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Abstract. Two pretrained neural networks are deemed (approximately) equiva-
lent if they yield similar outputs for the same inputs. Equivalence checking of
neural networks is of great importance, due to its utility in replacing learning-
enabled components with (approximately) equivalent ones, when there is need
to fulfill additional requirements or to address security threats, as is the case
when using knowledge distillation, adversarial training, etc. In this paper, we
present a method to solve various strict and approximate equivalence checking
problems for neural networks, by reducing them to SMT satisfiability check-
ing problems. This work explores the utility and limitations of the neural net-
work equivalence checking framework, and proposes avenues for future research
and improvements toward more scalable and practically applicable solutions. We
present experimental results, for diverse types of neural network models (clas-
sifiers and regression networks) and equivalence criteria, towards a general and
application-independent equivalence checking approach.
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1 Introduction

Equivalence checking is the problem of checking whether two given artifacts (e.g. digi-
tal circuits, programs, etc.) are equivalent in some sense. Equivalence checking is stan-
dard practice in the domain of hardware design and the EDA industry [27,31,33,38].
There, digital circuits are subject to successive transformations for optimization and
other purposes, and it is important to ensure that each successive design preserves the
functionality of (i.e., is functionally equivalent to) the original.

In this paper, we are interested in the problem of equivalence checking for neu-
ral networks (NNs). For two pretrained NNs of different architectures, or of the same
architecture with different parameters, the problem is to check whether they yield sim-
ilar outputs for the same inputs. Contrary to equivalence checking for digital circuits,
where strict functional equivalence is typically desired, similar outputs does not neces-
sarily mean identical outputs in the case of NNs. As we shall see, the exact definition
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of equivalence depends on the application and NNs at hand (e.g. classifier, regression,
etc.). Therefore, we consider both strict and approximate equivalences in this paper.

The equivalence checking problem for NNs is not only fundamental, intellectually
interesting, and challenging. It is also motivated by a series of concerns similar to those
motivating equivalence checking in the EDA industry, as well as recent developments
in machine learning technology. The objective is to ensure that the smaller network
is in some sense equivalent or approximately equivalent to the original one. Specifi-
cally, one application area is neural network compression [8]. Different compression
techniques exist, e.g. knowledge distillation, pruning, quantization, tensor decomposi-
tion; see surveys in [8,26,29]. Knowledge distillation [15] is the process of transferring
knowledge from a large neural network to a smaller one that may be appropriate for
deployment on a device with limited computational resources. Another related appli-
cation area includes the techniques widely known under the term regularization [21],
which aim to lower the complexity of NNs in order to achieve better performance. In
other cases, NNs used in systems with learning-enabled components [9] may have to be
updated for a number of reasons [30]; for example, security concerns such as the need
to withstand data perturbations (e.g. adversarial examples), or possibly incomplete cov-
erage of the neural network’s input domain. In the context of NN verification, several
abstraction methods are often employed, for instance in order to reduce the complexity
of the verification problem, e.g. see [3]. In all the aforementioned cases, the original
and resulting NNs need to be functionally comparable in some way. A number of cases
where equivalence checking for neural networks arise are also discussed in [19,28].

This paper presents the first, to our knowledge, systematic study of the equivalence
checking problem for NNs, using a Satisfiability Modulo Theory (SMT) [5] approach.
We define several formal notions of (approximate) equivalence for NNs, present encod-
ings of the corresponding NN equivalence checking problems into satisfiability check-
ing problems, and describe experimental results on examples of varying complexity.

In particular, the contributions of this paper are the following:

– We define several formal equivalence checking problems for neural networks based
on various strict and approximate equivalence criteria that may each be appropriate
for different neural network applications.

– We reduce the equivalence checking problem to a logical satisfiability problem using
an SMT-based encoding. The approach is sound and complete in the sense that the
two given NNs are equivalent iff the resulting SMT formula is unsatisfiable.

– We present a prototype implementation and experimental results including (i) sanity
checks of our SMT-based encoding, and (ii) checks showing the equivalence and non-
equivalence, as well as checking the scalability of SMT solvers for three diverse neu-
ral network applications covering the cases of classifiers (including the well-known
MNIST dataset), as well as regression models.

The rest of this paper is organized as follows. Section 2 provides a formal defini-
tion of NN models. Section 3 presents diverse equivalence criteria for the wide range
of common NN applications and formally defines the equivalence checking problem.
Section 4 presents our SMT-based encoding for reducing equivalence checking to a
logical satisfiability problem. Section 5 includes the experimental results. In Sect. 6, we
review the related work and in Sect. 7 we provide our concluding remarks.
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2 Preliminaries: Neural Networks

2.1 Notation

The set of real numbers is denoted by R. The set of natural numbers is denoted by N.
Given some x ∈ R

n and some i ∈ {1, ..., n}, x(i) denotes the i-th element of x.

2.2 Neural Networks

In general, a neural network (NN) can be defined as a function:

f : I → O (1)

where I ⊆ R
n is some input domain with n features and O ⊆ R

m an output domain.
For a NN image classifier, we typically have I = [0, 255]n ⊆ N

n and a labeling
function L : Rm → N that maps each y ∈ O to some label l ∈ N. For NNs solving
regression problems, we have I ⊆ R

n and no labeling function.
The above definition of NNs is purely semantic. Concretely, a NN consists of lay-

ers of nodes (neurons), including one hidden layer (H) or more, beyond the layers of
input (I) and output (O) nodes. Nodes denote a combination of affine value transforma-
tion with an activation function, which is typically piecewise linear or nonlinear. Value
transformations are weighted based on how nodes of different layers are connected,
whereas an extra term called bias is added per node. Weights (W ) and biases (b) for all
nodes are the NN’s parameters and their values are determined via training.

