
Decoupled Fitness Criteria for Reactive
Systems

Derek Egolf(B) and Stavros Tripakis

Northeastern University, Boston, MA, USA
{egolf.d,stavros}@northeastern.edu

Abstract. The correctness problem for reactive systems has been thor-
oughly explored and is well understood. Meanwhile, the efficiency prob-
lem for reactive systems has not received the same attention. Indeed, one
correct system may be less fit than another correct system and determin-
ing this manually is challenging and often done ad hoc. We (1) propose
a novel and general framework which automatically assigns comparable
fitness scores to reactive systems using interpretable parameters that are
decoupled from the system being evaluated, (2) state the computational
problem of evaluating this fitness score and reduce this problem to a
matrix analysis problem, (3) discuss symbolic and numerical methods
for solving this matrix analysis problem, and (4) illustrate our approach
by evaluating the fitness of nine systems across three case studies, includ-
ing the Alternating Bit Protocol and Two Phase Commit.

Keywords: Formal methods · Verification · Reactive systems

1 Introduction

Correctness guarantees help us avoid irritating, costly, and, in some cases, deadly
implementation bugs. However, two systems that both satisfy a correctness spec-
ification may differ with respect to efficiency. Inefficient systems result in real
world consequences: delaying content delivery, using excess energy, and wasting
clock cycles better spent elsewhere.

Much like reasoning about correctness, reasoning about efficiency is cogni-
tively demanding, prone to errors, and requires expert insight. The framework
proposed in this paper strives to eliminate this human burden, mitigate these
errors, and capture the expert’s insight and intentions in the parameters of the
framework. The proposed framework accomplishes these goals by assigning a
comparable fitness score to every system, such that we can decide between two
systems on the basis of their score. Consider the following example.

Example 1. Consider the finite labeled transition systems (LTSs) depicted in
Fig. 1. Labels s, a, t represent send, acknowledge (ack), and timeout respectively.
The symbols !, ? (output, input) denote rendezvous communication in which a

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Ferreira and T. A. C. Willemse (Eds.): SEFM 2023, LNCS 14323, pp. 85–105, 2023.
https://doi.org/10.1007/978-3-031-47115-5_6

https://zenodo.org/record/8168367
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47115-5_6&domain=pdf
https://doi.org/10.1007/978-3-031-47115-5_6

86 D. Egolf and S. Tripakis

! transition can only be taken in one LTS if the corresponding ? transition is
taken in another LTS. Transitions with neither !, nor ?, can be taken freely.

LTS E represents a sender in the environment. LTSs G and B are ‘good’ and
‘bad’ receivers, respectively. B is ‘bad’ in the sense that it waits for two send
actions before replying with an acknowledgement, whereas G replies right away.
The synchronous products of the sender E with receivers G and B, denoted E||G
and E||B, are LTSs M and M ′, respectively. Both M and M ′ are correct, in the
sense that they satisfy the specification every s is eventually followed by an a
(given some fairness assumptions that prevent a from being ignored indefinitely).
Because they both satisfy this specification, M and M ′ are indistinguishable
from the perspective of traditional verification and synthesis. However, M is
intuitively preferable to M ′ because G is a better receiver than B. As we will
show in Sect. 5, our framework assigns fitness scores 0.25 and 0.14 to M and M ′,
respectively, and thus distinguishes M as a better system. ��

Fig. 1. A simple communication protocol modeled with finite LTSs.

The exact nature of the fitness score depends on the application domain. Our
framework decouples the description of the system (e.g., the LTSs of Fig. 1) from
a set of domain-specific parameters which capture user preferences.

By assigning fitness scores to systems, as in the example above, our frame-
work can be used for performance evaluation. Our framework is additionally
motivated by recent work in the synthesis of distributed protocols [5]. Unlike
humans, synthesis tools typically ignore efficiency considerations. In some cases,
these tools generate systems that are, strictly speaking, correct (i.e., they sat-
isfy their logical specification), yet clearly unorthodox or even inefficient [6]. In
such cases, we can use our framework to rank automatically generated systems
according to their fitness score. In other cases, we may want to generate all
correct systems [24], potentially with the aim of doing fitness-optimal synthesis
(c.f. page 8).

Decoupled Fitness Criteria for Reactive Systems 87

In summary, the contributions of this paper are as follows: (1) We propose
a novel and general framework for automatically assigning a comparable fitness
score to a system; this framework uses interpretable parameters that are decou-
pled from the system being evaluated. (2) We provide an automated method for
computing fitness scores; our method ultimately reduces the fitness-score com-
putation problem to a matrix analysis problem. (3) We discuss symbolic and
numerical methods for solving this matrix analysis problem. (4) We present an
implementation and evaluation of our framework: our prototype tool allows, in
a matter of seconds, to automatically compute the fitness of nine automatically
synthesized systems.

We organize the rest of the paper as follows. Section 2 formalizes prelimi-
nary concepts. Section 3 presents our framework. Section 4 presents a method to
compute fitness scores. Section 5 illustrates our approach on the communication
protocol of Example 1, Two Phase Commit, and the Alternating Bit Protocol
taken from [6]. Section 6 discusses related work. Section 7 concludes the paper.

2 Preliminaries

N, Q, R, R≥0, and B = {0, 1} denote the sets of natural, rational, real, non-
negative real numbers, and booleans, respectively. A function h : Nd → Q is a
scalar arithmetic function if h can be written in terms of basic scalar arithmetic
operations +,−,×, /, applied to its natural number arguments.

In traditional verification, we typically only consider the yes/no question:
does the system produce any violating traces. While this question allows us to
discard of the relative abundance of traces, the question of fitness is not so. All
else equal, if a system is capable of producing the same ‘unfit’ trace by executing
any one of many distinct runs, then that system is worse than a system that can
produce the unfit trace in just one particular way. Toward this end, we require
a notion of multisets.

A multiset X over domain D is a function X : D → N, where X(x) repre-
sents the multiplicity of element x, i.e., how many times x occurs in X. M(D)
denotes the class of all multisets over D, i.e., the set of all functions X : D → N.
If X(x) = m, then we write x ∈m X (possibly, m = 0). The cardinality of X,
denoted |X|, is the sum of the multiplicities of all members of the domain D.
We write multisets as {{...}} to differentiate them from sets.

Example 2. We denote by X = {{0, 0, 1, 1, 1}} the multiset where 0 ∈2 X and
1 ∈3 X. Then: |X| = 2 + 3 = 5. ��

If A ⊆ D and X : D → N is a multiset, then X restricted to A is a new
multiset, denoted X |A: D → N and defined as follows. If x /∈ A, X |A (x) = 0
and otherwise if x ∈ A, then X|A (x) = X(x). Let X : D → N be a multiset and
let f : D → D′ be a function. Then intuitively, the image of X by f is a multiset
denoted f � X obtained by applying f to the members of X. E.g. if f(x) = x2,
then f � {{2,−2, 3, 3, 3}} = {{4, 4, 9, 9, 9}}. Formally, we define f � X : D′ → N as
follows. (f�X)(y) := |(X|Dy

)|, where Dy := {x ∈ D | f(x) = y}. We may treat a

88 D. Egolf and S. Tripakis

set as a multiset with all multiplicities as 0 or 1 and take its image by f to obtain
a multiset. If X ∈ M(Nd) and 1 � i � d, then sum(X, i) =

∑
x∈cX

cxi, where xi

is the ith component of x ∈ N
d. E.g. sum({{(1, 2), (1, 2), (3, 4)}}, 2) = 2 + 2 + 4.

