
PICOBIT: A Compact Scheme System for

Microcontrollers

Vincent St-Amour and Marc Feeley

Université de Montréal
{stamourv,feeley}@iro.umontreal.ca

Abstract. Due to their tight memory constraints, small microcontroller
based embedded systems have traditionally been implemented using low-
level languages. This paper shows that the Scheme programming lan-
guage can also be used for such applications, with less than 7 kB of
total memory. We present PICOBIT, a very compact implementation of
Scheme suitable for memory constrained embedded systems. To achieve
a compact system we have tackled the space issue in three ways: the de-
sign of a Scheme compiler generating compact bytecode, a small virtual
machine, and an optimizing C compiler suited to the compilation of the
virtual machine.

1 Introduction

Applications for embedded systems vary greatly in their computational needs.
Whereas some modern cell phones, GPS receivers, and video game consoles con-
tain CPUs, memory and peripherals that are comparable to desktop computers,
there is at the other extreme embedded systems with very limited resources. We
are interested in applications with complex behavior and low speed requirements
such as smart cards, remote sensors, RFID, and intelligent toys and appliances.
These devices have relatively simple, slow, power efficient processors and only
a few kilobytes of memory integrated with peripherals on an inexpensive single
chip microcontroller.

Due to the extreme memory constraints such applications are traditionally
implemented using low-level languages, typically C and assembler, which give
programmers total control and responsibility over memory management at the
expense of software development ease and speed. The overall objective of our
work is to show that a high-level mostly functional garbage collected language is a
viable option in this context. In this paper we explain the design of the PICOBIT
system, a very compact implementation of the Scheme programming language
which targets these applications. We discuss three variants of the system, which
represent different trade-offs and levels of featurefullness. The most compact
variant allows Scheme programs to run on microcontrollers with less than 6 kB
of ROM and 1 kB of RAM. The system is being used in two notable contexts. It
is the firmware of the “PICOBOARD2”, a small mobile robot programmable in
Scheme which is used to teach introductory computer science at the Université

de Montréal. It is also used to implement the S3 network protocol stack [1],
which implements a basic stack for embedded systems supporting TCP, UDP,
ARP, etc.

2 Related Work

Virtual machine-based approaches have been used in the past to run high-level
languages in embedded environments. Invariably space savings are achieved by
implementing a subset of an existing high-level language. For example, the Java
language has been adapted for embedded applications and the most compact
version is the Java Card Platform virtual machine [2]. To reduce the memory re-
quirements some important features of Java have been removed, notably garbage
collection and the 32 bit integer type (int) are optional, and the 64 bit integer
type (long) and threads do not exist. Therefore the programming style is lower-
level than with full Java. Moreover smart cards which run Java typically have
an order of magnitude more memory than our target platforms.

Due to its small size Scheme has been a popular language to implement
in memory constrained settings. Many of the compact systems are based on
interpreters and were designed for workstation class platforms. Some of the most
compact are based on a compiler generating compact bytecode for a virtual
machine. In particular the BIT [3] and PICBIT [4] Scheme systems implement
most of the R4RS [5] and target small embedded systems having less than 8 kB
of RAM and less than 64 kB of ROM. PICOBIT is a descendent of BIT and
PICBIT whose requirements are more modest.

3 Overview

The PICOBIT Scheme system has three parts: the PICOBIT Scheme compiler,
the PICOBIT virtual machine, and the SIXPIC C compiler. The PICOBIT
Scheme compiler runs on the host development system, which is typically a
workstation, and compiles from Scheme to a custom bytecode designed for com-
pactness. The Scheme compiler is itself written in Scheme, though it is not
self-hosting.

The PICOBIT VM runs on any platform for which there is a C compiler.
Currently, we target the popular Microchip PIC18 family of microcontrollers
which are cheap single-chip microcontrollers. The VM executes the bytecode
produced by the PICOBIT Scheme compiler. The VM is written in C for porta-
bility reasons, since most microcontroller platforms already have C compilers
targeting them. Therefore, the PICOBIT virtual machine can be compiled for
any microcontroller which has a C compiler, making PICOBIT a highly portable
platform.

Finally, we have developed the SIXPIC C compiler, a C compiler which
was designed specifically to compile virtual machines. We studied the patterns
present in typical virtual machines (and the PICOBIT virtual machine in par-
ticular) to add specialized optimizations and omit certain features of the C

Fig. 1. Workflow of the PICOBIT Scheme system

language in order to reduce the size of the generated code for virtual machines.
This compiler is typically used to compile the PICOBIT virtual machine.

