 is a solution to Problem 4.

Theorem 5 Assume that Problem 3 has a solution. Controller f N is a solution to Problem 4.

Proof The proof of Theorem 4 already shows that f N is a solution to Problem 3. Therefore,
we just need to show that (Tol) holds. In the proof of Theorem 4, we have shown that
Runs(TΩ | f N) ⊆ Runs(TΩ | f ′) for any f ′ that is a solution to Problem 3. Therefore, it
follows that � f ′� ⊆ � f N � for any f ′ that is a solution to Problem 3. ��
Example 11 Let us return to the premises in Example 10. We want to synthesize the most
tolerant controller that satisfies N = {1a4b2b1} and d = {(2, a, 3)}. Theorem 5 guarantees
that controller f N is themost tolerant controller that satisfies Problem 3, where f N (1) = {a},
f N (2) = f N (4) = {b}, and f N (3) = ∅. This controller has tolerance � f N � = (Q × Act ×
Q) \ {(1, a, 3), (2, b, 3), (4, b, 3)}.

The second solution to Problem 3 is the most permissive controller within the solution
space (point C in Fig. 5b), i.e., a solution to Problem 5. Based on Theorem 3, we can restrict
our attention to memoryless controllers to obtain a solution to Problem 5. Our solution
strategy is to augment T with the minimum tolerance required in Problem 5, i.e., analyze the
system Td . The next step is to define the most permissive controller with respect to Td .

Theorem 6 Controller f d defined as f d(q) := {a ∈ Act | PostTd (q, a) ⊆ Qinv} is a
solution to Problem 5.

Proof Since f d is memoryless, then (f d , � f d�) is Pareto optimal. Next, we show that d ⊆
� f d� by a direct proof. For any T and invariant controller f , we have that R ⊆ � f �. Controller
f d is an invariant controller with respect to Td and Qinv , i.e., Td | f d |� Qinv and all actions
of f d are invariant actions. Thus, we have that d ⊆ � f d�.

We show that N ⊆ Runs(TΩ | f d) by contradiction. Assume that N � Runs(TΩ | f d),
then there exists a run in N \ Runs(TΩ | f d). This run also belongs to Runs(TΩ | f N) by
definition of f N . It follows that in some state q , f N can take an action that f d cannot.

123

Discrete Event Dynamic Systems

Based on the definition of f d , we have that d � � f N �, which contradicts our assumption.
Therefore, it must be that N ⊆ Runs(TΩ | f d).

We establish that (Perm) holds by contradiction. Assume that there exists an invariant
controller f ′ that is a solution to Problem 3 and f d ⊆ f ′. We can establish that every
action f d can take f ′ can also take, but there is an action that f ′ takes but f d does not. By
the definition of f d , it follows that f ′ is not an invariant controller with respect to Td and
d � � f ′�. It must be that f d satisfies condition (Perm). ��
Example 12 Let us return to the premises in Example 10. We want to synthesize the most
permissive controller that satisfies N = {1a4b2b1} and d = {(2, a, 3)}. Theorem 6 guar-
antees that controller f d is the most permissive controller that satisfies Problem 3, where
f d(1) = {a, b}, f d(2) = f d(4) = {b}, and f d(3) = ∅. This controller has tolerance
� f d� = (Q × Act × Q) \ {(1, a, 3), (1, b, 3), (2, b, 3), (4, b, 3)}.

Controller f d differs from controller f N in state 1. In state 1, the most permissive con-
troller allows actions a and b while the most tolerant only allows action a. In this manner,
the run 1b1b1b . . . is feasible in the controlled system T | f d , but it cannot be executed in
the controlled system T | f N . On the other hand, f N is tolerant against perturbation (1, b, 3)
while f d is not.

6.7 Complexity analysis

In this section, we analyze the computational complexity of our solutions to Problems 3-5.
We summarize our results in Table 1.

To obtain these results, we assume that the set of runs N is represented as an LTS. With
abuse of notation, we say that LTS N defined by 〈QN , Act, RN , IN 〉 generates the desired
level of permissiveness. Note that the runs of N are defined over states QN while runs of TΩ

are defined over states Q. Therefore, we assume that we are given a mapping from QN to Q
to circumvent this problem. This mapping can be obtained by composing LTSs TΩ and N ,
i.e., TΩ ||N where || is the standard parallel composition operator (Cassandras and Lafortune
2021). Based on LTS N , we provide the complexity analysis of our results.

Checking the conditions in Theorem 4 has worst-case complexity O(|QN |+|RN |+|Q|2)
due to the construction of f N and � f N �. Both constructions are reducible to reachability anal-
ysis over N and TΩ . Similarly, the worst-case effort to compute the most tolerant controller,
Theorem 5, is O(|QN | + |RN |). Lastly, f d(d), Theorem 6, can be computed by executing
a one step transition in the relation R ∪ d . Therefore, computing f d has O(|Q| + |R ∪ d|)
worst-case complexity.

