
Software and Systems Modeling
https://doi.org/10.1007/s10270-023-01118-0

SPEC IAL SECT ION PAPER

Counterexample classification

Cole Vick1 · Eunsuk Kang2 · Stavros Tripakis3

Received: 10 June 2022 / Revised: 26 June 2023 / Accepted: 28 June 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
In model checking, when a model fails to satisfy the desired specification, a typical model checker provides a counterexample
that illustrates how the violation occurs. In general, there exist many diverse counterexamples that exhibit distinct violating
behaviors, which the user may wish to examine before deciding how to repair the model. Unfortunately, (1) the number of
counterexamples may be too large to enumerate one by one, and (2) many of these counterexamples are redundant, in that
they describe the same type of violating behavior. In this paper, we propose a technique called counterexample classification.
The goal of classification is to cover the space of all counterexamples into a finite set of counterexample classes, each
of which describes a distinct type of violating behavior for the given specification. These classes are then presented as a
summary of possible violating behaviors in the system, freeing the user frommanually having to inspect or analyze numerous
counterexamples to extract the same information. We have implemented a prototype of our technique on top of an existing
formal modeling and verification tool, the Alloy Analyzer, and evaluated the effectiveness of the technique on case studies
involving the well-known Needham–Schroeder and TCP protocols with promising results.

Keywords Model checking · Formal modelling · debugging

1 Introduction

In formal verification, counterexamples are an invaluable
aid for debugging a model for possible defects. Typically,
a counterexample is constructed by a verification tool as a
trace—i.e., a sequence of states or events—that demonstrates
how the system violates a desired property. The user of the
tool would then inspect the counterexample for the underly-
ing cause behind the violation and fix the model accordingly.

Communicated by Antonio Cerone and Frank de Boer.

This work has been supported by the National Science Foundation
under NSF SaTC award CNS-1801546.

B Cole Vick
cvick@cs.utexas.edu

Eunsuk Kang
eskang@cmu.edu

Stavros Tripakis
stavros@northeastern.edu

1 Univeristy of Texas at Austin, Austin, TX, USA

2 Carnegie Mellon University, Pittsburgh, PA, USA

3 Northeastern University, Boston, MA, USA

In practice, there are a number of challenges that the user
may encounter while using counterexamples to debug and
repair a model. First, a counterexample may contain details
that are irrelevant to the root cause of a violation, requir-
ing considerable effort by the user to manually analyze and
extract the violating behavior. Second, the user may wish
to investigate multiple different types of counterexamples
before deciding how to repair the model; this, however, is a
challenging task because (1) the number of counterexam-
ples may be too large to enumerate one by one, and (2)
many of these counterexamples may be redundant in that
they describe the same type of violating behavior.

This paper proposes a technique called counterexample
classification as an approach to overcome these challenges.
The key intuition behind this approach is that although a
typical model contains a very large, or possibly infinite, set
of counterexamples, (1) many of these can be considered
“similar,” in that they share a common, violating behav-
ior and (2) this similarity can be captured as a specific
relationship between states that is shared by these traces.
Based on this insight, our technique automatically generates
a finite number of classes that together cover the entire set
of counterexamples, with each class being associated with
a constraint that characterizes one particular type of viola-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-023-01118-0&domain=pdf
http://orcid.org/0000-0003-4436-8360

C. Vick et al.

tion. These constraints are then presented to the user, along
with representative counterexamples, as distinct descriptions
of possible defects in the system, freeing them from manu-
ally sorting through numerous counterexamples to extract the
same information.

For instance, consider a security protocol involving a pair
of agents that communicate over a channel, with an attacker
that attempts to compromise the secrecy of exchanged infor-
mation by carrying out various attacks. Although a model
of the protocol may admit a large number of counterexam-
ple traces, each corresponding to a possible attack, suppose
that each attack on this protocol can be classified as an
instance of (1) aman-in-the-middle attack where the attacker
places itself between the two agents or (2) a replay attack
where the attacker resends a previously sent message. Given
this model, our technique would automatically generate and
present these two classes to the user together with represen-
tative counterexamples from each class.

A key idea behind our approach is the use of user-defined
summary predicates for classifying counterexamples. In cer-
tain domains, the user may have a priori knowledge about
common types of defects that can be encoded as generic
constraints over system primitives. For example, there are
well-understood categories of security attacks—e.g., man-
in-the-middle and replay attacks—that can be expressed over
concepts such as keys, messages, and agents. Our approach
allows the user to use such constraints to control and fine-
tune the result of classification. In addition, once defined,
these predicatesmay be reused acrossmultiplemodelswithin
the same domain, as we demonstrate with the verification of
security protocols in this paper.

We have built a prototype implementation of our classifi-
cation technique on top of an existing formal modeling and
verification tool, the Alloy Analyzer [12]. Our tool accepts
a formal model, a specification, that the model currently
violates, and a set of predicates that describe relationships
between states in the model. From these, the tool produces, if
one exists, a set of classes that accounts for all of the violating
behavior in themodel. In particular, our tool (1) leverages the
capability of the Alloy Analyzer as a SAT-based bounded-
model checker (BMC) to generate a counterexample, (2) uses
a syntax-guided method to derive a class in the form of sym-
bolic constraints, and (3) iteratively repeats steps (1) and (2)
until it exhaustively explores all counterexamples of the orig-
inal model.

As case studies, we have successfully applied our tech-
nique to two variants of the Needham–Schroeder protocol
[19] and were able to classify hundreds of thousands of
counterexamples into only a handful of classes that repre-
sent known attacks to the protocol. Additionally, we applied
our technique to a model of the Transmission Control Pro-
tocol (TCP) and were able to classify known failures in the
protocol.

Our main contributions may be summarized as follows:
a formal definition of the Counterexample Classification
Problem (Sect. 3), a solution to the Counterexample Clas-
sification Problem (Sect. 4), and two case studies on two
well-established distributed protocols, Needham–Schroeder
and TCP (Sect. 5), that demonstrates the efficacy of our solu-
tion.

This paper extends the previous conference version of this
work [27] with an additional case study on the widely used
internet protocol TCP. Additionally, we include proofs for
all theorems given in the original conference paper, give an
algorithm for simplifying redundant solutions (Sect. 3.1.1),
detail an important sub-procedure of our classification tech-
nique (Sect. 4.2), and present tool bug fixes and improved
experimental results (Sect. 5).

1.1 Running example

Tomotivate our technique, we introduce the following exam-
ple. Alice and Bob are sending Messages to each other.
Eve is able to view these messages as they are being sent.
The content of a message can be either Plaintext or
Encrypted. Eve is always able to read Plaintextmes-
sages, but needs KeyAB, Alice and Bob’s shared key, to
read Encrypted messages. Eve acquires KeyABby see-
ing an Encryptedmessage,modellingEve “breaking” the
encryption of what should be a one-time key. A Message
may be flagged as Secret, meaning that its content should
not be read by Eve.

We model this example as a transition system, shown in
Fig. 1. The transition system has four states, represented by
two state variables, EveKey of type Key = {∅,KeyAB},
and EveSeenSecret of type Boolean, � for true and ⊥ for
false. EveKey = KeyABmeans that Eve has learned the key
shared by Alice and Bob, while EveKey = ∅ means that
Eve does not know the key. EveSeenSecret = � means
that Eve has read a secret message. The initial state is (∅,⊥),
meaning that Eve does not know the key and has not read
any secret.

Transitions between states are labeled by Messages. A
Message is a tuple of the form (t ype, sender , secret),
where t ype ∈ {Encrypted,Plaintext}denoteswhether
the message is encrypted or not, if encrypted, a message is
encrypted by KeyAB, sender ∈ {Alice,Bob} denotes the
sender of the message, and secret is a Boolean denoting
whether the message is secret or not. For example, the tran-

sition (∅,⊥)
(Plaintext,Alice,�)−→ (∅,�) means that Alice

sends a Plaintext (unencrypted) Secret message, 1

1 The traces in this section have labels, i.e., Messages on their tran-
sitions. We do this to make it clear how messages are sent and how
differentmessages affect the state.Our formal definitionwill not include
labels as they may be encoded directly into the state.

123

Counterexample classification

Fig. 1 Transition system of the
running example

* indicates that the corresponding field can take any value
within its type, i.e., there are multiple such transitions, one
for each possible value.

We would like this system to satisfy the property that Eve
never reads a Message that is flagged as Secret. This can
be expressed as the temporal logic (LTL) formula

Φ = G(EveSeenSecret = ⊥)

which states that EveSeenSecret = ⊥ holds at every reach-
able state of the system, i.e., it is an invariant. As we can
see, this is not the case for the model in Fig. 1. The two top
states satisfy the property, these are the good states, whereas
the two states at the bottom of the figure do not, these are the
bad or error states.

Note that this system has infinitely many counterexample
traces, as self-loop transitions can be taken arbitrarily many
times. Even when a system has a finite number of violating
traces, presenting all of them to the user is not a good idea,
as there are typically far too many to analyze. Keeping that
in mind, some of the questions examined in this paper are
the following: How many of the violating traces should be
presented to the user as counterexamples? Are some of these
counterexamples similar in some sense? Can they be classi-
fied into some type of similarity classes so that only those
classes are presented to the user?

Take for instance the counterexample traces listed below:

ρ1
1 = (∅,⊥)

(Plaintext,Alice,�)−→ (∅,�)

ρ2
1 = (∅,⊥)

(Plaintext,Alice,⊥)−→ (∅,⊥)

(Plaintext,Alice,�)−→ (∅,�)

ρ3
1 = (∅,⊥)

(Plaintext,Bob,⊥)−→ (∅,⊥)

(Plaintext,Bob,�)−→ (∅,�)

ρ4
1 = (∅,⊥)

(Plaintext,Alice,⊥)−→ (∅,⊥)

(Plaintext,Bob,�)−→ (∅,�)

In ρ1
1 , Alice sends a Plaintext Secret message.

