Small Scheme Stack: A Scheme TCP/IP Stack
Targeting Small Embedded Applications

Vincent St-Amour

Université de Montréal
stamourv@iro.umontreal.ca

Abstract

Interaction with embedded systems is usually achieved by hook-
ing up these devices to a computer network. The TCP/IP stack of
protocols has often been used to this end, requiring compact stacks
to be implemented as regular ones are too large for embedded sys-
tems. Traditionally, compact stacks such as ulP [4] have been im-
plemented in C. Here we report on our experience in implement-
ing S* (“Small Scheme Stack”), a compact TCP/IP stack written in
Scheme for microcontrollers with a few kilobytes of memory. This
paper describes how we were able to minimize the code size and
memory requirements by taking advantage of Scheme’s power of
abstraction and of a virtual machine. We also provide examples of
the stack’s use to write network applications.

1. Introduction

Increasingly, electronic devices such as cell phones, intelligent
toys, security systems, and home appliances, are interfaced with
their environment through networking. The Internet, in its wired
and wireless forms, is a popular solution because of the extensive
existing infrastructure and the wealth of accessible services. It al-
lows these devices to be controlled remotely from most personal
computers and to communicate with any similarly networked de-
vice on the internet. Moreover, an embedded system with a network
interface can reduce costs by eliminating the need for dedicated pe-
ripherals, such as a keyboard, display, and disk storage. Equivalent
functionality can be achieved by sharing the resources of another
computer through the network and an appropriate protocol such as
TELNET, HTTP, X11, and NFS. For example, a digital thermome-
ter built from a microcontroller, a temperature sensor and a IEEE
802.11 wireless network chip could use NFS to log the tempera-
ture hourly in a file on a distant workstation and use HTTP to allow
users to view the temperature log through a web browser and to
configure a “temperature alarm” which sends email alarms using
SMTP.

A TCP/IP protocol stack is a non-trivial piece of software for
which an accordingly powerful microcontroller is needed to store
the program code and data, and manage the communication in real-
time. Our work aims to demonstrate that Scheme is well suited to
build a reasonably featureful TCP/IP stack for inexpensive mid-
level microcontrollers with on the order of 16 kB of total memory.

Permission to make digital or hard copies of al or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profi t or commercial advantage and that copies bear this notice and the full citation
on the fi rst page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specifi ¢ permission and/or afee.

2008 Workshop on Scheme and Functional Programming

Lysiane Bouchard

Université de Montréal
boucharl@iro.umontreal.ca

Marc Feeley

Université de Montréal
feeley@iro.umontreal.ca

We achieve this goal using an optimizing Scheme compiler and a
compact Scheme virtual machine (PICOBIT), and by taking advan-
tage of some of Scheme’s features to write compact code, including
higher-order functions and garbage collection.

After discussing related work in the next section, we give an
overview of the features of S® (“Small Scheme Stack”). Its applica-
tion programming interface will then be described, with supporting
examples, followed by the stack’s implementation. We conclude
with some experimental results.

2. Reated Work

The TCP/IP stack of protocols has often been used in conjunction
with embedded systems, both for their remote configuration and
for remote access to their function. For this purpose, a number of
TCP/IP stacks targeting embedded systems have been developed.
For example, Adam Dunkels’s ulP [4] and IwlIP [3], both written
in C, aim to provide full support for TCP [17], and UDP [18] in
the case of IwlIP, while keeping a low code size, on the order of
10 kB once compiled, and memory footprint, around 4 kB of RAM
with a web server running. Having full protocol support gives much
flexibility, both in terms of supported peer types (the stack can
communicate with any device, not only workstations with a full-
scale TCP/IP stack) and supported application types. The goals
of S are similar to ulP’s: low code size and memory footprint
while implementing the most commonly needed features of each
protocol.

PowerNet [15], written in Forth, targets 32-bit embedded sys-
tems. Both ulP and S® primarily target 8-bit microcontrollers, but
can be ported to other architectures. Like both ulP and S*, Pow-
erNet supports TCP and UDP. In addition, it includes drivers for
Ethernet [10] and SLIP [21], as we do, and various ready-to-use
applications such as a web server and a TELNET server. Since
PowerNet is written in Forth, it is easy to interface to other Forth
applications on the same chip. S* has a similar goal of being easy
to use from Scheme applications. However, PowerNet is a closed-
source product, which restricts our ability to study it further and
draw comparisons with S2.

Several stacks have been written in functional languages, such
as FoxNet [1] written in Standard ML. The authors made significant
use of functional programming and high-level language features,
such as Standard ML’s powerful module system, continuations and
garbage collection. In particular, the authors measured that the use
of a garbage collector did not impact the performance of their stack,
while providing all the usual benefits of automatic memory man-
agement in terms of programmer effort and maintainability. Since
FoxNet was designed for workstation-class machines, no particular
efforts were made to keep the stack as compact as possible. Accord-
ingly, this stack was implemented in around 50 kLOC of Standard

Application
Presentation

Session
Transport |[TCP, UDP
Network |IP, ICMP, ARP, RARP
Link Ethernet, SLIP

Physical

Our stack

Figure 1. Layers of the OSI model and those implemented by S®

ML, which means it likely is much too large to be used on small
microcontrollers.