A finite labeled transition system (LTS) is a tuple M = 〈Σ,Q,Q0,Δ〉,
where: Σ is a finite set of labels; Q is a finite set of states; Q0 ⊆ Q is the set of
initial states; Δ ⊆ Q ×Σ ×Q is the transition relation. An n-length run of M is
a sequence t = q0

a1→ q1
a2→ q2...

an→ qn such that q0 ∈ Q0 and (qi, ai+1, qi+1) ∈ Δ
for all i = 0, ..., n − 1. The trace of t, denoted Lab(t), is the sequence of labels
a1a2...an, while Sts(t) = q0q1...qn is the sequence of states visited during t.
[[M]]n denotes the set of all n-length runs of M . Two runs t1, t2 ∈ [[M]]n may
have equivalent traces, i.e., Lab(t1) = Lab(t2). We denote the multiset of all n
length traces of M as Mn = Lab � [[M]]n. We denote the 0 length trace as ε.
Then [[M]]0 = Q0 and M0 is the multiset containing ε once for each state in Q0.

Example 3 (Two Systems). We define two LTSs M (1) and M (2) over Σ = {0, $}.
We interpret the traces of these systems as follows: $’s are money that we receive,
and 0’s are lapses in this income. Intuitively, we prefer behaviors that maximize
the rate at which we receive $’s.

Let M (1) be the LTS with one state and a self-loop with label $. So M
(1)
n con-

tains one n length trace of multiplicity 1: $n. Let M (2) be the LTS that alternates
between two states, outputting $ when leaving the initial state and 0 when leav-
ing the other. So M

(2)
n contains one trace of multiplicity 1: ($0)�n/2�$(n mod 2),

i.e., even length prefixes end in 0 and odd length prefixes end in $. ��
A distributed system is typically modeled as the product of a set of LTSs.

This product can be defined in the standard way, and is itself a monolithic LTS.
A deterministic finite automaton (DFA) is a tuple M =

〈Σ,Q, q0, Qacc, δ〉, where: Σ is a finite alphabet; Q is a finite set of states; q0 ∈ Q
is the single initial state; Qacc ⊆ Q is the set of accepting states; δ : Q × Σ → Q
is the transition function. Unlike a generic LTS, every trace w ∈ Σ∗ corresponds
to one and only one finite run of a DFA M .

3 A Formal Framework for Capturing Fitness

Our framework assigns a real number called a fitness score to every system. The
key idea of our framework is that it decouples the description of the system from
the following set of domain-specific framework parameters: (1) A finite alphabet
Σ, e.g., {0, $}. (2) A fitness function, f : Σ∗ → N

d. This function measures
some quantity of finite prefixes of infinite traces. (3) An aggregate function,
@ : M(Nd) → Q. This function takes a multiset of fitness values, X ∈ M(Nd),
and compiles the values into a single value. Examples include min, max, average,
etc. taken over arithmetic combinations of natural numbers.1 In addition, the
framework may also include: (4) A comparison relation, �, used to compare the

1 Slight generalizations to the framework, omitted here for the sake of simplicity, are
able to capture, e.g., aggregates that output tuples of rational numbers [22].

Decoupled Fitness Criteria for Reactive Systems 89

fitness scores of two different systems. We next provide examples and formal
definitions of these parameters.

Fitness Functions: The rate function is an example of a fitness function:

Definition 1 (Fitness Function: Rate of $). For Σ = {0, $} define rate$
(w) = (#$(w), |w|), where #$(w) is the number of $’s in w and |w| is the length
of w. This fitness function treats a label as a unit of time. ��
Example 4 (Rate of $ Applied). Recall the systems M

(1)
n = {{$n}} and M

(2)
n =

{{($0)�n/2�$(n mod 2)}} from Example 3. We apply f := rate$ to the n-length
partial runs of these systems. Taking the image of M (1) and M (2) by f yields:

f � M (1)
n = {{f($n)}} = {{(n, n)}}

f � M (2)
n = {{f(($0)�n/2�$(n mod 2))}} = {{(
n/2�, n)}}

��
We represent a fitness function f : Σ∗ → N

d by a d-tuple 〈f1, ..., fd〉, where
each fi = 〈Σ,Qi, q

0
i , Q

acc
i , δi〉 is a DFA. Specifically, consider an input w ∈ Σ∗.

When the DFA fi consumes w, it visits a sequence of states, q̂ = q0i , q
1
i , ..., q

m
i .

Interpreting fi as a function fi : Σ∗ → N, we define fi(w) as the number of
times an accepting state is visited in q̂. We then define the fitness function
f : Σ∗ → N

d so that f(w) = (f1(w), ..., fd(w)). For instance, Fig. 2 depicts the
DFA representation of rate$ from Definition 1 and, e.g., f($0$$0) = (3, 5).

Fig. 2. The two DFA representing the rate$ fitness function: f1 computes the number
of $’s in a word; f2 computes the length of the word.

Aggregate Functions: The average rate function is one example of an aggre-
gate function. The average rate function treats ordered pairs as fractions and
takes the average value:

Definition 2 (Aggregate Function: Average Rate). For X ∈ M(N2), let:

@avg(X) =
1

|X|
∑

(p,q)∈mX

m · p

q

��

90 D. Egolf and S. Tripakis

Example 5. This example emphasizes the role of multiplicity in aggregates. For
instance, if X := {{(1, 3), (1, 3), (2, 3)}}, then the (1,3) term is counted twice:

@avg(X) =
1

|X|
∑

(p,q)∈mX

m · p

q
=

1
3
(2 · 1

3
+

2
3
) = 4/9

��
Example 6. This example applies @avg to the running example (Example 3).
The average is moot here as there is only one partial trace of each length. Recall
from Example 4 that f � M

(1)
n = {{(n, n)}} and f � M

(2)
n = {{(
n/2�, n)}}, where

f := rate$. We can apply average rate to these images: @avg(f�M
(1)
n) = n/n = 1

and @avg(f � M
(2)
n) =
n/2�/n. ��

Another example of an aggregate function is the maximum rate function:

Definition 3 (Aggregate Function: Maximum Rate). For X ∈ M(N2):

@(X) = max{p/q | (p, q) ∈ X}
��

Example 7. For instance, if X := {{(1, 3), (1, 3), (2, 3)}}, then:

@(X) = max{1/3, 1/3, 2/3} = 2/3

��
In principle, an aggregate function can be any mathematical function with the

appropriate type (c.f. page 4). But for the sake of computation, we want an aggre-
gate function to be represented as a scalar arithmetic function h(x1, x2, ..., xd).
We say that h : Nd → Q is a faithful representation of @ : M(Nd) → Q if and
only if for all X ∈ M(Nd),@(X) = h(sum(X, 1), ..., sum(X, d)). We will see in
Sect. 4 that this form of representation and the definitions that follow are key,
as the heart of our method is computing each sum(X, i), where X = f � Mn.
The importance should be clear by the time we state our primary correctness
result, Theorem 1.

