
Information and Computation 285 (2022) 104819
Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

The refinement calculus of reactive systems

Viorel Preoteasa a, Iulia Dragomir b, Stavros Tripakis c,∗
a Huld, Finland
b GMV, Madrid, Spain
c Northeastern University, United States of America

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 July 2019
Received in revised form 5 November 2021
Accepted 7 November 2021
Available online 11 November 2021

Keywords:
Compositionality
Refinement
Verification
Reactive systems

The Refinement Calculus of Reactive Systems (RCRS) is a compositional formal framework
for modeling and reasoning about reactive systems. RCRS provides a language which
can describe atomic components as symbolic transition systems or QLTL formulas, and
composite components formed using three primitive composition operators: serial, parallel,
and feedback. The semantics of the language is given in terms of monotonic property
transformers, an extension of monotonic predicate transformers to reactive systems. RCRS
can specify both safety and liveness properties. It can also model input-output systems
which are both non-deterministic and non-input-receptive (i.e., which may reject some
inputs at some points in time), and can thus be seen as a behavioral type system.
RCRS provides a set of techniques for symbolic computer-aided reasoning, including
compositional static analysis and verification. RCRS comes with a publicly available
implementation which includes a complete formalization of the RCRS theory in the Isabelle
proof assistant.

© 2021 Elsevier Inc. All rights reserved.

Contents

1. Introduction . 2
1.1. Novel contributions of this paper and relation to our prior work . 4

2. Preliminaries . 4
3. Language . 5

3.1. An algebra of components . 5
3.2. Symbolic transition system components . 6

3.2.1. General STS components . 6
3.2.2. Variable name scope . 8
3.2.3. Stateless STS components . 8
3.2.4. Deterministic STS components . 9
3.2.5. Stateless deterministic STS components . 10

3.3. Quantified linear temporal logic components . 10
3.3.1. QLTL . 10
3.3.2. QLTL components . 12

3.4. Well formed composite components . 12

* Corresponding author.
E-mail addresses: viorel.preoteasa@gmail.com (V. Preoteasa), giuliadragomir@gmail.com (I. Dragomir), stavros@northeastern.edu,

stavros.tripakis@gmail.com (S. Tripakis).
https://doi.org/10.1016/j.ic.2021.104819
0890-5401/© 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ic.2021.104819
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2021.104819&domain=pdf
mailto:viorel.preoteasa@gmail.com
mailto:giuliadragomir@gmail.com
mailto:stavros@northeastern.edu
mailto:stavros.tripakis@gmail.com
https://doi.org/10.1016/j.ic.2021.104819

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
4. Semantics . 14
4.1. Monotonic property transformers . 14

4.1.1. Some commonly used MPTs . 14
4.1.2. Relational MPTs . 15
4.1.3. Operators on MPTs: function composition, product, and fusion . 16
4.1.4. Operators on MPTs: iteration and feedback . 17
4.1.5. Refinement . 19

4.2. Other subclasses of MPTs and closure properties . 19
4.2.1. Closure properties of RPTs . 19
4.2.2. Guarded MPTs . 20
4.2.3. Other subclasses and overview . 21

4.3. Semantics of components as MPTs . 21
4.3.1. Example: two alternative derivations of the semantics of Sum . 22
4.3.2. Characterization of legal input traces . 23
4.3.3. Semantic equivalence and refinement for components . 24
4.3.4. Compositionality properties . 24

5. Symbolic reasoning . 24
5.1. Syntactic transformation of STS components to QLTL components . 24
5.2. Syntactic and symbolic transformations of special atomic components to more general atomic components 26
5.3. Syntactic computation of serial composition . 27

5.3.1. Syntactic serial composition of two QLTL components . 27
5.3.2. Syntactic serial composition of two general STS components . 27
5.3.3. Syntactic serial composition of two stateless STS components . 27
5.3.4. Syntactic serial composition of two deterministic STS components . 27
5.3.5. Syntactic serial composition of two stateless deterministic STS components . 27
5.3.6. Syntactic serial composition of two arbitrary atomic components . 28
5.3.7. Correctness of syntactic serial composition . 28

5.4. Syntactic computation of parallel composition . 29
5.4.1. Syntactic parallel composition of two QLTL components . 29
5.4.2. Syntactic parallel composition of two general STS components . 29
5.4.3. Syntactic parallel composition of two stateless STS components . 29
5.4.4. Syntactic parallel composition of two deterministic STS components . 29
5.4.5. Syntactic parallel composition of two stateless deterministic STS components . 29
5.4.6. Syntactic parallel composition of two arbitrary atomic components . 29
5.4.7. Correctness of syntactic parallel composition . 29

5.5. Syntactic computation of feedback composition for decomposable deterministic STS components 29
5.5.1. Decomposable components . 29
5.5.2. Syntactic feedback of a decomposable deterministic STS component . 30
5.5.3. Syntactic feedback of a decomposable stateless deterministic STS component . 30
5.5.4. Correctness of syntactic feedback composition . 30

5.6. Closure properties of MPT subclasses w.r.t. composition operators . 30
5.7. Syntactic simplification of arbitrary composite components . 31

5.7.1. Deterministic and algebraic loop free composite components . 31
5.7.2. Correctness of the simplification algorithm . 33

5.8. Checking validity and compatibility . 34
5.9. Checking input-receptiveness and computing legal inputs symbolically . 35
5.10. Checking refinement symbolically . 35

6. Toolset and case studies . 37
7. Related work . 39
8. Conclusion . 40

Declaration of competing interest . 40
Acknowledgments . 41
References . 41

1. Introduction

This paper presents the Refinement Calculus of Reactive Systems (RCRS), a comprehensive framework for compositional
modeling of and reasoning about reactive systems. RCRS originates from the precursor theory of synchronous relational
interfaces [85,86], and builds upon the classic refinement calculus [12]. A number of publications on RCRS exist [72,34,73,69,
36,37]. This paper collects some of these results and extends them in significant ways. The novel contributions of this paper
and relation to our previous work are presented in §1.1.

The motivation for RCRS stems from the need for a compositional treatment of reactive systems. Generally speaking,
compositionality is a divide-and-conquer principle. As systems grow in size, they grow in complexity. Therefore dealing with
2

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
them in a monolithic manner becomes unmanageable. Compositionality comes to the rescue, and takes many forms [84].
Many industrial-strength systems have employed for many years mechanisms for compositional modeling. An example is
the Simulink tool from the Mathworks. Simulink is based on the widespread notation of hierarchical block diagrams. Such
diagrams are both intuitive, and naturally compositional: a block can be refined into sub-blocks, sub-sub-blocks, and so on,
creating hierarchical models of arbitrary depth. This allows the user to build large models (many thousands of blocks) while
at the same time managing their complexity (at any level of the hierarchy, only a few blocks may be visible).

But Simulink’s compositionality has limitations, despite its hierarchical modeling approach. Even relatively simple prob-
lems, such as the problem of modular code generation (generating code for a block independently from context), require
techniques not always available in standard code generators [57,56]. Perhaps more serious, and more relevant in the context
of this paper, is Simulink’s lack of formal semantics, and consequent lack of rigorous analysis techniques that can leverage
the advances in the fields of computer-aided verification and programming languages.

RCRS provides a compositional formal semantics for Simulink in particular, and hierarchical block diagram notations
in general, by building on well-established principles from the formal methods and programming language domains. In
particular, RCRS relies on the notion of refinement (and its counterpart, abstraction) which are both fundamental in system
design. Refinement is a binary relation between components, and ideally characterizes substitutability: the conditions under
which some component can replace another component, without compromising the behavior of the overall system. RCRS
refinement is compositional in the sense that it is preserved by composition: if A′ refines A and B ′ refines B , then the
composition of A′ and B ′ refines the composition of A and B .

RCRS can be viewed as a refinement theory. It can also be viewed as a behavioral type system, similar to type systems
for programming languages, but targeted to reactive systems. By behavioral we mean a type system that can capture not
just data types of input and output ports of components (bool, int, etc.), but also complete specifications of the behavior of
those components. As discussed more extensively in [86], such a behavioral type system has advantages over a full-blown
verification system, as it is more lightweight. For instance, a type system allows type checking, which does not require
the user to provide a formal specification of the correctness properties that a model must satisfy. The model must simply
type-check.

As also argued in [86], in order to have a type system it is essential for a framework to be able to express non-
input-receptive (also called non-input-enabled or non-input-complete) components, i.e., components that reject some input
values. RCRS allows this. To see why non-input-receptiveness is essential consider, for example, a square-root compo-
nent which requires its input to be non-negative. Such a component can be described in RCRS alternatively as: either
(1) a non-input-receptive component C∧ with input-output contract x ≥ 0 ∧ y = √

x (where x, y are the input and output
variables, respectively); or (2) an input-receptive component C→ with contract x ≥ 0 → y = √

x. Now, connecting the non-
input-receptive square-root component C∧ to a component which outputs x = −1 results in a type error (in RCRS this is
called incompatibility). Connecting C∧ to a non-deterministic component which outputs an arbitrary value for x (this can
be specified by the formula/contract true) also results in a type error in RCRS. Yet in both these cases, replacing C∧ by
the input-receptive component C→ results in no type error (no incompatibility). Instead, C→ will simply output a non-
deterministically chosen value, even though the requirement that the input to square root is non-negative is not satisfied.
This simple example demonstrates the need for non-input-receptiveness, and also illustrates the concept of type-checking
in the RCRS context. A more extensive argument for non-input-receptiveness can be found in [86] (see also [88]). Let us
also remark that input-receptive components could be thought of as “programs that terminate on all inputs” whereas non-
input-receptive components could be thought of as “programs that terminate on some inputs”. However, this is a matter of
interpretation. RCRS as a semantic framework is agnostic to whether components are internally programs implemented in a
standard programming language, or something entirely different.

RCRS allows components which are both non-input-receptive and non-deterministic. This combination results in a
game-theoretic interpretation of the composition operators, like in interface theories [25,86]. Refinement also becomes game-
theoretic, as in alternating refinement [7]. Game-theoretic composition can be used for an interesting form of type inference.
For example, if we connect the non-input-receptive square-root component C1 above to a non-deterministic component
C3 with input-output contract x ≥ u + 1 (where x is the output of C3, and u its input), and apply the (game-theoretic)
serial composition of RCRS, we obtain the condition u ≥ −1 on the external input of the overall composition. The constraint
u ≥ −1 represents the weakest condition on u which ensures compatibility of the connected components.

In a nutshell, RCRS consists of the following elements:

1. A modeling language (syntax), which can describe atomic components, and composite components formed by a small
number of primitive composition operators (serial, parallel, and feedback). The language is described in §3.

2. A formal semantics, presented in §4. Component semantics are defined in terms of monotonic property transformers
(MPTs). MPTs are extensions of monotonic predicate transformers used in theories of programming languages, and in
particular in refinement calculus [12]. Predicate transformers transform sets of post-states (states reached by the pro-
gram after its computation) into sets of pre-states (states where the program begins). Property transformers transform
sets of a component’s output traces (infinite sequences of output values) into sets of input traces (infinite sequences of
input values). Using this semantics we can express both safety and liveness properties.
MPTs are very general objects. In practice the systems we deal with fall into restricted subclasses of MPTs which are
both easier to represent syntactically and also to manipulate symbolically. Section 4 includes a detailed study of MPT
3

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
subclasses and their corresponding closure properties with respect to the composition operators. In particular, we show
that the restricted subclasses of relational property transformers (RPTs) and guarded property transformers (GPTs) are both
closed under serial and parallel composition. We also show that the semantics of all atomic RCRS components are GPTs,
and that components with feedback are also GPTs as long as they are deterministic and do not contain algebraic loops
(i.e., instantaneous feedback).

3. A set of symbolic reasoning techniques, described in §5. In particular, RCRS offers techniques to
• compute the symbolic representation of a composite component from the symbolic representations of its sub-

components;
• simplify composite components into atomic components;
• reduce checking refinement between two components to checking satisfiability of certain logical formulas;
• reduce input-receptiveness and compatibility checks to satisfiability;
• compute the legal inputs of a component symbolically.
We note that these techniques are for the most part logic-agnostic, in the sense that they do not depend on the partic-
ular logic used to represent components. In addition, many of these techniques are purely syntactic, and therefore very
efficient.

4. A toolset, described briefly in §6. The toolset consists mainly of:
• a full implementation of the RCRS theory (more than 27k lines of Isabelle code) in the Isabelle proof assistant [65];
• a translator of Simulink diagrams into RCRS code.
Our implementation is open-source and publicly available from http://rcrs .gitlab .io/.

RCRS is inspired by and shares key principles (e.g., refinement) with existing formal compositional frameworks such
as FOCUS [18], input-output automata [58], reactive modules [6], interface automata [25], and Dill’s trace theory [32]. At
the same time, RCRS differs and complements these frameworks in important ways. For instance, FOCUS, IO-automata, and
reactive modules, are limited to input-receptive systems, while RCRS is explicitly designed to handle non-input-receptive
specifications. An extensive discussion of how RCRS is related to these and other works is provided in Section 7.

1.1. Novel contributions of this paper and relation to our prior work

Several of the ideas behind RCRS originated in the theory of synchronous relational interfaces [85,86]. The main novel
contributions of RCRS w.r.t. that theory are: (1) RCRS is based on the semantic foundation of monotonic property trans-
formers, whereas relational interfaces are founded on relations; (2) RCRS can handle liveness properties, whereas relational
interfaces can only handle safety; (3) RCRS has been completely formalized and most results reported in this and other
RCRS papers have been proven in the Isabelle proof assistant; (4) RCRS comes with a publicly available toolset (http://
rcrs .gitlab .io/) which includes the Isabelle formalization, a Translator of Simulink hierarchical block diagrams, and a Formal
Analyzer which performs, among other functions, compatibility checking, refinement checking, and automatic simplification
of RCRS contracts [34,36,37].

RCRS was introduced in [72], which focuses on monotonic property transformers as a means to extend relational inter-
faces with liveness properties. [72] covers serial composition, but not parallel nor feedback. It also does not cover symbolic
reasoning nor the RCRS implementation. Feedback is considered in [73], with a particular aim of studying instantaneous feed-
back for non-deterministic and non-input-receptive systems. The study of instantaneous feedback is an interesting problem,
but beyond the scope of the current paper. In this paper we consider non-instantaneous feedback, i.e., feedback for systems
without same-step cyclic dependencies (no algebraic loops).

[34] presents part of the RCRS implementation, focusing on the translation of Simulink (and hierarchical block diagrams
in general) into an algebra of components with three composition primitives, serial, parallel, and feedback, like RCRS. As it
turns out, there is not a unique way to translate a graphical notation like Simulink into an algebraic formalism like RCRS.
The problem of how exactly to do it and what are the trade-offs is an interesting one, but beyond the scope of the current
paper. This problem is studied in depth in [34] which proposes three different translation strategies and evaluates their
pros and cons. [34] leaves open the question whether the results obtained by the different translations are equivalent. This
question is settled in [70], by proving that a class of translations, including the ones proposed in [34], are semantically
equivalent for any input block diagram. [69] also concerns the RCRS implementation, discussing solutions to subtle typing
problems that arise when translating Simulink diagrams into RCRS/Isabelle code.

In summary, the current paper does not cover the topics covered in [34,73,69,70], only briefly covers the RCRS Toolset,
and can be seen as a significantly revised and extended version of [72], focusing on the RCRS theory. The main novel
contributions with respect to [72] are the following: (1) a language of components (§3); (2) a revised MPT semantics
(§4), including in particular novel operators for feedback (§4.1.4), a classification of MPT subclasses (§4.2), and a complete
semantics of both atomic and composite components in terms of MPTs (§4.3); (3) a new section on symbolic reasoning (§5).

2. Preliminaries

Sets, types. We use capital letters X , Y , �, . . . to denote types or sets, and small letters to denote elements of these types
x ∈ X , y ∈ Y , etc. We denote by B the type of Boolean values true and false. We use ∧, ∨, ⇒, and ¬ for the Boolean
4

http://rcrs.gitlab.io/
http://rcrs.gitlab.io/
http://rcrs.gitlab.io/

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
operations. The type of natural numbers is denoted by N , while the type of real numbers is denoted by R. The Unit type
contains a single element denoted ().

Cartesian product. For types X and Y , X × Y is the Cartesian product of X and Y , and if x ∈ X and y ∈ Y , then (x, y) is a
tuple from X × Y . The empty Cartesian product is Unit. We assume that we have only flat products X1 × . . . × Xn , and then
we have

(X1 × . . . × Xn) × (Y1 × . . . × Ym) = X1 × . . . × Xn × Y1 × . . . × Ym

Functions. If X and Y are types, X → Y denotes the type of functions from X to Y . The function type constructor
associates to the right (e.g., X → Y → Z = X → (Y → Z)) and the function interpretation associates to the left (e.g.,
f (x)(y) = (f (x))(y)). In order to construct functions we use lambda notation, e.g., (λx, y : x + y + 1) : N → N → N . Sim-
ilarly, we can have tuples in the definition of functions, e.g., (λ(x, y) : x + y + 2) : (N ×N) → N . The composition of two
functions f : X → Y and g : Y → Z , is a function denoted g ◦ f : X → Z , where (g ◦ f)(x) = g(f (x)).

Predicates. A predicate is a function returning Booleans, e.g., p : X → Y →B with p(x)(y) = (x = y). We define the smallest
predicate ⊥ : X →B where ⊥(x) = false for all x ∈ X . The greatest predicate is
 : X →B, with
(x) = true for all x ∈ X . We
will often interpret predicates as sets. A predicate p : X →B can be viewed as the set of all x ∈ X such that p(x) = true. For
example, viewing two predicates p, q : X →B as sets, we can write p ⊆ q, meaning that for all x, p(x) ⇒ q(x).

Relations. A relation is a predicate with at least two arguments, e.g., r : X → Y → B. For such a relation r, we denote by
in(r) : X → B the predicate in(r)(x) = (∃y : r(x)(y)). If the relation r has more than two arguments, then we define in(r)
similarly by quantifying over the last argument.

We extend point-wise all operations on Booleans to operations on predicates and relations. For example, if r, r′ : X →
Y →B are two relations, then r ∧ r′ and r ∨ r′ are the relations given by (r ∧ r′)(x)(y) = r(x)(y) ∧ r′(x)(y) and (r ∨ r′)(x)(y) =
r(x)(y) ∨ r′(x)(y). We also introduce the order on relations r ⊆ r′ = (∀x, y : r(x)(y) ⇒ r′(x)(y)).

The composition of two relations r : X → Y → B and r′ : Y → Z → B is a relation (r ◦ r′) : X → Z → B, where (r ◦
r′)(x)(z) = (∃y : r(x)(y) ∧ r′(y)(z)).

Infinite sequences. If � is a type, then �ω = (N → �) is the set of all infinite sequences over �, also called traces. For a trace
σ ∈ �ω , let σi = σ(i) be the i-th element in the trace. Let σ i ∈ �ω denote the suffix of σ starting from the i-th step, i.e.,
σ i = σiσi+1 · · · . We often view a pair of traces (σ , σ ′) ∈ �ω × �′ω as being also a trace of pairs (λi : (σi, σ ′

i)) ∈ (� × �′)ω .

Properties. A property is a predicate p over a set of infinite sequences. Formally, p ∈ (�ω →B). Just like any other predicate,
a property can also be viewed as a set. In particular, a property can be viewed as a set of traces.

3. Language

3.1. An algebra of components

We model systems using a simple language of components. The grammar of the language is as follows:

component ::= atomic_component | composite_component
atomic_component ::= STS_component | QLTL_component

STS_component ::= GEN_STS_component | STATELESS_STS_component
| DET_STS_component | DET_STATELESS_STS_component

composite_component ::= component ; component | component ‖ component | fdbk(component)

The elements of the above grammar are defined in the remainder of this section, where examples are also given to
illustrate the language. In a nutshell, the language contains atomic components of two kinds: atomic components defined as
symbolic transition systems (STS_component), and atomic components defined as quantified first-order LTL (QLTL) formulas
over input and output variables (QLTL_component).

STS components are split in four categories: general STS components, stateless STS components, deterministic STS com-
ponents, and deterministic stateless STS components. Semantically, the general STS components subsume all the other more
specialized STS components, but we introduce the specialized syntax because symbolic compositions of less general compo-
nents become simpler, as we shall explain in the sequel (see §5).

Also, as it turns out, atomic components of our framework form a lattice, shown in Fig. 8, from the more specialized ones,
namely, deterministic stateless STS components, to the more general ones, namely QLTL components. The full definition of
this lattice will become apparent once we provide a symbolic transformation of STS to QLTL components, in §5.1.

Apart from atomic components, the language also allows one to form composite components, by composing (atomic
or other composite) components via three composition operators: serial ;, parallel ‖, and feedback fdbk, as depicted in
Fig. 1. The serial composition of two components C, C ′ is formed by connecting the output(s) of C to the input(s) of C ′ .
5

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
C C ′x zy y

(a) Serial composition: C ;C ′

C

C ′

x

u

y

v

(b) Parallel composition: C‖C ′

C

x1 y1

x2

.

.

.

y2

.

.

.

(c) Feedback composition:
fdbk(C)

Fig. 1. The three composition operators of RCRS.

Fig. 2. A Simulink diagram modeling the 1-step delayed sum of its input In. Each atomic block as well as the entire system can be formalized as STS
components (see §3.2). The entire system can also be formalized as a composite component (see below).

+
+1

1

z 1
Add UnitDelay Split

In
Out

Fig. 3. Graphical representation of the composition Add ;UnitDelay ;Split.

Their parallel composition is formed by “stacking” the two components on top of each other without forming any new
connections. The feedback of a component C is obtained by connecting the first output of C to its first input.

Our language is inspired by graphical notations such as Simulink, and hierarchical block diagrams in general. But our
language is textual, not graphical. An interesting question is how to translate a graphical block diagram into a term in
our algebra. We will not address this question here, as the issue is quite involved. We refer the reader to [34], which
includes an extensive discussion on this topic. Suffice it to say here that there are generally many possible translations of a
graphical diagram into a term in our algebra (or generally any algebra that contains primitive serial, parallel, and feedback
composition operators). These translations achieve different tradeoffs in terms of size, readability, computational properties,
and so on. See [34] for details.

Example 1. As an example, consider the Simulink diagram shown in Fig. 2. This diagram can be represented in our language
as a composite component Sum defined as

Sum= fdbk(Add ;UnitDelay ;Split)

where Add, UnitDelay, and Split are atomic components (for a definition of these atomic components see §3.2). Here
Split models the “fan-out” element in the Simulink diagram (black bullet) where the output wire of UnitDelay splits
in two wires going to Out and back to Add.1 A graphical representation of the composition Add ; UnitDelay ; Split is
given in Fig. 3. The operator fdbk connects the unnamed output from this figure to the unnamed input.