The House [9] operating system, written in Haskell, also in-
cludes a network stack. Like FoxNet, House was designed for
workstations; therefore, most size issues affecting FoxNet are likely
to apply to House’s stack. It should be noted that this stack does not
implement TCP and thus only offers UDP as transport-layer proto-
col.

To our knowledge, no stack targeting small embedded systems
has ever been written in a functional programming language. In this
paper, we show the feasibility of such a challenge through the use
of Scheme.

3. TCP/IP Stack Overview

S% handles 3 layers of the OSI model [23] represented in Figure 1:
the link, network and transport layers. On the link layer, Ether-
net and Serial Line Internet Protocol (SLIP) encapsulation are sup-
ported. On the transport layer, S* offers support for both TCP and
UDP. Most of the TCP standard has been implemented in S3, en-
abling support for various types of applications, unlike many em-
bedded TCP/IP stacks, which were written with only a particular
application in mind, often a web server.

S2 should be considered to be a minimal implementation. Some
of the infrequently used features have been omitted. S is easily
extensible; support for the missing features can be added if need
be.

The following sections explain how S* handles each layer of the
OSI model.

3.1 Physical Layer

The lowest layer of the OSI model, the physical layer, handles
the transmission of raw bits over a physical connection. TCP/IP
stacks do not usually implement this layer, instead relying on an
underlying device driver for the first two layers. S? is no exception
and requires the use of a device driver. For our tests, we have used
libpcap [11] as an abstract interface over device drivers, in our case
for Ethernet.

3.2 Link Layer

The second layer of the OSI model, the link layer, is responsible
for the transmission of data frames between two nodes of a network
segment. Since S* targets small embedded systems, it will likely be
used without the support of a sophisticated network device driver.
Therefore, unlike most TCP/IP stacks, we offer support for the OSI
link layer in addition to the network and transport layers that are
traditionally implemented in TCP/IP stacks.

S3 supports the use of different link-layer protocols. Currently,
support for Ethernet and SLIP have been implemented. PPP sup-
port could be added easily. The support of multiple link-layer pro-

tocols makes it possible to deploy microcontrollers running S in
various environments. For example, using the Ethernet back-end,
such a microcontroller could be a first-class citizen in any typical
home network, opening many possibilities for home automation or
ubiquitous programming, among others. For integration with other
more traditional embedded systems, or interfacing to a workstation,
the SLIP back-end could be used.

3.3 Network Layer

The network layer is responsible for the delivery of packets from
their source to their destination. In the case these two nodes are
not on the same network segment, the network layer is responsible
for the routing of packets. On the network layer, S® supports the
Internet Protocol [20] (IP), Internet Control Message Protocol [19]
(ICMP), Address Resolution Protocol [16] (ARP) and Reverse Ad-
dress Resolution Protocol [8] (RARP) protocols, making it suitable
for a wide array of tasks.

To increase flexibility, S* supports the use of multiple IP ad-
dresses per interface. We can therefore easily simulate multiple
hosts on the same stack. The dispatch between the different hosts
is done at the application level, using the filter functions described
in Section 4.3.

Some features of the IP standard were omitted in the current
version. For example, no support for IP fragmentation, options or
type of service is currently offered. While the omission of these
features might make communicating with some hosts impossible,
their use is infrequent enough that it is unlikely it would prove to
be a problem.

In the case of ICMP, S® can report any error that occurs on
the transport layer (protocol unreachable, port unreachable, and so
on) as well as reply to echo requests and address mask requests.
While the ICMP standard specifies other operations, S* implements
enough operations to communicate properly on the network.

While ARP and RARP are not used to carry data as IP does,
their role in address resolution makes them essential for routing on
an Ethernet-based network. Both standards have been implemented
fully. These protocols can only be used with the Ethernet back-
end, since they depend on a notion of address that does not exist in
SLIP. In order for RARP to work properly, a list of pairs of MAC
addresses and their corresponding IP addresses has to be given to
the stack. This list is specified as a Scheme association list in a
configuration file. This file is detailed in Section 4.1.

3.4 Transport Layer

The fourth layer of the OSI model, the transport layer, handles the
delivery of data to the appropriate applications. On the transport
layer, S® supports the two protocols in widest use, the Transmission
Control Protocol (TCP) and the User Datagram Protocol (UDP).

As in the case of IP on the network layer, the TCP standard was
partially implemented for the same reasons. A notable omission
is the urgent data feature which, while useful when implementing
some kinds of applications, is not absolutely necessary for most
applications built over TCP.

As for UDP, all features specified in the standard have been im-
plemented. The extreme simplicity of UDP made its implementa-
tion quite straightforward.

3.5 Higher Layers

The implementation of the other layers of the OSI model, the ses-
sion, presentation and application layers, is left to the applications
built over S®. The application programming interface we provide
(see next section) was created to assist in their implementation.

4, Application Programming I nterface

The design of an API has a big influence on the design of the
applications using it; therefore, much of the design effort went into
the API of S3. In this section, we describe the resulting interface
and illustrate its use by implementing simple applications.

4.1 Configuration

Many aspects of S® can be configured using a set of Scheme def-
initions in a file. An advantage of this approach is that, since all
the configuration is contained in S-expressions, it can be easily
program-generated if need be. Since this configuration file is ac-
tually just another module of the program, it is then compiled and
linked with the rest of the stack.