Eve is be able to read it, as it is unencrypted, which leads
to a violation of the property. In ρ2

1 , Alice first sends
a Plaintext but non-secret message and then, sends a
Plaintext Secret message. In ρ3

1 , Bob first sends a
Plaintext but non-secret message and then, he sends
a Plaintext Secret message. In ρ4

1 , Alice sends a
Plaintext but non-secret message and then, Bob sends a
Plaintext Secret message.

These violating traces share important behavior: the fact
that either Alice or Bob sends a Plaintext Secret
message. Noticing this, we would like to group these traces
together in the same counterexample class. Note that this
class contains not only the above four counterexamples, but
an infinite number of distinct counterexamples where either
Alice or Bob sends a Plaintext Secret message at
any point in the trace. A potential succinct description of the
class stated in words may be: Eve receives a Plaintext
Secret message sent by Alice or Bob.

Now, consider the counterexample traces listed below:

ρ1
2 = (∅,⊥)

(Encrypted,Alice,⊥)−→ (KeyAB,⊥)

(Encrypted,Alice,�)−→ (KeyAB,�)

ρ2
2 = (∅,⊥)

(Encrypted,Bob,⊥)−→ (KeyAB,⊥)

(Encrypted,Alice,�)−→ (KeyAB,�)

ρ3
2 = (∅,⊥)

(Encrypted,Alice,�)−→ (KeyAB,⊥)

(Encrypted,Alice,�)−→ (KeyAB,�)

ρ4
2 = (∅,⊥)

(Encrypted,Bob,�)−→ (KeyAB,⊥)

(Encrypted,Alice,�)−→ (KeyAB,�)

123

C. Vick et al.

ρ5
2 = (∅,⊥)

(Encrypted,Alice,⊥)−→ (KeyAB,⊥)

(Encrypted,Bob,�)−→ (KeyAB,�)

ρ6
2 = (∅,⊥)

(Encrypted,Bob,⊥)−→ (KeyAB,⊥)

(Encrypted,Bob,�)−→ (KeyAB,�)

ρ7
2 = (∅,⊥)

(Encrypted,Alice,�)−→ (KeyAB,⊥)

(Encrypted,Bob,�)−→ (KeyAB,�)

ρ8
2 = (∅,⊥)

(Encrypted,Bob,�)−→ (KeyAB,⊥)

(Encrypted,Bob,�)−→ (KeyAB,�)

These traces exhibit a different way in which the prop-
erty can be violated than the traces shown previously.
Now, the violation happens when Alice or Bob send
an Encrypted Secret message after an Encrypted
message has already been sent, i.e., after Eve has broken
the encryption. A description of this new class would be:
Eve receives an Encrypted message before receiving an
Encrypted Secret message.

The method and tool presented in this paper generate
such counterexample classes automatically. Our tool does
not output class descriptions in English but represents classes
syntactically as trace constraints. A trace constraint is eval-
uated over a given trace ρ. If ρ satisfies the trace constraint,
then we say that ρ falls into the class that the trace con-
straint represents. The trace constraints that represent the two
classes discussed above are:

TCPlaintext [ρ] ≡ ∃i ∈ [0..len(ρ)] : ρ.t ype@i

= Plaintext ∧ ρ.secret@i = �
TCEncrypted [ρ] ≡ ∃i, j ∈ [0..len(ρ)] : i < j ∧ ρ.EveKey@i

= KeyAB ∧
ρ.t ype@ j = Encrypted ∧ ρ.secret@ j = �

where len(ρ) denotes the length of trace ρ and the variables
i and j represent indices to particular positions of states and
transitions in ρ. The initial state is indexed at position s0, and
the first transition is indexed at position l0 and leads to state

s1 thus following the general pattern: s0
l0−→ s1

l1−→ s2 · · · .
We remark that the fact that the two classes above have

a one-to-one correspondence with the two error states in the
automaton of Fig. 1 is coincidental and not a feature of our
technique. Later, we will present examples of classifications
that break this correspondence both for this small example
and our larger case study.

2 Background

Definition 1 (Symbolic transition system) A symbolic tran-
sition system is a tuple (X , I , T) where:

– X is a finite set of typed state variables. Each variable
x ∈ X has a type, denoted type(x). A type is a set of
values.

– The initial state predicate I is a predicate (i.e., Boolean
expression) over X .

– The transition relation predicate T is a predicate over
X ∪ X ′, where X ′ denotes the set of primed (next state)
variables obtained from X . For example, if X = {x, y, z},
then X ′ = {x ′, y′, z′}. Implicitly, every primed variable
has the same type as the original variable: ∀x ∈ X :
type(x ′) = type(x).

We let U denote the universe of all values. A state s over
a set of state variables X is an assignment of a value (of the
appropriate type) to each variable in X , i.e., s is a (total)
function s : X → U , such that ∀x ∈ X : s(x) ∈ type(x). A
state s satisfies a predicate I over X , denoted s |
 I , if when
we replace all variables in I by their values as defined by s, I
evaluates to true. For example, suppose X = {x, y, z} where
x and y are integer variables, and z is a Boolean variable. Let
I be the predicate x < y∧ z. Consider two states, s1 = (x =
3, y = 4, z = �) and s2 = (x = 3, y = 1, z = �). Then,
s1 |
 I but s2 �|
 I .

Similarly, a pair of states (s, s′) satisfies a predicate T over
X ∪ X ′ if when we replace all variables from X in T by their
values as defined by s, and all variables from X ′ in T by their
values as defined by s′, T evaluates to true. For example,
suppose X = {x}where x is an integer variable. Let T be the
predicate x ′ = x + 1. Consider three states, s0 = (x = 0),
s1 = (x = 1), and s2 = (x = 2). Then, (s0, s1) |
 T and
(s1, s2) |
 T , but (s0, s2) �|
 T .

Definition 2 (Transition system defined from a symbolic
transition system) A symbolic transition system (X , I , T)

defines a transition system (S, S0, R), where:

– The set of states S is the set of all assignments over X .
– The set of initial states S0 is the set: S0 = {s ∈ S | s |

I }.
– The transition relation R is the set: R = {(s, s′) ∈ S×S |

(s, s′) |
 T }.

That is, the set of initial states is the set of all states sat-
isfying I , and the transition relation R is the set of all pairs
of states satisfying T . A pair (s, s′) ∈ R is also called a
transition and is sometimes denoted s → s′.

Definition 3 (Trace) A trace ρ over a set of state variables
X is a finite sequence of states over X : ρ = s0, ..., sk . The
length of ρ is k and is denoted by len(ρ); note that k may
equal 0, in which case the trace is empty. The set of states of
ρ is {s0, ..., sk} and is denoted States(ρ).

123

Counterexample classification

Definition 4 (Property) A propertyΦ over a set of state vari-
ables X is a set of traces over X .

Definition 5 (Traces for an STS) Let STS = (X , I , T) be a
symbolic transition system, and let (S, S0, R) be the tran-
sition system of STS. The set of traces generated by STS,
denoted Traces(STS), is the set of all traces ρ = s0, s1, ..., sk
over X such that:

– s0 ∈ S0. That is, ρ starts at an initial state of STS.
– ∀i ∈ {0, ..., k − 1} : (si , si+1) ∈ R. That is, every pair of

successive states in ρ is linked by a transition in STS.

Definition 6 (Property satisfaction and counterexamples)
Let STS = (X , I , T) be a symbolic transition system, and
letΦ be a property over X . We say that STS satisfiesΦ, writ-
ten STS |
 Φ, iff Traces(STS) ⊆ Φ. If STS �|
 Φ, then a
counterexample is any trace ρ ∈ Traces(STS) \ Φ, i.e., any
trace of STS which violates (does not belong in) Φ.

3 Counterexample classification

3.1 Classes and classifications

Consider a set of traces P . A class of P is any non-empty
subset of P . A classification of P is a covering of P with
(not necessarily disjoint) classes.

Definition 7 (Classification) Consider a set of traces P . A
classification of P is a finite set C of classes of P such that⋃

c∈C c = P .

Given a set of counterexample traces P , and a classifica-
tionC of P , a canonical counterexample is a counterexample
trace that belongs in exactly one class of C . A canonical
counterexample thus represents the violating behavior of a
particular class as it only appears in that particular class.

Definition 8 (Canonical Counterexample) Given a set of
counterexample traces P and a classificationC of P , a canon-
ical counterexample ρ is any counterexample in P such that:
∀c1, c2 ∈ C : (ρ ∈ c1 ∧ ρ ∈ c2) → c1 = c2. We denote by
c(ρ) the unique class in C that ρ belongs to.

A classification is redundant if it contains classes that have
no canonical counterexample:

Definition 9 (Redundant Classification) A classification C
of a set of counterexamples P is redundant if there exists a
class c ∈ C such that c does not contain a canonical coun-
terexample.

Example 1 Suppose P = {ρ1, ρ2, ρ3, ρ4, ρ5} and C =
{c1, c2, c3} with c1 = {ρ1, ρ2, ρ3}, c2 = {ρ3, ρ4, ρ5}, c3 =

{ρ1, ρ4}. Note that C is a valid classification of P as
c1 ∪ c2 ∪ c3 = P . C is a redundant classification, because
although c1 has a canonical counterexample ρ2, and c2 has
canonical counterexample ρ5, c3 has no canonical counterex-
ample. ��

Often, we would like for a classification to guarantee that
each class has a canonical counterexample, i.e., to be non-
redundant. In general, we can transform every redundant
classification into a non-redundant classification. First, we
state the following two lemmas:

Lemma 1 A classification C of a set of counterexamples P
is redundant iff there exist distinct classes c, c1, ..., cn ∈ C
such that c ⊆ ⋃

i=1,...,n ci .

Proof (⇐) Suppose there exist distinct classes c, c1, ..., cn ∈
C such that c ⊆ ⋃

i=1,...,n ci . We claim that c has no canon-
ical counterexample. Indeed, take an arbitrary ρ ∈ c. Since
c ⊆ ⋃

i=1,...,n ci , there must be some ci such that ρ ∈ ci .
Moreover, c and ci are distinct. Therefore,ρ cannot be canon-
ical. Since ρ was chosen arbitrarily, there is no canonical
counterexample in c, which means that C is redundant.