Since every layer is multidimensional we use vectors and/or matrices to represent
all involved operations. Let x ∈ R

1×n be the matrix denoting some x ∈ I . For a hidden
layer with r nodes, H1×r represents the output of this hidden layer. Assuming that the
hidden and output layers are fully connected, we denote withW(1) ∈ R

n×r the hidden
layer weights and with b(1) ∈ R

1×r the biases associated with its nodes. Similarly,
the output layer weights are denoted by W(2) ∈ R

r×m, where m refers to the number
of output layer nodes, and b(2) ∈ R

1×m denotes the corresponding biases. Then, the
output y = f(x) of the NN is given by y ∈ R

m where y is computed as:

H = α(xW(1) + b(1)) (2)

y = α′(HW(2) + b(2)) (3)

where α(·), α′(·) are the activation functions (e.g. sigmoid, hyperbolic tangent, etc.)
applied to the vectors of the hidden and output layers element-wise. A common activa-
tion function is the Rectified Linear Unit (ReLU), which is defined, for χ ∈ R, as:

ReLU(χ) =

{
χ, if χ ≥ 0
0, otherwise

(4)
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Fig. 1. Feedforward NN with an input layer of 2 inputs (x1, x2), an output layer with 2 outputs
(y1, y2) and no activation function, and 1 hidden layer with 2 neurons and a ReLU activation
function. The values on transitions refer to the weights and the superscript values to the biases.

Another example is the hard tanh function [10] (used in the experiments of Sect. 5) that
typically serves as the output layer activation function of NNs trained for regression. For
χ ∈ R, hardtanh is defined as:

HardTanh(χ) =

⎧⎪⎨
⎪⎩

1, if χ > 1
−1, if χ < −1

χ, otherwise

(5)

Multiple Hidden Layers: The NN definition provided above is easily generalised to
multiple hidden layers H,H ′,H ′′, · · · . We consider that weights and biases for all lay-
ers and nodes are fixed, since we focus on equivalence checking of NNs after training.

Example 1. Consider a simple feedforward NN with two inputs, two outputs, and one
hidden layer with two nodes (Fig. 1). The selection of the weights and biases is done
randomly, the activation function of the hidden layer is ReLU and there is no activation
function for the output layer. For this example, Eq. (2) takes the form:

[
x1 x2

] ·
[
W11 W12

W21 W22

]
+

[
b
(1)
1 b

(1)
2

]
=

[
x1 x2

] ·
[−2 1
1 2

]
+

[
1 1

]
=

[−2 · x1 + x2 + 1 x1 + 2 · x2 + 1
]

Denote the result of the affine transformation of the NN’s hidden layer by:[
z1 z2

]
=

[−2 · x1 + x2 + 1 x1 + 2 · x2 + 1
]

and

H =
[
h1 h2

]
=

[
ReLU(z1) ReLU(z2)

]
The output y of the NN from Eq. (3) is:

y =
[
h1 h2

] ·
[
2 −1

−1 −2

]
+

[
b
(2)
1 b

(2)
2

]
=

[
2 · h1 − h2 + 2 −h1 − 2 · h2 + 2

]

3 Strict and Approximate Equivalences for Neural Networks

In this section, we present various equivalence relations for NNs and we formulate the
equivalence checking problem. Similar equivalence notions appeared recently in [19,
28].
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3.1 Strict Neural Network Equivalence

Strict NN equivalence is essentially functional equivalence:

Definition 1 (Strict NN Equivalence). For two neural networks f : I → O and
f ′ : I → O, we say that they are strictly equivalent, denoted f ≡ f ′, if and only if:

∀x ∈ I, f(x) = f ′(x) (6)

Strict NN equivalence is a true equivalence relation, i.e., it is reflexive (f ≡ f for any
f ), symmetric (f ≡ f ′ iff f ′ ≡ f ), and transitive (f ≡ f ′ and f ′ ≡ f ′′ implies f ≡ f ′′).

However, strict NN equivalence can be a very restrictive requirement. For example,
if we have two classifiers we may want to consider them equivalent if they always select
the same top output class, even if the remaining output classes are not ordered in the
same way. This motivates us to consider the following approximate notions of equiva-
lence. These approximate “equivalences” need not be true equivalences, i.e., they may
not satisfy the transitivity property (although they are always reflexive and symmetric).

3.2 Approximate Neural Network Equivalences Based on Lp Norms

As usual, we assume that O ⊆ R
m. Let ‖y‖p = normp(y) denoting the Lp-norm of

vector y ∈ O, for normp : O → R with p = 1, 2,∞. For two vectors y, y′ ∈ O, if
p = 1 we obtain the Manhattan norm, L1(y, y′) = ‖y − y′‖1 =

∑m
i=1|y(i) − y′(i)|,

which measures the sum of differences between the two vectors. For p = 2, we refer to
the Euclidean distance L2(y, y′) = ‖y − y′‖2 = (

∑m
i=1|y(i) − y′(i)|2) 1

2 . Finally, for
p = ∞, the L∞ distance measures the maximum change to any coordinate:

L∞(y, y′) = ‖ y − y′ ‖∞ = max(|y(1) − y′(1)|, . . . , |y(m) − y′(m)|). (7)

Then, we define the following notion of approximate equivalence:

Definition 2 ((p, ε)-approximate equivalence). Consider two neural networks f :
I → O and f ′ : I → O, normp : O → R, and some ε > 0. We say that f and f ′ are
(p, ε)-approximately equivalent, denoted f ∼p,ε f ′, if and only if:

∀x ∈ I, ‖f(x) − f ′(x)‖p < ε (8)

It can be seen that the relation ∼p,ε is reflexive and symmetric.

3.3 Approximate Neural Network Equivalences Based on Order of Outputs

NN classifiers work essentially by computing output values and then mapping them to
specific classes. Two such networks may be considered equivalent, if they always pro-
duce the same order of outputs, even though the output values might not be the same.
For example, consider two classifiers f and f ′ over three possible output classes. Sup-
pose that, for a given input, f produces (0.3, 0.5, 0.2) and f ′ produces (0.25, 0.6, 0.15).
We may then consider that for this input the outputs of f and f ′ are equivalent, since
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they have the same order, namely, 2, 1, 3 (assuming vector indices start at 1). If this
happens for all inputs, we may want to consider f and f ′ (approximately) equivalent.