4 General Approach

Because of the code size limitations of our target environment, our approach was
designed with the primary goal of generating compact code. Performance of the
generated code was a secondary concern, and has not been addressed at length.

The bytecode the PICOBIT Scheme compiler generates is higher level than
raw machine code. The bytecode necessary to accomplish a task is typically more
compact than the corresponding machine code. Therefore, the use of interpreted
bytecode can lead to savings in a program’s code size over the use of machine
code. We must keep in mind that the virtual machine needed to execute this
bytecode also takes space. However, since the size of the virtual machine is inde-
pendent of the size of the programs it executes, it is a fixed cost that is amortized
over the cost of all the executed programs. We therefore postulate that once ap-
plications reach a certain size, the combined sizes of the application’s bytecode
and of the virtual machine would be smaller than the size of the machine code
resulting from the native compilation of the application.

Another key point of our approach is that we control every step of the execu-
tion process. By controlling both the Scheme compiler and the virtual machine,

we can adapt the bytecode representation to better fit the needs of our applica-
tions.

Controlling both the virtual machine and the C compiler which compiles
it means that we can specialize the C compiler to use domain-specific opti-
mizations: optimizations that are especially interesting when compiling virtual
machines or optimizations that are possible thanks to properties of virtual ma-
chines, and would not be valid for all programs.

Finally, the use of a virtual machine also increases the portability of our
system. Since the PICOBIT virtual machine is written in a highly portable
subset of C, porting it to different architectures is easy. So far, PICOBIT has
been ported to the PIC18, MSP430, i386, amd64 and PowerPC architectures,
and compiles successfully using the SIXPIC, MCC18, Hi-Tech C, mspgcc, and
gcc C compilers. Of course, this portability argument does not yet extend to our
SIXPIC C compiler, which currently only supports the PIC18 architecture.

Several versions of the PICOBIT Scheme system exist, catering to different
application types and sizes. The full version of PICOBIT supports all the features
described in this article, and is suitable for large applications dealing with a
large amount of data. A somewhat smaller version of PICOBIT removes support
for unbounded precision integers in return for a smaller virtual machine size.
Finally, a minimalist version of PICOBIT also exists, called PICOBIT Light,
which removes support for unbounded precision integers and byte vectors, is
limited to 16 global variables and 128 memory objects, but is much more compact
than the full version (5.2 kB versus 15.6 kB). This version is appropriate when
building simpler applications that only deal with small amounts of data at the
same time. For example, a temperature sensor that sends reports via UDP using
the S3 network stack.

5 Supported Scheme dialect

Unlike most programming platforms targeting embedded systems, PICOBIT
supports a large number of high-level programming language features. It sup-
ports a broad subset of the R5RS [6] Scheme standard including macros, au-
tomatic memory management, lists, closures and higher-order procedures, first-
class continuations and unbounded precision integers as well as some extensions
such as byte vectors and lightweight threads.

Other features were consciously excluded due to their lack of usefulness in an
embedded context, for instance floating-point, rational and complex numbers,
string to symbol conversion (and vice versa), S-expression input, file I/O, eval.
Omitting these features leads to a smaller, and thus more compact implementa-
tion.

5.1 Built-in Data Structures

Being a member of the LISP family of languages, the Scheme language makes
heavy use of lists. Therefore, PICOBIT offers built-in support for lists and im-

plements many common list operations. These lists are heterogeneous lists, and
can thus be used to implement most other data structures easily.

This flexibility opens possibilities regarding which classes of applications can
reasonably be implemented in embedded systems. Indeed, some applications
which have been deemed too complex for small embedded systems would be
straightforward to implement using advanced data structures, reducing the need
for more sophisticated hardware where microcontrollers could suffice.

In addition to lists, PICOBIT offers support for byte vectors, which are equiv-
alent to fixed-width byte arrays, and heterogenous vectors, which are represented
as lists. Byte vectors being more efficient than lists for many tasks common on
embedded systems (mostly thanks to their O(1) random access), byte vector
support is especially interesting on our target platforms. The implementation of
byte vectors in the VM is explored in detail in section 7.7.

Finally, PICOBIT also offers limited support for strings.

5.2 First-Class Continuations

First-class continuations are one of Scheme’s key features, and accounts for a
large part of the language’s flexibility. They are usually considered difficult, or
costly, to implement, which has led some Scheme implementations to omit them.