7 Case studies

In this section, we demonstrate the utility of the proposed notion of tolerance through case
studies on the surveillance example described in Section 2 as well as on a simple robot motion

Table 1 Summary of synthesis results

Existence Most tol. Point B Most perm. Point C

Theorem Theorem 4 Theorem 5 Theorem 6

Complexity O(|QN | + |RN | + |Q|2) O(|QN | + |RN |) O(|Q| + |R ∪ d|)

123

Discrete Event Dynamic Systems

Fig. 6 Ego under control of f1 and f2

planning scenario as described in Topcu et al. (2012). We have built a prototype tool2 that
can compute the tolerance of a given controller (Algorithm 2) and synthesize controllers f ∅,
f inv , f N and f d with respect to invariance properties using the MDESops library (Meira-
Góes et al. 2017). We also evaluate the scalability of our tool by comparing it against the
brute force Algorithm 1 for computing the tolerance of a controller. The experiments for the
case studies were performed on a Linux Ubuntu 20.04 LTS OS machine with 3.2GHz CPU
and 32GB memory.

7.1 Surveillance example

In our first case study, we demonstrate how our tool can be used to automatically compute
tolerance for different controllers, and how this information can be used to systematically
compare alternative controller designs with respect to their tolerance. We also evaluate the
scalability of our tool.

7.1.1 Models and property

Example 1 describes how the surveillance example is modeled as an LTS. The invariance
property is defined as Qinv = Q \ {(2, 2), (3, 3), (4, 4), (5, 5)}. Next, we define two con-
trollers, f1 and f2, that satisfy this invariance property. First, we consider controller f1
to be the one described in Example 2 where it maintains ego in location 1. Another con-
troller f2 ensures that ego visits all locations without being captured by srv. Formally, f2
is defined as follows: f2(q) = f1(q) if q ∈ Q \ {(1, 4), (2, 5)}, f2(1, 4) = {m1,m2}, and
f2(2, 5) = {m1,m3}. Figure 6 shows the LTS representations of T | f1 and T | f2.
7.1.2 Computing the tolerance

We use our tool to compute the tolerance for both controllers f1 and f2. Note that LTS T has
20 states, 5 actions, 60 transitions, and the safe set Qinv has 16 states. The tolerance � f1� has
1936 transitions of which 1876 are new transitions with respect to the transition relation R.
On the other hand, � f2� has 1928 transitions where 1868 are new transitions. In both cases,
it takes about 8ms to compute the tolerance. In comparison, the most tolerant controller f ∅
characterized by � f ∅� = Q × Act × Q has 2000 transitions, i.e., the transition relation is
complete. The least tolerant controller f inv has tolerance � f inv� with 1716 transitions.

2 https://github.com/romulo-goes/tolerancetool

123

https://github.com/romulo-goes/tolerancetool

Discrete Event Dynamic Systems

7.1.3 Comparing controllers

Controllers f1 and f2 select the same control decisions in all states except in states (1, 4) and
(2, 5). In these two states, controller f2 allows ego to venture closer to the building. Therefore,
controller f1 should be more tolerant than controller f2. This intuition is confirmed by our
notion of tolerance where � f2� ⊂ � f1�, i.e., controller f1 tolerates more perturbations than
f2. Even though f1 is more tolerant, it is also less permissive as it prevents the ego drone
from traveling to certain locations that f2 allows.

7.1.4 Performance analysis

To evaluate the performance of Algorithm 2, we scale the surveillance example by adding
more locations as well as more surveillance drones. Table 2 summarizes the evaluation of
our tool. The tolerances � f inv� in each of these examples are almost the complete transition
relation, i.e., � f inv� ≈ Q×Act×Q. Our tool ran out ofmemory and it could not compute the
tolerance for the system with 10 locations and 3 srv drones; the complete transition relation
for this system has 262 144 000 transitions. As part of future work, we plan to improve our
tool by symbolic encoding of the LTS, e.g., using OBDD (Bryant 1992). We also compare
Algorithm 2 against the brute force Algorithm 1. We implement Algorithm 1 leveraging
FuseIC3 (Dureja and Rozier 2017), a state-of-the-art tool that can be used to verify a family
of LTS. FuseIC3 more efficiently verifies every possible pertubed system Td | f that satisfies
an invariance property P (lines 2-4 in Algorithm 2. Since the brute force algorithm verifies
Td | f |� P for every perturbation d ⊆ Q × Act × Q, it is infeasible to use the surveillance
example as there are 21940 systems to verify. For this reason, we make this comparison
using a modified version of the LTS shown in Fig. 3a. Table 3 summarizes the results of our
comparison, which shows that our tool provides a more efficient way of computing tolerance.
To be fair, this is not surprising, as although FuseIC3 efficiently verifies a large family of LTS,
it was not developed to solve Problem 2. On the other hand, Algorithm 2 directly computes
the tolerance of the LTS by leveraging the results of Theorem 1.

7.2 Robot motion planning

In this second case study, we demonstrate how our tool can be used to synthesize a controller
that meets a minimum required level of tolerance and permissiveness as specified by the
designer.