Using this configuration file it is possible to change the list of
IP addresses of the stack, its MAC address, the maximum accepted
packet size, the list of addresses used for RARP (as mentioned
previously), the default IP datagram time to live (TTL), the size
of the input/output buffers used for TCP, among others.

4.2 Polling

The well-known Berkeley socket [13] interface offered by most
TCP/IP stacks provides blocking read and write operations. Such
operations are made possible by the presence of underlying syn-
chronization mechanisms, such as mutexes, condition variables
and threads. For example, on a multithreaded system, if a process
blocks on a read operation, the other processes can continue their
execution independently. We did not want to impose on the target
platform any special requirements regarding threading. Requiring
a multithreaded operating system or implementing one with con-
tinuations might exclude some target platforms (for lack of an ap-
propriate OS, lack of ROM or RAM, etc). Instead, the API uses
polling and it is up to the application to orchestrate the execution
of concurrent activities.

Consequently, we chose to provide non-blocking I/O operations
and let applications poll the stack until the desired operation suc-
ceeds. Specifically, whenever an application does an 1/0 operation,
it either returns with a success value if the operation was success-
ful or with a special code if the operation could not be completed.
For example, a special code is returned when an application tries
to read data from a connection before any has arrived. When an
application receives such a code, it can then either try to do some
other operations or let another application, or the stack, execute.
Later on, this application can try the desired operation again until
it either succeeds or fails.

Since we’re considering a single-thread system, application-
switching has to be done explicitly. Therefore, if control is never
given to the stack, no network operation can ever succeed. By
calling the stack-task function, with no parameters, S* will
handle the next incoming packet and send any pending output
packet.

In an environment where synchronization mechanisms are
available, it would be possible to simulate blocking operations by
using the non-blocking operations S* offers in conjunction with the
available synchronization mechanisms.

43 TCP

For the TCP portion of S* we chose an interface similar to the
well-known Berkeley sockets, but adapted for Scheme and single-
threaded environments.

To bind a server to a port, the tcp-bind (see Figure 2) func-
tion has to be called from the application, which must specify the
port number to be bound (1 to 65535) and the maximum number of
simultaneous connections to be accepted. In addition, the applica-
tion must give the stack a filter function, which must return a true
value when the application accepts the packet, and #£ if it refuses.

(tcp-bind portnum max-conns tcp-filter tcp-recv)
(tcp-filter dest-ip source-ip source-portnum)
(tcp-recv connection)

Figure 2. Signatures of tcp-bind and its filter and reception
functions

(tcp-read connection [length])
(tcp-write connection data)

Figure 3. Signatures of the TCP input/output functions

(tcp-close connection [abort?])

Figure 4. Signature of the TCP close function

This acceptance or refusal is determined using the IP address the
connection is destined to, the source IP, along with the source port
number and is decided on a per-packet basis. If the stack possesses
multiple IP addresses, the dispatch is done with these filter func-
tions. Finally, the application also has to give the stack a reception
function which will be called each time a new connection destined
to the application is established.

When a TCP connection is being established with the stack, if
the original request passes the filter function, the reception function
is called, with a newly created connection object as parameter. It is
at that time that the connection initialization inside the application
is typically done. Since reading data from and writing data to the
connection is done using this object, the application typically stores
the connection object for future use.

Once the connection is established, the application can read data
from or write data to the connection at any time. As explained
before, these operations are non-blocking. All these operations take
the connection object given to the reception function as parameter
(see Figure 3).

The tcp-read function takes an optional length parameter and
returns a byte vector. If the length parameter is given, the stack will
attempt to read length bytes of input. If enough bytes are available,
they will be returned. If not, all available bytes will be returned,
and the returned vector will be of the appropriate length instead
of being length bytes long. If the length parameter is omitted, all
immediately available input will be read.

The tcp-write function returns the number of bytes that were
really written to the connection. If this number is less than the
length of the vector given to tcp-write, the application knows that
its output has only been partially sent, and can react accordingly.

To terminate a connection, the tcp-close function is provided
(see Figure 4). The connection to close is the first parameter. The
abort? parameter must be either set to #f or omitted if the con-
nection has been successful and ends normally. A true value indi-
cated that an error state has been reached and the connection must
be aborted. In both cases, the peer will be notified of the cause
of the connection’s termination. Once this function is called (or if
the stack’s peer aborts or closes the connection), no more data can
be written to the connection, but any remaining data can be read.
Once the application is done with the connection, it should release
the connection object and leave it to be garbage-collected, the stack
having already dropped all references to the connection object.

Despite its simplicity, this interface remains expressive enough
to be used to implement various applications. We wrote a minimal-
ist web server to test our API (see Figure 5).

(define connections ’()) ;; (conn-object . data)

(define (visit-all cs)
(let ((c (car cs))))
(if (visit c)
(cons ¢ (visit-all (cdr cs)))
(begin
(tcp-close c #t) ;; abort
(visit-all (cdr cs)))))

;; (visit conn) visits one connection and
;; returns false when the connection is over.
(define (visit conn)
(let ((new-data (tcp-read (car conn))))
(cond ((not new-data)
;3 we received nothing, try again later
#t)
((equal? new-data ’end-of-input)
;3 no more input, give up
#£)
(else
;3 save the new input and try to answer
(set-cdr! conn (update-data (cdr conn)
new-data))
(answer conn)))))

;3 (update-data orig new) appends the new data to
;3 what has already been received
(define (update-data orig new) ...)