To capture the above notion of approximate equivalence, we introduce the function:

argsortm : Rm → Zm, for m ∈ N

where Zm ⊆ {1, 2, 3, . . . ,m}m is the set of permutations of indices of the m elements.
For a given s ∈ R

m, argsortm(s) returns the permutation that sorts s in decreasing
order. Thus, argsort3(0.3, 0.5, 0.2) = argsort3(0.25, 0.6, 0.15) = (2, 1, 3). If two
vector values are equal, argsort orders them from lower to higher index. This ensures
determinism of the argsort function, e.g., argsort3(0.3, 0.4, 0.3) = (2, 1, 3).

Definition 3 (Top-k argsort equivalence). Suppose O ⊆ R
m. Consider two neural

networks f : I → O and f ′ : I → O, and some k ∈ {1, ...,m}. We say that f and f ′

are top-k argsort equivalent, denoted f ≈k f ′, if and only if

∀x ∈ I,∀i ∈ {1, ..., k},
(
argsortm

(
f(x)

))
(i) =

(
argsortm

(
f ′(x)

))
(i) (9)

Top-k argsort equivalence requires the first k indices of the argsort of the outputs
of f and f ′ to be equal. It is a true equivalence (reflexive, symmetric, and transitive).

A special case of top-k argsort equivalence is when k = 1. We call this argmax
equivalence, with reference to the argmax function that returns the index of the maxi-
mum value of a vector, e.g., argmax(0.3, 0.5, 0.2) = argmax(0.25, 0.6, 0.15) = 2.

Definition 4 (argmax equivalence). Consider the same setting as in Definition 3. We
say that f and f ′ are argmax equivalent iff f ≈1 f ′.

3.4 Hybrid Lp–argsort Equivalences

Approximate NN equivalences based on Lp norms may not respect the order of outputs,
e.g., with ε = 1, the output vectors (1, 2) and (2, 1)may be considered equivalent, even
though the order is reversed. On the other hand, argsort and argmax based equiva-
lences respect the order of outputs but may allow too large differences to be acceptable:
the output vectors (90, 7, 3) and (40, 35, 25) both have the same order of outputs, but
if the numbers are interpreted as confidence levels, we may not wish to consider them
equivalent, due to the large discrepancy between the respective confidence values.

This discussion motivates the need for an equivalence, called hybrid Lp −argsort
equivalence, which considers both the order of outputs and their differences in value.

Definition 5 (Hybrid top-k argsort equivalence). Suppose O ⊆ R
m. Consider two

neural networks f : I → O and f ′ : I → O, and some k ∈ {1, ...,m}. Consider
also normp : O → R, and some ε > 0. We say that f and f ′ are (p, ε)-approximately
and top-k argsort equivalent iff f ∼p,ε f ′ and f ≈k f ′, i.e., they are both (p, ε)-
approximately equivalent and top-k argsort equivalent.

Specializing to k = 1 yields the following hybrid equivalence:
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Definition 6 (Hybrid argmax equivalence). Consider the same setting as in Defi-
nition 6. We say that f and f ′ are (p, ε)-approximately and argmax equivalent iff
f ∼p,ε f ′ and f ≈1 f ′.

Definition 5 could be generalized further to involve different norms for each i-th ele-
ment of the output vector, as well as a different bound εi for each i ∈ {1, ...,m}. We
refrain from presenting such a generalization explicitly here, for the sake of simplicity.

3.5 The Neural Network Equivalence Checking Problem

Definition 7 (NN equivalence checking problem). Given two (trained) neural
networks f and f ′, and given a certain NN equivalence relation � ∈ {≡,
∼p,ε,≈k}, and parameters p, ε, k as required, the neural network equivalence checking
problem (NNECP) is to check whether f � f ′.

3.6 Discussion of Application Domains for the Above Equivalence Relations

Strict equivalence is a true equivalence relation, but it might be impractical for realistic
networks and numerical errors. Approximate equivalences can find several applications.
For example, (p, ε)-equivalence can be used for multi-output learning problems [40];
specifically for i) regression problems where the goal is to simultaneously predict mul-
tiple real-valued output variables [6], and ii) classification tasks to ensure that the NN
output values associated with every label are close to each other with respect to some
Lp-norm. Approximate equivalences based on the order of outputs can be useful for
classification. Top-1 accuracy is an established evaluation metric. For problems with
hundreds of classes, e.g. ImageNet [11], it is common practice to present the top-5
accuracy along with top-1 accuracy when benchmarking. Top-k accuracy captures if
any of the top k highest values of the output prediction vector is assigned the correct
label. As such, it could be interesting to check if two NNs are equivalent using the top-k
argsort equivalence. This equivalence could be important for Hierarchical Multi-label
Classification [37], a classification task where the classes are hierarchically structured
and each example may belong to more than one class simultaneously [7].

4 Neural Network Equivalence Checking Using SMT Solvers

Our approach to solving the NNECP is to reduce it to a logical satisfiability problem.
The basic idea is the following. Suppose we want to check whether f � f ′, for two
NNs f : I → O and f ′ : I → O and a given NN equivalence relation �. We proceed as
follows: (1) encode f into an SMT formula φ; (2) encode f ′ into an SMT formula φ′;
(3) encode the equivalence relation f � f ′ into an SMT formula Φ such that f � f ′ iff
Φ is unsatisfiable; (4) check, using an SMT solver, whether Φ is satisfiable: if not, then
f � f ′; if Φ is satisfiable, then f and f ′ are not equivalent, and the SMT solver might
provide a counterexample, i.e., an input violating the equivalence of f and f ′.