Since first-class continuations can be used to implement useful control struc-
tures that cannot easily be implemented using traditional embedded develop-
ment techniques (such as multithreading), we chose to implement them in PI-
COBIT. To illustrate this, the PICOBIT standard library includes a compact
continuation-based multithreading system, implemented in 30 lines of Scheme
which compile down to 141 bytes of bytecode. Writing such a multithreading
system in C and including it in the virtual machine would have likely resulted
in a larger code size. In addition, the same first-class continuation primitives
used here could be used to implement backtracking or early exits without any
changes to the virtual machine.

6 The PICOBIT Scheme Compiler

The PICOBIT Scheme compiler is a specialized optimizing Scheme compiler
which generates bytecode. This bytecode can then be executed using the PI-
COBIT virtual machine. In order to produce highly compact bytecode, some
specialized optimizations have been added to the compiler. Most of these op-
timizations are made possible by the extensive use of whole-program analysis
throughout the compiler. When compiling a program, PICOBIT appends it to
its standard library and compiles the result. By compiling applications and the
standard library as a single program, all the whole-program analyses done in the
compiler also apply to the standard library, which leads to more optimization
opportunities.

In addition to using selected optimizations to achieve low code sizes, we have
designed a custom instruction set, shared by the PICOBIT Scheme compiler and
the PICOBIT virtual machine.

6.1 Optimizations

Keeping in mind that the goal of the PICOBIT Scheme system is to produce
compact code, the optimizations implemented in the PICOBIT Scheme compiler
were chosen mostly for their effect on the resulting code size.

In order to minimize the number of allocations done at runtime, a mutability
analysis is done over the whole program at compile-time. Variables that are
never mutated are not allocated in memory at runtime, reducing the program’s
memory footprint and eliminating some variable bookkeeping code, reducing
the application code size. For this mutability analysis to be valid, the compiler
must analyze the whole program at the same time, which makes PICOBIT’s
single-program compilation process interesting.

The PICOBIT Scheme compiler also does branch tensioning. Whenever a
branch instruction points to another branch instruction, the destination of the
first is changed to that of the second, and so on in case of longer branch series.
While this optimization is reasonably useful in most compilers, combining it
with single-program compilation opens up new possibilities. When using separate
compilation, inter-module branches cannot be tensioned, since the nature of
such a branch’s destination is unknown. However, when using single-program
compilation, all destinations are known at compile-time, and what would have
been inter-module branches can be tensioned like any other branches, which
leads to more optimization opportunities. Tail-called functions which are only
called once are thus inlined to completely eliminate a branch instruction.

Finally, a treeshaker [7] was added to the PICOBIT Scheme compiler in order
to remove any code that is not actually used in the program from the resulting
bytecode. A depth-first search is done on the application (and the standard
library) to determine which procedures are reachable from the top level. Only
these procedures then end up being compiled to bytecode. The rest are simply
ignored.

The use of whole-program compilation combined with a treeshaker has an
obvious advantage over the use of separate compilation and linking. When using
separate compilation, each compilation unit has to be compiled in its entirety,
as it is impossible to know before linking which of its procedures will actually be
used. With our approach, however, we can exclude unreachable code from the
final binary at compile-time, without having to do link-time optimization.

This treeshaker makes it possible to have a well-furnished standard library
and still generate compact output, since any unused library procedures will not
be present in the resulting bytecode. In our case, the PICOBIT standard library
compiles down to 2064 bytes of bytecode, which can be rather large compared
to the size of some programs. A PICOBIT program that does not use strings
will not include the string functions of the standard library, and will therefore
save 508 bytes.

000xxxxx Push constant x

001xxxxx Push stack element #x

0100xxxx Push global #x

0101xxxx Set global #x to TOS
0110xxxx Call closure at TOS with x arguments
0111xxxx Jump to closure at TOS with x arguments
1000xxxx Jump to entry point at address pc + x

1001xxxx Go to address pc + x if TOS is false
1010xxxx xxxxxxxx Push constant x

10110000 xxxxxxxx xxxxxxxx Call procedure at address x

10110001 xxxxxxxx xxxxxxxx Jump to entry point at address x

10110010 xxxxxxxx xxxxxxxx Go to address x

10110011 xxxxxxxx xxxxxxxx Go to address x if TOS is false
10110100 xxxxxxxx xxxxxxxx Build a closure with entry point x

10110101 xxxxxxxx Call procedure at address pc + x − 128
10110110 xxxxxxxx Jump to entry point at address pc + x − 128
10110111 xxxxxxxx Go to address pc + x − 128
10111000 xxxxxxxx Go to address pc + x − 128 if TOS is false
10111001 xxxxxxxx Build a closure with entry point pc + x − 128
10111110 xxxxxxxx Push global #x

10111111 xxxxxxxx Set global #x to TOS
11xxxxxx Primitives (+, return, get-cont, ...)