(define (answer conn)
(let* ((data (cdr conn))
(len (string-length data))
(spc (find-first #\space data O len))
(spc2 (find-first #\space data spc len)))
(cond ((not spc2)
;3 we didn’t receive the target yet

#t)

(else

;; we have received the target, answer
(serve (car comn) ...)

(stack-task)
(tcp-close (car conn))
#£)))) ;; done
(define (serve conn target) (tcp-write conn ...))

(define (find-first target data start emnd) ...)

(define (tcp-filter dst-ip src-ip src-port)
(equal? dst-ip my-ip))

(define (tcp-recv conn)
(cons (cons conn "") connections))

(define (main-loop)
(stack-task)
(set! connections (visit-all connections))
(main-loop))

(tcp-bind 80 20 tcp-filter tcp-recv)

(main-loop)

Figure 5. The outline of a minimalist web server built using S3

(udp-bind portnum udp-filter udp-recv)
(udp-filter dest-ip source-ip source-portnum)
(udp-recv source-ip source-portnum data)

Figure 6. Signatures of udp-bind and its filter and reception
functions

(udp-write dest-ip source-port dest-port data)

Figure 7. Signature of the UDP output function

(define (echo source-ip source-port data)
(udp-write source-ip 7 source-port data)
(stack-task))

(define (main-loop)
(stack-task)
(main-loop))

(udp-bind 7
(lambda (dest-ip source-ip source-port)
(equal? dest-ip my-ip))
echo)

(main-loop)

Figure 8. A simple UDP echo server

44 UDP

UDP is a much simpler protocol than TCP. UDP support for S* was
implemented in only 50 lines of Scheme code.

Binding a UDP port is similar to a TCP port. First, the udp-bind
function is called with the port number to be bound, a filter func-
tion and a reception function (whose signature is given in Figure
6). Due to the connectionless nature of UDP, the reception function
is called every time a UDP packet destined to the appropriate port
is received and passes the filter function.

The signature of the receiving function has been changed ac-
cordingly: instead of taking a connection structure as parameter,
it takes the IP address of the source of the datagram along with
the port number used by the source, and a byte vector containing
the data contained within the datagram. Since the IP address of the
source is given to the application, it can do some internal dispatch
between peers as need be. Since the logical data unit for UDP is
the datagram, it makes more sense to pass all the data contained in
the datagram at once rather than keeping it in a buffer to give the
illusion of a stream, as is the case with TCP.

Since all data is handed to the application as soon as it is
received by the stack, it is inappropriate to have functions for
reading data in smaller chunks. However, an output function is still
necessary. Since UDP datagrams can be sent in any circumstance,
not only within the confines of a connection as is the case with TCP,
more information is needed to do output. In our case, to produce
any output the udp-write function needs the IP address of the
destination as well as both the source and destination ports, along
with the data to be sent.

Again due to the connectionless nature of UDP, no connection
control functions are necessary.

To illustrate the use of our UDP API, an implementation of the
standard UDP echo server listening on port 7 is given in Figure 8.
The server’s logic is simple. The echo function sends an UDP
datagram to the client containing the data that was received. The
setup of the server is also simple. A call to the udp-bind function

links our echo server to UDP port 7 with a filter function that
accepts any packet. Any UDP datagram received on port 7 would
now be handed to the echo server.

5. Implementation

Our goals of low code size and low memory footprint had an
important impact on the design of S3. In this section, we will
elaborate on design decisions that were made and language features
we leveraged in order to meet our goals.

5.1 Packet Limit

Only one packet is present in the stack at a time. Unlike many
TCP/IP stacks, S* does not have a buffer to store packets received
while processing another. Instead, any packet arriving while the
stack is already processing a request is ignored. The absence of
such a buffer can save a lot of memory, if we consider 200 bytes
to be the average packet size (which amounts to a TCP packet
carried over Ethernet containing 146 bytes of data). We also avoid
the costs related to the upkeep of such a data structure, both in code
complexity (therefore, in code size, which we try to keep as low
as possible) and in processing time, which is especially important
considering the humble speed of the processors present in most
embedded systems.

Due to the nature of the protocols we support, ignoring pack-
ets is not a threat to communication integrity. In the case of TCP,
packets for which a reception acknowledgement was not received
(such as those that were ignored by the stack) will be resent, with
a fixed number of retries to avoid congestion or neverending at-
tempts to communicate with an unreachable host. In the case of
UDP, the protocol does not guarantee the reception of datagrams,
it is up to the applications to ensure the integrity of the commu-
nication. Therefore, ignoring packets might induce delays in the
communication, but it should not compromise its integrity. As for
the underlying protocols (IP and ICMP), no guarantee is made by
the protocols either.

This approach should not result in a performance much different
from that of a buffered stack. Consider the following cases: if the
stack processes packets at a speed faster than the speed at which
they arrive, the stack never has to ignore any packets, giving us a
better performance than a buffered stack, since we save the upkeep
costs of the queue, which would never be needed in this case.