This idea is based on the fact that the negation of f � f ′ can be encoded as a
formula which asserts that there is x ∈ I and y, y′ ∈ O, such that y = f(x), y′ = f ′(x),
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Fig. 2. Complete Neural Network Scheme for GAN generated inputs

with y and y′ not satisfying the equivalence conditions imposed by �. For example, for
the case of strict NN equivalence, checking whether f ≡ f ′ amounts to checking:

¬
(
∃x ∈ I, y ∈ O, y′ ∈ O, y = f(x) ∧ y′ = f ′(x) ∧ y �= y′

)
This in turn amounts to checking that: y = f(x)∧ y′ = f ′(x)∧ y �= y′ is unsatisfiable.
In this case, we have φ := y = f(x), φ′ := y′ = f ′(x), and Φ := φ ∧ φ′ ∧ y �= y′.

We proceed to provide the details of building φ and φ′ for given NNs, as well as Φ
for the NN equivalence relations defined earlier. We note that although we present the
SMT encoding of a single NN, our method is general and allows the two NNs to have
different internal architectures (e.g., number and type of hidden layers, etc.).

4.1 Encoding Neural Networks as SMT Formulas

Input Variables. From Eq. (2), the input of a NN f is a vector x = [x1, ..., xn] ∈
R

1×n. The SMT formula φ encoding f will have n input variables, denoted as
x1, ..., xn.

Encoding Input Bounds. Sometimes, the inputs are constrained to belong in a certain
region. For example, we might assume that the input lies between given lower and upper
bounds. In such cases, we can add input constraints as follows:

n∧
j=1

lj ≤ xj ≤ uj (10)

with lj , uj ∈ R denoting the lower and upper bounds for the domain of input xj .

Encoding Other Input Constraints. Often, we may only care about inputs that are
“meaningful”, e.g. if we want to preserve equivalence only for “reasonable” photos
of human faces, or “reasonable” pictures of handwritten digits. Encoding such input
constraints can be difficult. After all, if we had a precise way to encode such “meaning-
fulness” as a formal mathematical constraint, we may not need NNs in the first place.

One way to address this fundamental problem is by using generative NNs [14]. The
idea is depicted in Fig. 2. The output of the generative network g is fed into f and
f ′ that we wish to test for equivalence. The generative network g models the input
constraints, e.g. the output of g may be pictures of human faces. Let N denote the
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complete network consisting of the connection of all three g, f, f ′, plus the equivalence
constraints. We encodeN as an SMT constraint and check for satisfiability. An example
to satisfiability is an input x of g such that f(g(x)) and f ′(g(x)) differ in the sense of the
given equivalence relation. Then, g(x) provides a counterexample to the equivalence of
f and f ′. Moreover, g(x) has been generated by g, therefore it belongs by definition to
the set of input constraints modeled by g (e.g., g(x) is a picture of a human face).

Internal Variables. For each hidden layer, we associate the internal variables zi for
the affine transformation, and the internal variables hi for the activation function.

Constraints Encoding the Affine Transformations. Consider a single hidden layer
of f with r nodes. Then, from the affine transformation of Eq. (2), we derive the con-
straints:

r∧
j=1

(
zj =

n∑
k=1

xkW
(1)
kj + b

(1)
j

)
(11)

Constraints Encoding the ReLU Activation Function. If the activation function is
ReLU , then its effect is encoded with the following constraints:

r∧
j=1

(zj ≥ 0 ∧ hj = zj) ∨ (zj < 0 ∧ hj = 0) (12)

Constraints Encoding the Hard tanh Activation Function. If the activation function
is the hard tanh, then its effect is encoded with the following constraints:

r∧
j=1

(zj ≥ 1 ∧ hj = 1) ∨ (zj ≤ −1 ∧ hj = −1) ∨ (−1 < zj < 1 ∧ zj = hj) (13)

Other Activation Functions. The constraints described so far include atoms of the
linear real arithmetic theory [20] that most SMT-solvers can check for satisfiability
through decision procedures of various degrees of efficiency. Encoding other activation
functions, like Tanh, Sigmoid, and Softmax, can be problematic as they include
nonlinear and exponential terms that most SAT/SMT cannot handle. A workaround is
to opt for “hard” versions of these activation functions, as it is done in [1,10]. In [24],
Softmax is replaced by a piecewise linear function called Sparsemax.

Multiple Hidden Layers and Output Layer. The constraints Eq. (11–13) are gener-
alized to multiple hidden layers, say H,H ′, . . . (with r, r′, . . . nodes, respectively).

The NN encoding is completed with the constraints for the output layer that are
derived, for y ∈ R

m from Eq. (3), as previously.
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Example 2 (cont. of example 1). We assume that there are input constraints, i.e. 0 ≤
x1 ≤ 1 and 0 ≤ x2 ≤ 1 and we derive the SMT constraints for the NN of Fig. 1. For the
affine transformation, we obtain z1 = −2 ·x1+x2+1 and z2 = x1+2 ·x2+1. For the
activation functions, we add the constraints {(z1 ≥ 0∧h1 = z1)∨ (z1 < 0∧h1 = 0)},
encoding h1 = ReLU(z1) = max(0, z1) and {(z2 ≥ 0 ∧ h2 = z2) ∨ (z2 < 0 ∧
h2 = 0)}, for h2 = ReLU(z2) = max(0, z2). Finally, we add the output constraints
y1 = 2 · h1 − h2 + 2 and y2 = −h1 − 2 · h2 + 2. The resulting SMT formula is

φ :=
{
0 ≤ x1 ≤ 1 ∧ 0 ≤ x2 ≤ 1 ∧ z1 = −2x1 + x2 + 1 ∧ (

(z1 ≥ 0 ∧ h1 = z1) ∨
(z1 < 0 ∧ h1 = 0)

) ∧ z2 = x1 + 2x2 + 1 ∧ (
(z2 ≥ 0 ∧ h2 = z2) ∨ (z2 < 0

∧ h2 = 0)
) ∧ y1 = 2 · h1 − h2 + 2 ∧ y2 = −h1 − 2 · h2 + 2

}
4.2 Encoding of the Equivalence Relation

As mentioned at the beginning of this section, to check the equivalence of two NNs f
and f ′, we need to generate, first, their encodings φ and φ′ (Sect. 4.1), and then, the
encoding of the (negation of the) equivalence relation. The latter encoding is described
next. We assume that f and f ′ have the same number of outputs m, and we let y =
(y1, ..., ym) and y′ = (y′

1, ..., y
′
m) denote their respective output variables.