3.2. Symbolic transition system components

We introduce all four categories of STS components and at the same time provide syntactic mappings from specialized
STS components to general STS components.

3.2.1. General STS components
A general symbolic transition system component (general STS component) is a transition system described symbolically, with

Boolean expressions over input, output, state, and next state variables defining the initial states and the transition relation.
When we say “Boolean expression” (here and in the definitions that follow) we mean an expression of type B, in some
arbitrary logic, not necessarily restricted to propositional logic. For example, if x is a variable of numerical type, then x > 0
is a Boolean expression. In the definition that follows, s′ denotes the primed, or next state variable, corresponding to the
current state variable s. Both can be vectors of variables. For example, if s = (s1, s2) then s′ = (s′

1, s
′
2). We assume that s′ has

the same type as s.

1 Note that the Simulink input and output ports In and Out are not explicitly represented in Sum. They are represented implicitly: In corresponds to
the second input of Add, which carries over as the unique external input of Sum (thus, Sum is an “open system” in the sense that it has open, unconnected,
inputs); Out corresponds to the second output of Split, which carries over as the unique external output of Sum.
6

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
Definition 1 (STS component). A (general) STS component is a tuple

sts(x : �x, y : �y, s : �s, init_exp : B, trs_exp : B)

where x, y, s are input, output and state variables (or tuples of variables) of types �x, �y, �s , respectively, init_exp is a
Boolean expression on s (in some logic), and trs_exp is a Boolean expression on x, y, s, s′ (in some logic).

Intuitively, an STS component is a non-deterministic system which for an infinite input sequence σx ∈ �ω
x produces as

output an infinite sequence σy ∈ �ω
y . The system starts non-deterministically at some state σs(0) satisfying init_exp. Given

first input σx(0), the system non-deterministically computes output σy(0) and next state σs(1) such that trs_exp holds (if
no such values exist, then the input σx(0) is illegal, as discussed in more detail below). Next, it uses the following input
σx(1) and state σs(1) to compute σy(1) and σs(2), and so on.

We will sometimes use the term contract to refer to the expression trs_exp. Indeed, trs_exp can be seen as specifying
a contract between the component and its environment, in the following sense. At each step in the computation, the
environment must provide input values that do not immediately violate the contract, i.e., for which we can find values for
the next state and output variables to satisfy trs_exp. Then, it is the responsibility of the component to find such values,
otherwise it is the component’s “fault” if the contract is violated. This game-theoretic interpretation is similar in spirit with
the classic refinement calculus for sequential programs [12].

We use �x , �y , �s in the definition above to emphasize the types of the input, output and the state, and the fact
that, when composing components, the types should match. However, in practice we often omit the types, unless they are
required to unambiguously specify a component. Also note that the definition does not fix the logic used for the expressions
init_exp and trs_exp. Indeed, our theory and results are independent from the choice of this logic. The choice of logic matters
for algorithmic complexity and decidability. We will return to this point in §5. Finally, for simplicity, we often view the
formulas init_exp and trs_exp as semantic objects, namely, as predicates. Adopting this view, init_exp becomes the predicate
init : �s → B, and trs_exp the predicate trs_exp : �s → �x → �s → �y → B. Equivalently, trs_exp can be interpreted as a
relation trs_exp : (�s × �x) → (�s × �y) →B.

Throughout this paper we assume that init_exp is satisfiable, meaning that there is at least one valid initial state.

Examples. In the examples provided in this paper, we often specify systems that have tuples as input, state and output
variables, in different equivalent ways. For example, we can introduce a general STS component with two inputs as sts((n :
N, x : R), s : R, y : R, s > 0, s′ > s ∧ y + s = xn), but also as sts((n, x) : N × R, s : R, y : R, s > 0, s′ > s ∧ y + s = xn), or
sts(z : N ×R, y : R, s : R, s > 0, s′ > s ∧ y + s = snd(z)fst(z)), where fst and snd return the first and second elements of a
pair.

Example 2. Let us model a system that at every step i outputs the input received at previous step i − 1 (assume that the
initial output value is 0). This corresponds to Simulink’s commonly used UnitDelay block, which is also modeled in the
diagram of Fig. 2. This block can be represented by an STS component, where a state variable s is needed to store the input
at moment i such that it can be used at the next step. We formally define this component as

UnitDelay= sts(x, y, s, s = 0, y = s ∧ s′ = x).

We use first-order logic to define init_exp and trs_exp. Here init_exp is s = 0, which initializes the state variable s with the
value 0. The trs_exp is y = s ∧ s′ = x, that is at moment i the current state variable s which stores the input x received at
moment i − 1 is output and its value is updated.

Example 3. As another example, consider again the composite component Sum modeling the diagram of Fig. 2. Sum could
also be defined as an atomic STS component:

Sum= sts(x, y, s, s = 0, y = s ∧ s′ = s + x).

In §5 we will show how we can automatically and symbolically simplify composite component terms such as fdbk(Add ;
UnitDelay ; Split), to obtain syntactic representations of atomic components such as the one above.

These examples illustrate systems coming from Simulink models. However, our language is more general, and able to
accommodate the description of other systems, such as state machines à la nuXmv [19], or input/output automata [58]. In
fact, both UnitDelay and Sum are deterministic, so they could also be defined as deterministic STS components, as we
will see below. Our language can capture non-deterministic systems easily.

Example 4. An example of a non-deterministic STS component is the following:

C = sts(x, y, s, s = 0, x + s ≤ y).
7

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
For an input sequence σx ∈Nω , C outputs a non-deterministically chosen sequence σy such that the transition expression
x + s ≤ y is satisfied. Since there is no formula in the transition expression tackling the next state variable, this is updated
also non-deterministically with values from N .

Our language can also capture non-input-receptive systems, that is, systems which disallow some input values as illegal.

Example 5. For instance, a component performing division, but disallowing division by zero, can be specified as follows:

Div= sts((x, y), z, (),true, y �= 0 ∧ z = x

y
).

Note that Div has an empty tuple of state variables, s = (). Such components are called stateless, and are introduced in the
sequel.

Example 6. Even though RCRS is primarily a discrete-time framework, we have used it to model and verify continuous-
time systems such as those modeled in Simulink (see §6). We do this by discretizing time using a time step parameter
�t > 0 and applying Euler numerical integration. We can model Simulink’s Integrator block in RCRS as an STS component
parameterized by �t:

Integrator�t = sts
(
x, y, s, s = 0, y = s ∧ s′ = s + x · �t

)

More complex dynamical system blocks can be modeled in a similar fashion. For instance, Simulink’s Transfer Fcn block,
with transfer function

s2 + 2

0.5s2 + 2s + 1

can be modeled in RCRS as the following STS component parameterized by �t:

TransferFcn�t = sts
(
x, y, (s1, s2), s1 = 0 ∧ s2 = 0, trs)

where trs = (y = −8 · s1 + 2 · x) ∧
(s′

1 = s1 + (−4 · s1 − 2 · s2 + x) · �t) ∧
(s′

2 = s2 + s1 · �t)

3.2.2. Variable name scope
We remark that variable names in the definition of atomic components are local. This holds for all atomic components in

the language of RCRS (including STS and QLTL components, defined in the sequel). This means that if we replace a variable
with another one in an atomic component, then we obtain a semantically equivalent component. For example, the two STS
components below are equivalent (the semantical equivalence symbol ≡ will be defined formally in Definition 21, once we
define the semantics):

sts((x, y), z, s, s > 0, z > s + x + y) ≡ sts((u, v), w, t, t > 0, w > t + u + v)

3.2.3. Stateless STS components
A special STS component is one that has no state variables:

Definition 2 (Stateless STS component). A stateless STS component is a tuple

C = stateless(x : �x, y : �y, io_exp : B)

where x, y are the input and output variables, and io_exp is a Boolean expression on x and y. Stateless STS components are
special cases of general STS components, as defined by the mapping stateless2sts:

stateless2sts(C) = sts(x, y, (),true, io_exp).

Note that the transformation stateless2sts is purely syntactic. This is also the case for the transformations of other
special cases of components described in the sequel.
8

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
Example 7. A trivial stateless STS component is the one that simply transfers its input to its output (i.e., a “wire”). We
denote such a component by Id, and we formalize it as

Id= stateless(x, y, y = x).

Another simple example is a component with no inputs and a single output, which always outputs a constant value c
(of some type). This can be formalized as the following component parameterized by c:

Constc = stateless((), y, y = c).

Component Add from Fig. 2, which outputs the sum of its two inputs, can be modeled as a stateless STS component:

Add= stateless((x, y), z, z = x + y).

Component Split from Fig. 2 can also be modeled as a stateless STS component:

Split= stateless(x, (y, z), y = x ∧ z = x).

The Div component introduced above is stateless, and therefore can be also specified as follows:

Div= stateless
(
(x, y), z, y �= 0 ∧ z = x

y

)
.

The above examples are not only stateless, but also deterministic. We introduce deterministic STS components next.

3.2.4. Deterministic STS components
Deterministic STS components are those which, for given current state and input, have at most one output and next

state. Syntactically, they are introduced as follows:

Definition 3 (Deterministic STS component). A deterministic STS component is a tuple

det(x : �x, s : �s,a : �s, inpt_exp : B,next_exp : �s,out_exp : �y)

where x, s are the input and state variables, a ∈ �s is the initial value of the state variable, inpt_exp is a Boolean expression
on s and x defining the legal inputs, next_exp is an expression of type �s on x and s defining the next state, and out_exp
is an expression of type �y on x and s defining the output. Deterministic STS components are special cases of general STS
components, as defined by the mapping det2sts:

det2sts(C) = (x, y, s, s = a, inpt_exp ∧ s′ = next_exp ∧ y = out_exp)

where y is a new variable name (or tuple of new variable names) of type �y .

Note that a deterministic STS component has a separate expression inpt_exp to define legal inputs. A separate such
expression is not needed for general STS components, where the conditions for legal inputs are part of the expression
trs_exp. For example, compare the definition of Div as a general STS above, and as a stateless deterministic STS below
(see §3.2.5).

Example 8. As mentioned above, all three components, UnitDelay, Add, and Split from Fig. 2, as well as Div and
Const, are deterministic. They could therefore be specified in our language as deterministic STS components, instead of
general STS components:

UnitDelay= det
(
x, s,0,true, x, s

)

Constc = det
(
(), (), (),true, (), c

)

Add= det
(
(x, y), (), (),true, (), x + y

)

Split= det
(
x, (), (),true, (), (x, x)

)

Div= det
(
(x, y), (), (), y �= 0, (),

x

y

)

The component Sum modeling the entire system is also deterministic, and could be defined as a deterministic STS
component:

Sum= det(x, s,0,true, s + x, s).

Note that these alternative specifications for each of those components, although syntactically distinct, will turn out to
be semantically equivalent by definition, when we introduce the semantics of our language, in §4.
9

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
3.2.5. Stateless deterministic STS components
STS components which are both deterministic and stateless can be specified as follows:

Definition 4 (Stateless deterministic STS component). A stateless deterministic STS component is a tuple

C = stateless_det(x : �x, inpt_exp : B,out_exp : �y)

where x is the input variable, inpt_exp is a Boolean expression on x defining the legal inputs, and out_exp is an expression
of type �y on x defining the output. Stateless deterministic STS components are special cases of both deterministic STS
components, and of stateless STS components, as defined by the mappings

stateless_det2det(C) = det(x, (), (), inpt_exp, (),out_exp) (1)

stateless_det2stateless(C) = stateless(x, y, inpt_exp ∧ y = out_exp) (2)

where y is a new variable name or a tuple of new variable names.

Example 9. Many of the examples introduced above are both deterministic and stateless. They could be specified as follows:

Id = stateless_det
(
x,true, x

)

Constc = stateless_det
(
(),true, c

)

Add = stateless_det
(
(x, y),true, x + y

)

Split = stateless_det
(
x,true, (x, x)

)

Div = stateless_det
(
(x, y), y �= 0,

x

y

)

3.3. Quantified linear temporal logic components

Although powerful, STS components have limitations. In particular, they cannot express liveness properties [4]. To remedy
this, we introduce another type of components, based on Linear Temporal Logic (LTL) [68] and quantified propositional LTL
(QPTL) [82,52], which extends LTL with ∃ and ∀ quantifiers over propositional variables. In this paper we use quantified first-
order LTL (which we abbreviate as QLTL). QLTL further extends QPTL with functional and relational symbols over arbitrary
domains, quantification of variables over these domains, and a next operator applied to variables.2 We need this expressive
power in order to be able to handle general models (e.g., Simulink) which often use complex arithmetic formulas, and also
to be able to translate STS components into semantically equivalent QLTL components (see §5.1).

3.3.1. QLTL
QLTL formulas are generated by the following grammar. We assume a set of constants and functional symbols (0, 1, . . .,

true, false, +, . . .), a set of predicate symbols (=, ≤, <, . . .), and a set of variable names (x, y, z, . . .).

Definition 5 (Syntax of QLTL). A QLTL formula ϕ is defined by the following grammar:

term ::= x | y | . . . | (variable names)

0 | 1 | . . . | true | . . . | (constants)

term + term | . . . | (functional symbol application)

� term (next applied to a term)

ϕ ::= (term = term) | (term ≤ term) | . . . | (atomic QLTL formulas)

¬ϕ | (negation)

ϕ ∨ ψ | (disjunction)

ϕ U ψ | (until)

∀x : ϕ (forall)

As in standard first order logic, the bounded variables of a formula ϕ are the variables in scope of the universal quantifier
∀, and the free variables of ϕ are those that are not bounded. The logic connectives ∧, ⇒ and ⇔ can be expressed with

2 A logic similar to the one that we use here is presented in [51], however in [51] the next operator can be applied only once to variables, and the logic
from [51] uses also past temporal operators.
10

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
¬ and ∨. Quantification is over atomic variables. The existential quantifier ∃ can be defined via the universal quantifier
usually as ¬∀¬. The primitive temporal operators are next for terms (�) and until (U). As is standard, QLTL formulas are
evaluated over infinite traces, and ϕ U ψ intuitively means that ϕ continuously holds until some point in the trace where
ψ holds.

Formally, we will define the relation σ |= ϕ (σ satisfies ϕ) for a QLTL formula ϕ over free variables x, y, . . ., and an
infinite sequence σ ∈ �ω , where � = �x ×�y × . . ., and �x, �y, . . . are the types (or domains) of variables x, y, As before
we assume that σ can be written as a tuple of sequences (σx, σy, . . .) where σx ∈ �ω

x , σy ∈ �ω
y , The semantics of a term

t on variables x, y, . . . is a function from infinite sequences to infinite sequences 〈 〈t〉 〉 : �ω → �ω
t , where � = �x × �y × . . .,

and �t is the type of t . When giving the semantics of terms and formulas we assume that constants, functional symbols,
and predicate symbols have the standard semantics. For example, we assume that +, ≤, . . . on numeric values have the
semantics of standard arithmetic.

Definition 6 (Semantics of QLTL). Let x be a variable, t, t′ be terms, ϕ, ψ be QLTL formulas, P be a predicate symbol, f be a
functional symbol, c be a constant, and σ ∈ �ω be an infinite sequence. Then:

〈〈x〉〉(σ) := σx

〈〈c〉〉(σ) := (λi : c)
〈〈 f (t, t′)〉〉(σ) := (λi : f (〈〈t〉〉(σ)(i), 〈〈t′〉〉(σ)(i)))
〈〈� t〉〉(σ) := 〈〈t〉〉(σ 1)

σ |= P (t, t′) := P (〈〈t〉〉(σ)(0), 〈〈t′〉〉(σ)(0))

σ |= ¬ϕ := ¬ (σ |= ϕ)

σ |= ϕ ∨ ψ := σ |= ϕ ∨ σ |= ψ

σ |= ϕ U ψ := (∃n ≥ 0 : (∀ 0 ≤ i < n : σ i |= ϕ) ∧ σ n |= ψ)

σ |= (∀x : ϕ) := (∀σ ′
x ∈ �ω

x : (σ [x := σ ′
x]) |= ϕ)

where σ [x := σ ′
x] denotes the trace σ ′ ∈ �ω obtained by replacing σx in σ by σ ′

x .

Intuitively, the semantics of variable x is a function which returns the sequence σx corresponding to x, given a sequence
σ . The semantics of constant c is the constant function which returns the sequence which has c at every step. The semantics
of a function f applies f at every step of a sequence σ . Given sequence σ , the semantics of � t applies the semantics of
t , 〈 〈t〉 〉, to the sequence σ 1, that is, to σ starting from position 1 instead of position 0. The satisfaction relation between
sequences and formulas is denoted |=. A sequence σ satisfies a predicate P if it satisfies P at position 0. σ satisfies ¬ϕ if
it does not satisfy ϕ . σ satisfies ϕ ∨ ψ if it satisfies either ϕ or ψ . σ satisfies ϕ U ψ if ψ is satisfied at some point, and
until that point ϕ is continuously satisfied. Finally, σ satisfies ∀x : ϕ if σ [x := σ ′

x] satisfies ϕ , for any σ ′
x .

Other temporal operators can be defined as follows. Eventually (Fϕ = true U ϕ) states that ϕ must hold in some future
step. Always (Gϕ = ¬F¬ϕ) states that ϕ must hold at all steps. The next operator for formulas X can be defined using
the next operator for terms � . The formula Xϕ is obtained by replacing all occurrences of the free variables in ϕ by their
next versions (i.e., x is replaced by � x, y by � y, etc.). For example the propositional LTL formula X (x ∧ X y ⇒ G z) can be
expressed as

(� x = true∧ (� � y = true) ⇒ G (� z = true)).

We additionally introduce the operator: ϕ Lψ := ¬(ϕ U ¬ψ). Intuitively, ϕ Lψ holds if whenever ϕ holds continuously
up to some step n − 1, ψ must hold at step n. Later we will use the operator L to transform a STS component into a QLTL
component.

Lemma 1. The semantics of ϕ Lψ is given by

σ |= ϕ Lψ = (∀n ≥ 0 : (∀0 ≤ i < n : σ i |= ϕ) =⇒ σ n |= ψ)

Two QLTL formulas ϕ and ψ are semantically equivalent, denoted ϕ ⇐⇒ ψ , if

∀σ : (σ |= ϕ) ⇐⇒ (σ |= ψ).

Lemma 2. Let ϕ be a QLTL formula. Then:

1. (∃x : Gϕ) ⇐⇒ G (∃x : ϕ) when ϕ does not contain temporal operators.
2. ϕ Lϕ ⇐⇒ Gϕ
3. trueLϕ ⇐⇒ Gϕ
4. ϕ Ltrue ⇐⇒ true
11

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
5. ϕ Lfalse ⇐⇒ false
6. ∀y : (ϕ Lψ) ⇐⇒ (∃y : ϕ)L ψ , when ϕ does not contain temporal operators and y is not free in ψ .
7. (G (ϕ ∧ ψ)) = (G ϕ) ∧ (G ψ)

The proof of the above result, as well as of most results that follow, is omitted. All omitted proofs have been formalized
and proved in the Isabelle proof assistant, and are available as part of the public distribution of RCRS from http://rcrs .
gitlab .io/. In particular, the results contained in this paper can be accessed from the theory RCRS_Overview.thy – either
directly in that file or via references to the other RCRS files.

Example 10. Using QLTL we can express safety, as well as liveness requirements. Informally, a safety requirement expresses
that something bad never happens. An example is the formula

thermostat= G (180◦ ≤ t ∧ t ≤ 220◦),
which states that the thermostat-controlled temperature t stays always between 180◦ and 220◦ .

A liveness requirement informally says that something good eventually happens. An example is the formula F (t > 200◦)
stating that the temperature t is eventually over 200◦ .

A more complex example is a formula modeling an oven that starts increasing the temperature from an initial value of
20◦ until it reaches 180◦ , and then keeps it between 180◦ and 220◦ .

oven= (t = 20◦ ∧ ((t < � t ∧ t < 180◦) U thermostat)).

In this example the formula t < � t specifies that the temperature increases from some point to the next.

3.3.2. QLTL components
A QLTL component is an atomic component where the input-output behavior is specified by a QLTL formula:

Definition 7 (QLTL component). A QLTL component is a tuple qltl(x : �x, y : �y, ϕ), where x, y are input and output variables
(or tuples of variables) of types �x, �y , and ϕ is a QLTL formula over x and y.

Intuitively a QLTL component C = qltl(x, y, ϕ) represents a system that takes as input an infinite sequence σx ∈ �ω
x

and produces as output an infinite sequence σy ∈ �ω
y such that (σx, σy) |= ϕ . If there is no σy such that (σx, σy) |= ϕ is

true, then input σx is illegal for C , i.e., C is not input-receptive. There could be many possible σy for a single σx , in which
case the system is non-deterministic.

Example 11. As a simple example, we can model the oven as a QLTL component with no input variables and the temperature
as the only output variable:

qltl((), t,oven)

3.4. Well formed composite components

Not all composite components generated by the grammar introduced in §3.1 are well formed. Two components C and C ′
can be composed in series only if the number of outputs of C matches the number of inputs of C ′ , and in addition the input
types of C ′ are the same as the corresponding output types of C . Also, fdbk can be applied to a component C if the type
of the first output of C is the same as the type of its first input. Formally, for every component C we define below �in(C) -
the input type of C , �out(C) - the output type of C , and wf(C) - the well-formedness of C , by induction on the structure of C .
In the definitions below, both n and m are natural numbers. Recall that the empty Cartesian product is Unit, so that if n = 0
then X1 × · · · × Xn denotes the Unit type.

�in(sts(x : �x, y : �y, s : �s, init, trs)) = �x

�in(stateless(x : �x, y : �y, trs)) = �x

�in(det(x : �x, s : �s,a, inpt,next,out : �y)) = �x

�in(stateless_det(x : �x, inpt,out : �y)) = �x

�in(qltl(x : �x, y : �y,ϕ)) = �x

�in(C ; C ′) = �in(C)

�in(C ‖ C ′) = �in(C) × �in(C ′)
�in(fdbk(C)) = X2 × · · · × Xn provided �in(C) = X1 × · · · × Xn

for some n ≥ 1
12

http://rcrs.gitlab.io/
http://rcrs.gitlab.io/

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
A B C

Fig. 4. Another block diagram.

That is, the input type of an atomic component is the type �x of input variable x. The input type of serial composite
component C ; C ′ is the input type of the “upstream” component C . The input type of parallel composite component C ‖ C ′
is the Cartesian product of the input types of C and C ′ . Assuming that C has n ≥ 1 inputs with types X1, ..., Xn , the input
type of feedback composite component fdbk(C) is the Cartesian product X2 × · · · × Xn , i.e., the first input is omitted. If
n = 1 then the input type of fdbk(C) is Unit.