(⇒) Suppose C is redundant. Then, there exists c ∈ C
such that c has no canonical counterexample. By definition,
c is non-empty, so pick a ρ ∈ c. By assumption, ρ is not
canonical. Therefore, there exists another class c′ ∈ C , dis-
tinct from c, such that ρ ∈ c′. Let us denote c′ by cρ , for any
arbitrary ρ in c. Then, c ⊆ ⋃

ρ∈c cρ . Moreover, the number
of classes in C is finite, so even if c is an infinite set, the set
of classes {cρ}ρ∈c is finite. Call that set {c1, ..., cn}. Then,⋃

ρ∈c cρ = ⋃
i=1,...,n ci , and thus, c ⊆ ⋃

i=1,...,n ci . ��
Lemma 2 Let C = {c1, ..., cn} be a classification of a set
of counterexamples P. C is redundant iff there exists i ∈
{1, ..., n} such that ci ⊆ ⋃

j �=i c j .

Proof (⇐) Follows directly from Lemma 1.
(⇒) Suppose C is redundant. Then, by Lemma 1, there

exist distinct classes ci , ck1 , ...ckm ∈ C such that ci ⊆
⋃

j=1,...,m ck j . But
⋃

j=1,...,m ck j ⊆ ⋃
j �=i c j , therefore,

ci ⊆ ⋃
j �=i c j . ��

3.1.1 Algorithm for non-redundant classification

Based on Lemma 2, we construct an algorithm to transform
any classification into a non-redundant classification. Indeed,
let C be a classification, where C = {c1, ..., cn}. First, we
iterate over i and check whether there exists an i such that
ci ⊆ ⋃

j �=i c j . If no such i exists, then, by Lemma 2, C
is not redundant and we are done. If such an i does exist,
then we remove ci from C , to obtain the new classification
C1 = C\{ci }. Note that by removing ci we do not run the
risk of not covering the entire set of counterexamples P ,
since ci is contained in the union of the remaining classes.

123

C. Vick et al.

We continue in this way, removing any class that is covered
by the union of all the other classes, until no such class exists,
resulting in a non-redundant classification. The procedure is
efficient because in the worst case, we perform no more than
n checks of the form ci ⊆ ⋃

j �=i c j , where n is the number
of classes in the original classification C .

3.2 The counterexample classification problem

In Sect. 3.1, we defined the concepts of classes and classifica-
tions semantically. But in order to define the counterexample
classification problem that we solve in this paper, we need
a syntactic representation of classes. We define such a rep-
resentation in this section, by means of trace constraints.
A trace constraint is a special kind of predicate that evalu-
ates over traces. A trace constraint is similar to predicates
such as the I (initial state) predicate of a symbolic transition
system, with two key differences: (1) a trace constraint is
only conjunctive, and (2) a trace constraint can refer to state
variables at certain positions in the trace and impose logical
constraints on those positions. For example, if X = {x, y}
is the set of state variables, then here are some examples of
trace constraints:

– TC1[ρ] ≡ ∃i ∈ [0..len(ρ)] : x@i = y@i : this trace
constraint says that there is a position i in the trace such
that the value of x at the position i is the same as the
value of y at i .

– TC2[ρ] ≡ ∃i, j ∈ [0..len(ρ)] : i < j ∧ x@i > x@ j :
this says that there are two positions i and j in the trace
such that i is earlier than j and the value of x at i is greater
than the value of x at j .

We call formulas such as x@i = y@i or x@i > x@ j ,
which operate on indexed state variables, atomic facts. We
call formulas such as i < j , which operate on position
variables, atomic position facts. Then, a trace constraint is
a conjunction of atomic facts and atomic position facts,
together with an existential quantification over position vari-
ables within the range of the length of the trace.

Atomic facts and atomic position facts are defined over a
set of user-defined predicates. Some predicates will be stan-
dard, such as equality (=) for integers and less-than (<) for
positions, while other predicates may be domain-specific. In
addition to variables, we allow predicates to refer to con-
stants. For example, i ≤ 10 says that the position i must be
at most 10, and x@2 = 13 says that the value of x at position
2 must be 13.

For example, recall the Message type from the run-
ning example. The user might want to define a predicate
that checks whether two messages have the same sender.
Then, the user can define the predicate SendersEqual which
is parameterized over two variables of type Message and

defined as:

SendersEqual[m1,m2] ≡ m1.sender = m2.sender

This predicate may then be instantiated as:

SendersEqual[message@1,message@5]

This checkswhether theMessage at position 1 has the same
sender as the Message at position 5.

Definition 10 (Trace Constraint) A trace constraint over a
set of state variables X and a set V of user-defined predicates
is a formula of the form

TC[ρ] ≡ ∃i1, ..., ik ∈ [0..len(ρ)] : ξ0 ∧ ξ1 ∧ · · · ∧ ξn

where:

– i1, ..., ik are non-negative integer variables denoting posi-
tions in the trace ρ. We allow k to be 0, in which case the
trace constraint has no position variables.

– Each ξ j , for j = 0, ..., n, is either an atomic fact over state
variables X and position variables i1, ..., ik or an atomic
position fact over position variables i1, ..., ik using pred-
icates in V .

Given a trace constraintw, and a traceρ,we can evaluatew

onρ in the expectedway. For example, the trace (x = 0) −→
(x = 0) over state variable x satisfies the trace constraint
TC1[ρ] ≡ ∃i0, i1 ∈ [0..len(ρ)] : i0 < i1 ∧ x@0 = x@1
but does not satisfy the trace constraint TC2[ρ] ≡ ∃i0, i1 ∈
[0..len(ρ)] : i0 < i1 ∧ x@0 > x@1. We write ρ |
 w

if trace ρ satisfies trace constraint w. We also say that w

characterizes ρ when ρ |
 w. We denote by c(w) the set of
all traces that satisfy w.

Let W be a set of trace constraints. Then, let C(W) =
{c(w) | w ∈ W }; i.e., C(W) is the set of all sets of traces
that are characterized by some trace constraint in W .

Consider a symbolic transition system STS and a property
Φ that is violated by STS, i.e., STS �|
 Φ. The problem that
we are concerned with in this paper is to find a classification
of all traces of STS that violateΦ, such that this classification
is represented by a set of trace constraints defined over V .We
call this the counterexample classification problem (CCP):

Definition 11 (Counterexample Classification Problem)
Given symbolic transition system STS = (X , I , T), prop-
erty Φ such that STS �|
 Φ, and user-defined predicates V ,
find, if there exists, a set of trace constraints W such that:
(1) each w ∈ W is a trace constraint over X and V ; and (2)
C(W) is a classification of P , where P is the set of all traces
of STS that violate Φ.

123

Counterexample classification

Lemma 3 Let W be a solution to the CCP. Then, every trace
constraint w ∈ W is a sufficient condition for a violation,
i.e., ∀w ∈ W : c(w) ∩ Φ = ∅.
Proof Recall that a classification C of a set of P =
Traces(STS)\Φ must satisfy

⋃
c∈C c = P (Definition 7).

AssumeW is a solution to the CCP and there exists aw ∈ W
such that c(w) ∩ Φ �= ∅. Thus, w accounts for some trace
that is not in P . We have reached a contradiction because if
this w were in W , then

⋃
w∈W c(w) �= P . ��

3.3 Solvability

The CCP is formulated as to find a set of trace constraintsW
if one exists (Definition 11). Indeed,while a semantic classifi-
cation always exists—e.g., a trivial one is the one containing
just one class, the set of all counterexamples P—a syntac-
tic classification in the form of W might not always exist.
Whether or not one exists depends on the set of user-defined
predicates V .

Lemma 4 If the set of counterexample traces P is finite, and
V includes equality =, then CCP always has a solution.

Proof Recall that a trace is a finite sequence of states (Def-
inition 3). Then, a trace s0, s1, ..., sk can be characterized
by a conjunction of k + 1 formulas, φ0 ∧ φ1 ∧ · · · ∧ φk ,
where each φi is itself a conjunction of atomic facts captur-
ing state si . Specifically, let X = {x1, ..., xn} be the set of
state variables. Then, φi is of the form x1@i = v1 ∧ x2@i =
v2 ∧ · · ·∧ xn@i = vn , where v j is the value of state variable
x j at state si . Notice that each φi has no position variables
(Definition 10) because i is instantiated as a constant ranging
from 0 to k. Indeed, in a fact such as x1@i = v1, i is the i-th
position in the trace. It follows that φ0 ∧ φ1 ∧ · · · ∧ φk is a
trace constraint, without position variables. Therefore, a sin-
gle trace can be characterized by a single trace constraint, and
thus, such a trace constraint can also represent a class with
a single trace in it. Therefore, if the set of counterexample
traces is finite, we can have a classification represented by
a finite number of trace constraints, one per counterexample
trace. ��

Lemma 4 shows that in the presence of equality =, and
provided that the set of counterexamples is finite,CCPalways
has a solution. But in the absence of =, CCP may not have a
solution.

Example 2 Consider an STS, shown in Fig. 2, with X = {a}
wherea is an integer variable that canbenon-deterministically
incremented by 1, decremented by 1, or held constant at each
step. Let the initial state be a = 1. Let the property Φ be
G(a = 1), i.e., we require that a is always 1, which is clearly
violated by this system.

Fig. 2 Transition system for the
increment-decrement example

Suppose that V only contains the predicate lessT han
One[x], which returns true if and only if the given integer
x is strictly less than 1. Then, we claim that CCP has no
solution. Indeed, note that the set of counterexample traces
includes all traces where at some point either a < 1 or a > 1.
But the given V is unable to generate an atomic fact where
a is greater than 1. Note that negation is not allowed in trace
constraints. Therefore,we cannot classify all counterexample
traces, and in particular not those where a > 1.