On the other hand, if the stack processes packets at a speed
slower than the speed at which they arrive, the stack has to ignore
some of the incoming packets, resulting in delays. Now, let us
consider a buffered stack in the same situation. Since the packets
arrive faster than they are processed, the buffer would gradually
fill up, and eventually be full. Once the buffer is full, the stack is
forced to ignore any incoming packet, just like it would if it did not
have buffering. Of course, the buffering stack would last a little bit
longer before ignoring packets, maybe long enough to reach a lull
in the reception and catch up on the accumulated packets, whereas
S% would have to cope with the reception of the retransmissions of
the original packets in addition to the new ones. Therefore, if traffic
follows a pattern of bursts of heavy traffic interleaved with quiet
periods, a buffered stack would probably fare much better than a
non-buffered one, whereas if traffic is of about constant intensity,
both stacks would end up ignoring packets, with the non-buffered
one doing slightly better since it would be processing packets faster
because of the savings due to the absence of buffer upkeep time.

However, keeping only one packet in the system at once also has
some drawbacks. First, since ignored packets are likely to get resent
(especially in the case of TCP), the risk of network congestion
might be higher than with a buffered stack. Second, since we have
to wait until an ignored packet is resent to be able to respond to it
(whereas a buffered stack would have kept it in its buffer), delays

0 78 1516 31
code (0)

checksum

type (8)

identifier sequence number

data (optional)

Figure 9. An ICMP echo request

;5 change the type to icmp echo reply
(pkt-set! icmp-type 0)

;3 clear the checksum
(integer->pkt-2 0 icmp-checksum)

;; calculate the new checksum
(integer->pkt-2
(reverse-checksum (compute-icmp-checksum))
icmp-checksum)

Figure 10. The code used to reply to an ICMP echo request

can be introduced in the communication, as we noted above. In
extreme cases, this might even cause the connection to be dropped
by our peer. If these drawbacks end up being major, and memory
is not too much of an issue, adding a packet queue to S* would
require only minor changes, thanks to its modular design.

It should also be noted that these drawbacks are unlikely to mat-
ter since most networking hardware already does a certain amount
of buffering.

5.2 Reply Generation

The reply packets sent by S* are created by mutating the original
packet received by the stack. Since a large part of the data is
common between a request and its response, albeit not necessarily
in the same location (for example the source and target IP addresses
in the IP headers, which are obviously swapped between request
and response), we save memory by not storing it twice.

Also, since packet structure is virtually unchanged between the
request and the response, only minimal changes to the headers are
necessary most of the time while creating a response, the only
major modifications coming from the changes in data. Some of the
information present in the headers being exactly the same between
the request and the response, we also save some time by not having
to copy it.

In the case of an ICMP echo request, most often used by end
users through the ping utility (see Figure 9), S* would only have to
change the type byte (from 8 to 0) and recalculate the checksum,
the code byte being 0 on both the request and the response, and
the identifier, sequence number and data being simply echoed by
the server. Therefore, only three bytes are changed when creating
an ICMP echo reply. Considering that the default data size for an
ICMP echo request on GNU/Linux is 56 bytes, giving a total of 64
bytes for the whole ICMP message, less than 5% of the packet has
to be modified, which is quite an improvement over having to build
the whole response from scratch. The code used for responding to
an ICMP echo request is presented in Figure 10.

0 1516 31

destination port number

source port number

sequence number

acknowledgement number

header
length reserved | flags

@i | 6 bits) | (6 bits)

TCP checksum

window size

urgent pointer

Figure 11. A TCP header

Of course, the stack could also store packet templates to be filled
with the remaining data, as does Miniweb [5], but storing these
packets requires memory, which is in short supply in our case.

The savings brought by this approach are not always as impres-
sive. In the case of an ordinary TCP header, as represented in Figure
11, if we consider the worst case, only the 2 bytes containing the
window size and the 2 containing the urgent pointer (which never
change, since we do not support urgent data) would stay the same
between the request and the response. We would save 4 bytes over
a total of 20 bytes for the whole header, if we suppose no options,
which is not as large a savings.

This approach for the generation of responses assumes that each
field is in the same location for both the request and the reply.
Since S® does not support options in the IP headers, the header
of any protocol we support is guaranteed to always be the same
size. Therefore, since all the protocols we support can only be used
with a single underlying protocol at a time, information within the
headers is guaranteed to always be in the same location.

This in-place creation of response packets is made more effi-
cient by the use of a vector to represent the packet currently in
the stack. Since the order of the modifications is not necessarily
sequential, having efficient random access in the packets can be
especially useful. It is also worth noting that such in-place edi-
tion is possible because Scheme supports destructive updates. This
approach would not have been possible, or at least would have
been more complex, using Haskell or another purely functional lan-
guage.

Since Scheme vectors are of fixed size and a packet can trigger
a response longer than itself, we need to manipulate our packet
in a preallocated vector with a length considered sufficient. The
default value for this length is 590 bytes (the smallest maximum
IP datagram size we must support according to the standard is 576
bytes and the length of an Ethernet header is 14 bytes). This can be
changed in the configuration file, as described in section 4.1. Any
packets larger than the size of the buffer are ignored by S3.