�out(sts(x : �x, y : �y, s : �s, init, trs)) = �y

�out(stateless(x : �x, y : �y, trs)) = �y

�out(det(x : �x, s : �s,a, inpt,next,out : �y)) = �y

�out(stateless_det(x : �x, inpt,out : �y)) = �y

�out(qltl(x : �x, y : �y,ϕ)) = �y

�out(C ; C ′) = �out(C ′)
�out(C ‖ C ′) = �out(C) × �out(C ′)
�out(fdbk(C)) = Y2 × · · · × Yn provided �out(C) = Y1 × · · · × Yn

for some n ≥ 1

That is, the output type of an atomic component is the type �y of output variable y. The output type of serial composite
component C ; C ′ is the output type of the “downstream” component C ′ . The output type of parallel composite component
C ‖ C ′ is the Cartesian product of the output types of C and C ′ . Assuming that C has n ≥ 1 outputs with types Y1, ..., Yn ,
the output type of feedback composite component fdbk(C) is the Cartesian product Y2 × · · · × Yn , i.e., the first output is
omitted. If n = 1 then the output type of fdbk(C) is Unit.

wf(sts(x, y, s, init, trs)) = true

wf(stateless(x, y, trs)) = true

wf(det(x, s,a, inpt,next,out)) = true

wf(stateless_det(x, inpt,out)) = true

wf(qltl(x, y,ϕ)) = true

wf(C ; C ′) = wf(C) ∧ wf(C ′) ∧ �out(C) = �in(C ′)
wf(C ‖ C ′) = wf(C) ∧ wf(C ′)
wf(fdbk(C)) = wf(C) ∧ �in(C) = X × X1 · · · × Xn

∧ �out(C) = X × Y1 · · · × Ym, for some n,m ≥ 0.

That is, all atomic components are by definition well-formed. A serial composite component C ; C ′ is well-formed iff both
its subcomponents C and C ′ are well-formed, and the output type of C is equal to the input type of C ′ . A parallel composite
component C ‖ C ′ is well-formed iff both its subcomponents C and C ′ are well-formed. A feedback composite component
fdbk(C) is well-formed iff C is well-formed and the type of the first output of C is equal to the type of its first input.

Atomic components are by definition well-formed. The composite components considered in the sequel are required to
be well-formed too.

We note that the above well-formedness conditions are not restrictive. Components that do not have matching inputs
and outputs can still be composed by adding appropriate switching components which reorder inputs, duplicate inputs, and
so on. An example of such a component is the component Split, introduced earlier.

Example 12. As another example, consider the diagram in Fig. 4.
This diagram can be expressed in our language as the composite component:

A ;Switch1 ; (B ‖ Id) ;Switch2 ; (C ‖ Id)

where

Switch1= stateless_det((x, y),true, (x, y, x))

Switch2= stateless_det((u, v, x),true, (u, x, v))
13

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
Component Switch1 takes as input the two outputs x and y of A and outputs three outputs by replicating x as its third
output. This triplet of outputs (x, y, x) is fed as input to the parallel composite component B ‖ Id. The first two outputs, x
and y, are fed as inputs to the corresponding two inputs of B . The third output, which is also equal to x, if fed as input to
the identity component Id, which simply acts as a “wire” transferring its input to its output. Therefore, if we let u and v
be the two outputs of B , the output of B ‖ Id is the triplet (u, v, x). Now, we want to feed u and x as the two inputs to C .
To do that, we use Switch2, which swaps the order of v and x, so that its output triplet becomes (u, x, v). Now we can
feed the latter triplet into C ‖ Id.

This completes the presentation of the syntax of RCRS. In the section that follows we define the formal semantics of
RCRS.

4. Semantics

In RCRS, the semantics of components is defined in terms of monotonic property transformers (MPTs). This is inspired by
classical refinement calculus [12], where the semantics of sequential programs is defined in terms of monotonic predicate
transformers [31]. Predicate transformers are functions that transform sets of post-states (states reached after the program
executes) into sets of pre-states (states from which the program begins). Property transformers map sets of output traces
(that a component produces) into sets of input traces (that a component consumes).

In this section we define MPTs formally, and introduce some basic operations on them, which are necessary for giving
the semantics of components. We also introduce subclasses of MPTs which are easier to work with in practice, especially
in terms of symbolic computation, and we also study their closure properties with respect to the operators. The definitions
of some of these operations (e.g., product and fusion) are simple extensions of the corresponding operations on predicate
transformers [12,11]. Several of the subclasses and closure properties that we examine here are also extensions to the MPT
context of known subclasses of predicate transformers and their closure properties in the refinement calculus theory [12].
Other operations, in particular those related to feedback, are new (§4.1.4). The definition of component semantics is also
new (§4.3).

4.1. Monotonic property transformers

A property transformer is a function S : (�ω
y → B) → (�ω

x → B), where �x, �y are input and output types of the
component in question. Note that x is the input and y is the output. A property transformer has a weakest precondition
interpretation: it is applied to a set of output traces Q ⊆ �ω

y , and returns a set of input traces P ⊆ �ω
x , such that all traces

in P are legal and, when fed to the component, are guaranteed to produce only traces in Q as output.
Interpreting properties as sets, monotonicity of property transformers simply means that these functions are monotonic

with respect to set inclusion. That is, S is monotonic if for any two properties q, q′ , if q ⊆ q′ then S(q) ⊆ S(q′).
Similar to the domain or precondition of a relation, for an MPT S we define its set of legal input traces as legal(S) = S(
),

where
 is the greatest predicate on traces. Note that, because of monotonicity, and the fact that q ⊆
 holds for any
property q, we have that S(q) ⊆ legal(S) for all q. This justifies the definition of legal(S) as a “maximal” set of input traces
for which a system does not fail, assuming no restrictions on the post-condition. An MPT S is said to be input-receptive if
legal(S) =
.

4.1.1. Some commonly used MPTs

Definition 8 (Skip). Skip is defined to be the MPT such that for all q, Skip(q) = q.

Skip models the identity function, i.e., the system that accepts all input traces and simply transfers them unchanged to
the output (this will become more clear when we express Skip in terms of assert or update transformers, below). Note that
Skip is different from Id, defined above, although the two are strongly related: Id is a component, i.e., a syntactic object,
while Skip is an MPT, i.e., a semantic object. As we shall see in §4.3, the semantics of Id is defined as Skip.

Definition 9 (Fail). Fail is defined to be the MPT such that for all q, Fail(q) = ⊥.

Recall that ⊥ is the predicate that returns false for any input. Thus, viewed as a set, ⊥ is the empty set. Consequently,
Fail can be seen to model a system which rejects all inputs, i.e., a system such that for any output property q, there are no
input traces that can produce an output trace in q.

Definition 10 (Assert). Let p ∈ �ω →B be a property. The assert property transformer {p} : (�ω →B) → (�ω →B) is defined
by

{p}(q) = p ∧ q.
14

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
The assert transformer {p} can be seen as modeling a system which accepts all input traces that satisfy p, and rejects all
others. For all the traces that it accepts, the system simply transfers them, i.e., it behaves as the identity function.

To express MPTs such as assert transformers syntactically, let us introduce some notation. First, we can use lambda
notation for predicates, as in λ(σ , σ ′) : (σ = σ ′) for some predicate p : �ω → �ω → B which returns true whenever it
receives two equal traces. Then, instead of writing {λ(σ , σ ′) : (σ = σ ′)} for the corresponding assert transformer {p}, we
will use the slightly lighter notation {σ , σ ′ | σ = σ ′}.

Definition 11 (Demonic update). Let r : �ω
x → �ω

y → B be a relation. The demonic update property transformer [r] : (�ω
y →

B) → (�ω
x →B) is defined by

[r](q) = {σ | ∀σ ′ : r(σ)(σ ′) ⇒ σ ′ ∈ q}.

That is, [r](q) contains all input traces σ which are guaranteed to result into an output trace in q when fed into the
(generally non-deterministic) input-output relation r. The term “demonic update” comes from the refinement calculus liter-
ature [12].

For a demonic update [r], if for some input trace σ there is no trace σ ′ such that r(σ)(σ ′), then for all properties q
(including q = ∅) we have σ ∈ [r](q), meaning that the property transformer [r] establishes any post-property when fed
with input trace σ . This behavior cannot be implemented and we call it magical. A more detailed discussion about this case
is given in Section 4.2.2.

Similarly to assert, we introduce a lightweight notation for the demonic update. If r is an expression in σ and σ ′ , then
[σ � σ ′ | r] = [λ(σ , σ ′) : r]. For example, [σx, σy � σz | ∀i : σz(i) = σx(i) + σy(i)] is the system which produces as output
the sequence σz = (λi : σx(i) + σy(i)), where σx and σy are the input sequences. If e is an expression in σ , then [σ � e]
is defined to be [σ � σ ′ | σ ′ = e], where σ ′ is a new variable different from σ and which does not occur free in e. For
example, [σ � (λi : σ(i) + 1)] = [σ � σ ′ | σ ′ = (λi : σ(i) + 1)].

The following lemma states that Skip can be defined as an assert transformer, or as a demonic update transformer.

Lemma 3. Skip = [σ � σ ′ | σ = σ ′] = {
} = {σ | true}.

In general Skip, Fail, and other property transformers are polymorphic with respect to their input and output types. In
Skip the input and output types must be the same. Fail, on the other hand, may have an input type and a different output
type.

Definition 12 (Angelic update). Let r : �ω
x → �ω

y →B be a relation. The angelic update property transformer {r} : (�ω
y →B) →

(�ω
x →B) is defined by

{r}(q) = {σ | ∃σ ′ : r(σ)(σ ′) ∧ σ ′ ∈ q}.

An input sequence σ is in {r}(q) if there exists an output sequence σ ′ such that r(σ)(σ ′) and σ ′ ∈ q. Notice the
duality between the angelic and demonic update transformers. Consider, for example, a relation r = {(σ , σ ′), (σ , σ ′′)}. If
q = {σ ′, σ ′′}, then {r}(q) = [r](q) = {σ }. If q = {σ ′} then {r}(q) = {σ }, while [r](q) = ∅.

We use a lightweight notation for the angelic update transformer, similar to the one for demonic update. If r is an
expression in σ and σ ′ , then {σ � σ ′ | r} = {λ(σ , σ ′) : r}.

Note that although the notations for the assert property transformer {p} and the angelic update property transformer {r}
are similar, the two types of transformers differ because r is a relation whereas p is a property. The following lemma states
that assert is a special case of angelic update.

Lemma 4. Assert is a particular case of angelic update: {p} = {σ � σ ′ | p(σ) ∧ σ ′ = σ }.

4.1.2. Relational MPTs
Monotonic property transformers are a very rich and powerful class of semantic objects. In practice, the systems that we

deal with often fall into restricted subclasses of MPTs, which are easier to represent syntactically and manipulate symboli-
cally. We introduce one of these subclasses here. MPT subclasses are further discussed in Section 4.2.

Definition 13 (Relational property transformers). A relational property transformer (RPT) S is an MPT of the form {p} ◦ [r]. We
call p the precondition of S and r the input-output relation of S .

Intuitively, the assert part {p} of the RPT imposes restrictions on the legal inputs, whereas the update [r] specifies the
generally non-deterministic set of possible outputs for each input. Relational property transformers correspond to conjunctive
transformers [12]. A transformer S is conjunctive if it satisfies S(

⋂
i∈I qi) = ⋂

i∈I S(qi) for all (qi)i∈I and I �= ∅.
15

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
Fail, Skip, any assert transformer {p}, and any demonic update transformer [r], are RPTs. Indeed, Fail can be written as
{σ | false} ◦ [σ � σ ′ | true]. Skip can be written as {σ | true} ◦ [σ � σ]. The assert transformer {p} can be written
as the RPT {p} ◦ [σ � σ]. Finally, the demonic update transformer [r] can be written as the RPT {σ | true} ◦ [r]. Angelic
update transformers are generally not RPTs: the angelic update transformer {σ � σ ′ | true} is not an RPT, as it is not
conjunctive.

Example 13. Suppose we wish to specify a system that performs division. Here are three possible ways to represent this
system with RPTs:

S1 = {
} ◦ [σx,σy � σz | ∀i : σy(i) �= 0 ∧ σz(i) = σx(i)

σy(i)
]

S2 = {
} ◦ [σx,σy � σz | (∀i : σy(i) �= 0 ⇒ σz(i) = σx(i)

σy(i)
)]

S3 = {σx,σy | ∀i : σy(i) �= 0} ◦ [σx,σy � σz | σz(i) = σx(i)

σy(i)
]

Although S1, S2, and S3 are all relational, they are not equivalent transformers. S1 and S2 are input-receptive: they accept
all input traces. S1 behaves miraculously if the input σy(i) is 0 at some step i. If at some step i the input σy(i) is 0, then
the output σz(i) of transformer S2 is arbitrary (non-deterministic). In contrast, S3 is non-input-receptive as it accepts only
those traces σy that are guaranteed to be non-zero at every step, i.e., those that satisfy the condition ∀i : σy(i) �= 0.

4.1.3. Operators on MPTs: function composition, product, and fusion
As we shall see in §4.3, the semantics of composition operators in the language of components will be defined by

the corresponding composition operators on MPTs. We now introduce the latter operators on MPTs. First, we begin by
the operators that have been known in the literature, and are recalled here. In §4.1.4 we introduce some novel operators
explicitly designed in order to handle feedback composition.

Serial composition of MPTs (and property transformers in general) is simply function composition:

Definition 14. Let S : (�ω
y → B) → (�ω

x → B) and T : (�ω
z → B) → (�ω

y → B) be two property transformers. Then S ◦ T :
(�ω

z →B) → (�ω
x →B), is the function composition of S and T , i.e., ∀q : (S ◦ T)(q) = S(T (q)).

Note that serial composition preserves monotonicity, so that if S and T are MPTs, then S ◦ T is also an MPT. Also note
that Skip is the neutral element for serial composition, i.e., S ◦ Skip = Skip ◦ S = S .

The following lemma shows how the serial composition of two demonic updates is also a demonic update.

Lemma 5. [r] ◦ [r′] = [r ◦ r′].

To express parallel composition of components, we need a product operation on property transformers. We define such
an operation below. Similar operations for predicate transformers have been proposed in [11].

Definition 15 (Product). Let S : (�ω
y → B) → (�ω

x → B) and T : (�ω
v → B) → (�ω

u → B). The product of S and T , denoted
S ⊗ T : (�ω

y × �ω
v →B) → (�ω

x × �ω
u →B), is given by

(S ⊗ T)(q) = {(σ ,σ ′) | ∃p : �ω
y → B, p′ : �ω

v → B : p × p′ ⊆ q ∧ σ ∈ S(p) ∧ σ ′ ∈ T (p′)}
where (p × p′)(σy, σv) = p(σy) ∧ p′(σv).

The product S ⊗ T models the simultaneous execution of S and T . This will become more clear later in Theorem 2, as
the product of MPTs based on predicates and relations (i.e., RPTs) can be expressed based on the products of the predicates
and the product of the relations:

({p} ◦ [r]) ⊗ ({p′} ◦ [r′]) = {p × p′} ◦ [r × r′]
where the product of relations r × r′ is defined similarly to the product on predicates.

Lemma 6. For arbitrary S and T , S ⊗ T is monotonic.

The neutral element for the product composition is the Skip MPT that has Unit as input and output type.
16

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
x + 1
1

z
x y

Fig. 5. IncDelay.

In order to define a feedback operation on MPTs, we first define two auxiliary operations: Fusion and IterateOmega.
Fusion is an extension of a similar operator introduced previously for predicate transformers in [11]. IterateOmega is a
novel operator introduced in the sequel.

Intuitively, the fusion operator, when applied to two MPTs S and T , rejects all inputs that are rejected by either S or
T , and for a legal input of S and T it nondeterministically chooses an output that could be chosen by both S and T . If
for some legal input σ of S and T there is no common output of S and T , then the fusion of S and T behaves magically
when executed with input σ . Below we define the fusion operator not for just two MPTs but more generally for an arbitrary
family of MPTs, Si , i ∈ I .

Definition 16 (Fusion). If S = {Si}i∈I , Si : (�ω
y → B) → (�ω

x → B) is a collection of MPTs, then the fusion of S is the MPT
Fusioni∈I (Si) : (�ω

y →B) → (�ω
x →B) defined by

(Fusioni∈I (Si))(q) = {σ | ∃w : I → �ω
y → B :

⋂

i∈I

w(i) ⊆ q ∧ σ ∈
⋂

i∈I

Si(w(i))}

In particular, the fusion of two MPTs S and T is the MPT:

Fusion(S, T)(q) = {σ | ∃w1, w2 : �ω
y → B : w1 ∩ w2 ⊆ q ∧ σ ∈ S(w1) ∩ T (w2)}.

Similarly to the product operator, the fusion operator of two MPTs S and T models the simultaneous execution of
S and T , but on the same state. If S and T perform choices from a starting sequence σ , then Fusion(S, T) will output
only sequences that can be chosen by both S and T starting from σ . The set of legal input traces of Fusion(S, T) is the
intersection of the legal traces of S and legal traces of T . These facts can be derived from Lemma 7 which describes the
effect of Fusion on RPTs:

Lemma 7. For I �= ∅ we have

Fusioni∈I ({pi} ◦ [ri]) = {
⋂

i∈I

pi} ◦ [
⋂

i∈I

ri].

4.1.4. Operators on MPTs: iteration and feedback
In this section we introduce some novel operators, including the IterateOmega operator, used in the semantical definition

of feedback. In order to explain the intuition behind IterateOmega we first illustrate it on an example. Consider the IncDelay
system shown in Fig. 5. Assuming 0 is the initial value of the Unit Delay block, IncDelay maps input sequence x0, x1, . . .
into output sequence 0, x0 + 1, x1 + 1, Also consider the system fdbk(IncDelay) where the output y is connected to the
input x. Intuitively, fdbk(IncDelay) should output the sequence 0, 1, 2, · · · .

Let us now calculate IncDelay2 = IncDelay ◦ IncDelay, IncDelay3 = IncDelay ◦ IncDelay ◦ IncDelay, etc. IncDelay2 maps
x0, x1, · · · into 0, 1, x0 + 2, x1 + 2, · · · . IncDelay3 maps x0, x1, · · · into 0, 1, 2, x0 + 3, x1 + 3, · · · . From this we observe that the
first n elements of the output of IncDelayn are the same as the first n elements of the output of fdbk(IncDelay). That is,
the output of IncDelayn converges to the output of fdbk(IncDelay) as n → ω. This mechanism is captured in the formal def-
inition of IterateOmega. In general, IterateOmega calculates the feedback of a system with no additional inputs and outputs:
the entire output of S is connected in feedback to the entire input of S .

Definition 17 (IterateOmega).

IterateOmega(S) = Fusionn∈N(Sn ◦ [σ � σ ′ | ∀i : i + 1 < n ⇒ σi = σ ′
i])

The IterateOmega(S) is the fusion of the following transformers:

T0 = [σ � σ ′ | true]
T1 = S ◦ [σ � σ ′ | true]
T2 = S2 ◦ [σ � σ ′ | σ0 = σ ′

0]
T3 = S3 ◦ [σ � σ ′ | σ0 = σ ′

0 ∧ σ1 = σ ′
1]

. . .
17

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
u

y

x x′

u′

y′S•
•

Fig. 6. Padding of S for applying IterateOmega. The figure depicts the component [σu , σy , σx � σu , σx, σx] ◦ (S ⊗ Skip).

The operator IterateOmega applies to an MPT S with the same type � for the input and output and its result is a MPT
that has again the same input and output types. The idea of IterateOmega is that it applies the serial compositions of S to
itself iteratively. The composition S2 when started on a sequence σ will result into a sequence with the first component
σ ′

0. The assumption is that, for the feedback to work, the first component stabilizes in subsequent serial compositions. For
example the first component of S3 will also be σ ′

0, and the second element of the result of S3 also stabilizes in subsequent
compositions. In general we expect that Sn , when started from a trace σ , produces a trace σ ′ where σ ′

0, . . . σ
′
n−1 are the

correct outputs of the IterateOmega(S). To be able to construct the final trace of IterateOmega(S), we use the composition
Tn = Sn ◦ [σ � σ ′ | ∀i : i + 1 < n ⇒ σi = σ ′

i] which sets all components i of the output with i + 1 ≥ n to arbitrary values.
For input trace σ we assume that possible resulting traces for T0, T1, . . . are

T0 : ∼ ∼ ∼ ∼ ∼ . . .

T1 : ∼ ∼ ∼ ∼ ∼ . . .

T2 : σ ′
0 ∼ ∼ ∼ ∼ . . .

T3 : σ ′
0 σ ′

1 ∼ ∼ ∼ . . .

T4 : σ ′
0 σ ′

1 σ ′
2 ∼ ∼ . . .

. . .

where ∼ expresses any possible value. In this situation, the trace σ ′ = σ ′
0σ

′
1 . . . is a possible output trace of the fusion of all

Ti , i.e. a possible output trace of IterateOmega(S).
The feedback operator consists of connecting the first output of an MPT S with its first input. Formally, feedback is

defined as follows.

Definition 18 (Feedback). Let S : (�ω
u × �ω

y → B) → (�ω
u × �ω

x → B) be an MPT. The feedback operator on S , denoted
Feedback(S), is given by the MPT

Feedback(S) = {σx � σu,σy,σx}
◦ IterateOmega([σu,σy,σx � σu,σx,σx] ◦ (S ⊗ Skip))

◦ [σu,σy,σx � σy]

The idea of the feedback operator is similar to the IterateOmega operator, but from one iteration to the next we reuse
the input x and we expect the output u to stabilize. While iterating we ignore the y component of the output. To achieve
this we apply IterateOmega to T = [σu, σy, σx � σu, σx, σx] ◦ (S ⊗ Skip). T is represented graphically in Fig. 6. For the calcu-
lation of the feedback we need a mechanism of starting the computation, i.e. we need a way of assigning a suitable value to
the feedback variable u. One obvious choice would be to assign to u some arbitrary value, using demonic nondeterminism.
However this does not work because if S fails for some values of u, then the entire feedback will fail, even if u would stabi-
lize to some value that is legal for S . To solve this problem we assign an arbitrary value to u using angelic nondeterminism.
The consequence of this is that u will be chosen such that further failures are avoided. This approach results in meaningful
computations when successive computations of S overwrite the previous values of u with values depending on the x input
only. The last part of the definition of the feedback selects only the y output component as the output of the feedback.

Example 14. As an example we show how to derive Feedback(S) for S = [σu, σx � 0 · σx + 0 · σu, 0 · σx + 0 · σu], where
σ + σ ′ = (λi : σ(i) + σ ′(i)), and 0 · σ is 0 concatenated with σ . For now, we note that S is the semantics of the composite
component Add ; UnitDelay ; Split, which corresponds to the inner part of the diagram of Fig. 2, before applying feed-
back. We will complete the formal definition of the semantics of this diagram in §4.3 (see Example 15). For now, we focus
on deriving Feedback(S), in order to illustrate how the Feedback operator works.