Now, suppose that we change V to {lessT hanOne,
greaterT hanOne}, with the obvious meanings. Then, the
following two trace constraints constitute a solution to CCP:

TC1[ρ] ≡ ∃i ∈ [0..len(ρ)] : lessT hanOne[x@i]
TC2[ρ] ≡ ∃i ∈ [0..len(ρ)] : greaterT hanOne[x@i]

��
We expect that our technique will be most useful in a

bounded model checking environment where the number of
counterexamples is finite and the equality operator is given.
From Lemma 4, this guarantees that our technique termi-
nates.

3.4 Uniqueness of solutions

The discussion in Sect. 3.3 shows that CCP may or may not
have a solution, depending on the set V of predicates allowed
in the trace constraints. In this section, we show that even for
a fixed V , CCP does not necessarily have a unique solution.

Consider the example given just above, in Sect. 3.3. We
have just seen a possible solution W1 = {TC1, TC2}. If
we set V to {lessT hanOne, greaterT hanOne, �=}, where
�= is the not-equals predicate, the problem admits at least
two solutions. Our predicate set allows the following trace
constraint to be generated:

TC3[ρ] ≡ ∃i ∈ [0..len(ρ)] : x@i �= 1

Note that TC3 uses only the �=predicate to characterize the
violating behavior. So, while W1 is still a solution, a second
solution W2 = {TC3} is also possible.

Our approach admits both W1 and W2 as valid solutions
to CCP, as it is difficult for an automated method to decide

123

C. Vick et al.

which solution is “better.” However, we show techniques
in Sect. 4.3 that allow a user to fine-tune their solutions—
e.g., by toggling redundancy checks and experimenting with
different predicate sets.

4 Classificationmethod

In this section,wepresent amethod for solving theCCP intro-
duced in Sect. 3.2. We present an overview of our proposed
classification algorithm (Sect. 4.1), describe an important
sub-procedure used in classification (Sect. 4.2), describe
optimizations to ensure the generation of a non-redundant
classification with minimal classes (Sect. 4.3), and finally,
present a solution to the Running example (Sect. 4.4).

4.1 Algorithm overview

Given an STS, a property Φ, and a set of user-defined predi-
cates V , the goal is to find a set of trace constraints W such
thatC(W) is a solution to theCCP (Definition 11 inSect. 3.2).
We assume, without loss of generality, that V is non-empty.
Indeed, an empty V implies that the only possible trace con-
straint is the empty trace constraint, which characterizes the
set of all counterexamples traces. This situation can be mod-
elled by adding to V a trivial predicate that always returns
�, thus having a non-empty V . To guarantee termination, we
assume that the set of counterexamples P = Traces(STS)\Φ
is finite. We also assume that Traces(STS) ∩ Φ �= ∅.

Input : An STS, a specification Φ, and a set of predicates V
Output: A set of trace constraints W

1 Func classify(STS, Φ, V):
2 W = ∅
3 while verify(STS ∧ block(W),Φ) == Violated do
4 ρ = counterexample(STS ∧ block(W),Φ)

5 Γ = facts(ρ, V)

6 if Γ = ∅ then
7 return “V cannot sufficiently characterize the

violation in ρ”
8 w = traceConstraint(Γ , ρ)

9 if verify(STS ∧ w,¬Φ) == Violated then
10 return “V cannot sufficiently characterize the

violation in ρ”
11 w = minimizeTC(STS, w,Φ)

12 W = W ∪ w

13 W = removeRedundant(STS,W , Φ)

14 return W
Algorithm1:The counterexample classification algorithm.

The pseudocode for the classification algorithm is shown
inAlgorithm 1. The classify procedure relies on the existence
of a verifier that is capable of checking the STS againstΦ and
generating a counterexample trace, if it exists. In particular,
classify uses the following verifier functions:

– verify(STS ∧ ϕ,Φ): Returns OK if STS satisfies Φ under
the additional constraint ϕ, i.e., if Traces(STS∧ϕ) ⊆ Φ;
else, returnsViolated. The constraintϕ is typically a trace
constraint.We provide examples of ϕ later in this section.

– counterexample(STS∧ϕ,Φ): If verify(STS∧ϕ,Φ) ==
Violated, returns a trace ρ of STS such that ρ |
 ϕ and
ρ �|
 Φ; else, returns an empty output.

The algorithm begins by checking whether STS violates Φ

(line 3) and if it does, obtains a counterexample that demon-
strates how the violation occurs (line 4). The additional
argument to the verifier, block(W), is used to prevent the
verifier from re-generating a counterexample that is charac-
terized by any previously generated classes; we will describe
this in more detail later in this section.

Next, given a particular counterexample ρ, the helper
function facts generates the set Γ of all atomic facts and
atomic position facts that hold over ρ, by instantiating the
predicates V over the states in ρ (line 5). Then, based on Γ ,
traceConstraint builds a trace constraint that characterizes
ρ. In particular, this procedure transforms Γ into a syntacti-
cally valid trace constraint w, by (1) introducing a sequence
of existential quantifiers over all positions in ρ and (2) taking
the conjunction of all facts in Γ (line 8).

In the next step, the verifier is used once again to ensure
that the trace constraint w sufficiently captures the violat-
ing behavior in ρ (line 9). This is done by checking that
every trace of STS that satisfies w results in a violation of Φ.
This guarantees that all traces that satisfy w are violations.
If w does not guarantee a violation, it implies that w is not
strong enough to guarantee a violation; i.e., V does not con-
tain enough predicates to fully characterize ρ. In this case,
a solution to the CCP cannot be produced and the algorithm
terminates with an error (line 10)2.

Ifw guarantees a violation, it is added to the set of classes
that will eventually form a solution to the CCP (line 12). The
process from lines 4 to 12 is then repeated until it exhausts
the set of all counterexample classes for STS and Φ.

To prevent the verifier from returning counterexamples
that have already been classified, classify passes block(W)

as an additional constraint to verify, where:

block(W) ≡ ¬
⎛

⎝
|W |∨

i=1

wi

⎞

⎠

In other words, by including block(W) as an additional con-
straint, the verifier ensures that it only explores traces that
do not belong to any of the classes in W . Note that if W is

2 As an example where this happens, recall in the increment-decrement
example from Sect. 3.3 how the single predicate lessT hanOne could
not classify all violating behavior.

123

Counterexample classification

empty, as in the first iteration of the loop, block(W) returns
�.

Once the verifier is no longer able tofind any counterexam-
ple, the algorithm terminates by returning W as the solution
classification (line 14).

Example 3 Recall the example from Sect. 3.3. To make P
finite, we assume that the length of counterexample traces

is exactly 2. Then, P = {(a = 1)
−−−→ (a = 0), (a =

1)
++−→ (a = 2)}. Let the set of user-defined predicates be V

= {lessT hanOne, greaterT hanOne}.
Suppose that the verifier returns ρ = (a = 1)

−−−→
(a = 0) as the first counterexample (line 4). Next, facts
evaluates the predicates in V over the state variable a at
position 0 and 1 (line 5), producing Γ that contains one
fact: {lessT hanOne[a@1]}. Then, the trace constraint w

constructed based on Γ is:

TC1[ρ] ≡ ∃i1 ∈ [0..len(ρ)] : lessT hanOne[a@i1]

It can be shown that any trace of STS that satisfies TC1 is a
violation of Φ; thus, this newly created constraint w ≡ TC1

is added to the set W.
In our example, there is one more counterexample;

namely, ρ = (a = 1)
++−→ (a = 2), which can be used

to construct the following additional trace constraint:

TC2[ρ] = ∃i1 ∈ [0..len(ρ)] : greaterT hanOne[a@i1]

Once TC2 is added to W , there are no more remaining
counterexamples, and the algorithm terminates by returning
W = {TC1, TC2}. ��

Provided there is a finite number of counterexamples and
a non-empty set of accepting traces, Algorithm 1 terminates
because at least one counterexample is classified at each iter-
ation of the while loop. The following theorems establish the
correctness of the algorithm.

Theorem 1 Any W returned by classify is a valid solution to
the CCP.

Proof We need to show (1) that each w ∈ W is a trace con-
straint over the set of state variables X using predicates in V
and (2) that C(W) is a classification of the set of counterex-
amples P . (1) follows by construction fromAlgorithm 1. For
(2), note that in order for C(W) to be a valid classification of
P , it has to cover all the traces in P . This follows from the fact
that in order for W to be returned, Algorithm 1 needs to ter-
minate, which means that the while loop on line 3 exits. This
in turn implies that verify(STS ∧ block(W),Φ) returns OK,
which means Traces(STS ∧ block(W)) ⊆ Φ, which implies
the result. ��

Theorem 2 If classify returns no solution (lines 7 or 10 of
Algorithm 1), then CCP has no solution for the given V .

Proof We need to show that no solution exists in each of the
two cases when classify returns no solution.

Case 1: classify returns on line 7. This means that Γ = ∅,
i.e., facts(ρ, V) = ∅. From our assumption that there exists
an accepting trace, ρ cannot be characterized by the empty
trace constraint. Thus, ρ must be characterized by some non-
empty trace constraint w. Such a w must contain at least one
fact that ranges over X (the set of state variables of STS), uses
predicates in V , and holds over ρ. But since facts(ρ, V) = ∅,
no such facts exist and therefore, w cannot exist.

Case 2: classify returns on line 10. This means that
verify(STS∧w,¬Φ) returnsViolated, i.e., Traces(STS∧w)∩
Φ �= ∅. This in turn means thatw does not guarantee a viola-
tion ofΦ; that is, there are traces of STS that are characterized
by w, and yet they satisfy the property Φ. Such traces are
therefore not counterexamples. However, by Definitions 7
and 11, each generated trace constraint must characterize a
subset of the set of counterexamples, i.e., c(w) ⊆ P . If w

cannot guarantee a violation this means that c(w) � P , so
w is not a valid trace constraint.