While h might not be a faithful representation of @ for all X, h may be
a faithful representation assuming that X satisfies some condition. The fitness
function may in turn guarantee that X satisfies that condition. Fortunately,
this relationship holds between @avg (Def. 2) and rate$ (Def. 1). The following
definition and lemmas capture this useful situation:

Definition 4 (Conditional Representation and Compatible). Let Ψ be
a predicate over M(Nd), i.e., a mapping Ψ : M(Nd) → B. Additionally, let
@ : M(Nd) → Q be an aggregate function and h : N

d → Q be a scalar
arithmetic function. Then h is a conditional representation of @ subject to
Ψ if and only if for all X ∈ M(Nd), if Ψ(X) holds (i.e., Ψ(X) = 1), then
@(X) = h(sum(X, 1), ..., sum(X, d)).

Decoupled Fitness Criteria for Reactive Systems 91

Let h be a conditional representation of the aggregate function @ subject to Ψ .
Let f be a fitness function. We say that h and f are compatible when Ψ(f �Mn)
holds for any LTS M and any n ∈ N. ��

Let predicate Ψrate(X) := ‘If (p, q), (p′, q′) ∈ X, then q = q′.’ Then we have
the following two lemmas.

Lemma 1. Let X ∈ M(N2) and suppose Ψrate(X) holds. Then
@avg(X) = sum(X, 1)/sum(X, 2). Therefore, @avg is conditionally represented
by h(x1, x2) = x1/x2, subject to Ψrate. ��
Lemma 2. For all n ∈ N and all LTS M , Ψrate(rate$ �Mn) holds. Hence, rate$
and h(x1, x2) = x1/x2 are compatible. ��
Lemma 1 follows from the fact that the average of a multiset of fractions is
equal to the sum of the numerators divided by the sum of the denominators
when the denominators are all equal. Lemma 2 is immediate: if w ∈ Mn and
rate$(w) = (p, q), then q = n. From Lemma 1 and 2 it follows that @avg and
rate$ are compatible. Therefore, if the fitness function is rate$ we can represent
@avg(X) with the expression sum(X, 1)/sum(X, 2).

Note that fitness functions other than rate$ might not be compatible with
@avg. For instance, let f(w) = (#$(w),#0(w)), which measures the number of
$’s per 0. f does not satisfy Ψrate, but it is a realistic fitness function. In the
case of rate$, time is measured by the observation of any label from Σ. Now for
f , time is measured using only 0. If $ denotes a local action of a server and 0
an interaction between two servers, f captures communication complexity. We
leave handling of such non-compatible fitness functions for future work.

Fitness Score: Given alphabet Σ, fitness function f , and aggregate function
@, the fitness score of an LTS M , denoted @fM , is defined to be the limit
@fM := limn→∞ @(f � Mn). This limit is a value in R≥0 ∪ {∞,⊥}. The limit
either: converges to a value v ∈ R≥0, in which case the score is v; or increases
without bound, in which case we assign the value ∞; or exhibits some other
behavior such as oscillation, in which case we assign the ill-behaved value ⊥.

Comparison Relations: A comparison relation � is a subset of (R≥0 ∪
{∞,⊥})2. If (a, b) ∈ �, we write a � b. If neither a � b nor b � a, we say
that a and b are incomparable. Ignoring ∞ and ⊥ for the moment, � could be
any one of �, <,�, or > on R. Extending this comparator to ∞ and ⊥ would be
up to the user. One choice is to have these values be incomparable to any other
value. Note that, even though the aggregate @ maps to Q, � needs to compare
real (and not just rational) numbers because the fitness score involves taking a
limit. The semantics of a � b are that a is preferrable to b.

Example 8. Concluding our analysis of Example 3, consider an instance of our
framework with fitness function rate$ (Definition 1), aggregate function @avg

92 D. Egolf and S. Tripakis

(Definition 2), and comparison operator � := � (since we prefer high rates of
income). We can then compare the two simple systems introduced in Example 3.
Building on what we have presented so far (c.f. Examples 4 and 6), we have:

@fM (1) = lim
n→∞ @(f � M (1)

n) = lim
n→∞ 1 = 1

@fM (2) = lim
n→∞ @(f � M (2)

n) = lim
n→∞

n/2�
n

= 1/2

Because @fM (1) � @fM (2), we conclude @fM (1) � @fM (2) and therefore we
prefer M (1) to M (2). This result aligns with our intuitions; we would rather
receive a dollar every day than a dollar every other day. ��

Evaluation, Comparison, and Synthesis Problems: Within our frame-
work, we can consider various types of computational problems. A basic problem
is that of evaluating the fitness score of a given system: Given a fitness function
f , an aggregate function @, and a system M , compute @fM . Another prob-
lem is that of comparing two systems: Given a fitness function f , an aggregate
function @, a comparison relation �, and two systems M1,M2, check whether
@fM1 � @fM2. We can also consider fitness-optimal synthesis problems, which
ask to find a system with the best fitness score, perhaps subject to some cor-
rectness constraint (e.g. an LTL formula). Of these problems, in the rest of this
paper we will focus on the fitness evaluation problem:

Problem 1 (Fitness Evaluation Problem). Let M = 〈Σ,Q,Q0,Δ〉 be a finite
LTS and let f = 〈f1, ..., fd〉, where each fi is represented as a DFA. Let @ :
M(Nd) → Q be an aggregate function represented by the scalar arithmetic
function h : Nd → Q. Finally, suppose that h and f are compatible. The fitness
evaluation problem is to compute the fitness score @fM of M , i.e., to compute
limn→∞ @(f � Mn). ��

4 Reducing Fitness Evaluation to Matrix Analysis

In this section we propose a method to solve Problem 1 that consists in the
following steps (assuming the same notation and setup as in Problem 1):

1. Compute the product automaton Pi = M ||fi, for each i ∈ {1, ..., d}.
2. For each Pi, compute a matrix-vector pair (ξi,vi) representing a recurrence

relation. We call the matrix ξi the recurrence matrix and the vector vi the
initial condition vector.