Strict Equivalence Checking. Strict equivalence (c.f., Definition 1) requires that
y = y′. To reduce this verification problem to a satisfiability problem, we encode the
negation of the above constraint, more specifically:

m∨
i=1

yi �= y′
i (14)

(p, ε)-Approximate Equivalence Checking. (p, ε)-approximate equivalence (c.f.,
Definition 2) requires that ‖y − y′‖p < ε. Again, we encode the negation:

– for p = 1,

m∑
i=1

|yi − y′
i| ≥ ε (15)

– for p = 2, it would be expected to be

( m∑
i=1

|yi − y′
i|2

) 1
2 ≥ ε

which involves the square-root function that yields an undecidable constraint.
Instead, our encoding takes the form,

u =
m∑

i=1

|yi − y′
i|2∧ u = v · v ∧ v ≥ 0 ∧ v ≥ ε (16)
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– and for p = ∞,
m∨

i=1

|yi − y′
i| ≥ ε (17)

argmax Equivalence Checking. This equivalence type (c.f., Definition 4) requires that
argmax(y) = argmax(y′). Again, we wish to encode the negation, i.e., argmax(y) �=
argmax(y′). This can be done by introducing the macro argmaxis(y, i,m) which rep-
resents the constraint argmax(y) = i, assuming the vector y has length m. Then,
argmax(y) �= argmax(y′) can be encoded by adding the constraints below:∨

i,i′∈{1,...,m}
i�=i′

argmaxis(y, i,m) ∧ argmaxis(y′, i′,m) (18)

where argmaxis is defined as follows:

argmaxis(y, i,m) :=
( i−1∧

j=1

yi > yj

) ∧ ( m∧
j=i+1

yi ≥ yj

)
(19)

For example, for m = 2, we have:

argmaxis(y, 1, 2) = y1 ≥ y2

argmaxis(y, 2, 2) = y2 > y1

argmaxis(y′, 1, 2) = y′
1 ≥ y′

2

argmaxis(y′, 2, 2) = y′
2 > y′

1

and the overall constraint encoding argmax(y) �= argmax(y′) becomes:

(y1 ≥ y2 ∧ y′
2 > y′

1) ∨ (y2 > y1 ∧ y′
1 ≥ y′

2)

Example 3 (cont. example 2). For the NN f , we have obtained the formula φ. Now
assume that there is a second NN f ′ that has the same number of inputs and outputs as
f . We define as y′ the outputs of f ′ and the constraints are SMT encoded via φ′. The
complete SMT formula Φ for the different equivalence relations is:

Φstrict : = {φ ∧ φ′ ∧
m∨

i=1

yi �= y′
i}

Φ(1,ε)−approx : = {φ ∧ φ′ ∧
m∑

i=1

|yi − y′
i| ≥ ε}

Φ(2,ε)−approx : = {φ ∧ φ′ ∧ u =
m∑

i=1

|yi − y′
i|2 ∧ u = v · v ∧ v ≥ 0 ∧ v ≥ ε}

Φ(∞,ε)−approx : = {φ ∧ φ′ ∧
m∨

i=1

|yi − y′
i| ≥ ε}

Φargmax : = {φ ∧ φ′ ∧
∨

i,i′∈{1,...,m}
i�=i′

argmaxis(y, i,m) ∧ argmaxis(y′, i′,m)}
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Algorithm 1 introduces an implementation in the Z3 SMT solver1 for argmax,
which in our experiments showed better scalability behaviour when compared with the
straightforward implementation of the aforementioned encoding for argmax.

Algorithm 1: Pseudo-code of argmax implementation in Z3
Require: Vector y of length m
Ensure: argmax(y)

ymax ← y(m)
imax ← m
for i = m − 1 to i = 1 step -1 do

if y(i) > ymax then
ymax ← y(i)

end if
if y(i) = ymax then

imax ← i
end if

end for
return imax

Hybrid Equivalence Checking. The encoding of the hybrid equivalence relations in
Sect. 3.4 consists of combining the corresponding constraints of the (p, ε)-approximate
equivalence and the argsort/argmax equivalence with a logical conjunction.

4.3 Optimizing the Encoding

The encoding presented so far is not optimal in the sense that it uses more SMT vari-
ables than strictly necessary. Many internal variables can be eliminated and replaced by
their corresponding expressions in terms of other variables. In particular, the zi variables
encoding the affine transformations (as in Eq. 11) and the hi variables for encoding the
activation function can be easily eliminated.

5 Experimental Results

In this section, we report the results of experiments on verifying the equivalence of two
NNs. We have used the SMT solver Z3 to check the satisfiability of all constraints that
encode NN equivalence. The experiments were conducted on a laptop with a 4-core 2.8
GHz processor and 12 GB RAM. Our problems concern with NNs of different sizes,
for checking their equivalence, with respect to the equivalence relations of Sect. 3. We
focus on twomain categories of supervised learning problems, i) classification (two case
studies), and ii) regression (one case study). The source code of the implementation of
the NNECP for the equivalence encoding of Sect. 4 is provided online2.

1 https://z3prover.github.io/api/html/.
2 https://github.com/hariselef/NNequiv Experiments.

https://z3prover.github.io/api/html/
https://github.com/hariselef/NNequiv_Experiments
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Bit-Vec Case Study – Classification: A bit vector (Bit-Vec) is a sequence of bits. We
consider that the inputs of our NN classifier are 10-bit vectors and the targets (labels)
are either True (1) or False (0). The models we check for equivalence are Feed-Forward
Multi-Layer Perceptrons and we focus on two architectures. In the first case, there is a
single hidden layer, while in the second, there are two hidden layers; NNs have the same
number of nodes per layer. We experimented with 8 different models per architecture
and for each model we increased step-wise the number of nodes per layer. NNs have
been trained with the objective to “learn” that for a vector with 3 or more consecutive
1s, the output label is True and the output label is False otherwise.