7.2.1 Models and property

We use the robot motion planning described in Topcu et al. (2012). Consider a robot in an
n × n grid that has three different control actions, Act = {M, R, L}, which correspond to

Table 2 Scalability of tolerance computation

System |Q| |Act | |R| |� f inv�| time

1 srv, 5 loc. 20 5 60 1 716 0.01 sec

1 srv, 10 loc. 80 10 272 59 030 0.46 sec

2 srv, 10 loc. 640 10 2 176 3 618 978 30.88 sec

3 srv, 10 loc. 5120 10 17 408 out of memory − sec

123

Discrete Event Dynamic Systems

Table 3 Comparison with FuseIC3

|Q| |Act | |R| # perturbations Algorithm 2 Algorithm 1 with FuseIC3

4 2 22 210 0.001 sec 1.5 sec

4 2 17 215 0.001 sec 48.1 sec

move straight, turn right, and turn left, respectively. The state space of the robot is composed
of its x, y grid coordinates and its θ ∈ {0, π

2 , π, 3π
2 } heading angle. The transition relation

is given by the following equations:

– Action = L: x ′ = x , y′ = y, and θ ′ = θ + π
2 ;

– Action = R: x ′ = x , y′ = y, and θ ′ = θ − π
2 ;

– Action = M : x ′ = x + cos(θ), y′ = y + sin(θ), and θ ′ = θ .

where x ′, y′, θ ′ describe the next state values. We introduce an additional state Out to
indicate when the robot goes out of the grid. We set the initial state to be in the center of
the grid, i.e., q0 = {(� n

2 �, � n
2 �, 0)} where �.� is the floor operator. The invariance property is

defined by Qinv = Q \ {Out}, i.e., the robot cannot go out of the grid.

7.2.2 Perturbation and permissive sets

To demonstrate our tolerant synthesis framework, we introduce perturbations for actions
L, R, M that must be tolerated by the synthesized controller. This perturbation set is con-
structed based on the following equations:

– Action = L: x ′ = x + δx
√
2 cos(θ + π

4), y′ = y + δy
√
2 sin(θ + π

4), and θ ′ = θ + π
2 ,

δx , δy ∈ {0, 1, . . . , δ1}
– Action = R: x ′ = x + δx

√
2 cos(θ − π

4), y′ = y + δy
√
2 sin(θ − π

4), and θ ′ = θ − π
2 ,

δx , δy ∈ {0, 1, . . . , δ1}
– Action = M : x ′ = x + (1 + δx) cos(θ), y′ = y + (1 + δy) sin(θ), and θ ′ = θ , δx , δy ∈

{0, 1, . . . , δ2}
Here, δ1, δ2 are nonnegative numbers that represent different levels of perturbations.Thevalue
δ1 captures perturbations when the robot turns, i.e., the robot might not stay in the same cell
when it turns. Similarly, δ2 allows the robot to move beyond adjacent grid positions when
it moves straight. Again, we use the state Out to indicate when the robot goes out of the
n× n grid. The set d(δ1, δ2) denotes the set of perturbed transitions defined by the equations
above.

With respect to permissiveness, we define desired set of runs N based on regions of the
grid we want the robot to explore. Intuitively, we want the robot being able to explore every
state in 4 ≤ x ≤ 7 and 4 ≤ y ≤ 7. Pictorially, the robot must be able to visit at least the
red region in Fig. 7a. Formally, the set N is defined as N = {(x0, y0, θ0) . . . (xm, ym, θm) ∈
TΩ |(∀i ≤ m)[4 ≤ xi ≤ 7 ∧ 4 ≤ yi ≤ 7]}.

7.2.3 Synthesizing Pareto controllers

Based on Problem 3, we synthesize Pareto controllers for different desired perturbation
sets d(δ1, δ2) and set of runs N . For illustration, we choose n = 10 and synthesize Pareto
controllers f N as defined in Theorem 5 and f d(δ1,δ2) as defined in Theorem 6.

123

Discrete Event Dynamic Systems

Fig. 7 Robot motion planning reachable areas

With respect to the most tolerant controller, f N , we can synthesize a single controller that
is tolerant against perturbations d(δ1, δ2) for 0 ≤ δ1 ≤ 3 and 0 ≤ δ2 ≤ 3. With f N , the robot
can reach exactly the red region in Fig. 7a. In the case of δ1 = δ2 = 4, Problem 3 does not
accept solutions as N and d(δ1, δ2) provide inconsistent requirements. For example, while N
requires the robot to visit state (4, 4, 0), a disturbance in d(4, 4) can push the robot outside
of the grid region. For this reason, there is no controller that achieves the minimum levels of
tolerance d(4, 4) and permissiveness N .

With respect to the most permissive controllers f d(δ1,δ2), when δ1 = δ2 = 0, the set
d(0, 0) is exactly the same as the set R, i.e., no perturbation. For this reason, the synthesized
controller f d(0,0) can reach every state in the n×n grid as depicted in Fig. 7b which satisfies
the permissiveness requirement N . Intuitively, the robot can go to the border of the grid
since it assumes that turns only alter the heading angle and moves only go to adjacent cells.
When δ1 = δ2 = 1, the synthesized controller needs to be more restrictive since moves can
go beyond the adjacent cells and turns can alter the robot’s position. In this case, f d(1,1)

restricts the robot to stay one cell away from the border of the grid as precaution based on the
possible perturbations in d(1, 1). In similar manner, the other controllers f d(δ1,δ2) will restrict
the robot’s reachable area based on the perturbations while satisfying the permissiveness
constraint N . Figure 7b depicts how restrictive these controllers are by showing the reachable
areas for each controller.