3. Solve the following matrix analysis problem:

Problem 2. Let gi(n) = (ξn+1
i vi)0 for fixed square matrices ξ1, ..., ξd and vec-

tors v1, ..., vd with non-negative integer entries and where (u)0 denotes the first
entry of vector u. Let h : N

d → Q be a scalar arithmetic function. Compute
limn→∞ h(g1(n), g2(n), ..., gd(n)). ��

Decoupled Fitness Criteria for Reactive Systems 93

The motivation for the above steps follows. In step 1, the product Pi repre-
sented all simultaneous paths through M and fi. I.e., a path through Pi corre-
sponds to taking a path through M and handing the transition label encountered
at each step to the automaton representing fi. As mentioned, step 2 computes a
recurrence relation, which is reasonable because the number of accepting states
visited across (n+1)-length paths is related to certain quantities computed over
the n-length paths. The exact relationship is explained in detail in Sect. 4.1.

The correctness of the reduction to Problem 2 (Corollary 1) hinges on the
fact that gi(n) = sum(f � Mn, i), i.e., computing sum(f � Mn, i) (which is then
an input to the aggregate function) reduces to computing the nth term of a
recurrence relation, which in turn reduces to taking a matrix power.

Step 1 of the method (computing automata products) is standard. Therefore,
in the rest of this section, we focus on explaining Steps 2 and 3.

4.1 Step 2: Constructing the Recurrence Relation

We will first explain the recurrence relation construction by example and then
give the general construction.

By Example: We skip the first step of the method and assume that we have a
product P1 = M ||f1. In particular, we consider the automaton of Fig. 3.

Fig. 3. A toy product P1 = M ||f1. P1 has two states named s0 and s1. s0 is the initial
state and s1 is the accepting state. The transition labels from Σ are not needed and
hence are omitted.

Fig. 4. Partial unfolding of the automaton of Fig. 3 into a tree up to depth 4. The
column labeled n denotes the number of transitions taken.

94 D. Egolf and S. Tripakis

From the automaton of Fig. 3 we extract the following recurrence relations:

βs0
n+1 = βs0

n + βs1
n , βs0

0 = 1 (1)
βs1
n+1 = βs0

n , βs1
0 = 0 (2)

αs0
n+1 = αs0

n + αs1
n , αs0

0 = 0 (3)
αs1
n+1 = αs0

n + βs0
n , αs1

0 = 0 (4)
αn = αs0

n + αs1
n , α∅ = 0 (5)

where (as visual aid we provide Fig. 4, which displays the unfolding of P1 of
Fig. 3 into a tree containing all paths up to length 4):

– βq
n is the total number of n-length paths through P1 ending in state q, e.g.,

βs0
0 = 1, βs1

0 = 0, βs0
3 = 3, βs1

4 = 3.
– αq

n is the total number of accepting states visited along all n-length paths
through P1 restricted to paths terminating in state q, e.g., αs0

1 = 0, αs1
1 = 1,

αs0
3 = 2.

– αn is the total number of accepting states visited along all n-length paths
through P1, e.g., α0 = 0, α1 = 1, α2 = 2, α3 = 5, α4 = 10.

– α∅ is a dummy variable representing the initial condition of αn. Notice that
the αn term of the recurrence is unique in that no other term depends on it.

We determine each equation of the example recurrence relation as follows:
Equations (1) capture the number of paths of a certain length ending in state

s0. The initial value βs0
0 is 1 because s0 is an initial state. Otherwise, notice that

s0 has two predecessors: s0 and s1. To walk an (n+ 1)-length path ending in s0,
it is necessary and sufficient to walk an n-length path to one of its predecessors
and then take one more step. Hence, we compute βs0

n+1 as the sum of βs0
n and

βs1
n . Analogous reasoning yields Equations (2); notice the initial value βs1

0 is 0
since s1 is not an initial state.

Equations (3) capture the number of accepting states visited along all paths
of a certain length ending in state s0. Importantly, s0 is not an accepting state.
Therefore, adding it to an n-length path will not change the number of accepting
states visited along that path. Hence, as with β, we can compute αs0

n+1 as the
sum of αs0

n and αs1
n . The initial value αs0

0 is 0 because s0 is an initial state, but
not an accepting state.

Equations (4) capture the number of accepting states visited along all paths
of a certain length ending in state s1. Unlike s0, the state s1 is an accepting
state. Therefore, the (n+1)th step contributes to the number of accepting states
visited, in particular for each path it will increase the count by one. There are
βs0
n such paths, hence the inclusion of that term in addition to the α of the

predecessor s0. The initial value αs1
0 is 0 because s1 is an accepting state, but

not an initial state.
Equations (5) capture the accepting states along all paths of a certain length.

The initial value α∅ is irrelevant; we use 0 for simplicity. Otherwise, this equation
merely captures the fact that we can partition the paths of length n based on
which state they end in and take a sum over that partition to compute a value
over all paths.

Decoupled Fitness Criteria for Reactive Systems 95

We can represent these recurrence relation as a matrix-vector pair (ξ1, v1),
where:

v1 =

⎡

⎢
⎢
⎢
⎢
⎣

α∅

αs0
0

αs1
0

βs0
0

βs1
0

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

0
0
1
0
0

⎤

⎥
⎥
⎥
⎥
⎦

and ξ1 =

⎡

⎢
⎢
⎢
⎢
⎣

0 1 1 0 0
0 1 1 0 0
0 1 0 1 0
0 0 0 1 1
0 0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎦

E.g. row 1 of ξ1 indicates which terms are required to compute αn.

In General: The key to generalizing the above method is the set of predecessors
for each state and how each term should be computed using the predecessor
terms. Not shown in this example is the case where a state q is both an initial
state and an accepting state. In that case αq

0 is 1. Also there is at most one
transition between two states in this example. In general, there may be multiple
transitions between two states (with different labels). In that case, the equations
will include factors in front of the α and β terms. In particular,

βq′
n+1 =

∑

q∈Q

tq,q′ · βq
n

where tq,q′ is the number of transition labels that transition from q to q′ (Note:
tq,q′ is 0 if q is not a predecessor of q′). Likewise:

αq′
n+1 =

∑

q∈Q

(tq,q′ · αq
n) + (t∗q,q′ · βq

n)

where t∗q,q′ is tq,q′ when q′ is an accepting state and 0 otherwise.
Now we explain the recurrence relation extraction algorithm in general. Let

P = M ||f be the synchronous product of some finite LTS M and some DFA f .
We explain how to extract both the recurrence matrix ξ and the initial condition
vector v from P .

In what follows, we assume that P has N states indexed by the set {1, ..., N}.
We first define a matrix that encodes the transition relation of P :

Definition 5. We define the N × N predecessor matrix, denoted D, by its
entries. We denote the entry in the ith row and jth column as Dij. Define
Dij to be the number of transitions from state j to state i in P . ��
Next, we define a matrix that encodes the accepting states of P :

Definition 6. We define the N ×N accepting matrix, denoted A, so that Aij =
Dij if state i of P is an accepting state. Otherwise, Aij = 0. ��
We are now able to define the recurrence matrix ξ:

Definition 7. The recurrence matrix of P is the (2N + 1) × (2N + 1) matrix

ξ =

⎡

⎣
0 1̂ 0̂
0̂ D A
0̂ 0 D

⎤

⎦

96 D. Egolf and S. Tripakis

where 0̂ and 1̂ are n-dimensional vectors of 0’s and 1’s respectively and where 0
is an n × n matrix of 0’s. ��

We now explain how to extract the initial condition vector v from P . We first
introduce some notation. For convenience, we vectorize the αq

n and βq
n terms. Let

α̂n := (α1
n, ..., αN

n)T and β̂n := (β1
n, ..., βN

n)T . Then, the two vectors α̂0 and β̂0

capture the initial conditions of terms αi
n and βi

n in the recurrence relation, and
we can construct the 2N +1 dimensional vector v by combining α̂0 and β̂0 along
with α∅ = 0, namely, v := (α∅, α̂0, β̂0)T .