However, the fact that w is not valid does not immedi-
ately imply that there does not exist another trace constraint
w′ which is valid and characterizes ρ. Suppose such a w′
exists; that is, suppose that (1) w′ characterizes ρ and (2)
Traces(STS ∧ w′) ∩ Φ = ∅. For w′ to characterize ρ, ρ

must satisfy all the conjuncts of w′. Since every conjunct
in w′ was generated with V and ρ satisfies every conjunct,
w should also contain each conjunct in w′, by construction
of facts and traceConstraint. Therefore, the set of conjuncts
of w′ is a subset of those of w, which means that w′ is a
weaker constraint than w. But this contradicts the facts that
Traces(STS∧w)∩Φ �= ∅ while Traces(STS∧w′)∩Φ = ∅.
Indeed, if w allows some traces of STS which satisfy Φ, and
w′ is weaker, then w′ must also allow those traces, which
means that Traces(STS ∧ w′) ∩ Φ cannot be empty. Thus, ρ
cannot be characterized by any trace constraint and no solu-
tion can be found. ��

4.2 Details on fact generation

The facts procedure is given in pseudo-code in Algorithm 2.
For every predicate v ∈ V , and every state variable x ∈ X ,
where X is the set of state variables of the STS, we evaluate
v with the given value of the state variable. Note that since
state variables may change at each time step, the value at
each time step must be checked.

Before a predicate is evaluated with a state variable, we
check that the type of the state variablematches the type of the
input to the predicate, using the typecheck procedure (line

123

C. Vick et al.

Input : a counterexample ρ and a set of predicates V
Output: set of true instantiations of each v ∈ V at each state in ρ

1 Func facts(ρ, V):
2 Γ = ∅
3 for v, x ∈ V , StateVariables(ρ) : t ypecheck(v, x) do
4 for i ∈ [0..len(ρ)] do
5 if eval(v(x@i)) then
6 Γ = Γ ∪ v(x@i)
7 return Γ

Algorithm 2: The facts procedure.

3).3 We finally evaluate the predicate with the state variable
(line 5) and, if it returns�, we add the expression to the set of
facts and continue. Typically,Γ is specific to ρ, meaning that
no other counterexample would satisfy the trace constraint
generated from Γ , and as a result, Γ is not generalizable to
other counterexample traces in the set of counterexamples, P .
In Sect. 4.3.1, we will see how Γ is made to be generalizable.

Example 4 Consider the example given in Sect. 3.3, where
we may either increment, decrement, or keep constant the
single integer state variable, a. Take a sample counterexam-

ple ρ = (1)
−−−→ (0) to the desired propertyG(a = 1). Since

a typechecks on both predicates in V , 4 separate checks of
eval are performed. The checks greaterT hanOne[a@0],
greaterT hanOne[a@1], and lessT hanOne[a@0] return
⊥; lessT hanOne[a@1] returns �, resulting in Γ =
{lessT hanOne[a@1]}. ��

4.3 Optimizations

4.3.1 Minimizing trace constraints

A trace constraint w generated on line 6 in Algorithm 1 may
be a sufficient characterization of ρ, but it may also contain
facts that are irrelevant to the violation. To be more precise,
we consider a fact f ∈ Γ to be irrelevant if trace constraint
w that is constructed from Γ ′ ≡ Γ − f is still sufficient to
imply a violation.

Let us revisit Example 3. Suppose that we add to the
set V of user-defined predicates an additional predicate
< over position variables. Then, for the counterexample

ρ = (a = 1)
−−−→ (a = 0), facts returns Γ =

{lessT hanOne[a@1], 1 < 2} where 1 and 2 are positions
in ρ. Then, the trace constraint generated by traceConstraint
will be:

TC3[ρ] = ∃i1, i2 ∈ [0..len(ρ)] : lessT hanOne[a@i2] ∧ i1
< i2

3 The high-level algorithm shown is simplified as it only deals with
unary predicates, but this technique can be extended to n-ary predicates.
Our implementation is able to generate facts for predicates with an
arbitrary number of arguments.

Although TC3 is sufficient to imply a violation, it is less
general than the previously generated TC1 in the absence of
predicate < (see Example 3). Indeed, the constraint i1 < i2
in TC3 forces the condition a < 1 to occur only at positions
i2 > 0, whereas in TC1 the same condition can also occur
at position i1 = 0. Furthermore, this additional constraint
can be safely removed from TC3 while still guaranteeing a
violation. Thus, constraint i1 < i2 is an irrelevant fact.

Our algorithm performs an additional minimization step
to remove all such irrelevant facts from w. This additional
procedure provides two benefits: (1) it reduces the amount of
information that the user needs to examine to understand the
classes and (2) each minimized class is a generalization of
the original class and covers an equal or larger set of traces
that share the common characteristics, thus also reducing the
number of classes in the final classification.

As shown inAlgorithm 3,minimizeTC relies on the ability
of certain verifiers, such as ones based on SAT [12] or SMT
solvers [7], to produce a minimal core for the unsatisfiabil-
ity of a formula [26]. In particular, minCore(STS, w,¬Φ)

computes a minimal subset of conjuncts in the symbolic rep-
resentation of STS andw that are sufficient to ensure that¬Φ

holds (line 6). The facts (γ) that are common to this core and
Γ represent the minimal subset of facts about ρ that are suf-
ficient to imply a violation; a new trace constraint is then
constructed based on this subset and returned as the output
of minimizeTC (line 7).

Note that if verify on line 4 returns Violated—i.e., ¬Φ

does not always hold under constraint w—this implies that
the set of facts in Γ is not sufficient to imply a violation of
Φ. However, if minimizeTC is invoked from line 9 in Algo-
rithm 1, this side of the conditional branch is not reachable.

Input : An STS, a trace constraint w, a specification Φ, and the
set of facts Γ

Output: A minimized trace constraint
1 Func minimizeTC(STS, w,Φ):
2 if verify(STS ∧ w),¬Φ) == OK then
3 γ = Γ ∩ minCore(STS, w,¬Φ)

4 return traceConstraint(γ, ρ)

5 else
6 return “Γ does not sufficiently characterize the violation

in ρ”
Algorithm 3:minimizeTC, which removes from trace con-
straintw all facts that are irrelevant to the violation depicted
by ρ.

4.3.2 Non-redundancy

Although non-redundancy of classification W is not neces-
sary for a valid solution to the CCP, it is a desirable property
as it reduces the number of classes that the user needs to

123

Counterexample classification

inspect.4 Thus, the main algorithm classify also performs a
redundancy check at its end (line 11, Algorithm 1) to ensure
the non-redundancy of any solution that it produces.

Input : an STS, a set of trace constraints W , and a specification
Φ

Output: a set of trace constraints W ′
1 func removeRedundant(STS,W , Φ):
2 W ′ = ∅
3 for w ∈ W do
4 if verify(STS ∧ block(W \ {w}),Φ) == Violated then
5 W ′ = W ′ ∪ w

6 return W ′
Algorithm 4: removeRedundant checks whether anyw ∈
W is redundant and if it is, removes it.

removeRedundant, shown in Algorithm 4, ensures that
no trace constraint w ∈ W is covered by any other trace
constraints in W . This algorithm is an implementation in
pseudocode of the process described in Sect. 3.1.1.

Note that when the while loop in Algorithm 1 is exited,
verify(STS ∧ block(W),Φ) returns OK since W classifies
all counterexamples in P . This means that all traces of STS
which do not belong in any of the classes in W satisfy Φ.
To find redundant trace constraints, we iterate over eachw ∈
W and check whether STS still satisfies Φ with w removed
from W (line 4, Algorithm 4). If this is the case, then w

is redundant, since W \ {w} already covers P . Otherwise, w
must characterize some ρ ∈ P that the other trace constraints
do not, and thus, w is added to the non-redundant set W ′,
which is returned at the end.

Recall the predicates V = {�=, lessT hanOne,
greaterT hanOne} from Sect. 3.3. Suppose that classify
finds two trace constraints in this order5:

TC1[ρ] ≡ ∃i ∈ [0..len(ρ)] : lessT hanOne[a@i]
TC2[ρ] ≡ ∃i ∈ [0..len(ρ)] : a@i �= 1

Notice that TC2 classifies all counterexamples that TC1 clas-
sifies. Thus, TC1 is redundant and is not added to the final
solution W ′ = {TC2}.

4.4 Solution to the running example

Consider the running example presented in Sect. 1.1. For
this example, Algorithm 1 outputs the trace constraints

4 Our tool allows users to toggle checking for redundancy as a user may
want to inspect all generated classes, even if some may be redundant.
5 Note that the newest trace constraint is never redundant because of
the block procedure.

TCEncrypted and TCPlaintext given the set of predicates
V = {=,<}:

TCPlaintext [ρ] ≡ ∃i ∈ [0..len(ρ)] : ρ.t ype@i

= Plaintext ∧ ρ.secret@i = �
TCEncrypted [ρ] ≡ ∃i, j ∈ [0..len(ρ)] : i < j ∧ ρ.EveKey@i

= KeyAB ∧ ρ.t ype@ j

= Encrypted ∧ ρ.secret@ j = �

Equality,=, operates overMessages andBooleanswhile
< operates over position variables. Atomic position facts are
generated just like atomic facts. Recall the following coun-
terexample trace that is characterized by TCEncrypted :

ρ = (∅,⊥)
(Encrypted,Alice,⊥)−→ (KeyAB,⊥)

(Encrypted,Alice,�)−→ (KeyAB,�)

In the facts procedure, the < predicate would generate
two facts, {i1 < i2, i2 < i3}. These facts impose an ordering
on any satisfying counterexample and capture the timing of
the violation.

5 Implementation and case studies

5.1 Implementation

Wehavebuilt a prototype implementationof the classify algo-
rithm (Algorithm 1) on top of the Alloy Analyzer [12], a
formal modeling and verification tool. In particular, Alloy
uses an off-the-shelf SAT solver to perform bounded model
checking (BMC),which is used for the verify procedure in the
algorithm. As we demonstrate in this section, our prototype
is capable of characterizing a large set of counterexamples
(hundreds of thousands) with only a handful of generated
classes. These generated classes are provided to the user in
the form of trace constraints, along with representative coun-
terexamples from each class.