Let

T = [σu,σy,σx � σu,σx,σx] ◦ (S ⊗ Skip) = [σu,σy,σx � 0 · σx + 0 · σu,0 · σx + 0 · σu,σx]
Then, we have

T ◦ T = [σu,σy,σx � 0 · σx + 0 · 0 · σx + 0 · 0 · σu,0 · σx + 0 · 0 · σx + 0 · 0 · σu,σx]
. . .

T n = [σu,σy,σx � 0 · σx + . . . + 0n · σx + 0n · σu,0 · σx + . . . + 0n · σx + 0n · σu,σx]
where 0n is a finite sequence of n 0s. We also have
18

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
T n ◦ [σ � σ ′ | ∀i : i + 1 < n ⇒ σi = σ ′
i]=

[σu,σy,σx � σ | ∀i : i + 1 < n ⇒ σ(i) = (� j<iσx(j),� j<iσx(j),σx(i))]
(3)

Then

Feedback(S)

= {Definition of Feedback}
{σx � σu,σy,σx} ◦ IterateOmega(T) ◦ [σu,σy,σx � σy]

= {Definition of IterateOmega}
{σx � σu,σy,σx} ◦ Fusionn∈N(T n ◦ [σ � σ ′ | ∀i : i + 1 < n ⇒ σi = σ ′

i]) ◦ [σu,σy,σx � σy]
= {Calculation (3)}

{σx � σu,σy,σx} ◦ Fusionn∈N([σu,σy,σx � σ | ∀i : i + 1 < n ⇒
σ(i) = (� j<iσx(j),� j<iσx(j),σx(i))]) ◦ [σu,σy,σx � σy]

= {Lemma 7}
{σx � σu,σy,σx} ◦ [σu,σy,σx � σ | ∀i : σ(i) = (� j<iσx(j),� j<iσx(j),σx(i))] ◦ [σu,σy,σx � σy]

= {Lemma 5}
[σx � σy | ∀i : σy(i) = � j<iσx(j)]

Finally we obtain

Feedback(S) = [σx � σy | ∀i : σy(i) = � j<iσx(j)] (4)

This is the system that outputs the trace (λi : � j<iσx(j)) for input trace σx .

4.1.5. Refinement
A key element of RCRS, as of other compositional frameworks, is the notion of refinement, which enables substitutability

and other important concepts of compositionality. Semantically, refinement is defined as follows:

Definition 19 (Refinement). Let S, T : (�ω
y → B) → (�ω

x → B) be two MPTs. We say that T refines S (or that S is refined by
T), written S � T , if and only if ∀q : S(q) ⊆ T (q).

We note that in some other frameworks and in particular the one of relational interfaces [86], notation S � T is used to
mean that S refines T . In contrast, in RCRS we follow the notation of standard refinement calculus [12] and use S � T to
mean that T refines S .

All operations introduced on MPTs preserve the refinement relation:

Theorem 1. If S, T , S ′, T ′ are MPTs of appropriate types such that S � S ′ and T � T ′ , then

1. S ◦ T � S ′ ◦ T ′ and S ⊗ T � S ′ ⊗ T ′ and Fusion(S, T) � Fusion(S ′, T ′) ([11,12])
2. IterateOmega(S) � IterateOmega(S ′)
3. Feedback(S) � Feedback(S ′).

4.2. Other subclasses of MPTs and closure properties

As mentioned in Section 4.1.2, in practice we often deal with subclasses of MPTs. The subclass of RPTs has already
been introduced in Section 4.1.2. Here, we introduce additional subclasses of MPTs and also discuss closure properties with
respect to the various operators introduced earlier. As we mentioned in the introduction to this section, similar closure
results are known in the literature in other contexts, e.g., see [12,90,86].

4.2.1. Closure properties of RPTs

Theorem 2 (RPTs are closed under serial, parallel and fusion compositions). Let S = {p} ◦ [r] and S ′ = {p′} ◦ [r′] be two RPTs, with p,
p′ , r and r′ of appropriate types. Then

S ◦ S ′ = {σ | p(σ) ∧ (∀σ ′ : r(σ)(σ ′) ⇒ p′(σ ′))} ◦ [r ◦ r′]
and
19

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
S ⊗ S ′ = {σx,σy | p(σx) ∧ p′(σy)} ◦ [σx,σy � σ ′
x,σ

′
y | r(σx)(σ

′
x) ∧ r′(σy)(σ

′
y)]

and

Fusion(S, S ′) = {p ∧ p′} ◦ [r ∧ r′].

Theorem 2 states that RPTs are closed under serial composition, product and fusion. In the case of serial composition,
the update part [r ◦ r′] of the composite RPT S ◦ S ′ is formed by the composition of the corresponding relations r and r′
of the update parts of S and S ′ , respectively. The assert part of S ◦ S ′ is formed by considering as legal inputs only those
inputs σ which: (1) satisfy the input condition p of S , and (2) are such that for any output σ ′ that may be produced by S
from input σ , σ ′ is guaranteed to satisfy the input condition p′ of S ′ . This is similar to the way composition by connection is
defined in the theory of relational interfaces [86]. Note however that in the case of RCRS this property is not a definition,
but a theorem that follows from the semantical definition of serial/function composition of MPTs. In the case of product, a
pair of inputs σx and σy is legal for the composite RPT S ⊗ S ′ when σx is a legal input of S and σy is legal for S ′ . An output
pair is formed by an output σ ′

x of S and an output σ ′
y of S ′ . In the case of fusion, both the assert and update parts of the

composite Fusion(S, S ′) are formed by taking the conjunction of the corresponding parts of S and S ′ .
RPTs are not closed under Feedback. For example, we have

Feedback([σx,σz � σx,σx]) = {σ � σ ′ | true}
which is a non-relational, angelic update transformer as we said above.

The next theorem shows that the refinement of RPTs can be reduced to proving a first order property.

Theorem 3. For p, p′, r, r′ of appropriate types we have:

{p} ◦ [r] � {p′} ◦ [r′] ⇐⇒ (p ⊆ p′ ∧ (∀σx : p(σx) ⇒ r′(σx) ⊆ r(σx))).

That is, an RPT S ′ = {p′} ◦ [r′] refines another RPT S = {p} ◦ [r] iff (1) the input condition p of S is stronger than the
input condition p′ of S ′ (in other words, every input which is legal in S is also legal in S ′), and (2) for every legal input
σx of S , the set of outputs that can be produced by S ′ is a subset of the set of outputs that can be produced by S . This
property matches the definition of refinement in the theory of relational interfaces [86] but again we note that in the case
of relational interfaces this is a definition, whereas in RCRS it is a theorem which follows from the semantical definition of
refinement in terms of MPTs (Definition 19).

4.2.2. Guarded MPTs
Relational property transformers correspond to systems that have natural syntactic representations, as the composition

{p} ◦ [r], where the predicate p and the relation r can be represented syntactically in some logic. Unfortunately, RPTs are
still too powerful. In particular, they allow system semantics that cannot be implemented. For example, consider the RPT
Magic = [σ � σ ′ | false]. It can be shown that for any output property q (including ⊥), we have Magic(q) =
. Recall that,
viewed as a set,
 is the set of all traces. This means that, no matter what the post-condition q is, Magic somehow manages
to produce output traces satisfying q no matter what the input trace is (hence the name “magic”). In general, an MPT S is
said to be non-miraculous (or to satisfy the law of excluded miracle) if S(⊥) = ⊥. We note that in [31], sequential programs
are modeled using predicate transformers that are conjunctive and satisfy the law of excluded miracle.

We want to further restrict RPTs so that miraculous behavior does not arise. Specifically, for an RPT S = {p} ◦ [r] and an
input sequence σ , if there is no σ ′ such that r(σ)(σ ′) is satisfied, then we want σ to be illegal, i.e., we want p(σ) = false.
We can achieve this by taking p to be in(r). Recall that if r : X → Y →B, then in(r)(x) = (∃y : r(x)(y)). Taking p to be in(r)
effectively means that p and r are combined into a single specification r which can also restrict the inputs. This is also the
approach followed in the theory of relational interfaces [86].

Definition 20 (Guarded property transformers). The guarded property transformer (GPT) of a relation r is an RPT, denoted {r],
defined by {r] = {in(r)} ◦ [r].

It can be shown that an MPT S is a GPT if and only if S is conjunctive and non-miraculous [12]. Fail, Skip, and any
assert property transformer are GPTs. Indeed, Fail = {⊥] and Skip = {σ � σ |
]. The assert transformer can be written as
{p} = {σ � σ | p(σ)]. The angelic and demonic update property transformers are generally not GPTs. The angelic update
property transformer is not always conjunctive in order to be a GPT. The demonic update property transformer is not in
general a GPT because is not always non-miraculous (Magic(⊥) =
 �= ⊥). The demonic update transformer [r] is a GPT if
and only if in(r) =
 and in this case we have [r] = {r].

Theorem 4 (GPTs are closed under serial and parallel compositions). Let S = {r] and S ′ = {r′] be two GPTs with r and r′ of appropriate
types. Then
20

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
Monotonic Property Transformers

Relational Property Transformers

Guarded Property Transformers

QLTL Property Transformers

STS Property Transformers

Stateless STS Property Transformers

Deterministic STS Property Transformers

Fig. 7. Overview of the property transformer classes and their containment relations.

S ◦ S ′ = {σx � σz | in(r)(σx) ∧ (∀σy : r(σx)(σy) ⇒ in(r′)(σy)
) ∧ (r ◦ r′)(σx,σz)]

and

S ⊗ S ′ = {σx,σy � σ ′
x,σ

′
y | r(σx)(σ

′
x) ∧ r′(σy)(σ

′
y)].

GPTs are not closed under Fusion neither Feedback. Indeed, we have already seen in the previous section that Feedback
applied to the GPT [σx, σz � σx, σx] is not an RPT, and therefore not a GPT either. For the fusion operator, we have
Fusion([x � 0], [x � 1]) = [⊥], which is not a GPT.

A corollary of Theorem 3 is that refinement of GPTs can be checked as follows:

Corollary 1.

{r] � {r′] ⇐⇒ (in(r) ⊆ in(r′) ∧ (∀σx : in(r)(σx) ⇒ r′(σx) ⊆ r(σx))).

4.2.3. Other subclasses and overview
The containment relationships among the various subclasses of MPTs are illustrated in Fig. 7. In addition to the subclasses

discussed above, we introduce several more subclasses of MPTs in the sections that follow, when we assign semantics (in
terms of MPTs) to the various atomic components in our component language. For instance, QLTL components give rise to
QLTL property transformers. Similarly, STS components, stateless STS components, etc., give rise to corresponding subclasses of
MPTs. The containment relationships between these classes will be proven in the sections that follow. For ease of reference,
we provide some forward links to these results also here. The fact that QLTL property transformers are GPTs follows by
definition of the semantics of QLTL components: see §4.3, equation (5). The fact that STS property transformers are a special
case of QLTL property transformers follows from the transformation of an STS component into a semantically equivalent
QLTL component: see §5.1 and Theorem 7. The inclusions for subclasses of STS property transformers follow by definition of
the corresponding components (see also Fig. 8).

4.3. Semantics of components as MPTs

We are now ready to define the semantics of our language of components in terms of MPTs. Let C be a well formed
component. The semantics of C , denoted �C�, is a property transformer of the form:

�C� : ((�out(C))ω → B) → ((�in(C))ω → B).

We define �C� by induction on the structure of C . First we give the semantics of QLTL components and composite
components:

�qltl(x, y,ϕ)� = {σx � σy | (σx,σy) |= ϕ] (5)

�C ; C ′� = �C� ◦ �C ′� (6)

�C ‖ C ′� = �C� ⊗ �C ′� (7)

�fdbk(C)� = Feedback(�C�) (8)

To define the semantics of STS components, we first introduce some auxiliary notation.
Consider an STS component C = sts(x, y, s, init_exp, trs_exp). We define the predicate runC : �ω

s × �ω
x × �ω

y →B as

runC (σs,σx,σy) = (∀i : trs_exp(σs(i),σx(i))(σs(i + 1),σy(i))).
21

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
Intuitively, if σx ∈ �ω
x is the input sequence, σy ∈ �ω

y is the output sequence, and σs ∈ �ω
s is the sequence of values of state

variables, then runC (σs, σx, σy) holds if at each step of the execution, the current state, current input, next state, and current
output, satisfy the trs_exp predicate.

We also formalize the illegal input traces of STS component C as follows:

illegalC (σx) = (∃σs,σy,k : init_exp(σs(0)) ∧ (∀i < k : trs_exp(σs(i),σx(i))(σs(i + 1),σy(i))) ∧
¬in(trs_exp)(σs(k),σx(k)))

Essentially, illegalC (σx) states that there exists some point in the execution where the current state and current input
violate the precondition in(trs_exp) of predicate trs_exp, i.e., there exist no output and next state to satisfy trs_exp for that
given current state and input.

Then, the semantics of an STS component C is given by:

�C� = {¬illegalC } ◦ [σx � σy | (∃σs : init_exp(σs(0)) ∧ runC (σs,σx,σy))] (9)

We give semantics to stateless and/or deterministic STS components using the corresponding mappings from general STS
components. If C is a stateless STS, C ′ is a deterministic STS, and C ′′ is a stateless deterministic STS, then:

�C� = �stateless2sts(C)� (10)

�C ′� = �det2sts(C ′)� (11)

�C ′′� = �stateless_det2det(C ′′)� (12)

Note that the semantics of a stateless deterministic STS component C ′′ is defined by converting C ′′ into a deterministic
STS component, by Equation (12) above. Alternatively, we could have defined the semantics of C ′′ by converting it into a
stateless STS component, using the mapping stateless_det2stateless. In order for our semantics to be well-defined,
we need to show that regardless of which conversion we choose, we obtain the same result. Indeed, this is shown by the
lemma that follows:

Lemma 8. For a stateless deterministic STS C ′′ we have:

�stateless_det2det(C ′′)� = �stateless_det2stateless(C ′′)�. (13)

Observe that, by definition, the semantics of QLTL components are GPTs. The semantics of STS components are defined
as RPTs. However, they will be shown to be GPTs in §5.1. Therefore, the semantics of all atomic RCRS components are GPTs.
This fact, and the closure of GPTs w.r.t. parallel and serial composition (Theorem 4), ensure that we stay within the GPT
realm as long as no feedback operations are used. In addition, as we shall prove in Corollary 2, components with feedback
are also GPTs, as long as they are deterministic and do not contain algebraic loops. An example of a component whose
semantics is not a GPT is:

C = fdbk(stateless((x, z), (y1, y2), y1 = x ∧ y2 = x))

Then, we have �C� = Feedback([σx, σz � σx, σx]). As stated earlier, Feedback([σx, σz � σx, σx]) is equal to {σ � σ ′ | true},
which is not a GPT neither an RPT. The problem with C is that it contains an algebraic loop: the first output y1 of the
internal stateless component where feedback is applied directly depends on its first input x. Dealing with such components
is beyond the scope of this paper, and we refer the reader to [73].

4.3.1. Example: two alternative derivations of the semantics of Sum
To illustrate our semantics, we provide two alternative derivations of the semantics of the Sum system of Fig. 2, Exam-

ple 1.

Example 15. First, let us consider Sum as a composite component, as in Example 1:

Sum= fdbk(Add ;UnitDelay ;Split)

where

Add = stateless_det((u, x),true, u + x)
UnitDelay = det(x, s,0,true, x, s)
Split = stateless_det(x,true, (x, x))

We have
22

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
�Sum� = �fdbk(Add ;UnitDelay ;Split)�
= Feedback(�Add� ◦ �UnitDelay� ◦ �Split�)

For Add, UnitDelay and Split, all inputs are legal, so illegalC = ⊥ for all C ∈ {Add, UnitDelay, Split}. After simpli-
fications, we get:

�Add� = [σu,σx � σu + σx]
�UnitDelay� = [σx � 0 · σx]
�Split� = [σx � σx,σx]

The semantics of Sum is given by

�Sum�
=

Feedback(�Add� ◦ �UnitDelay� ◦ �Split�
=

Feedback([σu,σx � σu + σx] ◦ [σx � 0 · σx] ◦ [σx � σx,σx])
=

Feedback([σu,σx � 0 · σx + 0 · σu,0 · σx + 0 · σu])
= {Using ((4))}

[σx � σy | ∀i : σy(i) = � j<iσx(j)]
We obtain:

�Sum� = [σx � σy | ∀i : σy(i) = � j<iσx(j)]. (14)

Next, let us assume that the system has been characterized already as an atomic component:

SumAtomic= sts(x, y, s, s = 0, y = s ∧ s′ = s + x).

The semantics of SumAtomic is given by

�SumAtomic� = {¬illegalSumAtomic} ◦ [σx � σy | ∃σs : σs(0) = 0 ∧ runSumAtomic(σs,σx,σy)]
where illegalSumAtomic = ⊥ because there are no restrictions on the inputs of SumAtomic, and

runSumAtomic(σs,σx,σy) = (∀i : σy(i) = σs(i) ∧ σs(i + 1) = σs(i) + σx(i)
)

We have

�SumAtomic� = [σx � σy | ∃σs : σs(0) = 0 ∧ (∀i : σy(i) = σs(i) ∧ σs(i + 1) = σs(i) + σx(i)
)]

which is equivalent to (14).

4.3.2. Characterization of legal input traces
The following lemma characterizes the legal input traces for various types of MPTs:

Lemma 9. The set of legal input traces of an RPT {p} ◦ [r] is p:

legal({p} ◦ [r]) = p.

The set of legal input traces of a GPT {r] is in(r):

legal({r]) = in(r).

The set of legal input traces of an STS component C = sts(x, y, s, init, r) is equal to ¬illegalC :

legal(�C�) = ¬illegalC .

The set of legal input traces of a QLTL component C = qltl(x, y, ϕ) is:

legal(�C�) = {σx | σx |= ∃y : ϕ}.

The first two properties of Lemma 9 give the semantic characterization of legal inputs for RPTs and GPTs. The last
two properties link the semantic definition of legal inputs to the operational definition of legal inputs for STS and QLTL
components. Lemma 9 is important for the results of Section 5.9.
23

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
4.3.3. Semantic equivalence and refinement for components

Definition 21. Two components C and C ′ are (semantically) equivalent, denoted C ≡ C ′ , if �C� = �C ′�. Component C is refined
by component C ′ , denoted C � C ′ , if �C� � �C ′�.

The relation ≡ is an equivalence relation, and � is a preorder relation (i.e., reflexive and transitive). We also have

(C � C ′ ∧ C ′ � C) ⇐⇒ (C ≡ C ′)
The notions of semantic equivalence and refinement for components are needed in order to express the compositionality

properties in Section 4.3.4 that follows. Semantic equivalence is also necessary in order to establish the correctness of the
symbolic transformations proposed in Section 5.

4.3.4. Compositionality properties
Several desirable compositionality properties follow from our semantics:

Theorem 5. Let C1 , C2 , C3 , and C4 be four (possibly composite) components. Then:

1. (Serial composition is associative:) (C1 ; C2) ; C3 ≡ C1 ; (C2 ; C3).
2. (Parallel composition is associative:) (C1 ‖ C2) ‖ C3 ≡ C1 ‖ (C2 ‖ C3).
3. (Parallel composition distributes over serial composition:) If �C1� and �C2� are GPTs and �C3� and �C4� are RPTs, then (C1 ‖

C2) ; (C3 ‖ C4) ≡ (C1 ; C3) ‖ (C2 ; C4).
4. (Refinement is preserved by composition:) If C1 � C2 and C3 � C4 , then:

(a) C1 ; C3 � C2 ; C4
(b) C1 ‖ C3 � C2 ‖ C4
(c) fdbk(C1) � fdbk(C2).

In addition to the above, the requirements a component satisfies are preserved by refinement. Informally, if C satisfies
some requirement ϕ and C � C ′ then C ′ also satisfies ϕ . Although we have not formally defined what requirements are
and what it means for a component to satisfy a requirement, these concepts are naturally captured in the RCRS framework
via the semantics of components as MPTs. In particular, since our components are generally open systems (i.e., they have
inputs), we can express requirements using Hoare triples of the form p{C}q, where C is a component, p is an input property,
and q is an output property. Then, p{C}q holds iff the outputs of C are guaranteed to satisfy q provided the inputs of C
satisfy p. Formally: p{C}q ⇐⇒ p ⊆ �C�(q). This definition is the same as the one for predicate transformers from [12] and
has been also explored in other contexts, e.g. [8].

Theorem 6. C � C ′ iff ∀p, q : p{C}q ⇒ p{C ′}q.

Theorem 6 shows that refinement is equivalent to substitutability. Substitutability states that a component C ′ can replace
another component C in any context, i.e., ∀p, q : p{C}q ⇒ p{C ′}q.

5. Symbolic reasoning

So far we have defined the syntax and semantics of RCRS. These already allow us to specify and reason about systems
in a compositional manner. However, such reasoning is difficult to do “by hand”. For example, if we want to check whether
a component C is refined by another component C ′ , we must resort to proving the refinement relation �C� � �C ′� of
their corresponding MPTs, �C� and �C ′�. This is not an easy task, as MPTs are complex mathematical objects. Instead, we
would like to have computer-aided, and ideally fully automatic techniques. In the above example of checking refinement, for
instance, we would like ideally to have an algorithm that takes as input the syntactic descriptions of C and C ′ and replies
yes/no based on whether �C� � �C ′� holds. We say “ideally” because we know that in general such an algorithm cannot
exist. This is because we are not making a-priori any restrictions on the logics used to describe C and C ′ , which means that
the existence of an algorithm will depend on the decidability of these logics. In this section, we describe how reasoning
in RCRS can be done symbolically, by automatically manipulating the formulas used to specify the components involved. As
we shall show, most of the transformations are purely syntactic, and the remaining problems can be reduced to checking
satisfiability of first-order formulas formed by combinations of the formulas of the original components. This means that
these problems are decidable whenever the corresponding first-order logics are decidable.

5.1. Syntactic transformation of STS components to QLTL components

Our framework allows the specification of several types of atomic components, some of which are special cases of others,
as summarized in Fig. 8. In §3, we have already shown how the different types of STS components are related, from the
24

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
qltl

sts

stateless det

stateless_det

Fig. 8. Lattice of atomic components: lower types are special cases of higher types.

most specialized deterministic stateless STS components, to the general STS components. By definition, the semantics of the
special types of STS components is defined via the semantics of general STS components (see §4). In this subsection, we
show that STS components can be viewed as special cases of QLTL components.

Specifically, we show how an STS component can be syntactically transformed into a semantically equivalent QLTL com-
ponent. This transformation also shows that STS property transformers are a special case of QLTL property transformers,
as already claimed in Fig. 7. Note that this containment is not obvious simply by looking at the definitions of these MPT
subclasses (cf. §4.3), as QLTL property transformers are defined as GPTs (equation (5)), whereas STS property transformers
are defined as RPTs (equation (9)). Although RPTs are generally a superclass, not a subclass, of GPTs, the transformation
proposed below shows that the RPTs obtained from STS components can indeed be captured as GPTs. The transformation
of STS into QLTL components also enables us to apply several algorithms which are available for QLTL components to STS
components as well.