When δ1 �= δ2, the reachable states inT | f d(δ1,δ2) are the sameas inT | f d(max{δ1,δ2},max{δ1,δ2}),
e.g., T | f d(0,1) reaches the same states as T | f d(1,1). The difference in these controllers
only appears when we analyze the perturbed systems. For example, controller f d(1,1) is
blocking in state (1, 2, π) since it cannot turn as perturbations

(
(1, 2, π), L, Out

)
and(

(1, 2, π), R, Out
)
belong to d(1, 1). Controller f d(0,1) is nonblocking (1, 2, π) since the

same perturbations do not belong to d(0, 1).
For n = 10, the time to compute controllers f d(δ1,δ2) varies from 82ms when f d(1,1) to

320ms when f d(5,5). Table 4 summarizes the results of computing f d(δ1,δ2) for various n.

8 Related work

Several works have investigated notions of robustness, tolerance, and resilience for discrete
transition systems by quantifying perturbation via cost functions, metrics, etc. (Bloem et al.

123

Discrete Event Dynamic Systems

Table 4 Scalability of computing
tolerant controllers

n |Q| |Act | δ1 δ2 time

10 401 3 3 3 0.21 sec

20 1601 3 3 3 2.87 sec

50 10001 3 3 3 106.70 sec

2014, 2009; Chaudhuri et al. 2011; Henzinger et al. 2014; Majumdar et al. 2011, 2013;
Neider et al. 2020; Samanta et al. 2013; Samuel et al. 2020; Tabuada et al. 2012; Filiot
et al. 2020). Most of these works define robustness closely to the notions of robustness
in continuous state-space control systems, e.g., Bounded-Input-Bounded-Output, (Bloem
et al. 2014, 2009; Chaudhuri et al. 2011; Henzinger et al. 2014; Majumdar et al. 2011,
2013; Tabuada et al. 2012; Samanta et al. 2013). Perturbations are either known or they
are unknown but with known metric functions, e.g., cost to transition to a different state.
Our notion of tolerance is qualitative as it captures the set of perturbations for which the
controller guarantees the property and avoids the need for external cost functions over the
discrete transition system. In Filiot et al. (2020), perturbations are also introduced based on
a cost function over regular languages. The authors investigate the problem of synthesizing
the largest threshold that guarantees a system to satisfy a given regular property. Although
their synthesis problem is similar to our definition of tolerance, their definition assumes a
given metric whereas our tolerance definition is qualitative.

In Neider et al. (2020); Samuel et al. (2020), perturbations are also interpreted as addi-
tional transitions to a nominal system. In Neider et al. (2020), a framework to synthesize
optimally resilient controllers based on a metric defined by the number of transitions needed
to violate an ω-property. Their optimal controller synthesis is similar to our synthesis of
tolerant controllers when considering only invariance properties. However, our work also
considers permissiveness as part of our controller synthesis problem for invariance proper-
ties. In Samuel et al. (2020), the authors propose an abstract-based controller design where
the discrete abstraction system is computed with the addition of known perturbations called
Whigh . Compared to our work, the Whigh perturbations introduced a perturbation set to the
finite state abstraction. An optimal controller is then designed based on techniques from
Neider et al. (2020).

With respect to qualitative robustness notions, the work in Topcu et al. (2012) investigated
synthesizing controllers robust against perturbation sets specified by the designer. The frame-
work of Topcu et al. (2012) does not address the computation of the tolerance of controllers,
and as a result does not provide tools to compare the relative tolerance of different controllers
such as controllers 1 and 2 in our motivating example. In Tabuada and Neider (2016), the
authors presented the notion of robust linear temporal logic (rLTL) which extends the binary
view of LTL to a 5-valued semantics to capture different levels of property satisfaction. This
work is tangent to ours as it focuses on specifying robustness.

The notion of robustness presented in Kang (2020); Zhang et al. (2020) is only seman-
tically defined. In Zhang et al. (2020), the environmental perturbation is captured by a set
of input traces the software system accepts. Perturbations in Kang (2020) are connected to
different attack models for software systems. We define the syntax of perturbations as addi-
tional transitions in the environment model. Building on our tolerance definition, we have
investigated our tolerance definition for general safety properties inMeira-Góes et al. (2023).
However, the definition of tolerance in Meira-Góes et al. (2023) differs from Definition 7
since it directly compares transitions instead of the runs of the perturbed system. More-

123

Discrete Event Dynamic Systems

over, computing tolerance for general safety properties has exponential-time complexity in
Meira-Góes et al. (2023). Algorithm 2, on the other hand, has quadratic-time complexity for
invariance properties.

There also exists a vast literature on robust control in discrete event systems (Alves et al.
2019; Cury and Krogh 1999; Lin 1993; authorname 2014; Lin et al. 2019; Meira-Góes et al.
2019; Meira-Goes et al. year; Meira-Góes et al. 2022; Paoli and Lafortune 2005; Rohloff
2012; Takai 2004; Wang et al. 2016; Young and Garg 1995). The notions of robustness in
Alves et al. (2019); authorname (2014); Lin et al. (2019); Meira-Góes et al. (2019); Meira-
Goes et al. (year); Meira-Góes et al. (2022); Rohloff (2012); Wang et al. (2016) are specific
to communication delays, loss of information, or deception attacks. Our notion of tolerance
represents general model uncertainty, which includes unreliable communication channels in
the controlled system.