Keeping a deliberately large vector in the stack might be con-
sidered wasteful, especially since memory is usually in short supply
on our target platform. However, let’s consider the alternative: stor-
ing each incoming packet in a vector of the right size. Since the
response to each packet might be longer than the original packet,
we have to store outgoing packets separately and lose all the ben-
efits of creating them in-place. Moreover, the sum of the lengths
of the incoming and outgoing packet currently in the system may
very well be larger than the size of the original too large vector,
which would end up wasting even more space than our approach. If
we add the costs of constantly allocating new vectors and the costs
in space of the old vectors before they get garbage-collected, this
alternative solution does not seem appropriate for limited memory
systems.

5.3 Virtual Machine

To minimize the code size of S, we use a bytecode interpreter-
based approach to run the TCP/IP stack. We chose the PICOBIT
Scheme system which was designed for use on mid-level PIC [14]
microcontrollers. Because of the limitations of the target environ-
ment, especially the small amount of memory, PICOBIT itself has
several unique limitations that are not present in other Scheme sys-
tems.

The PICOBIT runtime has to distinguish between values that
are stored in random-access memory (RAM) and those that are
stored in read-only memory (ROM). Due to constraints of both
time and space, the PICOBIT compiler stores in ROM all values
that are known at compile-time. Since anything stored in ROM is,
by definition, read-only, special care has to be taken to avoid storing
in ROM a vector that would need to be mutated.

Another limitation we had to keep in mind while building S®
is that PICOBIT offers support for integers up to 24 bits wide.
Therefore, any value wider than 24 bits would have to be stored
and passed around as a vector of bytes. In order to support systems
that only have support for even smaller integers, such as PICBIT [7]
which supports 16-bit integers, S* only uses integers up to 16 bits
wide.

Despite the previously mentioned limitations, the use of a vir-
tual machine remains an interesting approach. Bytecode being at a
higher level of abstraction than machine instructions, we were able
to gain a significant reduction of the code size on the target mi-
crocontroller. On the other hand, the virtual machine necessary for
such an approach takes some space too, reducing our gains some-
what. This is discussed in more detail in Section 6.

5.4 First-Class Procedures

First-class procedures are a powerful means of abstraction that
provide many ways of combining functions. This had an interesting
impact on the reduction of the code size of S3.

During its lifetime a TCP connection will pass through different
states (listening, established, waiting for an acknowledgement, and
so on). In each of these states the tasks a stack has to accomplish
for a given connection are different. To keep track of which tasks
need to be done for each connection we chose to store a TCP
state function along with each connection. When executed, this
function accomplishes the tasks related to the current state of the
connection and creates a new state function that reflects the new
state of the connection. This new function then replaces the original
one in the connection objects, and will be called the next time
this connection is visited. This is in essence a continuation-based
coroutine mechanism.

Since the number of states of a TCP connection is prohibitively
large, we chose not to implement all of them statically. Instead,
we create state functions dynamically as needed. Since some tasks
have to be accomplished in many different states, for example
enqueuing newly received data to the current stream, state functions
are mostly created by combining existing functions representing
different tasks. The code reuse brought by this combination of
common tasks helped us achieve a significant reduction in code
size. Similar results could have been achieved in C using function
pointers, but such an approach would have been more error-prone
and the resulting code would have been both longer and more
complex, whereas in Scheme, thanks to its support for closures,
the code is actually shorter and more straightforward than it would
have been if we had chosen to define each state function statically.

Another interesting application of first-class procedures in S3 is
the use of filter and reception functions, as detailed in Section 4.
The use of these functions allows application authors to handle
packets destined to their applications as they wish, something much
more complex to do with a traditional socket interface.

5.5 Garbage Collection

In addition to all the usual benefits of automatic memory manage-
ment on programmer productivity and code simplicity, we also ob-
served that the presence of a garbage collector in the PICOBIT run-
time brought us some specific benefits.

First of all, consider the case where a piece of data has to be
accessed by two different parts of a program. For example, the
objects used to represent TCP connections have to be accessed
both by S* and by the application to which the connection is
destined. If we managed memory manually, the data would have to
be owned by one of the parts, which would free it at an appropriate
time. Of course, if the data is freed by its owner and another
part of the program still needs to access it, we get unpredictable
behavior. With automatic memory management, it is not necessary
to assign the data to a particular owner, we therefore avoid dangling
pointer bugs. Similar results could be achieved in C with the use of
reference-counting, but this reference counting would have to be
implemented in the TCP/IP stack, whereas in our case, the Scheme
runtime relieves the programmer from that burden.

As for memory usage, the use of garbage collection prevents
some kinds of memory leaks from happening, leaks which, given
the limited amount of memory of our target platform, could be
disastrous. Since the PICOBIT runtime uses a mark-and-sweep
garbage collector [12], the overall memory usage of S is not
much higher than it would be with manual memory management,
only one or two tag bits by object being necessary, depending on
its type. It should be noted that a stop-and-copy garbage collector
was rejected, as using twice as much memory as is really necessary
(once to store the actual objects, and then as much to copy them) is
unacceptable on low-memory systems such as microcontrollers.

As with the costs of the virtual machine, the garbage collection
costs are amortized over all Scheme programs. Once again, since
a TCP/IP stack is seldom used without other applications, this can
have an important impact. As for the costs in terms of code size,
the garbage collector represents about 11% of the code size of
PICOBIT’s virtual machine, which is acceptably low.