Even though our current implementation uses Alloy and
BMC, our technique does not depend on the use of BMC or
any particular verification engine and could be implemented
using other tools, provided they are capable of generating
counterexample traces. However, the tool relies on the SAT
solver being able to compute minimal unsatisfiable cores,
which are used for minimizing the trace constraints. Finally,
our tool currently accepts only safety properties.

All experiments were evaluated on an AWS EC2 instance
with 8GB of RAM and 2 vCPUs.

123

C. Vick et al.

5.2 Case study: Needham–Schroeder

We applied our prototype to the well-known Needham–
Schroeder protocol (NSP) [19], which has been known to
be vulnerable to certain types of attacks [18]. We show how
our classification methods can be used to classify the large
number of counterexamples in a formal model of NSP into
a small number of classes that correspond to these types of
attacks.

The purpose of NSP is to allow two parties to communi-
cate privately over an insecure network.NSP has two variants
that accomplish this goal in different ways. The first vari-
ant is the Needham–Schroeder Symmetric protocol, from
now on referred to as Symmetric, and the second variant is
the Needham–Schroeder Public-Key protocol, from now on
referred to as Public-Key. The two variants exhibit different
violating behaviors, which allowed us to test our classifica-
tion technique on the two separate variants, while not having
to write two drastically different models.

5.2.1 Formal modeling

We constructed Alloy models of both the Symmetric and
Public-Key variants. Together, both variants total approxi-
mately 700 lines of Alloy code. These models serve as the
input to our tool along with a specification Φ and a set of
predicates V .6

In both variants, there are four Processes:Alice,Bob,
Eve, and a central Server. The attacker, Eve, can read
all of the Messages exchanged between the Processes.
The setup is similar to the running example that has been
discussed throughout the paper. Both variants must satisfy
the following specification.
Specification (Φ).We consider only one property across both
variants of NSP: the secretKey KAB shared between Alice
and Bob is not leaked to Eve. We express this property as
the following LTL formula:

Φ = G(KAB /∈ Eve.knows)

where p.knows denotes the state variable of a protocol par-
ticipant representing the set of Keys that the participant p
has access to.
Symmetric. In the Symmetric variant, illustrated in Fig. 3,
Alice notifies the Server that she would like to commu-
nicate with Bob. The Server then generates a communica-
tion key, KeyAB, for Alice and Bob and sends it to Alice.
Thismessage is encryptedwithBob’s secret key.Alice for-
wards this message to Bob so that he will be able to decrypt
themessagewith his secret key and learn the shared key.Bob

6 The Alloymodels and code for our tool can be found at https://github.
com/cvick32/CounterexampleClassificiation.

Fig. 3 Acommunication diagramof theNeedham–Schroeder Symmet-
ric protocol. A and B are identifiers for Alice and Bob, respectively.
There are three keys: KAB , the shared key between Alice and Bob,
KAS and KBS which are eachAlice andBob′s server key.Alice and
Bob also make use of a nonce, NA and NB , respectively. Each arrow
represents a Message. {...}K denotes a Message encrypted by key
K , and therefore requiring K to be read successfully. The snaking red
lines represent Eve having access to all Messages that are sent over
the network

then sends a random nonce to Alice that is encrypted with
their shared key. Alice verifies that she knows the shared
key by sending back Bob’s nonce decremented by 1.

Public-Key In the Public-Key variant, Alice notifies the
Server that she would like to communicate with Bob. The
Server sends Alice a signed message with Bob’s public
key. Alice sends Bob a message including a nonce that is
encrypted with Bob’s public key. Bob receives this message
and asks the Server for Alice’s public key. The Server
sends Bob Alice’s public key. Bob now sends Alice’s
nonce back to Alice along with a new nonce encrypted
with Alice’s public key. Alice confirms that she has her
private key by responding to Bob with his nonce encrypted
with his public key.

Predicates In the experiments described below, we used
the following sets of predicates (V): Generic = {=,<

}, consisting of only equality and one ordering predi-
cate; V1 = Generic ∪ {replay}; and V2 = Generic ∪
{manInTheMiddle}. V1 and V2 include all generic predicates
plus some specialized predicates that characterize more spe-
cific behavior. The replay predicate, shown in Fig. 4, captures
counterexamples where Eve sends the same message that
was sent earlier by another process. The manInTheMiddle
predicate, shown in Fig. 5, captures counterexamples where
Eve passes Alice and Bob’s messages between them with
no direct communication between Alice and Bob.

Predicates like replay andmanInTheMiddle could be part
of a library of predicates that any user could search and
use. For example, replay can be used to check other com-

123

https://github.com/cvick32/CounterexampleClassificiation
https://github.com/cvick32/CounterexampleClassificiation

Counterexample classification

munication protocols for replay attacks, provided that they
follow a similar message-passing structure. Note that no
information concerning the particularities of the Needham–
Schroeder protocol is used in the definition of replay or
manInTheMiddle, meaning that either predicate can be used
in a generic way.

5.2.2 Results

Our toolwas able to produce classifications for both the Sym-
metric and Public-Key variants of NSP, as explained below.
Wewere able to count up to 270, 000 counterexamples, using
the counterexample enumeration feature in Alloy, for both
NSP variants until our program ran out of memory. The
results are shown in Table 1.

Alloy employs bounded model checking for its verifica-
tion engine; the bound column in Table 1 shows the upper
bound used for the number of steps in traces explored by
BMC. The V column shows the predicate set used in each
experiment. The next column shows the number of classes
generated, and the last two columns show the execution time
in seconds.7 The execution time is split between the time
our tool spent calling Alloy on the left and all other compu-
tations, such as generating facts from a counterexample, on
the right. The time spent calling Alloy is included in the total
time.

Note that executions using V1 and V2 take longer than the
executions using the Generic predicate set. Most of this time
is spent in finding counterexamples that satisfy replay and
manInTheMiddle, respectively. These executions require
that the traces satisfy either replay or manInTheMiddle
because we want to find violations that can be classified with
these predicates. We also note that when using the Generic
predicate set, no redundant classes were found.

We call attention to discrepancies between Table 1 and the
same table presented in the original conference paper [27]. A
bug was found that incorrectly assigned the bound. This led
to our tool reporting a classification for a higher bound than
was actually computed.We have fixed this bug and report the
new results.

Symmetric ThisNSP variant is vulnerable to a replay attack.
This attack has been addressed in implementations like Ker-
beros, although the attack was not found until three years
after the initial publication of the protocol [8].

Using the Generic predicate set, our tool generated 2
non-redundant classes. These classes characterize counterex-
ampleswhere eitherAlice orBob unknowingly establishes
communication with Eve, who then manages to extract the
secret key from this interaction. For example, the trace con-

7 Times were measured using the Java built-in System.nano
Time().

straint TCGeneric shown below represents one of these two
classes and characterizes counterexamples where Alice
sends a message and at a later state, Eve manages to learn
the secret key:

TCGeneric[ρ] ≡ ∃i1, i2 ∈ [0..len(ρ)] : ρ.msg.sender@i1=Alice ∧
ρ.Eve.knows@i2={KeyAB} ∧
i1 < i2

Although this constraint is a valid characterization of coun-
terexamples (in that it is sufficient to guarantee a violation
of Φ), it is rather an abstract one, in that it does not describe
the intermediate steps that Eve carries out in order to extract
the secret key.

To generate more specialized classes, the user can provide
additional predicates beside the generic ones. Using V1 as the
predicate set, our tool generated three classes: the two classes
previously found with Generic, plus a third class represented
by the trace constraint TCReplay shown below:

TCReplay[ρ] ≡ ∃i1, i2 ∈ [0..len(ρ)] : replay[ρ, i1, i2] ∧ i1 < i2 ∧
ρ.msg.encryption@i2 = ρ.msg.encryption@i1 ∧

ρ.msg.key@i2 = ρ.msg.key@i1

Our tool is able to guarantee that we begin our classifica-
tion with counterexamples that satisfy whichever predicate
we choose, in this case replay. This is helpful as it constrains
our classification to only those counterexamples which sat-
isfy replay, allowing us to classify a subset of the total set of
counterexamples. TCReplay characterizes all counterexam-
ples where Eve re-sends a message that was previously sent
at step i1 again at step i2—i.e., a replay attack. TCReplay

is a redundant class with respect to the other two classes
generated using the Generic predicate set. It is useful as it
provides more specific information about what Eve does
in order to cause a violation. The user of our tool—e.g., a
protocol designer—could then use the information in these
constraints to improve the protocol and prevent these types
of violations.
Public-Key. This NSP variant is vulnerable to a man-in-the-
middle attack [18]. Eve is able to forwardmessages between
Alice and Bob and trick them into thinking they are com-
municating directly.

Similarly to the Symmetric variant, we were able to
classify counterexamples that demonstrated the man-in-the-
middle attack. The classes found in the Public-Key experi-
ment reflected what we found in the Symmetric variant—i.e.,
2 classes that show a general violating pattern with Generic
and then, three classes where one class demonstrates the
known violation—using predicate set V2. Our tool showed
that the Public-Key variant is not vulnerable to replay attacks.

In summary, our tool (1) significantly reduces the amount
of information that the user needs to inspect to under-

123

C. Vick et al.

Fig. 4 The replay predicate
returns � if there are two
positions t1 and t2 in ρ such
that t1 occurs before t2 and the
Message at t1 is the exact
same as the Message at t2
except that Eve is now the
sender, thus modelling a replay
attack

Fig. 5 ThemanInTheMiddle
predicate returns � if there are
six positions in ρ such that t1
through t6 are in order and Eve
intercepts and resends all
messages sent between Alice
and Bob

Table 1 Results on the symmetric (left) and public-key (right) NSP variants

bound V # classes Alloy time Total time bound V # classes Alloy time Total time

10 Generic 2 2.45 15.62 10 Generic 2 3.97 23.60

V1 3 4.76 18.46 V2 3 5.79 26.80

15 Generic 2 7.05 47.39 15 Generic 2 9.90 69.94

V1 3 13.67 61.85 V2 3 14.23 79.15

20 Generic 2 22.42 126.01 20 Generic 2 29.13 194.18

V1 3 40.28 168.41 V2 3 36.15 224.12

25 Generic 2 53.22 289.23 25 Generic 2 72.01 437.21

V1 3 97.97 384.83 V2 3 84.66 469.85

All times are recorded in seconds

stand the different types of violations, by collapsing the
large number of counterexamples, ≥ 270,000 for the case
study, into a small number of classes and (2) enables the
user to inspect these different violating behaviors in a high-
level representation—i.e., trace constraints—that can encode
domain-specific information—e.g., replay attacks.