The vectors α̂0 and β̂0 are extracted from P as follows: (1) The ith entry of
α̂0 is 1 if and only if state i of P is both an accepting state and an initial state.
Otherwise, that entry of α̂0 is 0. (2) The ith entry of β̂0 is 1 if and only if state
i of P is an initial state. Otherwise, that entry of β̂0 is 0.

The following two statements (proven in Appendix A.4 of [22]) capture the
correctness of our reduction.

Theorem 1. Let α and β be the recurrence relation terms for the product

M ||fi, as constructed above. Then for all n � 0, ξn+1
i vi =

⎡

⎣
αn

α̂n+1

β̂n+1

⎤

⎦. And hence

(ξn+1
i vi)0 = αn = sum(f � Mn, i). ��

Corollary 1. Let ξi and vi be the recurrence matrices and initial condition vec-
tors for the products M ||fi, for i = 1, ..., d, as constructed above. Then

@f (M) = lim
n→∞ h((ξn+1

1 v1)0, (ξn+1
2 v2)0, ..., (ξn+1

d vd)0)

��

4.2 Step 3: Matrix Analysis

Next we will discuss two methods for solving the matrix analysis problem. One
of these methods is symbolic and the other numerical. We illustrate them by
continuing with the example of Fig. 3. We have constructed g1(n) = (ξn+1

1 v1)0.
For sake of example, let us assume that ξ1 = ξ2 and that v2 = ξ1v1, so g2(n) =
g1(n + 1). Let us also assume that the aggregate function is represented by
h(x1, x2) = x1/x2.

Symbolic Method: The first step of the symbolic method is to compute closed-
form expressions for each gi. Tools such as Mathematica can solve for this closed-
form expression using Jordan decomposition [31]. We omit the details. The result
in the case of the example is:

g1(n) =
1

25 · 2(1+n)

(
4
√

5kn
1 − 4

√
5cn1 − 5kn

1 n + 5
√

5kn
1 n − 5cn1n − 5

√
5cn1n

)

where c1 := 1 +
√

5 and k1 := 1 − √
5. As mentioned, g2(n) = g1(n + 1).

Decoupled Fitness Criteria for Reactive Systems 97

Once we have the closed-form expressions, we can ask Mathematica to solve
the limit; it does so easily: limn→∞ g1(n)/g2(n) = 2/(1 +

√
5) (the reciprocal of

the golden ratio). Tools such as Mathematica can solve a broad class of limits
using, e.g., Gruntz’s method [29].

Computing the Jordan decomposition is currently the bottleneck for the sym-
bolic method. Our experiments with Mathematica suggest that it cannot com-
pute the Jordan decomposition for even moderately sized matrices, the run-time
being exponential in the dimension of the matrix. There have been several recent
attempts to improve the state of the art in Jordan decomposition [28] and we
are hopeful that this sub-problem will soon be feasible to compute for large
matrices.

Numerical Method: In this method, we compute h(g1(K), g2(K)) for large
K, which we call a K-approximation. Although we have not yet established
an error bound on the difference between the K-approximation and the true
value of the limit, the K-approximation appears to converge relatively quickly.
For instance, in the case of Example 3, the K-approximation for K = 15 and
K = 20 are 0.6180344 and 0.6180339 respectively, which do not differ until the
seventh decimal place. Our current approach is to compute the K-approximation
for, e.g., K = 8192 and K = 9000 and determine at which decimal place they
differ to establish the precision of the K-approximation for K = 9000. We can
also plot intermediate K-approximations against K.

A naive implementation of K-approximation does not scale. Instead, we
use the standard exponentiation by squaring technique to quickly compute K-
approximations for large K. For example, to compute ξ11 for some matrix ξ, it
suffices to compute ξ2, ξ4, and ξ8, since ξ11 = ξ · ξ2 · ξ8. Note that ξ4 = (ξ2)2 and
ξ8 = (ξ4)2, hence the name exponentiation by squaring. We need only compute
log K squares and combine them per the binary representation of K. Further-
more, in our implementation, we found that we needed large datatypes (128
bit) to represent the entries of the matrix. As matrix power for large datatypes
appears to not be implemented in the linear algebra library we used (numpy),
we implemented this operation ourselves.

Although the examples in this section used h(x1, x2) = x1/x2, our method
generalizes to any aggregate conditionally represented by a scalar arithmetic
function h(x1, x2, ..., xd). This generality holds because the gi are constructed
independently of one another and combined according to h. For instance, if we
had h(x1, x2, x3) = (x1 + x2)/x3, we construct g3(n) as we did for g1 and g2.
We then take the limit or approximation of (g1(n) + g2(n))/g3(n) rather than
g1(n)/g2(n).

Comparison: The symbolic method gives an exact, symbolic representation of
the fitness score, but unfortunately does not yet scale well, as we shall see from
the experiments in Sect. 5 that follows. The numerical approach on the other
hand can compute in seconds an approximation of the fitness score. As we shall

98 D. Egolf and S. Tripakis

show, these approximations are precise enough to distinguish between systems
of different fitness.

5 Case Studies

We evaluate our framework on three case studies, described in detail in the
subsections that follow, and summarized in Table 1. The symbolic method did
not terminate after an hour for the larger two case studies (2PC and ABP)
due to limitations imposed by the state of the art in Jordan decomposition (c.f.
Section 4.2). Therefore, Table 1 reports the results obtained by the numerical
method.

In each case study we compute the fitness score for different system variants
(column M). Column |M | represents the size (total number of states) of the
system being measured, which is the product of all distributed processes. Time
refers to the total execution time, in seconds. Column @f (M8192) refers to the
K-approximation of the fitness score with K = 8192, and likewise for K = 9000.
As can be seen, the two approximations are very close within each row (identical
up to at least the 3rd decimal point), which indicates convergence. The reason
we report the fitness score for K = 8192 instead of another number, say K =
8000 or K = 8500, is efficiency: 8192 the largest power of two less than 9000,
and in order to compute the fitness score for K = 9000 we need to compute it
anyway for K = 8192. Our results can be reproduced using a publicly available
artifact, which is structured, documented, and licensed for ease of repurposing
[23].