MNIST Case Study – Classification: The second use case is the popularMNIST dataset
on image classification. MNIST contains 70,000 grayscale images, from which 60,000
are for training and the rest for testing the models’ performance. The size of images is
28× 28 (pixels), and every pixel value is a real in the range [0, 1]. We experimented
with the same two architectures used for the Bit-Vec NNs and 5 models for each of
them.

Automotive Control – Regression: For the regression case study, the goal is to use
NNs that approximate the behaviour of a Model Predictive Controller, which has been
designed for an automotive lane keeping assist system. The dataset contains 10,000
instances with six features representing different system characteristics obtained using
sensors, along with the resulting steering angle that the car should follow (target). More
details for the case study that we have reproduced can be found in Mathworks website3.

5.1 Sanity Checks

The main goals of this set of experiments are: i) to ensure that our prototype imple-
mentation for equivalence checking does not have any bugs (sanity checks) and ii) to
conduct a scalability analysis of the computational demands for NNs of increasing com-
plexity when they are checked for equivalence, with the criteria of Sect. 3.

To this end, we verified the equivalence of two identical NNs, for two different
architectures, both for the BitVec case study and the MNIST. The results are shown
in Tables 1, 2 for the BitVec case study and in Tables 3, 4 for the MNIST. We report
the number of nodes per hidden layer, the number of trainable parameters and the total
number of variables in the formula generated for the SMT solver. For the BitVec exper-
iments and for each equivalence relation, tables show the average time in seconds over
10 runs for the SMT solver to verify the equivalence of the identical NNs (standard devi-
ation in all cases was less than 3%). For the MNIST experiments, we report the same
results, but all sanity checks were conducted only once, since these experiments took
more time to complete. In all cases, the SMT solver returned UNSAT, which correctly
indicates that the two NNs are equivalent, as expected.

3 https://www.mathworks.com/help/reinforcement-learning/ug/imitate-mpc-control
ler-for-lane-keeping-assist.html.

https://www.mathworks.com/help/reinforcement-learning/ug/imitate-mpc-controller-for-lane-keeping-assist.html
https://www.mathworks.com/help/reinforcement-learning/ug/imitate-mpc-controller-for-lane-keeping-assist.html
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Table 1. Sanity check for the BitVec case study - 1st Architecture; all equivalences are true, i.e. all
SMT formulas are UNSAT; the values in columns 4–8 show the computational time in seconds.

# nodes
per layer

# params # SMT
variables

Strict
Equiv.

L1

Equiv.
L2

Equiv.
L∞

Equiv.
Argmax
Equiv.

10 132 498 0.06 0.07 0.06 0.07 0.06

20 262 978 0.1 0.1 0.09 0.1 0.1

35 457 1698 0.17 0.17 0.14 0.17 0.17

50 652 2418 0.23 0.24 0.21 0.24 0.23

100 1302 4818 0.44 0.45 0.40 0.45 0.45

150 1952 7218 0.61 0.63 0.57 0.62 0.65

200 2602 9618 0.84 0.85 0.75 0.85 0.84

300 3902 14418 1.23 1.25 1.1 1.25 1.25

Table 2. Sanity check for the BitVec case study - 2nd Architecture; all equivalences are true,
i.e. all SMT formulas are UNSAT; the values in columns 4–8 show the computational time in
seconds.

# nodes
per layer

# params # SMT
variables

Strict
Equiv.

L1

Equiv.
L2

Equiv.
L∞

Equiv.
Argmax
Equiv.

5 97 378 0.04 0.04 0.04 0.04 0.04

10 242 938 0.1 0.09 0.08 0.09 0.1

15 437 1698 0.15 0.15 0.14 0.16 0.15

20 682 2658 0.24 0.24 0.20 0.23 0.23

30 1322 5178 0.4 0.39 0.37 0.39 0.42

40 2162 8498 0.62 0.62 0.58 0.63 0.63

50 3202 12618 0.87 0.91 0.85 0.88 0.92

60 4442 17538 1.17 1.2 1.21 1.16 1.23

Table 3. Sanity check for the MNIST case study - 1st Architecture; all equivalences are true,
i.e. all SMT formulas are UNSAT; the values in columns 4–8 show the computational time in
seconds.

# nodes
per layer

# params # SMT
variables

Strict
Equiv.

L1

Equiv.
L2

Equiv.
L∞

Equiv.
Argmax
Equiv.

10 7960 32424 2.5 2.53 2.2 2.63 2.67

30 23860 95624 7.52 7.73 6.3 7.63 7.5

50 39760 158824 12.2 12.4 10.4 12.8 12.4

100 79510 316824 24.5 24.3 21.9 25 24.6

200 159010 632824 48.4 55.1 44.8 48.8 48.2

300 238510 948824 74 74 74 62.4 73

500 397510 1580824 121 124 110 128 119

750 596260 2370824 182 193 167 203 182

1000 795010 3160824 241 247 220 257 256

1300 1033510 4108824 314 336 283 331 321

1700 1351510 5372824 420 434 394 435 437

2000 1590010 6320824 467 512 483 492 508
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Table 4. Sanity check for the MNIST case study - 2nd Architecture; all equivalences are true,
i.e. all SMT formulas are UNSAT; the values in columns 4–8 show the computational time in
seconds.

# nodes
per layer

# params # SMT
variables

Strict
Equiv.

L1

Equiv.
L2

Equiv.
L∞

Equiv.
Argmax
Equiv.