5.3 Case study: TCP

TCP is a widely used Internet protocol. TCP’s three main
stages are connection establishment, data transfer, and con-
nection teardown. Our model focuses on connection estab-
lishment and teardown and elides details and specifications
surrounding data transfer.We adopt the same high-level TCP
model described in [28] and shown inFig. 6,which represents
the state space for a single TCP agent.

Aswith Needham–Schroeder, we implemented ourmodel
in Alloy. Our Alloy model runs two TCP agents, A and B,
side-by-side thus modelling two agents attempting to con-
nect. These agents communicate over two channels, one is
read by B and written to by A, AtoB, the other is read by A
and written to by B, BtoA. There are four distinct writable
messages that may be inserted into a channel: SY N , ACK ,
SY N_ACK , F I N . There is an additional message I N I T
that is in the channel in the initial state and stays in the chan-
nel until a process inserts a writeable message. Finally, we
model an Attacker as a process that is able to insert any
writeable message in either channel at any time.
Specification (Φ).We consider the following safety property
for our TCP model:

Φ = G(A.state = Closed → B.state �= Established)

123

Counterexample classification

Fig. 6 The state machine for a single TCP agent. All the states except i0, ..., i5, and End are from the TCP RFC [20]. ! is read as “sends” and ? is
read as “receives”. The dashed transitions represent timeouts and can be taken wherever enabled. This figure is taken from [28]

So, for every point in our trace, it must be the case
that if agent A is in Closed, then B must not be in
Established. Note that our model satisfies this specifica-
tion when we do not allow the Attacker to sendmessages.
Predicates. Similarly to the Needham–Schroeder case study,
we evaluate our TCP model with two different sets of predi-
cates. TheTCPGeneric set is {=,<, AInState, BInState}
and V3 is {=,<, AInState}.
Results. The results for our TCP experiments are shown in
Table 2.

With V3, we find only one class as follows:

TCV 3[ρ] ≡ ∃i1 ∈ [0..len(ρ)] : ρ.A.state@i1 = ClosedState ∧
ρ.B.state@i1=EstablishedState

This single class is effectively a negation of the property,
so intuitively, if a trace satisfies this property, then it will
violate the specification. This example shows that depending
on the selection of the predicates, it is possible for our tool to
generate classes that do not have much explanatory power.
To generate more “interesting” classes, the user may adjust
the predicate set, as described next.

With the TCPGeneric predicate set, our tool is able
to generate a complete classification for bound seven. For
bounds of eight and above, our tool runs out of memory
while attempting to generate a complete classification. How-

Table 2 Results from the TCP experiment

bound V # classes Alloy time Total time

7 TCPGeneric 1 2.75 7.69

V3 1 0.96 4.67

8 TCPGeneric 1 8.11 26.43

V3 1 1.13 4.87

9 TCPGeneric 6∗ N/A N/A

V3 1 1.36 5.31

10 TCPGeneric 4∗ N/A N/A

V3 1 1.75 6.19

All times are recorded in seconds. N/A represents that the experiment
ran out of memory. N∗ means that we found N classes before running
out of memory and the classes are not a complete solution to CCP

ever, when our tool is unable to find a complete classification,
it still generates and outputs all of the classes it was able to
find. In Table 2, using TCPGeneric results in finding a par-
tial classification for runs with a bound greater than seven.
Only 1 class is found using TCPGeneric for bounds seven
and eight. This single class matches exactly the attack that
was synthesized in [28], with the further guarantee that this
is the only attack that the model is vulnerable to under this
bound. At a high level, this class captures the Attacker
acting as the active participant in an active-passive connec-
tion establishment. By sending a SYN message followed by

123

C. Vick et al.

a SYN_ACK message, the Attacker can force B into the
Established state. Amust be inClosedwhen B reaches
Established to guarantee a violation under the currentΦ.

TCTCPGeneric7[ρ] ≡ ∃i1, i2, i3 ∈ [0..len(ρ)] :
ρ.B.read@i1 = SYN ∧
ρ.B.read@i3 = SYN_ACK ∧
ρ.AtoB@i1 = SYN_ACK ∧
ρ.AtoB@i2 = SYN_ACK ∧
ρ.AtoB@i3 = SYN_ACK ∧
ρ.B.read.i3@sender = Attacker ∧
ρ.A.state@i1 = ClosedState ∧
ρ.A.state@i2 = ClosedState ∧
ρ.A.state@i3 = ClosedState

TCTCPGeneric9 is one of the six classes found when
attempting to find a complete classification with a bound
of nine. Since we were unable to find a complete classifica-
tion, some of the classes that were found may be redundant.
The underlying violation of TCTCPGeneric9 is very similar to
TCTCPGeneric7. However, the more general TCTCPGeneric7

is not sufficient to guarantee a violation under the increased
bound because A and B have a larger execution space.
With this larger execution space, it becomes harder to fully
describe their behavior using shorter trace constraints like
TCTCPGeneric7.

TCTCPGeneric9[ρ] ≡ ∃i1, i2, i3, i4, i5, i6 ∈ [0..len(ρ)] :
ρ.BtoA@i1 = INIT ∧
ρ.BtoA@i3 = INIT ∧
ρ.BtoA@i4 = INIT ∧
ρ.BtoA@i5 = FIN ∧
ρ.AtoB@i4 = SYN ∧
ρ.AtoB@i5 = SYN_ACK ∧
ρ.AtoB@i6 = SYN_ACK ∧
ρ.B.read@i6 = SYN_ACK

ρ.B.read@i5 = SYN

ρ.A.state@i1 = ClosedState ∧
ρ.A.state@i2 = ClosedState ∧
ρ.A.state@i3 = ClosedState ∧
ρ.A.state@i5 = ClosedState ∧
ρ.B.state@i1 = ClosedState ∧
ρ.B.state@i3 = ClosedState ∧
ρ.B.state@i4 = ClosedState

For example, notice how much more specified the
TCTCPGeneric9 is as opposed to TCTCPGeneric7. In par-

ticular, TCTCPGeneric9 enforces which states A and B are
in at particular time steps, while also enforcing the con-
tents of both channels over five time steps. In contrast,
TCTCPGeneric7 does not constrain the state of B or chan-
nel BtoA at all.

Note that a user is able to parse these trace constraints
directly and view counterexamples that satisfy particular
trace constraints. For instance, they could execute a trace
constraint and analyze the resulting counterexamples with
the confidence that these counterexamples are characterized
by the trace constraint. For instance, in Alloy a user could
execute the above trace constraint with the command run
TCTCPGeneric9 for 9. The result of this command would
be a sequence of visualized counterexamples that satisfy
TCTCPGeneric9.

We can also count the number of counterexamples that
are satisfied by each counterexample class. We have not pro-
vided these results for all of the experiments as counting the
number of counterexamples that a class covers often leads to
timeouts, especially in the Needham–Schroeder case studies.
However, there was an interesting case in our TCP case study
where a single class covered well over 90% of the total coun-
terexamples. In this case, we ran our TCPmodelwith a bound
of eight and found an incomplete covering of three classes
before timing out. In total, there were 5572 counterexam-
ples, 5468 of which were covered by the first class that was
found. Counting how many counterexamples are covered by
each class might be useful when deciding how to move for-
ward when debugging a faulty model. In our tool, counting
is done by enumerating the number of satisfiable instances
Alloy is able to find.While this is not an exact count, it gives a
rough estimate of the coverage of each counterexample class.
Additionally, we are confident that advances in model count-
ing may reduce the computational overhead for this kind of
analysis in the future [10].

6 Related work

It is well known that predicates can be used to abstract need-
less detail in certain problem domains [6, 13]. This is the first
time, to our knowledge, that predicates have been used for
counterexample classification.

Our work can be considered a kind of automated debug-
ging technique [29] in the context of model checking. There
have been a number of prior works into locating the rele-
vant parts of counterexample that explain or even cause a
violation [1, 3, 4, 11]. While our work is not based on an
explicit notion of causality, the generated trace constraints
are sufficient to imply a violation of the property. The major
difference between these works and ours is that they focus
on explaining one or more given counterexamples, while our
objective is to classify the set of all counterexamples into dis-

123

Counterexample classification

tinct classes. Our work is also related and complementary to
[17],which focuses ongenerating short counterexamples.We
take a different approach by generating minimal constraints,
each of which characterize a set of counterexamples.

The approach in [9] has the similar goal of generating a
diverse set of counterexamples. This work relies on a notion
of diversity that depends on general properties about the
structure of the given state machine—e.g., counterexamples
that have different initial distinct and final states. In compar-
ison, our notion of diversity is domain-specific, in that it is
capable of classifying traces based on domain-specific pred-
icates that can be provided by the user. In this sense, these
are two complementary approaches and could potentially be
combined into a single model debugging tool.

Our approach is an application of the more general con-
cept known as abduction—a type of reasoning method used
to produce an explanation for a given observation about
the world [14]. Abductive logic programming (ALP) is an
extension of logic programming with the ability to perform
abduction [15]. Although ALP has very different uses than
model checking, in ALP systems such as HYPROLOG [5]
and A-System [16], an explanation consists of a set of des-
ignated concepts called abducibles, which are similar to our
notion of predicates.

Finally, the idea of using an unsatisfiable core for debug-
ging models is not new and has been applied to debugging
circuit designs [25], identifying over-constraints in declara-
tive models [22], and minimizing a counterexample [21].