Let us remark that in the 2PC and ABP case studies, the systems being
measured were automatically generated by a distributed protocol synthesis tool,
which is an improved version of the tool described in [5,6]. As our goal in this
paper is fitness evaluation, we omit discussing the synthesis tool. But, as men-
tioned in the introduction, evaluation of automatically synthesized systems is a
promising application of our framework.

All case studies use the @avg aggregate function. Additionally, we use three
variations of the fitness function in Fig. 5. This parametric fitness function sug-
gests the possibility of constructing a library of general, reusable fitness func-
tions. Although it was straightforward to construct fitness functions for our
purposes, this library would further reduce that burden for users.

In the rest of this section we provide further details on each case study. Some
supporting figures and intermediate results are provided in Appendix A.5 of [22].

5.1 Case Study #1: Simple Communication Protocol

This section treats the communication protocol presented in Example 1. We
instantiate the framework to measure the average rate at which send-ack
sequences are executed and apply this instance of the framework to M and
M ′ (Fig. 1). The python representations of all simple communication protocol

Decoupled Fitness Criteria for Reactive Systems 99

Table 1. A summary of the numerical method results of the three case studies.

case study M |M | total time (sec.) @f (M8192) @f (M9000)

simple comm good 3 0.0052 0.249970 0.249972

simple comm bad 5 0.006 0.138165 0.138168

2PC H 58 0.41 0.0833 0.0832

2PC A1 30 0.25 0.07856 0.07857

2PC A2 25 0.1 0.0833 0.0832

ABP HH 144 9.1 0.016864 0.016859

ABP HA 144 8.6 0.015435 0.015430

ABP AH 144 8.7 0.015218 0.015212

ABP AA 144 8.6 0.01391 0.01390

processes and fitness functions are available in toy automata.py of the arti-
fact [23].

Recall that Σ = {s, t, a}. Let f1(w) := ‘the number of send-ack sequences
of the form st∗a in w’. For instance (brackets [and] added for emphasis),
f1(aat[sa][sta]as[stta]stt[sa]) = 4. Additionally, let f2(w) := |w| (the length of
w) and let the fitness function be f := 〈f1, f2〉. The functions f1, f2 can be
represented as the DFA shown in Fig. 5, with L = {s} and R = {a}. This fitness
function is measuring the number of send-ack sequences per unit of discrete
time, which is analogous to the traditional measure of throughput in distributed
systems.

Fig. 5. The DFA representations of f1 and f2 for the case studies, parameterized by
the set of labels Σ, as well as a set of left endpoints L ⊆ Σ and right endpoints R ⊆ Σ.
L = Σ \ L and likewise for R.

As reported in Table 1, the system that uses the good receiver has a fitness
score of about 0.25 and the system using the bad receiver a score of about 0.138.
These scores are interpretable in that they have units: send-ack sequences per
unit of discrete time. Hence, the framework deems the good receiver as more
fit and this determination aligns with our intuitions. Because this example is
relatively small, Mathematica was able to compute the exact fitness scores of
these systems. The system that uses the good receiver has a fitness score of
exactly 1/4 (obtained after 34 s) and the system that uses the bad receiver has
a score of exactly 5−√

5
20 ≈ 0.138 (obtained after 563 s).

100 D. Egolf and S. Tripakis

5.2 Case Study #2: Two Phase Commit (2PC)

Two phase commit (2PC) is a protocol for making transactional changes to
a distributed database atomically; if one sub-operation of the transaction is
aborted at one remote database, so too must the sub-operations at all other
remote databases. Although each iteration of 2PC is terminating, it is typical
to assume there will be infinitely many such iterations, and our model reflects
this. In our model of 2PC, a user initiates a transaction by synchronizing with
a transaction manager on the label x. The transaction is complete when the
transaction manager synchronizes with the user on label fail or succ. We omit
the details of the intermediate exchanges between the transaction manager and
database managers. The python representations of all 2PC processes and fitness
functions are available in 2pc automata.py of the artifact [23].

The fitness function for this case study is as depicted in Fig. 5, with L = {x},
R = {fail, succ}, and Σ has a total of 18 labels. This fitness function measures
the rate at which transactions are initiated and then completed.

We study three 2PC implementations, each using a different transaction man-
ager LTS. The system labeled H in Table 1 uses a previously manually con-
structed transaction manager that the synthesis tool was also able to discover
automatically, while the systems labeled A1 and A2 use new transaction man-
agers generated by the synthesis tool. The automatically generated transaction
managers have 12 states each and it is therefore hard to tell at a glance which
will give rise to the most efficient protocol. Our tool automatically reports, in
fractions of a second, a fitness score of about 0.083 for both systems H and A2,
and a score of about 0.079 for system A1. These fitness scores have units: trans-
actions per unit time. Hence, in the same amount of time, A1 completes about
5% fewer transactions than H or A2.

5.3 Case Study #3: Alternating Bit Protocol (ABP)

The Alternating Bit Protocol (ABP) allows reliable communication over an unre-
liable network. As with the prior two case studies, we use the fitness function
depicted in Fig. 5, except with L = {send}, R = {done}, and Σ of size 12. Sim-
ilar to case study #1 we are measuring the rate of send-done sequences. The
python representations of all ABP processes and fitness functions are available
in abp automata.py of the artifact [23].

In [6], the authors present a method to automatically synthesize (distributed)
ABP sender and receiver processes. Here, we evaluate the fitness of the ABP
variants that use these various synthesized processes. Together the synthesized
sender and receiver processes have 14 states, which again makes manual determi-
nations about the fitness very challenging—even more so due to the distributed
nature of the problem. It is no longer necessarily a question of which sender
or receiver is better than the other sender or receiver, but a question of which
combination of sender and receiver is best. Once again, our framework allows to
automatically make this determination in a matter of seconds.

Decoupled Fitness Criteria for Reactive Systems 101

The systems are ranked by fitness in the following order: HH, HA, AH, AA.
H stands for human-designed (and then also rediscovered during synthesis) and
A stands for newly discovered during synthesis. The first position is for the
sender process and the second for the receiver. In this case study, the newly
discovered processes do worse than the manually constructed processes. The
difference in fitness scores is meaningful: in the same amount of time, AA will
complete about 18% fewer sequences on average. AH and HA will both complete
about 8.5% fewer sequences than HH.

6 Related Work

Our work is broadly related to the field of performance analysis and evalua-
tion. Mathematical models typically used there include Markov Chains, Markov
Decision Processes, Markov Automata, queueing models, Petri nets, timed or
hybrid automata, etc., e.g., see [9,15–17,25,34–36]. Our approach differs as our
mathematical framework uses neither timed nor probabilistic models such as the
ones above. Because we do not use stochastic models, our work is also different
from the work on probabilistic verification, e.g., see [8–10,18,33]. Our work also
differs from performance analysis approaches that use max-plus algebra based
frameworks such as the real-time calculus, e.g., see [30,38,44,45].