Of particular relevance to this paper are the works in Cury and Krogh (1999); Lin (1993);
Takai (2004), where robustness against model uncertainty is tackled in the context of super-
visory control theory. Given a set of plants, Lin (1993) describes methods to find a supervisor
that satisfies a property for all plants. Cury and Krogh (1999) focus on synthesizing the most
robust supervisor with respect to perturbations in a nominal plant. Extending the work in
Cury and Krogh (1999), Takai (2004) investigates the trade-off between permissiveness and
robustness in the context of supervisory control theory. Thus, the work in Takai (2004) resem-
bles to our discussion of permissiveness versus tolerance. However, the semantic of our work
differs from Takai (2004) as we use a different modeling formalism. We consider state-based
controllers that react based on state history, while Takai (2004) considers controllers that
react to action history.

The description of the general algorithm to compute Δ(T , f , P) for any property P
connects our work to the work on verifying software product lines (SPL) described as feature
transition systems (FTS) (Classen et al. 2010, 2013). However, verifying FTS has exponential
worst-case time complexity even for invariance properties whereas our method has linear-
time complexity. Modal transition systems (MTS) (Larsen and Thomsen 1988; Huth et al.
2001) can also be used to describe a family of LTS. In D’Ippolito et al. (2012), a controller
realizability problem is studied for an environment modeled by an MTS, where a controller
satisfies a property in all, some, or none of the LTS family. Our notion of controller explicitly
computes which systems in the LTS family satisfy the property.

Finally, related to this paper is thework on fault-tolerance. Fault-tolerance has been studied
in the context of distributed systems (Gärtner 1999; Lynch 1996; Pease et al. 1980). The work
in Bonakdarpour and Kulkarni (2008); Cheng et al. (2011); Ebnenasir et al. (2008); Girault
and Rutten (2009) focuses on the synthesis of fault-tolerant programs by retrofitting initial
fault-intolerant programs. These works focus on specific types of fault models, whereas our
tolerance notion upper-bounds the perturbations (faults) the controller tolerates.

9 Conclusion

In this paper, we introduced a new notion of tolerance against environmental perturbations
for discrete-state control systems. We provided a general technique to compute this tolerance
for general properties modeled as regular languages over finite strings as well as a more
efficient technique specifically for invariance properties. We also investigated the problem
of synthesizing an invariant controller that achieves a given minimum threshold of tolerance
and permissiveness.We used Pareto optimality to capture the trade-off between tolerance and

123

Discrete Event Dynamic Systems

permissiveness and showed that memoryless controllers are sufficient to capture the Pareto
front of this trade-off.

Our notion of tolerance is syntactically defined by additional transitions and semantically
defined by the controlled behavior generated by these additional transitions. However, the
additional transitions and new controlled behavior need to be analyzed by a designer as to
explain them. We leave to future work to bridge this gap between the syntax of our notion
of tolerance with the context of the model to provide tolerance explanations to the designer.
As part of future work, we will also devise more efficient techniques for properties other
than invariance. One may also investigate connections between Problem 1 and the solution
of two-player Büchi games (Grädel et al. 2002). In Remark 1, we discussed the use of the
nondeterministic transition function to model uncontrollable actions. However, we leave
to future work to investigate our framework with controllable and uncontrollable actions. It
would be also interesting to extend our work to investigate tolerance in the context of partially
observable systems. Lastly, the connection between the fields of supervisory control theory
and reactive synthesis has been recently investigated (Ehlers et al. 2017; Schmuck et al.
2020). As part of future work, we will investigate if our framework can be extended to the
supervisory control theory framework.

Declarations

Conflict of Interests The authors declare that they have no conflict of interest.

Appendix

Acontroller with finite memoryM is a triple composed by the control function f : M×Q →
2Act , a memory update function g : M×Q → M , and an initial memory conditionm0 ∈ M .
In this manner, the closed-loop system T | f can be represented by an LTS.

Definition 13 Let an LTS T and a controller (f , g,m0) with bounded memory M be given.
We can define LTS T | f = (Q × M, Act, R| f , I × {m0}) where R| f is defined as follows:

R| f := {(q,m, a, q ′,m′) ∈ Q × M × Act × Q × M | (q, a, q ′) ∈ R ∧
a ∈ f (m, q) ∧ m′ = g(m, q ′)} (1)

Due to the memory M introduced by the controller f , Runs(T | f) and Paths(T | f) are
defined over Q × M × Act and Q × M , respectively. However, the ω-properties are only
defined over Q. Therefore, we project Q × M × Act → Q × Act and Q × M → Q using
the operator �. With an abuse of notation, we use Runs(T | f) and Paths(T | f) to be the
projected runs and paths Runs(T | f) � and Paths(T | f) �

References

Alur R, La Torre S (2001) Deterministic generators and games for LTL fragments. In: Proceedings 16th annual
IEEE symposium on logic in computer science, pp 291–300

Alves MVS, da Cunha AEC, Carvalho LK, Moreira MV, Basilio JC (2019) Robust supervisory control of
discrete event systems against intermittent loss of observations. Int J Control, pp 1–13

Baier C, Katoen JP (2008) Principles of Model Checking. The MIT Press
Ball T, Levin V, Rajamani SK (2011) A decade of software model checking with slam. Commun ACM