7 Conclusion and future work

In this paper, we have proposed counterexample classifica-
tion as a novel approach for debugging counterexamples
generated by a model checker. The key idea behind our
approach is to classify the set of all counterexamples to a
given model and a property into trace constraints, each of
which describes a particular type of violation. Our work
leverages the notion of predicates to distinguish between
different types of violations; we have also demonstrated
how these predicates can capture violations that are common
within a domain—e.g., attacks on distributed protocols—and
can facilitate the reuse of domain knowledge for debugging.

For future work, we plan to explore methods based on
machine learning such as clustering—e.g., [24]—to automat-
ically extract predicates from a given set of counterexample
traces. We also plan to investigate further the impact of dif-
ferent predicate sets on the existence of solutions. Another
interesting direction is to explore how our classification
method could be used to improve counterexample-guided
approaches to program synthesis (such as CEGIS [23]), by
reducing the number of counterexamples that need to be
explored by the synthesis engine. Additionally, the exten-

sion of our technique to the case of infinite counterexamples
is still open.

A standard for sharing counterexamples and classifica-
tions is also left as future work. To accomplish this, the
popular SMTLIB standard could be extended to provide a
bridge between tools to share counterexamples and coun-
terexample classes [2].

Data availability statement All of the material needed to reproduce
the results from the paper are freely available in the Zenodo artifact
published here: https://zenodo.org/record/7095162#.ZD7NS-zMJQI.

References

1. Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause:
localizing errors in counterexample traces. In: Proceedings of
the 30th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL’03, pp. 97–105. Association for
Computing Machinery, New York, NY, USA, January 2003

2. Barrett, C., Fontaine, P., Tinelli, C.: The satisfiability modulo the-
ories library (SMT-LIB). www.SMT-LIB.org (2016)

3. Beer, I., Ben-David, S., Chockler, H., Orni, A., Trefler, R.: Explain-
ing counterexamples using causality. In: A Bouajjani, A., Maler,
O. (eds.) Computer Aided Verification, Lecture Notes in Computer
Science, pp. 94–108. Springer: Berlin (2009)

4. Chechik, M., Gurfinkel, A.: A framework for counterexample gen-
eration and exploration. In: FASE, pp. 220–236 (2005)

5. Christiansen, H., Dahl, V.: Hyprolog: a new logic programming
language with assumptions and abduction. In: ICLP, pp. 159–173
(2005)

6. Cousot, P., Cousot, R.: Abstract interpretation: a unified lat-
tice model for static analysis of programs by construction or
approximation of fixpoints. In: Proceedings of the 4th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL ’77, pp. 238–252. Association for Computing
Machinery, New York, NY, USA, January 1977

7. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In:
Ramakrishnan, C.R., Rehof, J. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems. Lecture Notes in Computer
Science, pp. 337–340. Springer, Berlin (2008)

8. Denning, D.E., Sacco, G.M.: Timestamps in key distribution pro-
tocols. Commun. ACM 24(8), 533–536 (1981)

9. Dominguez, A., Day, N., Cheriton: generating multiple diverse
counterexamples for an EFSM (2013)

10. Gomes, C.P., Sabharwal, A., Selman, B.: Chapter 25.Model count-
ing. In: Biere, A., Heule, M., Van Maaren, H., Walsh, T. (eds.)
Frontiers in Artificial Intelligence and Applications. IOS Press,
Amsterdam (2021)

11. Groce, A., Visser, W.: What went wrong: explaining counterexam-
ples. In: Ball, T., Rajamani, S.K. (eds.) Model Checking Software.
Lecture Notes in Computer Science, pp. 121–136. Springer, Berlin
(2003)

12. Jackson, D.: Alloy: a lightweight object modelling notation. ACM
Trans. Softw. Eng. Methodol. (TOSEM) 11(2), 256–290 (2002)

13. Jhala, R., Podelski, A., Rybalchenko, A.: Predicate abstraction
for program verification. In: Clarke, E.M., Henzinger, T.A., Veith,
H., Bloem, R. (eds.) Handbook of Model Checking, pp. 447–491.
Springer, Cham (2018)

14. Josephson, S.G., Josephson, J.R.: Abductive Inference: Compu-
tation, Philosophy, and Technology. Cambridge University Press,
Cambridge (1994)

123

https://zenodo.org/record/7095162#.ZD7NS-zMJQI

C. Vick et al.

15. Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive logic program-
ming. J. Log. Comput. 2(6), 719–770 (1992)

16. Kakas, A.C., Van Nuffelen, B., Denecker, M.: A-system: problem
solving through abduction. In: IJCAI, pp. 591–596 (2001)

17. Kashyap, S., Garg, V.K.: Producing short counter examples using
“Crucial Events”. In: Gupta, A., Malik, S. (eds.) Computer Aided
Verification. Lecture Notes in Computer Science, pp. 491–503.
Springer, Berlin, Heidelberg (2008)

18. Lowe,G.:An attack on theNeedham-Schroeder public-key authen-
tication protocol. Inf. Process. Lett. 56(3), 131–133 (1995)

19. Needham, R.M., Schroeder, M.D.: Using encryption for authen-
tication in large networks of computers. Commun. ACM 21(12),
993–999 (1978)

20. Postel, J.: Transmission Control Protocol. RFC 793, September
1981. Available at: https://www.rfc-editor.org/info/rfc793

21. Shen, S., Qin, Y., Li, S.:Minimizing counterexample with unit core
extraction and incremental sat. In: VMCAI, pp. 298–312 (2005)

22. Shlyakhter, I., Seater, R., Jackson, D., Sridharan, M., Taghdiri, M.:
Debugging over constrained declarative models using unsatisfiable
cores. In: ASE, pp. 94–105 (2003)

23. Solar-Lezama, A., Tancau, L., Bodik, R., Saraswat, V., Seshia,
S.: Combinatorial sketching for finite programs. In: Proceedings
of the 12th International Conference on Architectural Support for
Programming Languages and Operating System (ASPLOS), p. 12
(2006)

24. Song,M., Günther, C.W., van derAalst,W.M.P.: Trace clustering in
process mining. In: Ardagna, D., Mecella, M., Yang, J. (eds.) Busi-
ness Process Management Workshops. Lecture Notes in Business
Information Processing, pp. 109–120. Springer, Berlin (2009)

25. Sülflow, A., Fey, G., Bloem, R., Drechsler, R.: Using unsatisfi-
able cores to debug multiple design errors. In: ACM Great Lakes
Symposium on VLSI, pp. 77–82 (2008)

26. Torlak, E., Chang, F.S.-H., Jackson, D.: Finding minimal unsatisfi-
able cores of declarative specifications. In: Cuellar, J.,Maibaum,T.,
Sere, K. (eds.) FM 2008: Formal Methods. Lecture Notes in Com-
puter Science, pp. 326–341. Springer, Berlin, Heidelberg (2008)

27. Vick, C., Kang, E., Tripakis, S.: Counterexample classification. In:
Calinescu, R., Păsăreanu, C.S. (eds.) Software Engineering and
Formal Methods, pp. 312–331. Springer, Cham (2021)

28. von Hippel, M., Vick, C., Tripakis, S., Nita-Rotaru, C.: Automated
attacker synthesis for distributed protocols. In: Casimiro, A., Ort-
meier, F., Bitsch, F., Ferreira, P. (eds.) Computer Safety, Reliability,
and Security, pp. 133–149. Springer, Cham (2020)

29. Zeller,A.: The debugging book.CISPAHelmholtzCenter for Infor-
mation Security (2021). Retrieved 2021-03-12 18:02:07+01:00

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

Cole Vick is a PhD Student at
The University of Texas at Austin
and is advised by Ken McMil-
lan. He received his Bachelor’s
degree from Northeastern Univer-
sity where he was an NSF REU
recipient under the supervison of
Stavros Tripakis. Between gradu-
ating from Northeastern and enro-
lling at UT Austin, Cole was a
research assistant for Dr. Tripakis
and Eunsuk Kang at Carnegie Mel-
lon University.

Eunsuk Kang is an Assistant Pro-
fessor in the Software and Soci-
etal Systems Department, School
of Computer Science at Carnegie
Mellon University. He received a
Ph.D. in Electrical Engineering
and Computer Science from MIT,
and a Bachelor of Software Engi-
neering from the University of
Waterloo in Canada. His research
interests include software engineer-
ing, formal methods, system safety,
and security.

Stavros Tripakis is an Asso-
ciate Professor of Computer Sci-
ence at Northeastern University.
He received his Ph.D. degree in
Computer Science at the Verimag
Laboratory, Joseph Fourier Uni-
versity, Grenoble, France, and has
held positions at the University
of California at Berkeley, at the
French National Research Center
CNRS, at Cadence Design Sys-
tems, and at Aalto University. His
research interests are in the foun-
dations of software and system
design, formal verification, and

cyber-physical systems. Dr. Tripakis was co-Chair of the 10th ACM
& IEEE Conference on Embedded Software (EMSOFT 2010), and
Secretary/Treasurer (2009-2011) and Vice-Chair (2011-2013) of ACM
SIGBED. His H-index is 55.

123

https://www.rfc-editor.org/info/rfc793

	Counterexample classification
	Abstract
	1 Introduction
	1.1 Running example

	2 Background
	3 Counterexample classification
	3.1 Classes and classifications
	3.1.1 Algorithm for non-redundant classification

	3.2 The counterexample classification problem
	3.3 Solvability
	3.4 Uniqueness of solutions

	4 Classification method
	4.1 Algorithm overview
	4.2 Details on fact generation
	4.3 Optimizations
	4.3.1 Minimizing trace constraints
	4.3.2 Non-redundancy

	4.4 Solution to the running example

	5 Implementation and case studies
	5.1 Implementation
	5.2 Case study: Needham–Schroeder
	5.2.1 Formal modeling
	5.2.2 Results

	5.3 Case study: TCP

	6 Related work
	7 Conclusion and future work
	References