Our work is also related to non-boolean interpretations of temporal seman-
tics, such as the 5-valued robust temporal logic rLTL [7,43]. However, our moti-
vation is performance comparisons rather than robustness. Our framework also
differs from that of signal temporal logic (STL) [11,12,27,39–42], which is valued
over real-time traces. Our framework is over discrete traces, although there have
been recent STL extensions which handle both real and discrete time [26]. In
addition, our framework is parameterized by generic quantitative concepts (the
fitness and aggregate functions and the comparison relation) that are present
neither in rLTL nor in STL or its variants.

Our work is closely related to the field of quantitative verification, synthesis,
and games, e.g., see [1,2,13,14,19–21,32]. Typically, these works assign values to
weighted automata. These automata blend in a single model both the description
of the system and the description of any performance or fitness functions asso-
ciated with the system. In comparison, our framework decouples the description
of the system (e.g., a plain LTS without any weights) from the description of
the fitness function (e.g., a DFA). These works support aggregates like sup while
our framework is defined for more general aggregates, including averages.

Sensing cost [4] and propositional quality [3] are two other ways to measure
the fitness of a system. Sensing cost is a specific measure of fitness, whereas our
framework is a more general setting. The work on propositional quality is quite
general, like our work, but it uses a quantitative variant of LTL to assign scores
rather than DFA. This logic induces a sort of recursive computation that can
never be captured by a DFA. The logic is limited though in that it can only char-
acterize finite chunks of a trace at one time (and no limit is taken), whereas our
characterization applies to the infinite trace after taking a limit. Hence proposi-
tional quality and our fitness evaluation are fundamentally distinct.

102 D. Egolf and S. Tripakis

7 Conclusions and Future Work

We proposed a formal framework that assigns fitness scores to systems modeled
as finite LTSs. The main novelty of our framework is that it decouples the descrip-
tion of the system from the set of domain-specific parameters such as fitness and
aggregate functions, which determine the final fitness score. Furthermore, the
user defines these fitness scores and aggregate functions over partial runs, which
are easier for the user to reason about—our framework does the heavy lifting of
extending this reasoning to infinite traces. This decoupling and finite reasoning
make our framework more useable and its results more interpretable. Indeed, in
all of our case studies the scores are not merely numbers; they have meaningful
units, e.g., send-ack sequences per unit of time.

We used our framework to evaluate the automatically synthesized ABP pro-
tocols presented in [6] as well as our own automatically synthesized 2PC proto-
cols. We showed that some of these protocols are better than others. Inspired
by this application, we plan to investigate the use of our framework in proto-
col synthesis, specifically in synthesizing protocols that not only satisfy a given
correctness specification but are also optimal with respect to a fitness score, i.e.,
fitness-optimal synthesis (c.f. page 8).

We are also actively exploring ways to improve the scalability of the symbolic
method. In particular, we may be able to feasibly compute a simplified version
of the recurrence matrix ξi without sacrificing the accuracy of the final com-
puted limit. Additionally, we would like to generalize our method to aggregates
like min /max, which do not have conditional representations, and to systems
that cannot be represented as finite labeled transition systems. We suspect that
best/worst-case analysis reduces to the minimal cost-to-time ratio problem [37],
but in general aggregates with no conditional representation may be more chal-
lenging.

Acknowledgements. Derek Egolf’s research has been initially supported by a North-
eastern University PhD fellowship. This material is based upon work supported by
the National Science Foundation Graduate Research Fellowship under Grant No.
(1938052). Any opinion, findings, and conclusions or recommendations expressed in
this material are those of the authors(s) and do not necessarily reflect the views of
the National Science Foundation. We thank the anonymous reviewers for their helpful
comments and feedback.

References

1. de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: Model
checking discounted temporal properties. Theor. Comput. Sci. 345(1), 139–170
(2005)

2. Almagor, S., Alur, R., Bansal, S.: Equilibria in quantitative concurrent games.
eprint arXiv:1809.10503 (2018)

http://arxiv.org/abs/1809.10503

Decoupled Fitness Criteria for Reactive Systems 103

3. Almagor, S., Boker, U., Kupferman, O.: Formalizing and reasoning about quality.
In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013.
LNCS, vol. 7966, pp. 15–27. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-39212-2 3

4. Almagor, S., Kuperberg, D., Kupferman, O.: Regular sensing. In: FSTTCS. LIPIcs,
vol. 29. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2014)

5. Alur, R., Martin, M., Raghothaman, M., Stergiou, C., Tripakis, S., Udupa, A.:
Synthesizing finite-state protocols from scenarios and requirements. In: Yahav, E.
(ed.) HVC 2014. LNCS, vol. 8855, pp. 75–91. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-13338-6 7

6. Alur, R., Tripakis, S.: Automatic synthesis of distributed protocols. SIGACT News
48(1), 55–90 (2017)

7. Anevlavis, T., Philippe, M., Neider, D., Tabuada, P.: Being correct is not enough:
efficient verification using robust linear temporal logic. ACM Trans. Comput. Log.
23(2), 8:1–8:39 (2022)

8. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Performance evaluation
and model checking join forces. Commun. ACM 53(9), 76–85 (2010)

9. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

10. Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model checking probabilistic
systems. In: Handbook of Model Checking, pp. 963–999. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-10575-8 28

11. Beg, O.A., Nguyen, L.V., Johnson, T.T., Davoudi, A.: Signal temporal logic-based
attack detection in DC microgrids. IEEE Trans. Smart Grid 10(4), 3585–3595
(2019)

12. Bortolussi, L., Gallo, G.M., Křet́ınský, J., Nenzi, L.: Learning model checking and
the kernel trick for signal temporal logic on stochastic processes. In: Learning model
checking and the kernel trick for signal temporal logic on stochastic processes.
LNCS, vol. 13243, pp. 281–300. Springer, Cham (2022). https://doi.org/10.1007/
978-3-030-99524-9 15

13. Bouyer, P., Gardy, P., Markey, N.: Quantitative verification of weighted kripke
structures. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp.
64–80. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6 6

14. Brihaye, T., Geeraerts, G., Haddad, A., Monmege, B., Pérez, G.A., Renault, G.:
Quantitative games under failures. In: FSTTCS. Leibniz International Proceedings
in Informatics (LIPIcs), vol. 45, pp. 293–306. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik (2015)

15. Bucci, G., Sassoli, L., Vicario, E.: A discrete time model for performance evaluation
and correctness verification of real time systems. In: 10th International Workshop
on Petri Nets and Performance Models, 2003. Proceedings, pp. 134–143 (2003)

16. Bucci, G., Sassoli, L., Vicario, E.: Correctness verification and performance analysis
of real-time systems using stochastic preemptive time petri nets. IEEE Trans.
Softw. Eng. 31(11), 913–927 (2005)

17. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems, 3rd edn.
Springer (2021). https://doi.org/10.1007/978-0-387-68612-7

18. Cauchi, N., Hoque, K.A., Abate, A., Stoelinga, M.: Efficient probabilistic model
checking of smart building maintenance using fault maintenance trees. eprint
arXiv:1801.04263 (2018)