We can transform an STS component C = sts(x, y, s, init, trs) into a QLTL component using the syntactic transformation
operator sts2qltl:

sts2qltl(sts(x, y, s, init, trs)) = qltl(x, y, (∀s, y : init ⇒ (ϕ Lϕ′)) ∧ (∃s : init ∧ Gϕ)) (15)

where: ϕ = trs[s′ := � s]; e[z := e′] denotes the substitution of all free occurrences of variable z by expression e′ in
expression e; and ϕ′ = (∃s′, y : trs). Here we use the L operator to express the fact that however the computation
proceeds, starting with an initial state, and an input sequence x, if we reach the computation step n ((∀0 ≤ i < n :
σ i |= φ) ⇔ (∀0 ≤ i < n : trs(si, xi, si+1, yi))), then ϕ′ must hold at n, i.e. we must be able to continue the computation
(∃sn+1, yn : trs(sn, xn, sn+1, yn)).

The theorem that follows demonstrates the correctness of the above transformation, that is, that the resulting QLTL
component is semantically equivalent to the original STS component:

Theorem 7. For any STS component C = sts(x, y, s, init, trs) s.t. init is satisfiable, C ≡ sts2qltl(C).

Example 16. It is instructive to see how the above transformation specializes to some special types of STS components. In
particular, we will show how it specializes to stateless STS components.

Let C = stateless(x, y, trs) and let C ′ = stateless2sts(C) = sts(x, y, (), true, trs). Applying the sts2qltl
transformation to C ′ , for which s = () and init = true, we obtain:

sts2qltl(C ′) = qltl
(
x, y, (∀y : (ϕ Lϕ′)) ∧ Gϕ)

)

where ϕ = trs[() := � ()] = trs and ϕ′ = (∃y : trs). Using the properties of Lemma 2, and the fact that semantically equiva-
lent LTL formulas result in semantically equivalent QLTL components, we can simplify sts2qltl(C ′) further:

sts2qltl(C ′)
= {Definition of sts2qltl}

qltl
(
x, y, (∀y : (trs L (∃y : trs))) ∧ G trs

)

≡ {Lemma 2, trs does not contain temporal operators, and y is not free in (∃y : trs)}
qltl

(
x, y, ((∃y : trs) L (∃y : trs)) ∧ G trs

)

≡ {Lemma 2}
qltl

(
x, y,G (∃y : trs) ∧ G trs

)

≡ {Lemma 2 and trs does not contain temporal operators}
qltl

(
x, y, (∃y : G trs) ∧ G trs

)

≡ {(∃y : G trs) ∧ G trs equivalent to G trs}
qltl

(
x, y, G trs

)

25

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
Note that in the above derivation we use the equivalence symbol ≡, in addition to the equality symbol =. Recall that
≡ stands for semantical equivalence of two components (cf. §4.3.3). On the other hand, = for components means syntactic
equality. By definition of the semantics, if two QLTL formulas are equivalent, then the corresponding QLTL components are
equivalent.

Based on the above, we define the transformation stateless2qltl of a stateless component C = stateless(x, y,

trs), into a QLTL component as follows:

stateless2qltl(C) = qltl
(
x, y, G trs

)
. (16)

5.2. Syntactic and symbolic transformations of special atomic components to more general atomic components

Based on the lattice in Fig. 8, we define all remaining mappings from more special atomic components to more general
atomic components, by composing the previously defined mappings sts2qltl, stateless2qltl, stateless2sts,
det2sts, stateless_det2stateless and stateless_det2det, as appropriately.

We note that all these mappings are purely syntactic. However, in order to obtain a final simplified result, more semantic
manipulations may be needed, such as checking formula validity or satisfiability, as mentioned in the introduction to this
section. This is illustrated in the case of det2qltl(UnitDelay) in Example 17 that follows. Because of this, we may use
the term symbolic rather than syntactic to describe these transformations.

For mapping stateless deterministic STS components to QLTL components, we have two possibilities: stateless_det→
det→ sts→ qltl and stateless_det→ stateless→ qltl. We choose the transformation stateless_det→
stateless→ qltl because it results in a simpler formula:

stateless_det2qltl(C) = stateless2qltl(stateless_det2stateless(C)) (17)

Example 17. Consider the following STS components:

C1 = stateless
(
x, y, y > x

)

C2 = stateless
(
x, (), x > 0

)

UnitDelay= det
(
x, s,0,true, x, s

)

Then:

stateless2qltl(C1) = qltl
(
x, y, G y > x

)

stateless2qltl(C2) = qltl
(
x, (), G x > 0

)

and

det2qltl(UnitDelay)

= {Definitions}
qltl

(
x, y, (∀s, y : s = 0 ⇒ (true∧ � s = x ∧ y = s) L (∃s′, y : true∧ s′ = x ∧ y = s)) ∧

(∃s : s = 0 ∧ G (true∧ � s = x ∧ y = s))
)

≡ { (∃s′, y : true∧ s′ = x ∧ y = s) is true and Lemma 2 }
qltl

(
x, y, (∃s : s = 0 ∧ G (� s = x ∧ y = s))

)

≡ {Lemma 2}
qltl

(
x, y, (∃s : y = 0 ∧ G (y = s) ∧ G (� s = x))

)

≡ { G (y = s) is true so we can replace s by y }
qltl

(
x, y, (∃s : y = 0 ∧ G (y = s) ∧ G (� y = x))

)

≡ { Logical properties }
qltl

(
x, y, (∃s : G (y = s)) ∧ y = 0 ∧ G (� y = x)

)

≡ { Lemma 2 }
qltl

(
x, y, (G (∃s : y = s)) ∧ y = 0 ∧ G (� y = x)

)

≡ { Logical properties }
qltl

(
x, y, y = 0 ∧ G (� y = x)

)
.

26

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
5.3. Syntactic computation of serial composition

Given a composite component C formed as the serial composition of two atomic components A and B , i.e., C = A ; B ,
we would like to compute a new, atomic component Ca , such that Ca is semantically equivalent to C . Because atomic
components are by definition represented syntactically (and symbolically), being able to reduce composite components into
atomic components means that we are able to symbolically compute composition operators.

In order to compute serial composition, we introduce the syntactic transformation operator serial, which computes
Ca := serial(A, B). We start by defining how serial works on two atomic components of the same type. Then we generalize
serial to any two atomic components.

5.3.1. Syntactic serial composition of two QLTL components
Let C = qltl(x, y, ϕ) and C ′ = qltl(y, z, ϕ′) such that C ; C ′ is well formed. Then their syntactic serial composition,

denoted serial(C, C ′), is the QLTL component defined by

serial(C, C ′) = qltl
(
x, z, (∀y : ϕ ⇒ (∃z : ϕ′)) ∧ (∃y : ϕ ∧ ϕ′)

)
(18)

Note that in the above definition (as well as the ones that follow) we assume that the output variable of C and the input
variable of C ′ have the same name (y) and that the names x, y and z are distinct. In general, this may not be the case. This
is not a problem, as we can always rename variables such that this condition is met. Note that variable renaming does not
change the semantics of components (cf. §3.2.2).

The intuition behind the formula in (18) is as follows. The second conjunct ∃y : ϕ ∧ ϕ′ ensures that the both contracts
ϕ and ϕ′ of the two components are enforced in the composite contract. The reason we use ∃y : ϕ ∧ ϕ′ instead of just
the conjunction ϕ ∧ ϕ′ is that we want to eliminate (“hide”) internal variable y. (Alternatively, we could also have chosen
to output y as an additional output, but would then need an additional hiding operator to remove y.) The first conjunct
∀y : ϕ ⇒ (∃z : ϕ′) is a formula on the input variable x of the composite component (since all other variables y and z are
quantified). This formula restricts the legal inputs of C to those inputs for which, no matter which output C produces, this
output is guaranteed to be a legal input for the downstream component C ′ . For an extensive discussion of the intuition and
justification behind this definition, see [86]. Also note the similarities between (18) and the RPT corresponding to S ◦ S ′ in
Theorem 2.

Sections 5.3.2 to 5.3.5 that follow provide similar syntactic transformations for the syntactic serial composition of pairs
of various types of atomic STS components, from general STS components, to stateless deterministic STS components. All
transformations follow the same spirit as (18) and the RPT corresponding to S ◦ S ′ in Theorem 2 mentioned above. However,
the more specialized the STSs are, the simpler the resulting formula becomes, which justifies the interest in examining each
case separately. Section 5.3.6 defines the syntactic serial composition of two atomic components which are not of the same
type, e.g., a stateful component and a stateless component.

5.3.2. Syntactic serial composition of two general STS components
Let C = sts(x, y, s, init, trs) and C ′ = sts(y, z, t, init′, trs′) be two general STS components such that C ; C ′ is well

formed. Then:

serial(C, C ′) = sts
(
x, z, (s, t), init ∧ init′, (∃s′, y : trs) ∧ (∀s′, y : trs ⇒ (∃t′, z : trs′)) ∧ (∃y : trs ∧ trs′)

)
(19)

5.3.3. Syntactic serial composition of two stateless STS components
Let C = stateless(x, y, trs) and C ′ = stateless(y, z, trs′) be two stateless STS components such that C ; C ′ is well

formed. Then

serial(C, C ′) = stateless
(
x, z, (∀y : trs ⇒ (∃z : trs′)) ∧ (∃y : trs ∧ trs′)

)
(20)

5.3.4. Syntactic serial composition of two deterministic STS components
Let C = det(x, s, a, p, next, out) and C ′ = det(y, t, b, p′, next′, out′) be two deterministic STS components such that their

serial composition C ; C ′ is well formed. Then:

serial(C, C ′) = det(x, (s, t), (a,b), p ∧ p′[y := out], (next,next′[y := out]),out′[y := out]) (21)

5.3.5. Syntactic serial composition of two stateless deterministic STS components
Finally, let C = stateless_det(x, p, out) and C ′ = stateless_det(y, p′, out′) be two stateless deterministic STS

components such that their serial composition C ; C ′ is well formed. Then:

serial(C, C ′) = stateless_det(x, p ∧ p′[y := out],out′[y := out]) (22)
27

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
5.3.6. Syntactic serial composition of two arbitrary atomic components
In general, we define the syntactic serial composition of two atomic components C and C ′ by using the mappings of

less general components to more general components (Fig. 8), as appropriate. For example, if C is a deterministic STS
component and C ′ is a stateless STS component, then serial(C, C ′) = serial(det2sts(C), stateless2sts(C ′)). Similarly,
if C is a QLTL component and C ′ is a deterministic STS component, then serial(C, C ′) = serial(C, det2qltl(C ′)). Formally,
assume that atm, atm′ ∈ {qltl, sts, stateless, det, stateless_det} are the types of the components C and C ′ , and
common = atm ∨ atm′ is the least general component type that is more general than atm and atm′ as defined in Fig. 8. Then

serial(C, C ′) = serial(atm2common(C),atm′2common(C ′)) (23)

5.3.7. Correctness of syntactic serial composition
The following theorem demonstrates that our syntactic computations of serial composition are correct, i.e., that the

resulting atomic component serial(C, C ′) is semantically equivalent to the original composite component C ; C ′:

Theorem 8. If C and C ′ are two atomic components, then

C ; C ′ ≡ serial(C, C ′).

Example 18. Consider the following STS components:

C3 = stateless(u, (x, y),true)

C4 = stateless_det((x, y), y �= 0,
x

y
)

Then:

serial(C3, C4) = serial(C3,stateless_det2stateless(C4))

= serial(stateless(u, (x, y),true),stateless((x, y), z, y �= 0 ∧ z = x

y
))

= stateless(u, z, (∀x, y : true⇒ (∃z : y �= 0 ∧ z = x

y
))

∧ (∃x, y : true∧ y �= 0 ∧ z = x

y
)))

≡ stateless(u, z,false)

As we can see, the composition results in a stateless STS component with input-output formula false. The semantics of
such a component is Fail, indicating that C3 and C4 are incompatible. Indeed, in the case of C3 ; C4, the issue is that C4
requires its second input, y, to be non-zero, but C3 cannot guarantee that. The reason is that the input-output formula of
C3 is true, meaning that, no matter what its input u is, C3 may output any value for x and y, non-deterministically. This
violates the input requirements of C4, causing an incompatibility. We will return to this point in §5.8. We also note that
this type of incompatibility is impossible to prevent, by controlling the input u. In the example that follows, we see a case
where the two components are not incompatible, because the input requirements of the downstream component can be
met by strengthening the input assumptions of the upstream component:

Example 19. Consider the following QLTL components:

C5 = qltl(x, y,G (x ⇒ F y))

C6 = qltl(y, (),G F y)

Then:

serial(C5, C6) = serial(qltl(x, y,G (x ⇒ F y)),qltl(y, (),G F y))

= qltl(x, (), (∀y : (G (x ⇒ F y)) ⇒ G F y) ∧ (∃y : G (x ⇒ F y) ∧ G F y))

≡ qltl(x, (),G F x)

In this example, the downstream component C6 requires its input y to be infinitely often true (G F y). This can be achieved
only if the input x of the upstream component is infinitely often true, which is the condition derived by the serial composi-
tion of C5 and C6 (G F x). Notice that C5 does not impose any a-priori requirements on its input. However, its input-output
relation is the so-called request-response property which can be expressed as: whenever the input x is true, the output y will
eventually become true afterwards (G (x ⇒ F y)). This request-response property implies that in order for y to be infinitely-
often true, x must be infinitely-often true. Moreover, this is the weakest possible condition that can be enforced on x in
order to guarantee that the condition on y holds.
28

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
5.4. Syntactic computation of parallel composition

Given a composite component C formed as the parallel composition of two atomic components A and B , i.e., C = A ‖ B ,
we would like to compute a new atomic component Ca , such that Ca is semantically equivalent to C . To compute Ca , we
introduce the syntactic transformation operator parallel, so that Ca := parallel(A, B). The definition of parallel follows the
same pattern as the one for serial (§5.3).

5.4.1. Syntactic parallel composition of two QLTL components
Let C = qltl(x, y, ϕ) and C ′ = qltl(u, v, ϕ′). Then their syntactic parallel composition, denoted parallel(C, C ′), is the

QLTL component defined by

parallel(C, C ′) = qltl
(
(x, u), (y, v),ϕ ∧ ϕ′) (24)

In the above definition we assume that variable names x, y, u, v are all distinct. If this is not the case, then we rename
variables as appropriately.

5.4.2. Syntactic parallel composition of two general STS components
Let C = sts(x, y, s, init, trs) and C ′ = sts(u, v, t, init′, trs′). Then:

parallel(C, C ′) = sts
(
(x, u), (y, v), (s, t), init ∧ init′, trs ∧ trs′) (25)

5.4.3. Syntactic parallel composition of two stateless STS components
Let C = stateless(x, y, trs) and C ′ = stateless(u, v, trs′). Then

parallel(C, C ′) = stateless
(
(x, u), (y, v), trs ∧ trs′) (26)

5.4.4. Syntactic parallel composition of two deterministic STS components
Let C = det(x, s, a, p, next, out) and C ′ = det(u, t, b, p′, next′, out′). Then:

parallel(C, C ′) = det
(
(x, u), (s, t), (a,b), p ∧ p′, (next,next′), (out,out′)

)
(27)

5.4.5. Syntactic parallel composition of two stateless deterministic STS components
Let C = stateless_det(x, p, out) and C ′ = stateless_det(u, p′, out′). Then:

parallel(C, C ′) = stateless_det
(
(x, u), p ∧ p′, (out,out′)

)
(28)

5.4.6. Syntactic parallel composition of two arbitrary atomic components
Similar to the syntactic serial composition, we define the syntactic parallel composition of two atomic components C

and C ′ by using the mappings of less general components to more general components (Fig. 8), as appropriate. Formally,
assume that atm, atm′ ∈ {qltl, sts, stateless, det, stateless_det} are the types of the components C and C ′ , and
common = atm ∨ atm′ is the least general component type that is more general than atm and atm′ as defined in Fig. 8. Then

parallel(C, C ′) = parallel(atm2common(C),atm′2common(C ′)) (29)

5.4.7. Correctness of syntactic parallel composition
The following theorem demonstrates that our syntactic computations of parallel composition are also correct, i.e., that

the resulting atomic component parallel(C, C ′) is semantically equivalent to the original composite component C ‖ C ′:

Theorem 9. If C and C ′ are two atomic components, then

C ‖ C ′ ≡ parallel(C, C ′).

5.5. Syntactic computation of feedback composition for decomposable deterministic STS components

5.5.1. Decomposable components
We provide a syntactic closed-form expression for the feedback composition of a deterministic STS component, provided

such a component is decomposable. Intuitively, decomposability captures the fact that the first output of the component,
y1, does not depend on its first input, x1. This ensures that the feedback composition (which connects y1 to x1) does not
introduce any circular dependencies.
29

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
e1

e2

. . .

em
•x2, . . . , xn

x1

(a)

e1
e2

. . .

em
•

x1

x2, . . . , xn

(b)

Fig. 9. (a) Decomposable deterministic component; (b) the same component after applying feedback, connecting its first output to x1.

Definition 22 (Decomposability). Let C be a deterministic STS component det
(
(x1, . . . , xn), s, a, p, next, (e1, . . . , em)

)
or a

stateless deterministic STS component stateless_det
(
(x1, . . . , xn), p, (e1, . . . , em)

)
. C is called decomposable if x1 is not

free in e1.

Decomposability is illustrated in Fig. 9a. The figure shows that expression e1 depends only on inputs x2, . . . , xn .

5.5.2. Syntactic feedback of a decomposable deterministic STS component
For a decomposable deterministic STS component C = det((x1, . . . , xn), s, a, p, next, (e1, . . . , em)), its syntactic feedback

composition, denoted feedback(C), is the deterministic STS component defined by

feedback(C) = det
(
(x2, . . . , xn), s,a, p[x1 := e1],next[x1 := e1], (e2[x1 := e1], . . . , em[x1 := e1])

)
(30)

Thus, computing feedback syntactically consists in removing the first input of the component and replacing the correspond-
ing variable x1 by the expression of the first output, e1, everywhere where x1 appears. The feedback operator is illustrated
in Fig. 9b.

5.5.3. Syntactic feedback of a decomposable stateless deterministic STS component
For a decomposable stateless deterministic STS component C = stateless_det((x1, . . . , xn), p, (e1, . . . , em)),

feedback(C) is the stateless deterministic STS component defined by

feedback(C) = stateless_det
(
(x2, . . . , xn), p[x1 := e1], (e2[x1 := e1], . . . , em[x1 := e1])

)
(31)

5.5.4. Correctness of syntactic feedback composition

Theorem 10. If C is a decomposable deterministic STS component, then

fdbk(C) ≡ feedback(C).

Providing closed-form syntactic computations of feedback composition for general components, including possibly non-
deterministic STS and QLTL components, is an open problem, beyond the scope of the current paper. We remark that the
straightforward idea of adding to the contract the equality constraint x = y where y is the output connected in feedback to
input x, does not work.3

In fact, even obtaining a semantically consistent compositional definition of feedback for non-deterministic and non-
input-receptive systems is a challenging problem [73]. Nevertheless, the results that we provide here are sufficient to cover
the majority of cases in practice. In particular, the operator feedback can be used to handle Simulink diagrams, provided
these diagrams do not contain algebraic loops, i.e., circular and instantaneous dependencies (see §5.7).

5.6. Closure properties of MPT subclasses w.r.t. composition operators

In addition to providing symbolic computation procedures, the results of the above subsections also prove closure prop-
erties of the various MPT subclasses of RCRS with respect to the three composition operators. These closure properties are
summarized in Tables 1 and 2.

In a nutshell, both serial and parallel composition preserve the most general type of the composed components, accord-
ing to the lattice in Fig. 8. For instance, the serial (or parallel) composition of two stateless STS components is a stateless
STS component; the serial (or parallel) composition of a stateless STS component and a general STS component is a general
STS component; and so on. Feedback preserves the type of its component (deterministic or stateless deterministic).

3 One of several problems of this definition is that it does not preserve refinement. For example, the stateless component with contract x �= y refines
the stateless component with contract true. Adding the constraint x = y to both contracts yields the components with contracts x = y and false,
respectively, where the latter no longer refines the former. For a more detailed discussion, see [73].
30

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
Table 1
Closure properties of serial and parallel compositions. The table is to be read as follows: given atomic components
C1, C2 of types as specified in a row/column pair, the serial or parallel composition of C1 and C2 is an atomic
component of type as specified in the corresponding table entry.

; and ‖ qltl sts stateless det stateless_det

qltl qltl qltl qltl qltl qltl
sts qltl sts sts sts sts
stateless qltl sts stateless sts stateless
det qltl sts sts det det
stateless_det qltl sts stateless det stateless_det

Table 2
Closure properties of feedback composition.

fdbk det and decomposable stateless_det and decomposable

det stateless_det

atomic(C) :
if C is atomic then

return C

else if C is C ′ ; C ′′ then

return serial(atomic(C ′),atomic(C ′′))
else if C is C ′ ‖ C ′′ then

return parallel(atomic(C ′),atomic(C ′′))
else if C is fdbk(C ′) then

C ′′ := atomic(C ′)
if C ′′ is decomposable then

return feedback(C ′′)
else

fail
else /* impossible by definition of syntax */

fail

Fig. 10. Simplification algorithm for arbitrary composite components.

5.7. Syntactic simplification of arbitrary composite components

The results of the previous subsections show how to simplify into an atomic component the serial or parallel composition
of two atomic components, or the feedback composition of an atomic decomposable component. We can combine these
techniques in order to provide a general syntactic simplification algorithm: the algorithm takes as input an arbitrarily
complex composite component, and returns an equivalent atomic component. The algorithm is shown in Fig. 10.

The algorithm fails only in case it encounters the feedback of a non-decomposable component. Recall that decom-
posability implies determinism (cf. §5.5.1), which means that the test C ′′ is decomposable means that C ′′ is of the form
det((x1, . . .), s, a, p, next, (e1, . . .)) or stateless_det((x1, . . .), p, (e1, . . .)) and x1 is not free in e1.

We note that in practice, our RCRS implementation on top of Isabelle performs more simplifications in addition to those
performed by the procedure atomic. For instance, our implementation may be able to simplify a logical formula φ into an
equivalent but simpler formula φ′ (e.g., by eliminating quantifiers from φ), and consequently also simplify a component,
say, qltl(x, y, φ) into an equivalent but simpler component qltl(x, y, φ′). These simplifications very much depend on the
logic used in the components. Describing the simplifications that our implementation performs is outside the scope of the
current paper, as it belongs in the realm of computational logic. It suffices to say that our tool is not optimized for this
purpose, and could leverage specialized tools and relevant advances in the field of computational logic.