10 8070 32864 2.7 2.7 2.3 2.54 2.57

30 24790 99344 7.55 7.86 6.7 7.5 7.5

50 42310 169024 13.2 12.9 11.0 13.7 12.9

100 89610 357224 26.5 27.5 24.9 26 27.7

200 199210 793624 58.7 62.2 50.6 61.6 64.4

300 328810 1310024 99 100 90 99 101

500 648010 2582824 194 194 167 192 192

750 1159510 4623824 334 340 298 354 349

1000 1796010 7164824 524 530 514 523 560

1300 2724810 10874024 797 779 784 836 857

1700 4243210 16939624 1225 1161 1359 1237 1223

2000 5592010 22328824 1435 1530 2837 1549 1581

5.2 Equivalence Checking

In the second set of experiments, we perform equivalence checking between NNs of
different architectures. The solver will return UNSAT if the NNs are equivalent or SAT
if they are not. This allows us to gain insight into the efficiency and the scalability
bounds of the proposed encoding for both possible outcomes. We expect that when the
two NNs are not equivalent (SAT) the solver is quite likely to return a counterexample
shortly. A time limit of 10min was set for the solver to respond and when this did not
happen the end result was recorded as a “timeout”.

Experiments with NN Classifiers. A series of experiments focused on the equiva-
lence checking for NN classifiers, i.e. those trained for the BitVec and MNIST case
studies. The pairs of NNs that were compared consist of the two NN architectures that
were also used for the sanity checks (Sect. 5.1). Thus, the first pair of NNs includes the
NN referred in the first line of Table 1 and the NN referred in the first line of Table 2,
and so on. For the BitVec equivalence checking experiments, Table 5 summarizes the
obtained results, for all equivalence relations apart from the (2, ε)-approximate equiva-
lence, which takes much more time than the set time limit and the results for two pairs
of NNs are shown separately in Table 7. For each pair of NNs in Tables 5 and 7, the
answer of the SMT solver is reported (SAT or UNSAT) along with the time that it took
to respond. For the ε-approximate equivalences, we also note the ε values, for which the
NN equivalence was checked. The reason for using relatively big values for ε is that the
NNs do not have a nonlinear activation function in the output layer, e.g. sigmoid, and
there was no way to guarantee that the outputs would scale in the same value ranges.
The term MME, in some cells of the tables, stands for Maximum Memory Exceeded
and is the reason for which the solver fails to respond, when not having reached the
time limit of 10 min. Table 6 (and Table 7 for (2, ε)-approximate equivalence) report
the corresponding results, for the MNIST case study.
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When the outcome of equivalence checking is SAT, the solver returns a counterex-
ample (NN input) that violates the equivalence relation. If the input space is finite, it
may be possible to obtain all counterexamples, as in the BitVec case study, for which we
found two counterexamples of argmax equivalence for the NNs of the pair model 1 4
vs model 2 4. The NN predictions for all possible inputs were then tested and it was
confirmed that the two counterexamples are the only ones that violate argmax equiva-
lence. Beyond seeing them as an extra sanity check, the counterexamples of equivalence
checking may be useful, toward improving the NN robustness. However, we have not
yet developed a systematic way to utilize them for this purpose. For most applications,
as is the case in MNIST, it may not be feasible to obtain all possible counterexamples,
due to the size of their input space. Moreover, often there is no easy way to limit the
counterexample search to only “meaningful” inputs. This is the case in the MNIST
case study, where the most common counterexample in the equivalence checking

Table 5. Equivalence checking for the BitVec case study

Model Pairs # SMT variables Strict
Equiv.

L1 > 5 L∞ > 10 Argmax
Equiv.

Input Internal Output

model 1 1 vs model 2 1 10 424 4 SAT/0.042 s UNSAT/35 s UNSAT/48 s SAT/0.23 s

model 1 2 vs model 2 2 10 944 4 SAT/0.075 s SAT/0.20 s UNSAT/157 s SAT/0.4 s

model 1 3 vs model 2 3 10 1630 4 SAT/0.124 s UNSAT/385 s UNSAT/531 s UNSAT/182 s

model 1 4 vs model 2 4 10 2524 4 SAT/0.19 s SAT/245 s Timeout SAT/86 s

model 1 5 vs model 2 5 10 4984 4 SAT/0.35 s Timeout MME/509 s SAT/240 s

model 1 6 vs model 2 6 10 7844 4 SAT/0.5 s Timeout MME/568 s SAT/450 s

model 1 7 vs model 2 7 10 11104 4 SAT/0.75 s Timeout MME/588 s Timeout

model 1 8 vs model 2 8 10 15964 4 SAT/1.13 s Timeout Timeout Timeout

Table 6. Equivalence checking for the MNIST case study

Model Pairs # SMT variables Strict
Equiv.

L1 > 5 L∞ > 10 Argmax
Equiv.

Input Internal Output

mnist 1 1 vs mnist 2 1 784 31840 20 SAT/2.1 s SAT/44 s SAT/42 s SAT/41 s

mnist 1 2 vs mnist 2 2 784 96680 20 SAT/6.2 s SAT/16 s SAT/17 s SAT/17 s

mnist 1 3 vs mnist 2 3 784 163120 20 SAT/10.3 s SAT/28 s SAT/28 s MME/230 s

mnist 1 4 vs mnist 2 4 784 336220 20 SAT/21 s SAT/56 s SAT/ 57 s SAT/54 s

mnist 1 5 vs mnist 2 5 784 712420 20 SAT/45 s SAT/120 s SAT/120 s SAT/118 s

Table 7. Equivalence checking on BitVec and MNIST under L2 ε-approximate equivalence

Model Pairs # SMT variables L2 > 1 L2 > 10

Input Internal Output

model 1 1 vs model 2 1 10 424 4 SAT/35 s UNSAT/1494 s

model 1 2 vs model 2 2 10 944 4 SAT/105 s UNSAT/2793 s

mnist 1 1 vs mnist 2 1 784 31840 20 MME/15436 s -
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experiments was an input vector filled with the value 0.5, which corresponds to a
grayscale image whose pixels have all the same color, i.e. it is not a digit.