54(7):68–76

123

Discrete Event Dynamic Systems

Belta C, Yordanov B, Aydın Göl E (2017) Formal Methods for Discrete-Time Dynamical Systems, 1st edn.
Springer Publishing Company

Bloem R, Jobstmann B, Piterman N, Pnueli A, Sa’ar Y (2012) Synthesis of reactive(1) designs. J Comput Syst
Sci 78(3):911–938

Bloem R, Chatterjee K, Greimel K, Henzinger TA, Hofferek G, Jobstmann B, Könighofer B, Könighofer R
(2014) Synthesizing robust systems. Acta Inf 51(3–4):193–220

Bloem R, Greimel K, Henzinger TA, Jobstmann B (2009) Synthesizing robust systems. In: 2009 Formal
methods in computer-aided design, pp 85–92

Bonakdarpour B, Kulkarni SS (2008) Sycraft: a tool for synthesizing distributed fault-tolerant programs. In:
van Breugel F, Chechik M (eds) CONCUR 2008 - Concurrency Theory. Springer, Berlin Heidelberg, pp
167–171

Bryant RE (1992) Symbolic booleanmanipulation with ordered binary-decision diagrams. ACMComput Surv
24(3):293–318

Cassandras CG, Lafortune S (2021) Introduction to discrete event systems, 3rd edn. Springer, Cham
Chaudhuri S, Gulwani S, Lublinerman R, Navidpour S (2011) Proving programs robust. In: Proceedings of

the 19th ACM SIGSOFT symposium and the 13th European conference on foundations of software
engineering, ESEC/FSE ’11. Association for Computing Machinery, pp 102–112

Cheng CH, Rueß H, Knoll A, Buckl C (2011) Synthesis of fault-tolerant embedded systems using games: from
theory to practice. In: Jhala R, Schmidt D (eds) Verification, model checking, and abstract interpretation.
Springer, Berlin Heidelberg, pp 118–133

Classen A, Cordy M, Schobbens PY, Heymans P, Legay A, Raskin JF (2013) Featured transition systems:
foundations for verifying variability-intensive systems and their application to LTL model checking.
IEEE Trans Softw Eng 39(8)

Classen A, Heymans P, Schobbens PY, Legay A, Raskin JF (2010) Model checking lots of systems: efficient
verification of temporal properties in software product lines. In: 2010 ACM/IEEE 32nd International
conference on software engineering, vol 1, pp 335–344

Cury J, Krogh B (1999) Robustness of supervisors for discrete-event systems. IEEE Trans Autom Control
44(2):376–379

D’Ippolito N, Braberman V, Piterman N, Uchitel S (2012) The modal transition system control problem. In:
Giannakopoulou D, Méry D (eds) FM 2012: formal methods. Springer, Berlin Heidelberg, pp 155–170

Dureja R, Rozier KY (2017) FuseIC3: an algorithm for checking large design spaces. In: 2017 Formal methods
in computer aided design (FMCAD), pp 164–171

Ebnenasir A, Kulkarni SS, Arora A (2008) FTSyn: a framework for automatic synthesis of fault-tolerance. Int
J Softw Tools Technol Transf 10(5):455–471

Ehlers R, Lafortune S, Tripakis S, Vardi MY (2017) Supervisory control and reactive synthesis: a comparative
introduction. Discrete Event Dynamic Systems 27:209–260

Filiot E, Mazzocchi N, Raskin JF, Sankaranarayanan S, Trivedi A (2020) Weighted transducers for robustness
verification. In: Konnov I, Kovács L (eds) 31st International conference on concurrency theory (CON-
CUR 2020), Leibniz International Proceedings in Informatics (LIPIcs), vol 171, pp 17:1–17:21. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, Germany

Gärtner FC (1999) Fundamentals of fault-tolerant distributed computing in asynchronous environments. ACM
Comput Surv 31(1):1–26

Girault A, Rutten E (2009)Automating the addition of fault tolerancewith discrete controller synthesis. Formal
Methods in System Design 35:190–225

Grädel E, Thomas W, Wilke T (eds) (2002) Automata logics, and infinite games: a guide to current research.
Springer-Verlag, Berlin, Heidelberg

Henzinger TA, Otop J, Samanta R (2014) Lipschitz robustness of finite-state transducers. In: Raman V, Suresh
SP (eds) 34th International conference on foundation of software technology and theoretical computer
science (FSTTCS 2014), Leibniz International Proceedings in Informatics (LIPIcs), vol 29, pp 431–443.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany,

Huth M, Jagadeesan R, Schmidt D (2001) Modal transition systems: a foundation for three-valued program
analysis. In: Sands D (ed) Programming languages and systems. Springer, Berlin Heidelberg, pp 155–169

Kang E (2020) Robustness analysis for secure software design. In: Proceedings of the 3rd ACM SIGSOFT
international workshop on software security from design to deployment, SEAD 2020, p 19–25. Associ-
ation for Computing Machinery

Larsen K, Thomsen B (1988) A modal process logic. In: 1988 Proceedings. Third annual symposium on logic
in computer science, pp 203–210

Lin F (1993) Robust and adaptive supervisory control of discrete event systems. IEEE Trans Autom Control
38(12):1848–1852