5.7.1. Deterministic and algebraic loop free composite components
In order to state and prove correctness of the algorithm, we extend the notion of determinism to a composite component.

We also introduce the notion of algebraic loop free components, which capture systems with no circular and instantaneous
input-output dependencies.

A (possibly composite) component C is said to be deterministic if every atomic component of C is either a determin-
istic STS component or a stateless deterministic STS component. Formally, C is deterministic iff determ(C) is true, where
determ(C) is defined inductively on the structure of C :
31

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
determ(det(x, s,a, p,n, e)) = true

determ(stateless_det(x, p, e)) = true

determ(sts(x, y, s, init, trs)) = false

determ(stateless(x, y, trs)) = false

determ(C ; C ′) = determ(C) ∧ determ(C ′)
determ(C ‖ C ′) = determ(C) ∧ determ(C ′)
determ(fdbk(C)) = determ(C)

Notice that this notion of determinism applies to a generally composite component C , i.e., a syntactic term in our algebra of
components, involving atomic components possibly composed via the three composition operators. This notion of determin-
ism is the generalization of the syntactically deterministic STS components, which are atomic. This notion of determinism
is also distinct from any semantic notion of determinism (which we have not introduced at all in this paper, as it is not
needed).

For a deterministic component we define its output input dependency relation. Let C be deterministic, and let �in(C) =
X1 × . . .× Xn and �out(C) = Y1 × . . .× Ym . The relation OI(C) ⊆ {1, . . . , m} ×{1, . . . , n} is defined inductively on the structure
of C :

OI(det((x1, . . . , xn), s,a, p,next, (e1, . . . , em))) = {(i, j) | x j is free in ei}
OI(stateless_det((x1, . . . , xn), p, (e1, . . . , em))) = {(i, j) | x j is free in ei}
OI(C ; C ′) = OI(C ′) ◦ OI(C)

OI(C ‖ C ′) = OI(C) ∪ {(i + m, j + n) | (i, j) ∈ OI(C ′)}
where �in(C) = X1 × . . . × Xn

and �out(C) = Y1 × . . . × Ym

OI(fdbk(C)) = {(i, j) | i > 0 ∧ j > 0 ∧ ((i + 1, j + 1) ∈ OI(C)

∨ ((i + 1,1) ∈ OI(C) ∧ (1, j + 1) ∈ OI(C)))}
The intuition is that (i, j) ∈ OI(C) iff the i-th output of C depends on its j-th input.

The OI relation is preserved by the syntactic operations, as shown by the following lemma:

Lemma 10. If C and C ′ are deterministic STS components, then

OI(C ; C ′) = OI(serial(C, C ′))

OI(C ‖ C ′) = OI(parallel(C, C ′)).

If C is also decomposable, then

OI(fdbk(C)) = OI(feedback(C)).

We introduce now the notion of algebraic loop free component. Intuitively, a (possibly composite) deterministic com-
ponent C is algebraic loop free if, whenever C contains a subterm of the form fdbk(C ′), the first output of C ′ does not
depend on its first input. This implies that whenever a feedback connection is formed, no circular dependency is introduced.
It also ensures that the simplification algorithm will never fail. Formally, for a component C such that determ(C) is true,
loop-free(C) is defined inductively on the structure of C :

loop-free(C) = true if C = det(x, s,a, p,next,out)

loop-free(C) = true if C = stateless_det(x, p,out)

loop-free(C ; C ′) = loop-free(C) ∧ loop-free(C ′)
loop-free(C ‖ C ′) = loop-free(C) ∧ loop-free(C ′)
loop-free(fdbk(C)) = loop-free(C) ∧ (1,1) /∈ OI(C)

That is, deterministic atomic components are by definition algebraic loop free. A serial composite component C ; C ′ is alge-
braic loop free if both C and C ′ are algebraic loop free, and similarly for a parallel composite component C ‖ C ′ . A feedback
composite component fdbk(C) is algebraic loop free if C is algebraic loop free and the first output of C does not depend
on its first input.
32

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
5.7.2. Correctness of the simplification algorithm

Theorem 11. Let C be a (possibly composite) component.

1. If C does not contain any fdbk operators then atomic(C) does not fail and returns an atomic component such that atomic(C) ≡
C.

2. If determ(C) ∧ loop-free(C) is true then atomic(C) does not fail and returns an atomic component such that atomic(C) ≡ C.
Moreover, atomic(C) is a deterministic STS component and

OI(C) = OI(atomic(C)).

Proof. The first part of the theorem is a consequence of the fact that the syntactic serial and parallel compositions are
defined for all atomic components and return equivalent atomic components, by Theorems 8 and 9.

For the second part, since we have a recursive procedure, we prove its correctness by assuming the correctness of the
recursive calls. Additionally, the termination of this procedure is ensured by the fact that all recursive calls are made on
“smaller” components. Specifically: we assume that both determ(C) and loop-free(C) hold; and we prove that atomic(C)

does not fail, atomic(C) is a deterministic STS component, atomic(C) ≡ C , and OI(C) = OI(atomic(C)).
We only consider the case C = fdbk(C ′). All other cases are similar, but simpler. Because determ(C) and loop-free(C)

hold, we have that determ(C ′) and loop-free(C ′) also hold, and in addition (1, 1) /∈ OI(C ′). Using the correctness assumption
for the recursive call we have that atomic(C ′) does not fail, C ′′ = atomic(C ′) is a deterministic STS component, C ′′ ≡ C ′ , and
OI(C ′′) = OI(C ′).

Because C ′′ is a deterministic STS component and (1, 1) /∈ OI(C ′) = OI(C ′′), C ′′ is decomposable. From this we have that
D := feedback(C ′′) is defined. Therefore, atomic(C) returns D and does not fail. It remains to show that D has the desired
properties. By the definition of feedback(C ′′) and the fact that C ′′ is a decomposable deterministic STS component, D is
also a deterministic STS component. We also have:

D = feedback(C ′′) ≡ fdbk(C ′′) ≡ fdbk(C ′) = C

where feedback(C ′′) ≡ fdbk(C ′′) follows from Theorem 10 and fdbk(C ′′) ≡ fdbk(C ′) follows from C ′′ ≡ C ′ and the se-
mantics of fdbk.

Finally, using Lemma 10 and OI(C ′′) = OI(C ′), we have

OI(D) = OI(feedback(C ′′)) = OI(fdbk(C ′′)) = OI(fdbk(C ′)) = OI(C). �
Corollary 2. If a component C does not contain any fdbk operators or if determ(C) ∧ loop-free(C) is true, then �C� is a GPT.

Note that condition determ(C) ∧ loop-free(C) is sufficient, but not necessary, for �C� to be a GPT. For example:

Example 20. Consider the following components:

Constfalse = stateless_det
(
x,true,false

)

And = stateless_det
(
(x, y),true, (x ∧ y, x ∧ y)

)

C = Constfalse ;fdbk(And)

Constfalse outputs the constant false. And is a version of logical and with two identical outputs (we need two copies
of the output, because one will be eliminated once we apply feedback). C is a composite component, formed by first
connecting the first output of And in feedback to its first input, and then connecting the output of Constfalse to the
second input of And (in reality, to the only remaining input of fdbk(And)). Observe that C has algebraic loops, that is,
loop-free(C) does not hold. Yet it can be shown that �C� is a GPT (in particular, we can show that C ≡ Constfalse).
Handling cases like this is beyond the scope of this paper and part of future work.

Example 21. The simplification algorithm applied to the component from Fig. 2 results in

atomic(Sum) = atomic(fdbk(Add ;UnitDelay ;Split)) = det(y, s,0, s + y, s).

To see how the above is derived, let us first calculate atomic(Add ; UnitDelay ; Split):
33

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
atomic(Add ;UnitDelay ;Split)

= {Definition of atomic}
serial(atomic(Add ;UnitDelay), Split)

= {Definition of atomic}
serial(serial(Add, UnitDelay), Split)

= {Expanding Add and UnitDelay and choosing suitable variable names}
serial(serial(stateless_det((x, y),true, x + y), det(z, s,0,true, z, s)), Split)

= {Replacing stateless_det((x, y),true, x + y) by det((x, y), (), (),true, (), x + y) according to (1)}
serial(serial(det((x, y), (), (),true, (), x + y), det(z, s,0,true, z, s)), Split)

= {Syntactic computation of inner serial according to (21)}
serial(det((x, y), s,0,true, x + y, s), Split)

= {Expanding Split and choosing suitable variable names}
serial(det((x, y), s,0,true, x + y, s), stateless_det(z,true, (z, z)))

= {Replacing stateless_det(z,true, (z, z)) by det(z, (), (),true, (), (z, z))) according to (1)}
serial(det((x, y), s,0,true, x + y, s), det(z, (), (),true, (), (z, z)))

= {Syntactic computation of remaining serial according to (21)}
det((x, y), s,0,true, x + y, (s, s))

The result det((x, y), s, 0, true, x + y, (s, s)) is a deterministic and input-receptive component with two input vari-
ables x, y, one state variable s, initial state s = 0, next state s′ = x + y, and two outputs which are both equal to s. This
component corresponds precisely to the one illustrated in Fig. 3. This component is decomposable according to Defini-
tion 22, because its first input variable x is not free (in fact, it does not appear at all) in its first output expression s.
Because det((x, y), s, 0, true, x + y, (s, s)) is decomposable, we can now calculate atomic(fdbk(det((x, y), s, 0, true, x +
y, (s, s)))) by expanding the definition of atomic as follows:

atomic(fdbk(det((x, y), s,0,true, x + y, (s, s))))

= {Definition of atomic, det((x, y), s,0,true, x + y, (s, s)) is decomposable}
feedback(det((x, y), s,0,true, x + y, (s, s)))

= {Syntactic computation of feedback according to (30)}
det(y, s,0,true, s + y, s).

This example is available in the public distribution of RCRS in the theory file RCRS_Demo.thy, which can also be
accessed at http://rcrs .gitlab .io /theories /RCRS /RCRS -All /RCRS _Demo .html.

5.8. Checking validity and compatibility

Recall Example 18 given in §5.3.7, of the serial composition of components C3 and C4, resulting in a component with
input-output relation false, implying that �C3 ; C4� = Fail. When this occurs, we say that C3 and C4 are incompatible. We
would like to catch such incompatibilities. This amounts to first simplifying the serial composition C3 ; C4 into an atomic
component C , and then checking whether �C� = Fail.

In general, we say that a component C is valid if �C� �= Fail. Given a component C , we can check whether it is
valid, as follows. First, we simplify C to obtain an atomic component C ′ = atomic(C). If C ′ is a QLTL component of the
form qltl(x, y, ϕ) then C ′ is valid iff ϕ is satisfiable. The same is true if C ′ is a stateless STS component of the form
stateless(x, y, ϕ). If C ′ is a general STS component then we can first transform it into a QLTL component and check
satisfiability of the resulting QLTL formula.

Theorem 12. If C is an atomic component of the form qltl(x, y, ϕ) or stateless(x, y, ϕ), then �C� �= Fail iff ϕ is satisfiable.

As mentioned in the introduction, one of the goals of RCRS is to function as a behavioral type system for reactive
system modeling frameworks such as Simulink. In the RCRS setting, type checking consists in checking properties such as
compatibility of components, as in C3 ; C4 of Example 18 given in §5.3.7. When components are compatible, computing new
34

http://rcrs.gitlab.io/theories/RCRS/RCRS-All/RCRS_Demo.html

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
(stronger) input preconditions like those for C5 ; C6 of Example 19 given in §5.3.7 can be seen as behavioral type inference.
Indeed, the new derived condition G F x in the above example can be seen as an inferred type of the composite component
C5 ; C6.

We note that the decidability of the satisfiability question for ϕ depends on the logic used and the domains of the
variables in the formula. For instance, although ϕ can be a QLTL formula, if it restricts the set of constants to true, has no
functional symbols, and only equality as predicate symbol, then it is equivalent to a QPTL formula,4 for which we can use
available techniques [82].

5.9. Checking input-receptiveness and computing legal inputs symbolically

Given a component C , we often want to check whether it is input-receptive, i.e., whether legal(�C�) =
, or equivalently,
�C�(
) =
. More generally, we may want to compute the legal input values for C , which is akin to type inference as
discussed above. To do this, we will provide a symbolic method to compute legal(�C�) as a formula legal(C). Then, checking
that C is input-receptive amounts to checking that the formula legal(C) is valid, or equivalently, checking that ¬legal(C) is
unsatisfiable. Note that this is also showing how to automate domain/precondition calculations. We assume that C is atomic
(otherwise, we first simplify C using the algorithm of §5.7).

Definition 23. Given an atomic component C , we define legal(C), a formula characterizing the legal inputs of C . legal(C) is
defined based on the type of C :

legal
(
qltl(x, y,ϕ)

) = (∃y : ϕ) (32)

legal
(
sts(x, y, s, init, trs)

) = (∀s, y : init ⇒ (r1 L r2)) (33)

legal
(
stateless(x, y, trs)

) = G (∃y : trs) (34)

legal
(
det(x, s,a, p,next,out)

) = (∀s, y : s = a ⇒ (r3 L p)) (35)

legal
(
stateless_det(x, p,out)

) = G p (36)

where r1 = trs[s′ := � s], r2 = (∃s′, y : trs), and r3 = (� s = next ∧ y = out).

(32) states that the legal input traces of a QLTL component qltl(x, y, ϕ) are characterized by the QLTL formula ∃y :
φ. The latter formula is satisfied by all input traces σx over x for which there exists output trace σy over y such that
(σx, σy) |= ϕ . This characterization follows directly from Lemma 9.

Similarly, (33) provides the QLTL formula ∀s, y : init ⇒ (r1 L r2) characterizing the legal input traces of an STS component
sts(x, y, s, init, trs). This formula is satisfied by an input trace σx over x iff for any state trace σs over s and output trace σy
over y, if init is satisfied (i.e., if the system starts in a legal initial state) then r1 L r2 is satisfied. r1 expands into trs[s′ := � s]
and characterizes the transition relation trs written in QLTL syntax (we have to replace the next-state variable notation s′
in trs with � s which denotes the same thing in QLTL). r2 expands into ∃s′, y : trs and characterizes all the (x, s) (input,
current state) pairs for which there exist next state s′ and output y such that the transition relation trs is satisfied. In other
words, input trace σx is legal if regardless of the nondeterministic choices that the system makes, it does not get stuck (i.e.,
it can always continue by making one more step).

The next theorem shows that legal correctly characterizes the semantic predicate legal:

Theorem 13. If C is an atomic component, then

legal(�C�) = {σx | σx |= legal(C)}.
It follows from Theorem 13 that a component C is input-receptive iff the formula legal(C) is valid.

5.10. Checking refinement symbolically

We end this section by showing how to check whether a component refines another component. Again, we will assume
that the components in question are atomic (if not, they can be simplified using the atomic procedure).

Theorem 14. Let C1 = sts(x, y, s, init, r1), C ′
1 = sts(x, y, s, init′, r′

1), C2 = stateless(x, y, r2), C ′
2 = stateless(x, y, r′

2),
C3 = qltl(x, y, ϕ), and C ′

3 = qltl(x, y, ϕ′). Then:

1. C1 is refined by C ′
1 if the formula

(init′ ⇒ init) ∧ ((∃s′, y : r1) ⇒ (∃s′, y : r′
1)) ∧ ((∃s′, y : r1) ∧ r′

1 ⇒ r) (37)

is valid.

4 For example, the atomic QLTL formula � � x = � y can be translated into the LTL formula X X x ⇔ X y, and the formula � � � x = true into X X X x.
35

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
2. C2 is refined by C ′
2 if and only if the formula

(
(∃y : r2) ⇒ (∃y : r′

2)
) ∧ (

(∃y : r2) ∧ r′
2 ⇒ r2

)
(38)

is valid.
3. C3 is refined by C ′

3 if and only if the formula
(
(∃y : ϕ) ⇒ (∃y : ϕ′)

) ∧ (
((∃y : ϕ) ∧ ϕ′) ⇒ ϕ

)
(39)

is valid.

As the above theorem shows, checking refinement amounts to checking validity (or equivalently, satisfiability of the
negation) of first-order formulas formed by the various symbolic expressions in the component specifications. The exact
logic of these formulas depends on the logics used by the components. For example, if C3 and C ′

3 both use quantifier-free
LTL for φ and φ′ , then in order to check refinement we need to check satisfiability of a first-order QLTL formula.

Specifically, Theorem 14 states that checking that a stateless component C ′
2 refines another stateless component C2 is

equivalent to checking that the input condition of C2 is stronger than that of C ′
2, and that the input-output relation of C ′

2,
restricted to the legal inputs of C2, is stronger than the input-output relation of C2. This result follows from Corollary 1 and
the fact that stateless components are GPTs. The same is true for QLTL components C3 and C ′

3. For STS components C1 and
C ′

1 a similar property holds, with the additional condition that the initial state predicate of C ′
1 must be stronger than that

of C1. We also remark that for STS components the validity of formula (37) is a sufficient but not necessary condition for
refinement. We return to this point towards the end of this section.

Example 22. Recall the QLTL component C = qltl((), t, oven), introduced in Example 10:

oven= (t = 20 ∧ ((t < � t ∧ t < 180) U thermostat))

thermostat= G (180 ≤ t ∧ t ≤ 220)

Let us introduce a refined version C ′ of C :

C ′ = sts((), t, (s, sw), init, trs) where

init = s = 20 ∧ sw = on

trs = (t = s) ∧
(if sw = on then s < s′ < s + 5 else (if s > 10 then s − 5 < s′ < s else s′ = s)) ∧
(if sw = on ∧ s > 210 then sw ′ = off else

(if sw = off ∧ s < 190 then sw ′ = on else sw ′ = sw))

C ′ is an STS component with no input variables, output variable t , and state variables s and sw , recording the current
temperature of the oven, and the on/off status of the switch, respectively. When sw is on, the temperature increases non-
deterministically by up to 5 units, otherwise the temperature decreases nondeterministically by up to 5 units. When the
temperature exceeds 210, the switch is turned off; when the temperature is below 190, the switch is turned on; otherwise
sw remains unchanged. The output t is always equal to the current state s. Initially the temperature is 20, and sw is on.

Using Theorem 14, and the properties of sts2qltl we have:

C � C ′
⇐⇒

C � sts2qltl(C ′)
⇐⇒

qltl((), t,oven) � qltl((), t, (∀s, sw, t : init⇒ (ϕ Lϕ′)) ∧ (∃s, sw : init∧ Gϕ))

where ϕ = trs[s′, sw ′ := � s,� sw] and ϕ′ = (∃s′, sw ′, t : trs)

⇐⇒ {Using Lemma 2, because ϕ′ ⇐⇒ true}
qltl((), t,oven) � qltl((), t, (∃s, sw : init∧ Gϕ))

⇐⇒ {Using Theorem 14}
(
(∃t : oven) ⇒ (∃t, s, sw : init∧ Gϕ)

) ∧ (
((∃t : oven) ∧ (∃s, sw : init∧ Gϕ)) ⇒ oven

)
is valid

⇐⇒ {Because (∃t : oven) ⇐⇒ true and (∃t, s, sw : init∧ Gϕ) ⇐⇒ true}
(
(∃s, sw : init∧ Gϕ) ⇒ oven

)
is valid

Thus, checking whether C ′ refines C amounts to checking whether the QLTL formula
(
(∃s, sw : init ∧ Gϕ) ⇒ oven

)
is

valid. This indeed holds for this example and can be shown using logical reasoning.
36

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
The above example is relatively simple in the sense that in the end refinement reduces to checking implication between
the corresponding contracts. Indeed, this is always the case for input-receptive systems, as in the example above. However,
refinement is not equivalent to implication in the general case of non-input-receptive systems. For example:

Example 23. Consider the components:

C7 = stateless(x, y, x ≥ 0 ∧ y ≥ x)

C8 = stateless(x, y, x ≤ y ≤ x + 10)

Using Theorem 14, we have:

C7 � C8

⇐⇒ {Theorem 14}
((∃y : x ≥ 0 ∧ y ≥ x) ⇒ (∃y : x ≤ y ≤ x + 10)) ∧

((∃y : x ≥ 0 ∧ y ≥ x) ∧ x ≤ y ≤ x + 10 ⇒ x ≥ 0 ∧ y ≥ x) is valid

⇐⇒ {Arithmetic and logical reasoning}
true

Note that the second and third parts of Theorem 14 provide necessary and sufficient conditions, while the first part only
provides a sufficient, but generally not necessary condition. Indeed, the condition is generally not necessary in the case of
STS components with state, as state space computation is ignored by the condition. This can be remedied by transforming
STS components into equivalent QLTL components and then applying the third part of the theorem. An alternative which
may be more tractable, particularly in the case of finite-state systems, is to use techniques akin to strategy synthesis in
games, such as those proposed in [86] for finite-state relational interfaces.

Another limitation of the first part of Theorem 14 is that it requires the two STS components to have the same state
space, i.e., the same state variable s. This restriction can be lifted using the well-known idea of data refinement [48,10].

Theorem 15. Let C1 = sts(x, y, s, init, r), C ′
1 = sts(x, y, t, init′, r′) be two STS components, and D a (data refinement) expression

on variables s and t. Let p = (∃s′, y : r) and p′ = (∃t′, y : r′). If the formulas

(∀t : init′ ⇒ (∃s : D ∧ init)) (40)

(∀t, x, s : D ∧ p ⇒ p′) (41)

(∀t, x, s, t′, y : D ∧ p ∧ r′ ⇒ (∃s′ : D[t, s := t′, s′] ∧ r)) (42)

are valid, then C1 is refined by C ′
1 .

Theorem 15 is a generalization of the first part of Theorem 14 to two STS components C1 and C ′
1 with distinct state

variables s and t , respectively. Specifically, the first part of Theorem 14 can be seen as a special case of Theorem 15 where D
is the relation s = t . In general, D may be a different relation linking the state variables of C1 to those of C ′

1. For example, C1
maybe a more abstract version of C ′

1, so that in C1 state variable s represents a set, whereas in C ′
1 that set is implemented

as a list represented by state variable t . In that case, D may be the relation representing what it means for t to be the
correct implementation of s.

6. Toolset and case studies

The RCRS framework comes with a toolset, illustrated in Fig. 11. The toolset is publicly available under the MIT license
and can be downloaded from http://rcrs .gitlab .io/. The toolset is described in detail in papers [35–37]. In summary, the
toolset consists of:

• A full implementation of the RCRS theory in Isabelle [65]. The implementation consists of 22 theory files and a total
of 27588 lines of Isabelle code. A detailed description of the implementation can be found in the file document.pdf
available in the public distribution of RCRS.

• A formal Analyzer, which is a set of procedures implemented on top of Isabelle and the functional programming lan-
guage SML. The Analyzer performs compatibility checking, automatic contract simplification, and other functions.