Experiments with Regression NNs. In another case study, we focused on NNs that
serve as controllers in lane keeping assistant systems. Table 8 presents the details for
the features and the outputs of the regression NNs for this case, as well as the valid
value ranges. The pairs of NNs that were checked for equivalence consist of different
versions of the same NN, produced through varying the number of epochs, for which the
model was trained before being verified.We experimented with three versions of the NN
controller trained for 30, 35 and 40 epochs. The argmax equivalence is meaningless,
since there is only one output variable. Additionally, for the same reason, the results in
Table 9 refer only to the (1, ε)-approximate equivalence, since the various Lp norms are
indistinguishable, when they are applied to scalar values.

Experiments with Weight Perturbations. Table 10 reports the results of a set of
experiments with a NN for MNIST, in which we have randomly altered the values
of some weights before checking the equivalence with the original NN. In this way,
since it is very likely to have a pair of equivalent NNs, the solver is forced to search
for almost all possible inputs before reaching the UNSAT result. We observe that when
having altered two weights (out of 7960) the solver reaches the 10 min timeout.

Table 8. Regression Problem Input Characteristics – Constraints

Type/Parameter Answer/Value Remarks

output/target [−1.04, 1.04] steering angle [−60, 60]

input range x1 [-2,2] vx (m/s)

input range x2 [-1.04, 1.04] rad/s

input range x3 [-1,1] m

input range x4 [-0.8, 0.8] rad

input range x5 [-1.04, 1.04] u0 (steering angle)

input range x6 [-0.01,0.01] ρ

Table 9. Equivalence checking for the Regression NNs

Model Pairs # SMT variables Strict Equivalence L1 > 0.5

Input Internal Output

MPC 30 vs MPC 35 6 17912 2 SAT/1.95 s Timeout

MPC 30 vs MPC 40 6 17912 2 SAT/1.97 s Timeout

MPC 35 vs MPC 40 6 17912 2 SAT/1.98 s Timeout
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Table 10. Equivalence checking with weight perturbations on the MNIST case study

Model # SMT variables # weight
changes

Value range L1 > 5 L∞ > 10 Argmax
Equiv.

Input Internal Output

mnist 1 1 784 31840 20 1 1e−1 - 1e−6 UNSAT/30 s UNSAT/30 s Timeout

mnist 1 1 784 31840 20 2 1e−1 - 1e−6 Timeout Timeout Timeout

6 Related Work

Verification of NNs for various kinds of properties, such as safety, reachability, robust-
ness, is of fast-growing interest, due to the many, often critical applications, in which
NNs are employed. The authors of [23] present several algorithms for verifying NNs
and classify them into three categories: reachability-based, optimization-based, and
search-based. Typically, SMT-based approaches belong to the latter category. Two com-
prehensive surveys that include the verification of NNs using SMT solvers are given
in [22] and [16]. An extensive survey of methods for the verification and validation of
systems with learning enabled-components, not only NNs, is given in [39]. The equiva-
lence checking problem for NNs is different from other verification problems for NNs:
(a) in robustness verification, the goal is to check whether the output of a NN remains
stable despite perturbations of its input; (b) for input-output verification of a NN, the
goal is to check whether for a given range of input values, the output of the NN belongs
in a given range of output values.

Other works on the equivalence of NNs are [28] and [19,35]. [28] only considers the
case of strict equivalence where the outputs of the two networks must be identical for all
inputs. We also define notions of approximate equivalence, as we believe strict equiva-
lence is often too strong a requirement. [28] is also based on a SAT/SMT based encoding
of the equivalence checking problem, but the overall approach is applicable only to a
specific category of NNs, the so-called binarized NNs [2,17] that are not widely used
in many different real-life applications. Approximate NN equivalence checking is also
studied in [19,35], but their approach is based on mixed-integer linear programming
(MILP) instead of SMT encoding. [19] applies the solution only to restricted regions
of the input space, within a radius around the training data, whereas [35] introduces an
abstraction-based solution. None of these works allows checking of hybrid equivalence.

The work in [30] focuses on the relationship between two NNs, e.g. whether a mod-
ified version of a NN produces outputs within some bounds relative to the original net-
work. A “differential verification” technique is proposed consisting of a forward interval
analysis through the network’s layers, followed by a backward pass, which iteratively
refines the approximation, until having verified the property of interest. Differential
verification is related to equivalence checking, but it is actually a different problem.

In [32], the authors adopt abstractions of the input domain using zonotopes and
polyhedra, along with an MILP solver for verifying properties of NNs. An SMT-based
verification method for a single NN is also presented in [18], whose applicability is
limited only to NNs with ReLU activation functions. Finally, an interesting symbolic
representation targeting only piecewise linear NNs is the one presented in [34].
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7 Conclusions

In this work, we examined a series of formal equivalence checking problems for NNs,
with respect to equivalence relations that can be suitable for various applications and
verification requirements. We provided an SMT-based verification approach, as well as
a prototype implementation and experimental results.

In our future research plans, we aim to explore whether the equivalence check-
ing problem can be encoded in existing verification tools for NNs (e.g. Reluplex [18],
ERAN [32], α−β Crown [36,41,42], VNN competition [4]) through the parallel com-
position of the two networks that are to be compared. An interesting prospect is to
extend our approach towards finding the smallest ε, for which two NNs become equiv-
alent.

As additional research priorities, we also intend to explore the scalability margins
of alternative solution encodings, including the optimized version of the current encod-
ing (as described in Sect. 4.3) and to compare them with the MILP encoding in [19].
Lastly, it may be also worth exploring the effectiveness of techniques applied to sim-
ilar problems from other fields, like for example the equivalence checking of digital
circuits [12,13,25]. In this context, we may need to rely on novel ideas toward the
layer-by-layer checking of equivalence between two NNs.

Acknowledgment. This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 956123.

References

1. Albarghouthi, A.: Introduction to neural network verification. Found. Trends R© Program.
Lang. 7(1–2), 1–157 (2021)

2. Amir, G., Wu, H., Barrett, C., Katz, G.: An SMT-based approach for verifying binarized
neural networks. In: TACAS 2021. LNCS, vol. 12652, pp. 203–222. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-72013-1 11
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