5.6 Portability

Another major advantage of using Scheme is its machine-independent

semantics. While S was built with 8-bit PIC microcontrollers in
mind, it would run just as well on a 16-bit or 32-bit system, as long
as the underlying Scheme system supports R*RS [2] as well as a
few extensions: byte vectors (as defined in SRFI 4 [6]), bitwise
OR and XOR and access to a timing mechanism. For example, the
exact same stack that compiles to 8-bit PIC microcontrollers was
successfully used as a user-space TCP/IP stack on a workstation.
More details are available in Section 6.

5.7 Integration

The fact that S? is implemented in Scheme also simplifies integra-
tion with applications written in Scheme. No foreign function in-
terface is needed, and no interface to an underlying stack has to be
added to the Scheme system. In addition, if the underlying TCP/IP
stack’s APl was based on blocking operations, then these would
block the whole Scheme system rather than only the applications
requesting them.

6. Experimental Results

One of our goals is to demonstrate that with Scheme a relatively
complete TCP/IP stack can be implemented in a small amount of
code. The whole Scheme code for the S stack, with a device driver
and a simple web server included, is 1497 lines of Scheme code.
For comparison purposes, the ulP stack is 7725 lines of C code,
without any device drivers or sample applications. In addition to

[CPU [VM size |

1386 17.0 kB
MSP430 | 10.4 kB
PIC18 10.7 kB
PPC604 | 17.7kB

Figure 12. Machine code size, for various processors, of the PI-
COBIT virtual machine with 13-bit object encoding

being shorter than ulP overall, S* implements equivalent features
in much fewer lines of code. For example, we mentioned that our
implementation of UDP was written in 50 lines of Scheme code
and implemented the whole protocol. ulP’s UDP implementation
implements the whole protocol as well, but does it in around 175
lines of C code. In this particular case, Scheme wins over C by a
factor of more than 3 in number of lines of code needed.

Using the PICOBIT compiler, we were able to compile the
whole stack down to 5 kB of bytecode. The amount of machine
code space occupied by the PICOBIT virtual machine, which is
written in C, depends on many factors including the target proces-
sor and the size of heap supported. For a small heap storing at most
128 Scheme objects in RAM, an 8-bit object encoding can be used
and the virtual machine compiles to compact code on the 8-bit PIC
microcontroller, a mere 5.5 kB. Such a heap is too small for execut-
ing the S stack so a 13-bit object encoding was used. The predom-
inance of operations on larger than 8-bit values causes a significant
increase in the virtual machine’s code size. Figure 12 gives the vir-
tual machine’s code size for a few processors popular in embedded
applications. We can see that the code size is between 10 kB and
18 kB.

When the size of the virtual machine is accounted for, the total
code space required by S on the PIC is 15.7 kB. This appears to be
more code space than the 10 kB required by ulP. The S* approach
will be more compact when the cost of the virtual machine is
amortized on the rest of the application. To make a simple analysis,
let’s assume that, like the TCP/IP stack, application code written
in C will compile to A bytes of machine code and the bytecode
generated by PICOBIT will generate A/2 bytes of bytecode for
equivalent Scheme code. Then the break-even pointis A =11.4 kB.
Larger programs (with larger values of A) will have a smaller code
size with the Scheme approach.

It is also worth noting that the more features we add to the stack,
the more we can save on code size overall, since the cost of the
virtual machine is independent of the size of the program it runs
(within reasonable limits).

To demonstrate the machine-independent nature of S, in addi-
tion to compiling to 8-bit PIC microcontrollers, we tested the stack
as a user-space process on a workstation, running the Fedora Core 7
flavor of GNU/Linux. No modifications were necessary; the ex-
act same Scheme code was used both on PIC, using the PICOBIT
Scheme system, and on GNU/Linux, using the Gambit Scheme sys-
tem. A simple compatibility layer could be necessary to use S* with
other Scheme implementations, as long as they offer the necessary
features mentionned in the previous section (e.g. R4RS, byte vec-
tors, bitwise OR and XOR and timing) These features exist in most
Scheme systems.

Since having direct access to drivers from a user-space program
is not feasible, we simulated a device driver using libpcap [11] This
shows the independence of S® from the particular network device
used.

7. FutureWork

S3 was designed to be able to interact with a large variety of peers,
as long as they use the same standard protocols. However, in the
case where we have several embedded systems, all running S*
along with Scheme applications, having these systems communi-
cate over TCP or UDP might not be necessary. Since these systems
would all run Scheme, it might be more efficient to avoid the over-
head of these protocols by transmitting Scheme data directly over
the link layer. A simple protocol could be devised to this end, but
in any case, it would likely be much simpler than the whole TCP/IP
stack of protocols, albeit more limited.

While S can already be used in various application domains,
the omission of certain protocol features would complicate or pre-
vent its use for some applications. For example, TCP urgent data
and IP fragmentation, omitted as of now, could be added in future
versions. These features could probably be implemented with mi-
nor changes to the structure of S3, so, while they might have an
impact on performance, and likely on code size, most advantages
exposed in this paper would remain.

In addition to the currently supported link layer protocols, Eth-
ernet and SLIP, the Point-to-Point Protocol (PPP) could be added
to S® to expand its possibilities.