• A formalization of Simulink characterizing basic Simulink blocks as RCRS components and implementing those as a
library of RCRS/Isabelle. At the time of writing this paper, 48 of Simulink’s blocks can be handled.

• A Translator: a Python program translating Simulink hierarchical block diagrams into RCRS code.
37

http://rcrs.gitlab.io/

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
Fig. 11. The RCRS toolset.

We implemented in Isabelle a shallow embedding [17] of the language introduced in §3. The advantage of a shallow
embedding is that all datatypes of Isabelle are available for specification of components, and we can use the existing
Isabelle mechanism for renaming bound variables in compositions. The disadvantage of this shallow embedding is that we
cannot express Algorithm 10 within Isabelle (hence the “manual” proof that we provide for Theorem 11). A deep embedding,
in which the syntax of components is defined as a datatype of Isabelle, is possible, and is left as an open future work
direction.

We implemented Algorithm 10 in SML, the meta-language of Isabelle. The SML program takes as input a component
C and returns not only a simplified atomic component atomic(C), but also a proved Isabelle theorem of the fact C ≡
atomic(C). The simplification program, as well as a number of other procedures to perform compatibility checking, validity
checking, etc., form what we call the Analyzer in Fig. 11.

The Translator takes as input a Simulink model and produces an RCRS/Isabelle theory file containing: (1) the definition
of all atomic and composite components representing the Simulink diagram; and (2) embedded bottom-up simplification
procedures and the corresponding correctness theorems. By running this theory file in Isabelle, we obtain an atomic com-
ponent corresponding to the top-level Simulink model, equivalent to the original composite component. As a special case, if
the Simulink diagram contains inconsistencies (e.g., division by zero), these are detected by obtaining Fail as the top-level
atomic component. The error can be localized by finding earlier points in the Simulink hierarchy (subsystems) which already
resulted in Fail.

As mentioned earlier, how to obtain a composite component from a graphical block diagram is an interesting problem.
This problem is studied in depth in [34], where several translation strategies are proposed. These various strategies all
yield semantically equivalent components, but with different trade-offs in terms of size, readability, effectiveness of the
simplification procedures, and so on. The Translator implements all these translation strategies, allowing the user to explore
these trade-offs. Further details on the translation problem are provided in [34,69]. A proof that the translation strategies
yield semantically equivalent components is provided in [70]. This proof, which has been formalized in Isabelle, is a non-
trivial result: the entire formalization of the translation algorithms and the proof is 13579 lines of Isabelle code.

We have used the RCRS toolset on several case studies, including a real-life benchmark provided by the Toyota motor
company. The benchmark involves a Fuel Control System (FCS) described in [49,50]. FCS aims at controlling the air mass and
injected fuel in a car engine such that their ratio is always optimal. This problem has important implications on lowering
pollution and costs by improving the engine performance. Toyota has made several versions of FCS publicly available as
Simulink models at https://cps -vo .org /group /ARCH /benchmarks.

We have used the RCRS toolset to process two of the three Simulink models in the FCS benchmark suite (the third
model contains blocks that are currently not implemented in the RCRS component library). A typical model in this set has a
3-layer hierarchy with a total of 104 Simulink block instances (97 basic blocks and 7 subsystems), and 101 connections out
of which 8 are feedbacks. Each basic Simulink block is modeled in our framework by an atomic STS component (possibly
stateless). These atomic STS components are created once, and form part of the RCRS implementation, which is reused for
different Simulink models. The particular FCS diagram is translated into RCRS using the Translator, and simplified within
Isabelle using our SML simplification procedure. After simplification, we obtain an atomic deterministic STS component with
no inputs, 7 outputs, and 14 state variables. Its contract (which is 8337 characters long) includes a condition on the state
variables, in particular, that a certain state variable must always be non-negative (as its value is fed into a square-root
block). This condition makes it not immediately obvious that the whole system is valid (i.e., not Fail). However, we can
show after applying the transformation sts2qltl that the resulting formula is satisfiable, which implies that the original
model is consistent (i.e., no connections result in incompatibilities, there are no divisions by zero, etc.). This illustrates the
use of RCRS as a powerful static analysis tool. More details on the FCS case study are provided in [34,69,35].

An additional case study is provided in [71], where the RCRS theory and toolset are applied for modeling systems in
languages for Programmable Logic Controllers. As an example [71] models a system written in ladder logic for turning on
and off lights according to a certain pattern.
38

https://cps-vo.org/group/ARCH/benchmarks

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
7. Related work

Several formal compositional frameworks exist in the literature. Most closely related to RCRS are the frameworks of
FOCUS [18], input-output automata [58], reactive modules [6], interface automata [25], and Dill’s trace theory [32]. RCRS
shares with these frameworks many key compositionality principles, such as the notion of refinement. At the same time,
RCRS differs and complements these frameworks in important ways. Specifically, FOCUS, IO-automata, and reactive modules,
are limited to input-receptive systems, while RCRS is explicitly designed to handle non-input-receptive specifications. The
benefits of non-input-receptiveness are discussed extensively in [86] and will not be repeated here (see also [88]). Interface
automata are a low-level formalism whereas RCRS specifications and reasoning are symbolic. For instance, in RCRS one can
naturally express systems with infinite state-spaces, input-spaces, or output-spaces. (Such systems can even be handled
automatically, provided the corresponding logic they are expressed in is decidable.) Both interface automata and Dill’s trace
theory use a single form of asynchronous parallel composition, whereas RCRS has three primitive composition operators
(serial, parallel, feedback) with synchronous semantics.

Our work adapts and extends to the reactive system setting many of the ideas developed previously in a long line
of research on correctness and compositionality for sequential programs. This line of research goes back to the works of
Floyd, Hoare, Dijkstra, and Wirth, on formal program semantics, weakest preconditions, program development by stepwise
refinement, and so on [38,47,30,89]. It also goes back to game-theoretic semantics of sequential programs as developed in
the original refinement calculus [12], as well as to contract-based design [61]. Many of the concepts used in our work are in
spirit similar to those used in the above works. For instance, an input-output formula φ used in an atomic component in our
language can be seen as a contract between the environment of the component and the component itself: the environment
must satisfy the contract by providing to the component legal inputs, and the component must in turn provide legal outputs
(for those inputs). On the other hand, several of the concepts used here come from the world of reactive systems and as
such do not have a direct correspondence in the world of sequential programs. For instance, this is the case with feedback
composition.

RCRS extends refinement calculus from predicate to property transformers. Extensions of refinement calculus to infinite
behaviors have also been proposed in the frameworks of action systems [13], fair action systems [14], and Event B [3].
These frameworks use predicate (not property) transformers as semantic foundation; they can handle certain property
patterns (e.g., fairness) by providing proof rules for these properties, but they do not treat liveness and LTL properties in
general [14,91,46]. The Temporal Logic of Actions [53] can be used to specify liveness properties, but does not distinguish
between inputs and outputs, and as such cannot express non-input-receptive components. A thorough comparison of the
relational interfaces precursor of RCRS and contract frameworks for system design [15] is made in [66].

Our specifications can be seen as “rich”, behavioral types [54,25]. Indeed, our work is closely related to programming
languages and type theory, specifically, refinement types [39], behavioral types [64,55,29], and liquid types [75].

Behavioral type frameworks have also been proposed in reactive system settings. In the SimCheck framework [76],
Simulink blocks are annotated with constraints on input and output variables, much like stateless components in RCRS.
RCRS is more general as it also allows one to specify stateful components. RCRS is also a more complete compositional
framework, with composition operators and refinement, which are not considered in [76]. Other behavioral type theories
for reactive systems have been proposed in [26,21,33]. Compared to RCRS, these works are less general. In particular, [26,33]
are limited to specifications which separate the assumptions on the inputs from the guarantees on the outputs, and as such
cannot capture input-output relations. [21] considers a synchronous model which allows to specify legal values of inputs
and outputs at the next step, given the current state. This model does not allow to capture relations between inputs and
outputs within the same step, which RCRS allows.

Our work is related to formal verification frameworks for hybrid systems [5]. Broadly speaking, these can be classi-
fied into frameworks following a model-checking approach, which typically use automata-based specification languages and
state-space exploration techniques, and those following a theorem-proving approach, which typically use logic-based spec-
ifications. More closely related to RCRS are the latter, among which, CircusTime [20], KeYmaera [41], and the PVS-based
approach in [2]. CircusTime can handle a larger class of Simulink diagrams than the current implementation of RCRS. In
particular, CircusTime can handle multi-rate diagrams, where different parts of the model work at different rates (periods).
On the other hand, CircusTime is based on predicate (not property) transformers, and as such cannot handle liveness prop-
erties. KeYmaera is a theorem prover based on differential dynamic logic [67], which is itself based on dynamic logic [43].
The focus of both KeYmaera and the work in [2] is verification, and not compositionality. For instance, these works do not
distinguish between inputs and outputs and do not investigate considerations such as input-receptiveness. ClawZ is a trans-
lator of Simulink diagrams into Z [9]. The work of [74] distinguishes inputs and outputs, but provides a system model where
the output relation is separated from the transition relation, and where the output relation is assumed to be total, meaning
that there exists an output for every input and current state combination. This does not allow to specify non-input-receptive
stateless components, such as for example the Div component from §3.

Our component algebra is similar to the algebra of flownomials [83] and to the relational model for non-deterministic
dataflow [45]. In [23], graphs and graph operations which can be viewed as block diagrams are represented by algebraic
expressions and operations, and a complete equational axiomatization of the equivalence of the graph expressions is given.
This is then applied to flow-charts as investigated in [78]. The translation of block diagrams in general and Simulink in
particular has been treated in a large number of papers, with various goals, including verification and code generation
39

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
(e.g., see [87,60,22,56,79,16,92–94,62]). Although we share several of the ideas of the above works, our main goal here is
not to formalize the language of block diagrams, neither their translation to other formalisms, but to provide a complete
compositional framework for reasoning about reactive systems.

RCRS is naturally related to compositional verification frameworks, such as [42,1,59,80,44,27,28]. In particular, compo-
sitional verification frameworks often make use of a refinement relation such as trace inclusion or simulation [80,44].
However, the focus of these frameworks is different than that of RCRS. In compositional verification, the focus is to “break
down” a large (and usually computationally expensive) verification task into smaller (and hopefully easier to calculate) sub-
tasks. For this purpose, compositional verification frameworks employ several kinds of decomposition rules. An example of
such a rule is the so-called precongruence rule (i.e., preservation of refinement by composition): if P1 refines Q 1, and P2
refines Q 2, then the composition P1‖P2 refines Q 1‖Q 2. This, together with preservation of properties by refinement, allows
us to conclude that P1‖P2 satisfies some property φ, provided we can prove that Q 1‖Q 2 satisfies φ. The latter might be a
simpler verification task, if Q 1 and Q 2 are smaller than P1 and P2. The essence of compositional verification is in finding
such abstract versions Q 1 and Q 2 of the concrete processes in question, P1 and P2, and employing decomposition rules
like the one above in the hope of making verification simpler. RCRS can also be used for compositional verification: indeed,
RCRS provides both the precongruence rule, and preservation of properties by refinement. Note that, in traditional settings,
precongruence is not always powerful enough, and for this reason most compositional verification frameworks employ more
complex decomposition rules (e.g., see [63]). In settings which allow non-input-receptive components, such as ours, there
are indications that the precongruence rule is sufficient for compositional verification purposes [81], although more work is
required to establish this in the specific context of RCRS. Such work is beyond the scope of the current paper. We also note
that, beyond compositional verification with precongruence, RCRS provides a behavioral type theory which allows to state
system properties such as compatibility, which is typically not available in compositional verification frameworks.

Refinement can be seen as the inverse of abstraction, and as such our framework is related to general frameworks such
as abstract interpretation [24]. Several abstractions have been proposed in reactive system settings, including relational ab-
stractions for hybrid systems, which are related to Simulink [77]. The focus of these works is verification, and abstraction
is used as a mechanism to remove details from the model that make verification harder. In RCRS, the simplification proce-
dure that we employ can be seen as an abstraction process, as it eliminates internal variable information. However, RCRS
simplification is an exact abstraction, in the sense that it does not lose any information: the final system is equivalent to
the original one, and not an over- or under-approximation, as is usually the case with typical abstractions for verification
purposes.

8. Conclusion

We presented the Refinement Calculus of Reactive Systems (RCRS), a compositional framework for modeling and rea-
soning about reactive systems. In contrast to other frameworks, in RCRS we are able to model input-output systems which
are both non-deterministic and non-input-receptive, which allows for local compatibility checks similar to type checking in
programming languages. RCRS contains a rich language which allows one to describe both atomic and composite systems
with synchronous behavior. The semantics of RCRS is based on the theory of monotonic property transformers, an extension
of the theory of monotonic predicate transformers from classic refinement calculus. Among other methods for symbolic
reasoning, we presented techniques for symbolic composition (reducing a composite system to an atomic system), checking
compatibility, and checking refinement. We also briefly presented the RCRS toolset which includes a full implementation of
RCRS in the Isabelle theorem prover (more than 27k lines of Isabelle code) and a Simulink-to-RCRS translator. This paper
focuses on the theory and methodology of RCRS, its formal semantics, and techniques for symbolic and computer-aided
reasoning. For more information about the toolset we refer the reader to the relevant papers [34,69,35,36,70,37], as well as
the toolset’s web site http://rcrs .gitlab .io/ which contains up-to-date information.

RCRS is an ongoing project, and a number of problems remain open. Future work directions include:

• An extension of the framework to systems with algebraic loops, which necessitates handling instantaneous feedback.
Here, the preliminary ideas of [73] can be helpful in defining the semantics of instantaneous feedback. However, [73]
does not provide solutions on how to obtain symbolic closed-form expression for the feedback of general components.

• Extension of the results of §5.5 to general components, possibly non-deterministic or non-decomposable.
• An extension of the framework to acausal systems, i.e., systems without a clear distinction of inputs and outputs [40].
• An extension of the framework to stochastic systems.
• The development of better symbolic reasoning techniques, such as simplification of logical formulas, decision proce-

dures, etc.
• Application of the framework to other domains, such as machine learning and AI.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.
40

http://rcrs.gitlab.io/

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
Acknowledgments

This work was partially supported by the Academy of Finland (grant number 265939) and the U.S. National Science
Foundation (awards CNS-1329759 and CNS-1801546). Dragomir was supported during the writing of this paper by the
Horizon 2020 Programme Strategic Research Cluster (grant agreement #730080 and #730086).

References

[1] M. Abadi, L. Lamport, Conjoining specifications, ACM Trans. Program. Lang. Syst. 17 (3) (1995) 507–535.
[2] E. Ábrahám-Mumm, M. Steffen, U. Hannemann, Verification of hybrid systems: formalization and proof rules in PVS, in: 7th Intl. Conf. Engineering of

Complex Computer Systems, ICECCS 2001, 2001, pp. 48–57.
[3] J.-R. Abrial, Modeling in Event-B: System and Software Engineering, 1st edition, Cambridge University Press, New York, NY, USA, 2010.
[4] B. Alpern, F.B. Schneider, Defining liveness, Inf. Process. Lett. 21 (4) (1985) 181–185.
[5] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X. Nicollin, A. Olivero, J. Sifakis, S. Yovine, The algorithmic analysis of hybrid systems, Theor.

Comput. Sci. 138 (1995) 3–34.
[6] R. Alur, T. Henzinger, Reactive modules, Form. Methods Syst. Des. 15 (1999) 7–48.
[7] R. Alur, T. Henzinger, O. Kupferman, M. Vardi, Alternating refinement relations, in: CONCUR’98, in: LNCS, vol. 1466, Springer, 1998.
[8] A. Armstrong, V. Gomes, G. Struth, Building program construction and verification tools from algebraic principles, Form. Asp. Comput. 28 (2) (2016).
[9] R.D. Arthan, P. Caseley, C. O’Halloran, A. Smith, ClawZ: control laws in Z, in: 3rd IEEE International Conference on Formal Engineering Methods, ICFEM

2000, York, England, UK, September 4–7, 2000, Proceedings, 2000, pp. 169–176.
[10] R.J. Back, Correctness Preserving Program Refinements: Proof Theory and Applications, Mathematical Centre Tracts, vol. 131, Mathematisch Centrum,

Amsterdam, 1980.
[11] R.-J. Back, M. Butler, Exploring Summation and Product Operators in the Refinement Calculus, Springer, Berlin, Heidelberg, 1995, pp. 128–158.
[12] R.-J. Back, J. von Wright, Refinement Calculus: A Systematic Introduction, Springer, 1998.
[13] R.-J. Back, J. Wright, Trace refinement of action systems, in: B. Jonsson, J. Parrow (Eds.), CONCUR ’94: Concurrency Theory, in: Lecture Notes in Computer

Science, vol. 836, Springer, Berlin, Heidelberg, 1994, pp. 367–384.
[14] R.-J. Back, Q. Xu, Refinement of fair action systems, Acta Inform. 35 (2) (1998) 131–165.
[15] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet, P. Reinkemeier, A. Sangiovanni-Vincentelli, W. Damm, T.A. Henzinger, K.G. Larsen,

Contracts for system design, Found. Trends Electron. Des. Autom. 12 (2–3) (2018) 124–400.
[16] P. Boström, Contract-based verification of Simulink models, in: S. Qin, Z. Qiu (Eds.), Formal Methods and Software Engineering, in: Lecture Notes in

Computer Science, vol. 6991, Springer, Berlin, Heidelberg, 2011, pp. 291–306.
[17] R.J. Boulton, A. Gordon, M.J.C. Gordon, J. Harrison, J. Herbert, J.V. Tassel, Experience with embedding hardware description languages in HOL, in: IFIP

TC10/WG 10.2 Intl. Conf. on Theorem Provers in Circuit Design, North-Holland Publishing Co., 1992, pp. 129–156.
[18] M. Broy, K. Stølen, Specification and Development of Interactive Systems: Focus on Streams, Interfaces, and Refinement, Springer, 2001.
[19] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli, S. Mover, M. Roveri, S. Tonetta, The nuxmv symbolic model checker, in: A. Biere,

R. Bloem (Eds.), Computer Aided Verification: 26th International Conference, CAV 2014, Springer, Cham, 2014, pp. 334–342.
[20] A.L.C. Cavalcanti, A. Mota, J.C.P. Woodcock, Simulink timed models for program verification, in: Z. Liu, J.C.P. Woodcock, H. Zhu (Eds.), Theories of

Programming and Formal Methods - Essays Dedicated to Jifeng He on the Occasion of His 70th Birthday, in: Lecture Notes in Computer Science,
vol. 8051, Springer, 2013, pp. 82–99.

[21] A. Chakrabarti, L. de Alfaro, T. Henzinger, F. Mang, Synchronous and bidirectional component interfaces, in: CAV, in: LNCS, vol. 2404, Springer, 2002,
pp. 414–427.

[22] C. Chen, J.S. Dong, J. Sun, A formal framework for modeling and validating Simulink diagrams, Form. Asp. Comput. 21 (5) (2009) 451–483.
[23] B. Courcelle, A representation of graphs by algebraic expressions and its use for graph rewriting systems, in: H. Ehrig, M. Nagl, G. Rozenberg, A.

Rosenfeld (Eds.), Graph-Grammars and Their Application to Computer Science, 3rd International Workshop, Warrenton, Virginia, USA, December 2–6,
1986, in: Lecture Notes in Computer Science, vol. 291, Springer, 1986, pp. 112–132.

[24] P. Cousot, R. Cousot, Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints, in:
4th ACM Symp. POPL, 1977.

[25] L. de Alfaro, T. Henzinger, Interface automata, in: Foundations of Software Engineering, FSE, ACM Press, 2001.
[26] L. de Alfaro, T. Henzinger, Interface theories for component-based design, in: EMSOFT’01, in: LNCS, vol. 2211, Springer, 2001.
[27] W. de Roever, H. Langmaack, A.E. Pnueli, Compositionality: The Significant Difference, LNCS, Springer, 1998.
[28] W.-P. de Roever, F. de Boer, U. Hanneman, J. Hooman, Y. Lakhnech, M. Poel, J. Zwiers, Concurrency Verification: Introduction to Compositional and

Non-compositional Methods, Cambridge University Press, 2012.
[29] K. Dhara, G. Leavens, Forcing behavioral subtyping through specification inheritance, in: ICSE’96: 18th Intl. Conf. on Software Engineering, IEEE Com-

puter Society, 1996, pp. 258–267.
[30] E. Dijkstra, Notes on structured programming, in: O. Dahl, E. Dijkstra, C. Hoare (Eds.), Structured Programming, Academic Press, London, UK, 1972,

pp. 1–82.
[31] E. Dijkstra, Guarded commands, nondeterminacy and formal derivation of programs, Commun. ACM 18 (8) (1975) 453–457.
[32] D. Dill, Trace Theory for Automatic Hierarchical Verification of Speed-Independent Circuits, MIT Press, Cambridge, MA, USA, 1987.
[33] L. Doyen, T. Henzinger, B. Jobstmann, T. Petrov, Interface theories with component reuse, in: 8th ACM & IEEE International Conference on Embedded

Software, EMSOFT, 2008, pp. 79–88.
[34] I. Dragomir, V. Preoteasa, S. Tripakis, Compositional semantics and analysis of hierarchical block diagrams, in: SPIN, Springer, 2016, pp. 38–56.
[35] I. Dragomir, V. Preoteasa, S. Tripakis, The refinement calculus of reactive systems toolset. CoRR, abs/1710.08195, 2017.
[36] I. Dragomir, V. Preoteasa, S. Tripakis, The refinement calculus of reactive systems toolset, in: TACAS, 2018.
[37] I. Dragomir, V. Preoteasa, S. Tripakis, The refinement calculus of reactive systems toolset, Int. J. Softw. Tools Technol. Transf. (2020) 1–20.
[38] R. Floyd, Assigning meanings to programs, in: In. Proc. Symp. on Appl. Math., vol. 19, American Mathematical Society, 1967, pp. 19–32.
[39] T. Freeman, F. Pfenning, Refinement types for ML, SIGPLAN Not. 26 (6) (May 1991) 268–277.
[40] P. Fritzson, Principles of Object-Oriented Modeling and Simulation with Modelica 3.3: A Cyber-Physical Approach, 2 edition, Wiley, 2014.
[41] N. Fulton, S. Mitsch, J.-D. Quesel, M. Völp, A. Platzer, KeYmaera X: an axiomatic tactical theorem prover for hybrid systems, in: A.P. Felty, A. Middeldorp