19. Černý, P., Chatterjee, K., Henzinger, T.A., Radhakrishna, A., Singh, R.: Quantita-
tive synthesis for concurrent programs. In: Gopalakrishnan, G., Qadeer, S. (eds.)

https://doi.org/10.1007/978-3-642-39212-2_3
https://doi.org/10.1007/978-3-642-39212-2_3
https://doi.org/10.1007/978-3-319-13338-6_7
https://doi.org/10.1007/978-3-319-13338-6_7
https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/978-3-030-99524-9_15
https://doi.org/10.1007/978-3-030-99524-9_15
https://doi.org/10.1007/978-3-319-11936-6_6
https://doi.org/10.1007/978-0-387-68612-7
http://arxiv.org/abs/1801.04263

104 D. Egolf and S. Tripakis

CAV 2011. LNCS, vol. 6806, pp. 243–259. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22110-1 20

20. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. ACM Trans.
Comput. Log. 11(4) (2010)

21. Chatterjee, K., de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga,
M.: Compositional quantitative reasoning. In: QEST, pp. 179–188. IEEE Computer
Society (2006)

22. Egolf, D., Tripakis, S.: Decoupled fitness criteria for reactive systems. eprint
arXiv: 2212.12455 (2023)

23. Egolf, D., Tripakis, S.: Decoupled Fitness Criteria for Reactive Systems (Artifact,
SEFM 2023) (2023). https://doi.org/10.5281/zenodo.8168367

24. Egolf, D., Tripakis, S.: Synthesis of distributed protocols by enumeration modulo
isomorphisms. In: ATVA. Springer (2023)

25. Fakih, M., Grüttner, K., Fränzle, M., Rettberg, A.: Towards performance analysis
of SDFGs mapped to shared-bus architectures using model-checking. In: DATE,
pp. 1167–1172. EDA Consortium San Jose, CA, USA/ACM DL (2013)

26. Ferrère, T., Maler, O., Ničković, D.: Mixed-time signal temporal logic. In: André,
É., Stoelinga, M. (eds.) FORMATS 2019. LNCS, vol. 11750, pp. 59–75. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-29662-9 4

27. Finkbeiner, B., Fränzle, M., Kohn, F., Kröger, P.: A truly robust signal tempo-
ral logic: monitoring safety properties of interacting cyber-physical systems under
uncertain observation. Algorithms 15(4) (2022)

28. Ghabbour, R.R., Abdelgaliel, I.H., Hanna, M.T.: A directed graph and MAT-
LAB generation of the Jordan canonical form for a class of zero-one matrices. In:
ICENCO, vol. 1, pp. 86–91 (2022)

29. Gruntz, D.W.: On Computing Limits in a Symbolic Manipulation System. Ph.D.
thesis (1996)

30. Guan, N., Yi, W.: Finitary real-time calculus: efficient performance analysis of
distributed embedded systems. In: RTSS, pp. 330–339 (2013)

31. Hefferon, J.: Linear Algebra, pp. 440-463 (2020). https://hefferon.net/
32. Henzinger, T.A.: Quantitative reactive modeling and verification. Comput. Sci.

Res. Dev. 28(4), 331–344 (2013). https://doi.org/10.1007/s00450-013-0251-7
33. Jansen, N., et al.: Accelerating parametric probabilistic verification. In: Norman,

G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 404–420. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10696-0 31

34. Kempf, J.-F., Bozga, M., Maler, O.: Performance evaluation of schedulers in a prob-
abilistic setting. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS,
vol. 6919, pp. 1–17. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-24310-3 1

35. Kwiatkowska, M.Z., Norman, G., Parker, D., Sproston, J.: Performance analysis
of probabilistic timed automata using digital clocks. Formal Methods Syst. Des.
29(1), 33–78 (2006)

36. Larsen, K.G.: Automatic verification, performance analysis, synthesis and opti-
mization of timed systems. In: TIME, pp. 1–1 (2016)

37. Lawler, E.L.: Optimal cycles in graphs and the minimal cost-to-time ratio problem.
Tech. Rep. UCB/ERL M343, EECS Department, UC, Berkeley (1972)

38. Lu, Q., Madsen, M., Milata, M., Ravn, S., Fahrenberg, U., Larsen, K.G.: Reach-
ability analysis for timed automata using max-plus algebra. J. Logic Algebraic
Program. 81(3), 298–313 (2012)

https://doi.org/10.1007/978-3-642-22110-1_20
https://doi.org/10.1007/978-3-642-22110-1_20
http://arxiv.org/abs/2212.12455
https://doi.org/10.5281/zenodo.8168367
https://doi.org/10.1007/978-3-030-29662-9_4
https://hefferon.net/
https://doi.org/10.1007/s00450-013-0251-7
https://doi.org/10.1007/978-3-319-10696-0_31
https://doi.org/10.1007/978-3-642-24310-3_1
https://doi.org/10.1007/978-3-642-24310-3_1

Decoupled Fitness Criteria for Reactive Systems 105

39. Ničković, D., Lebeltel, O., Maler, O., Ferrère, T., Ulus, D.: AMT 2.0: qualitative
and quantitative trace analysis with extended signal temporal logic. Int. J. Softw.
Tools Technol. Transfer 22(6), 741–758 (2020). https://doi.org/10.1007/s10009-
020-00582-z

40. Prabhakar, P., Lal, R., Kapinski, J.: Automatic trace generation for signal temporal
logic. In: RTSS, pp. 208–217 (2018)

41. Puranic, A.G., Deshmukh, J.V., Nikolaidis, S.: Learning from demonstrations using
signal temporal logic. eprint arXiv:2102.07730 (2021)

42. Salamati, A., Soudjani, S., Zamani, M.: Data-driven verification of stochastic linear
systems with signal temporal logic constraints. Automatica 131, 109781 (2021)

43. Tabuada, P., Neider, D.: Robust linear temporal logic. In: EACSL, LIPIcs, vol. 62.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)

44. Thiele, L., Chakraborty, S., Naedele, M.: Real-time calculus for scheduling hard
real-time systems. In: ISCAS, pp. 101–104 (2000)

45. Wandeler, E., Thiele, L.: Performance analysis of distributed embedded systems.
In: Embedded Systems Handbook. CRC Press (2005)

https://doi.org/10.1007/s10009-020-00582-z
https://doi.org/10.1007/s10009-020-00582-z
http://arxiv.org/abs/2102.07730

	Decoupled Fitness Criteria for Reactive Systems
	1 Introduction
	2 Preliminaries
	3 A Formal Framework for Capturing Fitness
	4 Reducing Fitness Evaluation to Matrix Analysis
	4.1 Step [stepspsrecur]2: Constructing the Recurrence Relation
	4.2 Step [stepspsmatrix]3: Matrix Analysis

	5 Case Studies
	5.1 Case Study #1: Simple Communication Protocol
	5.2 Case Study #2: Two Phase Commit (2PC)
	5.3 Case Study #3: Alternating Bit Protocol (ABP)

	6 Related Work
	7 Conclusions and Future Work
	References