123

Discrete Event Dynamic Systems

Lin F (2014) Control of networked discrete event systems: dealing with communication delays and losses.
SIAM J Control Optim 52(2):1276–1298

Lin L, Zhu Y, Su R (2019) Towards bounded synthesis of resilient supervisors. In: 2019 IEEE 58th Conference
on Decision and Control (CDC), pp 7659–7664

Lynch NA (1996) Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
Majumdar R, Render E, Tabuada P (2011) Robust discrete synthesis against unspecified disturbances. In:

Proceedings of the 14th International conference on hybrid systems: computation and control, HSCC
’11, p 211–220. Association for Computing Machinery

Majumdar R, Render E, Tabuada P (2013) A theory of robust omega-regular software synthesis. ACM Trans
Embed Comput Syst 13(3)

Meira-Goes R, Lafortune S, Marchand H (2021) Synthesis of supervisors robust against sensor deception
attacks. IEEE Trans Autom Control 66(10):4990–4997

Meira-Góes R, Dardik I, Kang E, Lafortune S, Tripakis S (2023) Safe environmental envelopes of discrete
systems. In: (to appear) Computer aided verification

Meira-Góes R, Kang E, Lafortune S, Tripakis S (2022) On synthesizing tolerable and permissive controllers
for labeled transition systems. In: 16th IFAC Workshop on discrete event systems WODES 2022

Meira-GóesR,MarchandH, Lafortune S (2019) Towards resilient supervisors against sensor deception attacks.
In: 2019 IEEE 58th Annual conference on decision and control (CDC)

Meira-Góes R, Marchand H, Lafortune S (2022) Dealing with sensor and actuator deception attacks in super-
visory control. Automatica

Meira-Góes R, Wintenberg A, Matsui S, Lafortune S (2017) MDESops: an open-source software tool for
discrete event systems modeled by automata. In: Proc 22nd IFAC World Congr

Neider D,Weinert A, ZimmermannM (2020) Synthesizing optimally resilient controllers. Acta Inf 57(1):195–
221

Newcombe C, Rath T, Zhang F, Munteanu B, Brooker M, Deardeuff M (2015) How amazon web services uses
formal methods. Commun ACM 58(4):66–73

Paoli A, Lafortune S (2005) Safe diagnosability for fault-tolerant supervision of discrete-event systems. Auto-
matica 41(8):1335–1347

Pease M, Shostak R, Lamport L (1980) Reaching agreement in the presence of faults. J ACM 27(2):228–234
Pnueli A (1977) The temporal logic of programs. In: 18th Annual symposium on foundations of computer

science (sfcs 1977), pp 46–57
Pnueli A, Rosner R (1989) On the synthesis of a reactive module. In: Proceedings of the 16th ACMSIGPLAN-

SIGACT symposium on principles of programming languages, POPL ’89, pp 179–190. Association for
Computing Machinery

Ramadge PJ, WonhamWM (1987) Supervisory control of a class of discrete event processes. SIAM J Control
Optim 25(1):206–230

Rohloff K (2012) Bounded sensor failure tolerant supervisory control. 11th IFACWorkshop on Discrete Event
Systems 45(29):272–277

Samanta R, Deshmukh JV, Chaudhuri S (2013) Robustness analysis of string transducers. In: Van Hung D,
Ogawa M (eds) Automated technology for verification and analysis. Springer Publishing Company, pp
427–441

Samuel S, Mallik K, Schmuck AK, Neider D (2020) Resilient abstraction-based controller design. In: 2020
59th IEEE conference on decision and control (CDC), pp 2123–2129

Schmuck AK,Moor T, Majumdar R (2020) On the relation between reactive synthesis and supervisory control
of non-terminating processes. Discrete Event Dynamic Systems 30(1):81–124

Tabuada P (2009)Verification and control of hybrid systems: a symbolic approach, 1st edn. Springer Publishing
Company

Tabuada P, Neider D (2016) Robust linear temporal logic. In: Talbot JM, Regnier L (eds) 25th EACSL Annual
conference on computer science logic (CSL 2016), Leibniz International Proceedings in Informatics
(LIPIcs), vol 62, pp 10:1–10:21. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany

Tabuada P, Balkan A, Caliskan SY, Shoukry Y, Majumdar R (2012) Input-output robustness for discrete
systems. In: Proceedings of the tenth ACM international conference on embedded software, EMSOFT
’12, p 217–226. Association for Computing Machinery

Takai S (2004)Maximizing robustness of supervisors for partially observed discrete event systems. Automatica
40(3):531–535

Topcu U, Ozay N, Liu J, Murray RM (2012) On synthesizing robust discrete controllers under modeling
uncertainty. In: Proceedings of the 15th ACM international conference on hybrid systems: computation
and control, HSCC ’12, pp 85–94. Association for Computing Machinery

Wang F, Shu S, Lin F (2016) Robust networked control of discrete event systems. IEEE Trans Autom Sci Eng
13(4):1528–1540

123

Discrete Event Dynamic Systems

Young S, Garg VK (1995) Model uncertainty in discrete event systems. SIAM J Control Optim 33(1):208–226
Zhang C, Garlan D, Kang E (2020) A behavioral notion of robustness for software systems. In: Proceedings

of the 28th ACM joint meeting on European software engineering conference and symposium on the
foundations of software engineering, ESEC/FSE 2020, pp 1–12. Association for Computing Machinery