(Eds.), CADE, in: LNCS, vol. 9195, Springer, 2015, pp. 527–538.
[42] O. Grumberg, D. Long, Model checking and modular verification, ACM Trans. Program. Lang. Syst. 16 (3) (1994) 843–871.
[43] D. Harel, J. Tiuryn, D. Kozen, Dynamic Logic, MIT Press, 2000.
[44] T. Henzinger, S. Qadeer, S. Rajamani, You assume, we guarantee: methodology and case studies, in: CAV’98, in: LNCS, vol. 1427, Springer-Verlag, 1998.
[45] T.T. Hildebrandt, P. Panangaden, G. Winskel, A relational model of non-deterministic dataflow, Math. Struct. Comput. Sci. 14 (5) (2004) 613–649.
41

http://refhub.elsevier.com/S0890-5401(21)00149-8/bibD26059EB416BA5D8AFA4DF2A091E4005s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibF8A11E42B496AF5A7E7DCF7B9BD86268s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibF8A11E42B496AF5A7E7DCF7B9BD86268s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib5379B80BF29324755899756213C9877Ds1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib947114BD3D4A26731B545E247E90D4CAs1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib626177C34467D0C37F600354316DCF89s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib626177C34467D0C37F600354316DCF89s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib1803F49C3CFD5730E40F45CDB17E4446s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibDD084E24C42B2AD4C19EAE9C2BCB6256s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib8BE0AA8EA636CA76CC10DD4314A73D33s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib1751DB062CAE0B24BED98B800CF33F6Fs1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib1751DB062CAE0B24BED98B800CF33F6Fs1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibA3739AD8CAFB36D123AA99F802262292s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibA3739AD8CAFB36D123AA99F802262292s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib2F59BAA7072C24024C6C3F1C63D9B594s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib9B83128F88FB738E22C65D1BB81FA4E2s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibEEE6AB38B4F39916218E5CF59AA1398Fs1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibEEE6AB38B4F39916218E5CF59AA1398Fs1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib6DEA49AE701991E1F26C379EF0CCABFFs1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib08455F4003366662DFAFED4C402A1DA0s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib08455F4003366662DFAFED4C402A1DA0s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib6DA9B0B0076CF0B87E15E23F1B9A9446s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib6DA9B0B0076CF0B87E15E23F1B9A9446s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib1367CA0C9F8FB37FE751FB90B3E4A452s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib1367CA0C9F8FB37FE751FB90B3E4A452s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibAE9B68436EC17F2CE01792828B5A0C9Fs1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib8851B4904CCE7403BE985C5D165F3D03s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib8851B4904CCE7403BE985C5D165F3D03s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib97DA0E6D555CAC1F6505D7CB32781F13s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib97DA0E6D555CAC1F6505D7CB32781F13s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib97DA0E6D555CAC1F6505D7CB32781F13s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib283D63D1EBDA9897FAD38ABAD2A8A8D2s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib283D63D1EBDA9897FAD38ABAD2A8A8D2s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibAF9AE2E99660AE9620C5CFFBB91CB4AEs1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibB4F2ED0485E496C5183849309DE4F920s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibB4F2ED0485E496C5183849309DE4F920s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibB4F2ED0485E496C5183849309DE4F920s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib814E63CBB19681453C633A5208879A7Ds1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib814E63CBB19681453C633A5208879A7Ds1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibB277AAFE8488D3E82D0478C2253C7391s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib74A4267F2E12FC81F0121802B1A05024s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib0F8B9728AECA1602B99430400A2E8CABs1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibE3067297071D6B01C0C7D85E8A1389C6s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibE3067297071D6B01C0C7D85E8A1389C6s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibEEBAF194DEA6C037D373D7D9DE6B80B9s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibEEBAF194DEA6C037D373D7D9DE6B80B9s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibDDB3598678BF97EC7A9CA2572C61BD45s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibDDB3598678BF97EC7A9CA2572C61BD45s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibE554B9F8E466D62368B76247BC2BFAEDs1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibEAA38203DC53EDEF7ACFF92A1BEE6101s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib129A507C1D143FFFF444C81B2CB237B1s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib129A507C1D143FFFF444C81B2CB237B1s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib5493DF8BBA7344520C9AB6F9DAC334A1s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib8852F4032DAFC51A4E813A932A2ECBDCs1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib29D7C2ED271B09A211B44A29DE497FF8s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib4CF29234103BB51BC90CBC356EFE4DDEs1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib2416106C001D93D714BED505E64775A5s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib77CD64CF6B92EE674F0A844FFD1C1E23s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib0EC43EBAB62761D073D0D1C6A9A5C276s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib0EC43EBAB62761D073D0D1C6A9A5C276s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibF0A4B5F54DA01037FE17920BABA28DC2s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib8EF76B7A78FAFC7A07116EACAA824C99s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibCF72F344A970051BB889492DED027637s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib4AF80FE9574F9E8FE12E146C5EEEC897s1

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
[46] T.S. Hoang, J.-R. Abrial, Reasoning about liveness properties in event-B, in: Proceedings of the 13th International Conference on Formal Methods and
Software Engineering, ICFEM’11, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 456–471.

[47] C.A.R. Hoare, An axiomatic basis for computer programming, Commun. ACM 12 (10) (1969) 576–580.
[48] C.A.R. Hoare, Proof of correctness of data representations, Acta Inform. 1 (4) (Dec. 1972).
[49] X. Jin, J. Deshmukh, J. Kapinski, K. Ueda, K. Butts, Benchmarks for model transformations and conformance checking, in: 1st Intl. Workshop on Applied

Verification for Continuous and Hybrid Systems, ARCH, 2014.
[50] X. Jin, J.V. Deshmukh, J. Kapinski, K. Ueda, K. Butts, Powertrain control verification benchmark, in: Proceedings of the 17th International Conference on

Hybrid Systems: Computation and Control, HSCC’14, ACM, 2014, pp. 253–262.
[51] Y. Kesten, Z. Manna, A. Pnueli, Temporal verification of simulation and refinement, in: J.W. de Bakker, W.P. de Roever, G. Rozenberg (Eds.), A Decade of

Concurrency Reflections and Perspectives: REX School/Symposium, Springer, 1994, pp. 273–346.
[52] Y. Kesten, A. Pnueli, Complete proof system for QPTL, J. Log. Comput. 12 (5) (2002) 701.
[53] L. Lamport, The temporal logic of actions, ACM Trans. Program. Lang. Syst. 16 (3) (May 1994) 872–923.
[54] E. Lee, Y. Xiong, System-level types for component-based design, in: EMSOFT’01: 1st Intl. Workshop on Embedded Software, Springer, 2001,

pp. 237–253.
[55] B. Liskov, J. Wing, A behavioral notion of subtyping, ACM Trans. Program. Lang. Syst. 16 (6) (1994) 1811–1841.
[56] R. Lublinerman, C. Szegedy, S. Tripakis, Modular code generation from synchronous block diagrams – modularity vs. code size, in: 36th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL’09, ACM, Jan. 2009, pp. 78–89.
[57] R. Lublinerman, S. Tripakis, Modularity vs. reusability: code generation from synchronous block diagrams, in: Design, Automation, and Test in Europe,

DATE’08, ACM, Mar. 2008, pp. 1504–1509.
[58] N. Lynch, M. Tuttle, An introduction to input/output automata, Quart. - Cent. Wiskd. Inform. 2 (1989) 219–246.
[59] K. McMillan, A compositional rule for hardware design refinement, in: Computer Aided Verification, CAV’97, in: LNCS, vol. 1254, Springer-Verlag, 1997.
[60] B. Meenakshi, A. Bhatnagar, S. Roy, Tool for translating Simulink models into input language of a model checker, in: Formal Methods and Software

Engineering, in: LNCS, vol. 4260, Springer, 2006, pp. 606–620.
[61] B. Meyer, Applying “Design by contract”, Computer 25 (10) (1992) 40–51.
[62] S. Minopoli, G. Frehse, SL2SX translator: from Simulink to SpaceEx verification tool, in: 19th ACM International Conference on Hybrid Systems: Com-

putation and Control, HSCC, 2016.
[63] K.S. Namjoshi, R.J. Trefler, On the completeness of compositional reasoning methods, ACM Trans. Comput. Log. 11 (3) (2010).
[64] O. Nierstrasz, Regular types for active objects, SIGPLAN Not. 28 (10) (1993) 1–15.
[65] T. Nipkow, L.C. Paulson, M. Wenzel, Isabelle/HOL — a Proof Assistant for Higher-Order Logic, LNCS, vol. 2283, Springer, 2002.
[66] P. Nuzzo, A. Iannopollo, S. Tripakis, A.L. Sangiovanni-Vincentelli, Are interface theories equivalent to contract theories?, in: 12th ACM-IEEE International

Conference on Formal Methods and Models for System Design, MEMOCODE, 2014.
[67] A. Platzer, Differential dynamic logic for hybrid systems, J. Autom. Reason. 41 (2) (2008) 143–189.
[68] A. Pnueli, The temporal logic of programs, in: 18th Annual Symposium on Foundations of Computer Science, Providence, Rhode Island, USA, 31 October

- 1 November 1977, IEEE Computer Society, 1977, pp. 46–57.
[69] V. Preoteasa, I. Dragomir, S. Tripakis, Type inference of Simulink hierarchical block diagrams in Isabelle, in: 37th IFIP WG 6.1 International Conference

on Formal Techniques for Distributed Objects, Components, and Systems, FORTE, 2017.
[70] V. Preoteasa, I. Dragomir, S. Tripakis, Mechanically proving determinacy of hierarchical block diagram translations, in: VMCAI 2019 - 20th International

Conference on Verification, Model Checking, and Abstract Interpretation, 2019.
[71] V. Preoteasa, T. Latvala, K. Varpaaniemi, Modelling programmable logic controllers in refinement calculus of reactive systems, in: K. Ropiak, L. Polkowski,

P. Artiemjew (Eds.), Proceedings of the 28th International Workshop on Concurrency, Specification and Programming, Olsztyn, Poland, September 24-
26th, 2019, in: CEUR Workshop Proceedings, vol. 2571, 2019, CEUR-WS.org.

[72] V. Preoteasa, S. Tripakis, Refinement calculus of reactive systems, in: 2014 International Conference on Embedded Software, EMSOFT, Oct 2014,
pp. 1–10.

[73] V. Preoteasa, S. Tripakis, Towards compositional feedback in non-deterministic and non-input-receptive systems, in: 31st Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS, 2016.

[74] G. Reissig, A. Weber, M. Rungger, Feedback refinement relations for the synthesis of symbolic controllers, IEEE Trans. Autom. Control 62 (4) (2017)
1781–1796.

[75] P.M. Rondon, M. Kawaguci, R. Jhala, Liquid types, in: 29th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’08,
ACM, New York, NY, USA, 2008, pp. 159–169.

[76] P. Roy, N. Shankar, SimCheck: an expressive type system for Simulink, in: C. Muñoz (Ed.), 2nd NASA Formal Methods Symposium, NFM 2010, NASA/CP-
2010-216215, Langley Research Center, Hampton, VA 23681-2199, USA, Apr. 2010, pp. 149–160.

[77] S. Sankaranarayanan, A. Tiwari, Relational abstractions for continuous and hybrid systems, in: Computer Aided Verification: 23rd International Confer-
ence, CAV 2011, Springer, 2011, pp. 686–702.

[78] H. Schmeck, Algebraic characterization of reducible flowcharts, J. Comput. Syst. Sci. 27 (2) (1983) 165–199.
[79] V. Sfyrla, G. Tsiligiannis, I. Safaka, M. Bozga, J. Sifakis, Compositional translation of Simulink models into synchronous BIP, in: 2010 International

Symposium on Industrial Embedded Systems, SIES, July 2010, pp. 217–220.
[80] N. Shankar, Lazy compositional verification, in: COMPOS’97: Revised Lectures from the International Symposium on Compositionality: the Significant

Difference, Springer-Verlag, London, UK, 1998, pp. 541–564.
[81] A. Siirtola, S. Tripakis, K. Heljanko, When do we not need complex assume-guarantee rules?, ACM Trans. Embed. Comput. Syst. 16 (2) (Jan. 2017)

48:1–48:25.
[82] A.P. Sistla, M.Y. Vardi, P. Wolper, The complementation problem for Büchi automata with applications to temporal logic, Theor. Comput. Sci. 49 (1987)

217–237.
[83] G. Stefănescu, Network Algebra, Springer-Verlag, New York, Inc., Secaucus, NJ, USA, 2000.
[84] S. Tripakis, Compositionality in the science of system design, Proc. IEEE 104 (5) (May 2016) 960–972.
[85] S. Tripakis, B. Lickly, T. Henzinger, E. Lee, On relational interfaces, in: Proceedings of the 9th ACM & IEEE International Conference on Embedded

Software, EMSOFT’09, ACM, 2009, pp. 67–76.
[86] S. Tripakis, B. Lickly, T.A. Henzinger, E.A. Lee, A theory of synchronous relational interfaces, ACM Trans. Program. Lang. Syst. 33 (4) (July 2011)

14:1–14:41.
[87] S. Tripakis, C. Sofronis, P. Caspi, A. Curic, Translating discrete-time Simulink to lustre, ACM Trans. Embed. Comput. Syst. 4 (4) (Nov. 2005) 779–818.
[88] S. Tripakis, C. Stergiou, M. Broy, E.A. Lee, Error-completion in interface theories, in: International SPIN Symposium on Model Checking of Software,

SPIN 2013, in: LNCS, vol. 7976, Springer, 2013, pp. 358–375.
[89] N. Wirth, Program development by stepwise refinement, Commun. ACM 14 (4) (1971) 221–227.
[90] J. Woodcock, A. Cavalcanti, A tutorial introduction to designs in unifying theories of programming, in: E.A. Boiten, J. Derrick, G. Smith (Eds.), Integrated

Formal Methods, Springer, 2004, pp. 40–66.
42

http://refhub.elsevier.com/S0890-5401(21)00149-8/bib80D2373E4A0EDA01AA8C2FF49991CF0As1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib80D2373E4A0EDA01AA8C2FF49991CF0As1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibFC09CC6AF8A8E95741C8A04E8E7DEED5s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib2A4551DE76362C1F92DDB7BCA9C19919s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib03F1E15425B06F6FF8121E762EE931B6s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib03F1E15425B06F6FF8121E762EE931B6s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib0C6736EDED07C33D7965D210B02F3F98s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib0C6736EDED07C33D7965D210B02F3F98s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibD6F1A415578B84BA77AFF2BDD1DA7354s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibD6F1A415578B84BA77AFF2BDD1DA7354s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib6588BE5641DF2A4F931C46159005CD80s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibD4449D4F41436C05288B2C344E098FA2s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib6EDBDD58ED6AC385F19A2928C8359B81s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib6EDBDD58ED6AC385F19A2928C8359B81s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib858281F3F2032D35AA8EAE8D773E16F6s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib48F7B62C2EFBE97DF091855604B31219s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib48F7B62C2EFBE97DF091855604B31219s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib77F8A995129A84F18F4F520724AC3153s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib77F8A995129A84F18F4F520724AC3153s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib0F7C2FA96A90C064AD2575083A5543B7s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib27C6B2D9907ACF9FB275A7B2FF111DA3s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibCE488E4928A8D4BEAD319290D6C0B8D2s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibCE488E4928A8D4BEAD319290D6C0B8D2s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib1695E1C4270416B5B0E6BED8D5C0FC2Bs1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibE8787A4DE2A1E6066A68137D64BE78D0s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibE8787A4DE2A1E6066A68137D64BE78D0s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib00A9F526D8BFB1F77DE4D4FF1681540Ds1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibADACF08386F04E800D56C4F0244F5A97s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib84D888FCA8D233D060135727082FE520s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib8C744F4D76897A233DB8B3618FA6DA44s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib8C744F4D76897A233DB8B3618FA6DA44s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibDDD1B5F3FA3CAEB857B391F44EE57E92s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib167EB6FEF58EBB1EACC4ACCCF3EC38A5s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib167EB6FEF58EBB1EACC4ACCCF3EC38A5s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib4EA06FE77F1192FCD4EE2D7AB39BBB1Es1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib4EA06FE77F1192FCD4EE2D7AB39BBB1Es1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibA5FC58710B122ED31163BE8C3F240BDEs1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibA5FC58710B122ED31163BE8C3F240BDEs1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib18A00788E55577E196059F6C4E4B69E4s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib18A00788E55577E196059F6C4E4B69E4s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib18A00788E55577E196059F6C4E4B69E4s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib545EE0B0565A8962A6D28EA71B2D893Es1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib545EE0B0565A8962A6D28EA71B2D893Es1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibD99BB14BC257D74F59FC9B1DD0B3197Fs1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibD99BB14BC257D74F59FC9B1DD0B3197Fs1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib0031C0A4470C358022C3498DAEF3FDEBs1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib0031C0A4470C358022C3498DAEF3FDEBs1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib52325B336F19A85E9590E794975EE40Cs1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib52325B336F19A85E9590E794975EE40Cs1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibBF186FD4C24F6942BB17D6073905307Ds1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibBF186FD4C24F6942BB17D6073905307Ds1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib79C13096CB8C022C7A127ADB458BEF17s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib79C13096CB8C022C7A127ADB458BEF17s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibEB319E4B7F0FB3497F0C2C968E496E1Es1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibFC03E5251FAD669022E6A390365F8890s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibFC03E5251FAD669022E6A390365F8890s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib993DA7622C20F32144EE974FA464D937s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib993DA7622C20F32144EE974FA464D937s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib0334A3694C9E8010884C8DEC2D3E7CD6s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib0334A3694C9E8010884C8DEC2D3E7CD6s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib231AD0AD8622AB0A80C99F8250566E39s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib231AD0AD8622AB0A80C99F8250566E39s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib923CF36394400427C7A9492A61BD57B5s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib563A7464BA9F7242D3FF51F913DEBCB6s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib0E9D8C110A4DEDE1F1F45EA4A3374B64s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib0E9D8C110A4DEDE1F1F45EA4A3374B64s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibE230A4B75EF29E17A8E796D7B192D053s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibE230A4B75EF29E17A8E796D7B192D053s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib1009EF3ACC0988DD9B5AB9C0E5CCF9ACs1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibDE62F71AA6BDD93F195618255ED8BEEFs1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibDE62F71AA6BDD93F195618255ED8BEEFs1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib3B57F44899DF0BA97EC43EA2CEE32C6Cs1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibC2E81C923B146C140D0C71F0D80B2F57s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibC2E81C923B146C140D0C71F0D80B2F57s1

V. Preoteasa, I. Dragomir and S. Tripakis Information and Computation 285 (2022) 104819
[91] D. Yadav, M. Butler, Verification of liveness properties in distributed systems, in: Contemporary Computing, in: Communications in Computer and
Information Science, vol. 40, Springer, Berlin, Heidelberg, 2009, pp. 625–636.

[92] C. Yang, V. Vyatkin, Transformation of Simulink models to IEC 61499 Function Blocks for verification of distributed control systems, Control Eng. Pract.
20 (12) (2012) 1259–1269.

[93] C. Zhou, R. Kumar, Semantic translation of Simulink diagrams to input/output extended finite automata, Discrete Event Dyn. Syst. 22 (2) (2012)
223–247.

[94] L. Zou, N. Zhany, S. Wang, M. Franzle, S. Qin, Verifying Simulink diagrams via a hybrid Hoare logic prover, in: Embedded Software, EMSOFT, Sept 2013.
43

http://refhub.elsevier.com/S0890-5401(21)00149-8/bibA8501B00155BF2D62F8AEBBA5AB32C9Fs1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bibA8501B00155BF2D62F8AEBBA5AB32C9Fs1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib963F9C27587BFEE1977F94F6CAAF6A75s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib963F9C27587BFEE1977F94F6CAAF6A75s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib6C87F95D75212C3C0446397FD9209BA6s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib6C87F95D75212C3C0446397FD9209BA6s1
http://refhub.elsevier.com/S0890-5401(21)00149-8/bib1291E6849E0A17C11E077E3DA5D0C5F2s1

	The refinement calculus of reactive systems
	1 Introduction
	1.1 Novel contributions of this paper and relation to our prior work

	2 Preliminaries
	3 Language
	3.1 An algebra of components
	3.2 Symbolic transition system components
	3.2.1 General STS components
	3.2.2 Variable name scope
	3.2.3 Stateless STS components
	3.2.4 Deterministic STS components
	3.2.5 Stateless deterministic STS components

	3.3 Quantified linear temporal logic components
	3.3.1 QLTL
	3.3.2 QLTL components

	3.4 Well formed composite components

	4 Semantics
	4.1 Monotonic property transformers
	4.1.1 Some commonly used MPTs
	4.1.2 Relational MPTs
	4.1.3 Operators on MPTs: function composition, product, and fusion
	4.1.4 Operators on MPTs: iteration and feedback
	4.1.5 Refinement

	4.2 Other subclasses of MPTs and closure properties
	4.2.1 Closure properties of RPTs
	4.2.2 Guarded MPTs
	4.2.3 Other subclasses and overview

	4.3 Semantics of components as MPTs
	4.3.1 Example: two alternative derivations of the semantics of Sum
	4.3.2 Characterization of legal input traces
	4.3.3 Semantic equivalence and refinement for components
	4.3.4 Compositionality properties

	5 Symbolic reasoning
	5.1 Syntactic transformation of STS components to QLTL components
	5.2 Syntactic and symbolic transformations of special atomic components to more general atomic components
	5.3 Syntactic computation of serial composition
	5.3.1 Syntactic serial composition of two QLTL components
	5.3.2 Syntactic serial composition of two general STS components
	5.3.3 Syntactic serial composition of two stateless STS components
	5.3.4 Syntactic serial composition of two deterministic STS components
	5.3.5 Syntactic serial composition of two stateless deterministic STS components
	5.3.6 Syntactic serial composition of two arbitrary atomic components
	5.3.7 Correctness of syntactic serial composition

	5.4 Syntactic computation of parallel composition
	5.4.1 Syntactic parallel composition of two QLTL components
	5.4.2 Syntactic parallel composition of two general STS components
	5.4.3 Syntactic parallel composition of two stateless STS components
	5.4.4 Syntactic parallel composition of two deterministic STS components
	5.4.5 Syntactic parallel composition of two stateless deterministic STS components
	5.4.6 Syntactic parallel composition of two arbitrary atomic components
	5.4.7 Correctness of syntactic parallel composition

	5.5 Syntactic computation of feedback composition for decomposable deterministic STS components
	5.5.1 Decomposable components

	5.6 Closure properties of MPT subclasses w.r.t. composition operators
	5.7 Syntactic simplification of arbitrary composite components
	5.7.1 Deterministic and algebraic loop free composite components
	5.7.2 Correctness of the simplification algorithm

	5.8 Checking validity and compatibility
	5.9 Checking input-receptiveness and computing legal inputs symbolically
	5.10 Checking refinement symbolically

	6 Toolset and case studies
	7 Related work
	8 Conclusion
	Declaration of competing interest
	Acknowledgments
	References