It would also be interesting to be able to easily include or
exclude protocols from S3. This would enable S to run on devices
which are too limited either in data memory or in code space to run
a complete TCP/IP stack. Right now, this can be done by removing
or commenting out specific modules of the stack, but no simple
way of acheiving this is currently available. This could eventually
be done though our configuration file, by using compilation options
or by some other means.

We intend to explore various ways of reducing the code size of
the PICOBIT virtual machine. One straightforward but time con-
suming approach would be to rewrite critical parts of the virtual
machine in assembler. A more interesting avenue is to design for
the PIC a compiler for a subset of C which handles well the rather
idiosyncratic programming style used in the PICOBIT virtual ma-
chine.

Finally, we are considering the use of S® and the JSS Scheme
to Javascript compiler to build a browser-based operating system
similar to the Lively Kernel [22], but written in Scheme.

8. Conclusion

Important reductions can be achieved both in terms of code size and
data memory usage by the use of Scheme’s power of abstraction
and of the PICOBIT Scheme system for mid-level PIC microcon-
trollers. Through the use of these reductions, we managed to com-
pile S3, a simple TCP/IP stack, down to 5 kB of bytecode, which
would make it suitable for use on embedded systems with only a
few kilobytes of memory and other such limited environments.

It is worth noting that the ulP TCP/IP stack, that also targets
embedded systems but is written in C, compiles down to a 10 kB
binary. This shows that a TCP/IP stack written in Scheme is suitable
for use on small embedded systems and also that Scheme can com-
pete with C in terms of both code size and memory usage, while
still providing high-level features such as higher-order functions
and garbage collection that simplifies the writing non-trivial appli-
cations.

References

[1] E. Biagioni. A structured TCP in Standard ML. In Proceed-
ings of the ACM SIGCOMM Conference on Communications
Architectures, Protocols and Applications, pages 36-45, Lon-
don, England, 1994.

[2] W. Clinger and J. Rees. Revised* report on the algorithmic
language Scheme. Technical report, 1991.

[3] A. Dunkels. Minimal TCP/IP implementation with proxy sup-
port. Technical Report T2001:20, SICS — Swedish Institute of
Computer Science, Feb. 2001. Master’s thesis.

[4] A. Dunkels. Full TCP/IP for 8-bit architectures. In MobiSys
’03: Proceedings of the 1st international conference on Mo-
bile systems, applications and services, pages 85-98, New
York, NY, USA, 2003. ACM.

[5] A. Dunkels. Miniweb. http://www.sics.se/"adam/miniweb/,
2005.

[6] M. Feeley. SRFI 4: Homogeneous numeric vector datatypes.
http://srfi.schemers.org/srfi-4/srfi-4.html, 1999.

[7] M. Feeley and D. Dubé. PICBIT: A Scheme system for the
PIC microcontroller. In Scheme Workshop 2003, November
2003.

[8] R. Finlayson, T. Mann, J. Mogul, and M. Theimer. A Reverse
Address Resolution Protocol. RFC 903 (Standard), June 1984.

[9] T. Hallgren, M. P. Jones, R. Leslie, and A. Tolmach. A prin-
cipled approach to operating system construction in Haskell.
In Proceedings of the 10th ACM SIGPLAN International Con-
ference on Functional Programming, ICFP 2005, Tallinn, Es-
tonia, 2005.

[10] IEEE. 802.3i-1990 IEEE Supplement to Carrier Sense Multi-
ple Access with Collision Detection CSMA/CD Access Method
and Physical Layer Specifications: System Considerations for
Multisegment 10 Mb/s Baseband Networks (Section 13) and
Twisted-Pair Medium Attachment Unit (MAU) and Baseband
Medium, Type 10BASE-T (Section 14). 1990. IEEE product
number SH13763.

[11] V. Jacobson, C. Leres, and S. McCanne.
http://www.tcpdump.com.

[12] R. E. Jones. Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. Wiley, Chichester, July 1996.

[13] S. Leffler. Networking implementation notes 4.3BSD edition,
1986.

[14] Microchip Technology Inc.
http://www.microchip.com.

[15] MicroProcessing Engineering, Limited. PowerNet TCP/IP
stack. http://www.mpeforth.com/powernet.htm.

[16] D. Plummer. Ethernet Address Resolution Protocol: Or Con-
verting Network Protocol Addresses to 48-bit Ethernet Ad-
dresses for Transmission on Ethernet Hardware. RFC 826
(Standard), Nov. 1982.

[17] J. Postel. DoD standard Transmission Control Protocol. RFC
761, Jan. 1980.

[18] J. Postel. User Datagram Protocol. RFC 768 (Standard), Aug.
1980.

[19] J. Postel. Internet Control Message Protocol. RFC 792
(Standard), Sept. 1981.

[20] J. Postel. Internet Protocol. RFC 791 (Standard), Sept. 1981.

[21] J. Romkey. Nonstandard for transmission of IP datagrams
over serial lines: SLIP. RFC 1055 (Standard), June 1988.

[22] A. Taivalsaari, T. Mikkonen, D. Ingalls, and K. Palacz. Web
browser as an application platform: The lively kernel experi-
ence, Jan. 2008.

[23] H. Zimmermann. OSI reference model—the ISO model of
architecture for open systems interconnection. 1988.

libpcap.

PIC microcontrollers.