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

Rômulo Meira-Góes is an Assistant Professor in the Department of
Electrical Engineering at Pennsylvania State University. Previously,
he was a postdoctoral researcher working with Eunsuk Kang, Stavros
Tripakis and Stéphane Lafortune. In 2022, he received the inaugural
CPS rising stars award from UVA. He received his Ph.D. in Electrical
and Computer Engineering from the University of Michigan in 2020,
working with Stéphane Lafortune. Prior to the University of Michigan,
he earned his B.S. degree in Electrical Engineering from the Univer-
sidade Tecnológica Federal do Paraná - Curitiba in 2015. His research
interests include supervisory control of discrete event systems, formal
methods and game theory, specially, their application in cyber security
of cyber-physical systems.

Eunsuk Kang is an Assistant Professor in the Software and Societal
Systems Department, School of Computer Science at Carnegie Mel-
lon University. He received a Ph.D. in Electrical Engineering and
Computer Science from MIT, and a Bachelor of Software Engineer-
ing from the University of Waterloo in Canada. His research interests
include software engineering, formal methods, security, and system
safety.

123

Discrete Event Dynamic Systems

Stéphane Lafortune was born in Montréal, Québec, Canada. He
received the B.Eng degree from École Polytechnique de Montréal in
1980, the M.Eng degree from McGill University in 1982, and the
Ph.D degree from the University of California at Berkeley in 1986,
all in electrical engineering. Since September 1986, he has been with
the University of Michigan, Ann Arbor, where he is a Professor of
Electrical Engineering and Computer Science. In March 2018, he was
appointed as the N. Harris McClamroch Collegiate Professor of Elec-
trical Engineering and Computer Science. Lafortune is a Fellow of
the IEEE (1999) and of IFAC (2017). He received the Presidential
Young Investigator Award from the National Science Foundation in
1990 and the Axelby Outstanding Paper Award from the Control Sys-
tems Society of the IEEE in 1994 (for a paper co-authored with S.-L.
Chung and F. Lin) and in 2001 (for a paper co-authored with G. Bar-
rett). Lafortune’s research interests are in discrete event systems and
include multiple problem domains: modeling, diagnosis, control, opti-

mization, and applications to computer and software systems. He co-authored, with C. Cassandras, the
textbook Introduction to Discrete Event Systems (Third Edition, Springer, 2021). He also authored the book
A Guide to Signals and Systems in Continuous Time (Springer 2022). Lafortune served as Editor-in-Chief
of the Journal of Discrete Event Dynamic Systems: Theory and Applications from 2015 to 2020.

Stavros Tripakis is an Associate Professor of Computer Science at
Northeastern University. He received his Ph.D. degree in Computer
Science at the Verimag Laboratory, Joseph Fourier University, Greno-
ble, France, and has held positions at the University of California at
Berkeley, at the French National Research Center CNRS, at Cadence
Design Systems, and at Aalto University. His research interests are
in the foundations of software and system design, formal verification,
and cyber-physical systems. Dr. Tripakis was co-Chair of the 10th
ACM & IEEE Conference on Embedded Software (EMSOFT 2010),
and Secretary/Treasurer (2009-2011) and Vice-Chair (2011-2013) of
ACM SIGBED. His H-index is 54.

Authors and Affiliations

Rômulo Meira-Góes1 · Eunsuk Kang2 · Stéphane Lafortune3 · Stavros Tripakis4

Eunsuk Kang
eskang@cmu.edu

Stéphane Lafortune
stephane@umich.edu

Stavros Tripakis
stavros@northeastern.edu

1 School of Electrical Engineering and Computer Science, The Pennsylvania State University,
University Park, PA, USA

2 School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
3 Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor,

MI, USA
4 Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA

123

http://orcid.org/0000-0003-3567-9685

	On tolerance of discrete systems with respect to transition perturbations
	Abstract
	1 Introduction
	2 Motivating example
	3 Discrete-state systems
	3.1 Labeled transition systems
	3.2 Control strategy
	3.3 Property

	4 Tolerance against perturbations
	4.1 Perturbations
	4.2 Comparing perturbations
	4.3 Tolerance
	4.4 Computing tolerance for general properties

	5 Tolerance with respect to invariance properties
	5.1 Supremum tolerable perturbation
	5.1.1 Invariant controllers
	Tolerance of invariant controllers

	5.2 Computing tolerance for invariance properties
	5.3 The least and most tolerant invariant controllers

	6 Synthesis of tolerant and permissive controllers
	6.1 Permissiveness
	6.2 Pareto optimality
	6.3 Synthesis of Pareto controllers
	6.4 Memoryless controllers
	6.5 Existence of controllers
	6.6 Tolerant and permissive controllers
	6.7 Complexity analysis

	7 Case studies
	7.1 Surveillance example
	7.1.1 Models and property
	7.1.2 Computing the tolerance
	7.1.3 Comparing controllers
	7.1.4 Performance analysis

	7.2 Robot motion planning
	7.2.1 Models and property
	7.2.2 Perturbation and permissive sets
	7.2.3 Synthesizing Pareto controllers

	8 Related work
	9 Conclusion
	Appendix
	References