Fig. 2. The PICOBIT instruction set and its bytecode encoding

6.2 The PICOBIT Bytecode

Since our goal is to compile applications to small amounts of bytecode, much of
the design of the bytecode was geared towards representing common idioms as
compactly as possible.

The PICOBIT virtual machine is a stack-based virtual machine. Therefore,
pushing values on the data stack is a common operation for the vast majority
of the programs it runs. As such, effort was put towards representing pushing
instructions in a compact way. This was achieved by having pushing instruc-
tions of different lengths, as shown in figure 2. When operands are short enough
(typically 4 or 5 bits), short instructions can be used, leading to savings in code
size.

To make the most of these short instructions, the shortest value encodings are
assigned to frequently used values, as explained in section 7.4. In addition, global
variable encodings are assigned in decreasing order of frequency of use, so that
the most frequently used global variables are assigned the shortest encodings,
and can therefore be used with the short instructions.

In addition to short pushing instructions, PICOBIT also supports short rela-
tive addressing instructions. In some frequently occurring cases, such as a goto-
if-false whose destination is no more than 15 bytecodes away, instructions fit in
a single byte, rather than the three bytes of an absolute addressing instruction.

To make the most of these instructions, we use trace scheduling to position the
destination code as close to the instructions that reference this destination.

7 The PICOBIT Virtual Machine

The PICOBIT virtual machine is the part of the PICOBIT system that resides
on the target microcontroller and interprets the bytecode generated by the PI-
COBIT Scheme compiler. As such, care was taken to build the virtual machine
to be as compact as possible, which means that algorithms and data structures
are kept simple throughout the virtual machine. That being said, the PICOBIT
virtual machine is a full-featured virtual machine which includes a garbage col-
lector, an implementation of unbounded precision integers and support for data
structures.

7.1 Environment Representation

The PICOBIT virtual machine being a stack-based virtual machine, environ-
ments are represented as stacks. These stacks are themselves represented as
PICOBIT lists made of cons cells, allocated in the heap. When looking up a
variable in an environment, it is therefore necessary to know its depth in the
stack at the current execution point, which can be determined statically.

7.2 Automatic Memory Management

The PICOBIT virtual machine includes a mark-and-sweep garbage collector.
Due to the limited amount of memory available on our target systems, a mark-
and-sweep garbage collector is especially interesting as the whole heap can be in
use at the same time. By comparison, copying garbage collectors can only use
half of the available memory at a given time, thereby cutting the heap size in half
and limiting the data size of the applications that can be run on a given chip.
Another advantage of a mark-and-sweep garbage collector is that the necessary
algorithms are simple, which leads to a compact garbage collector.

The Deutsche-Schorr-Waite algorithm [8] is used in the marking phase, and
it really shines in an embedded context. Since this algorithm does not need to
use a stack to traverse a tree, no memory needs to be allocated for such a stack.
Reserving a portion of the heap for such a stack would be an unattractive option,
considering the low amount of available memory to begin with. The use of the
Deutsche-Schorr-Waite algorithm therefore allows us to use a larger portion of
the microcontroller’s memory for our heap, enabling more complex applications
to be run using PICOBIT.

7.3 Address Space Layout

The distinction between RAM and ROM is important in embedded systems,
especially for single-chip microcontrollers. Since there is usually more ROM than

Encoding PICOBIT PICOBIT Light

0 #f

1 #t

2 ’()

3 – 44 -1 – 40

45 – 127 41 – 123 ROM values
128 – 255 124 – 251 Heap values

256 – 259 252 – 255

N/A
260 – 511 ROM values

512 – 4095 Heap values
4096 – 8191 Byte vector space

Fig. 3. Object encoding in PICOBIT and PICOBIT Light

RAM available, it is interesting to move as much data as possible to ROM, to
leave as much room in RAM as possible for mutable data. Literal values and
variables that are never mutated (and whose value is known at compile-time)
are stored in ROM whereas mutable variables and temporaries are stored in
RAM. Therefore, objects manipulated by the PICOBIT virtual machine can be
located either in ROM or in RAM.

To reference these objects, the full version of PICOBIT uses 13-bit encod-
ings, whereas the Light version uses 8-bit encodings. Using shorter encodings
obviously reduces the number of objects that can be referenced, as shown in
figure 3, but since 8-bit encodings can be manipulated using 8-bit rather than
16-bit machine operations, their use leads to a more compact virtual machine
on 8-bit microcontrollers.

In order for objects to contain references to objects stored both in ROM and
in RAM, it was necessary to partition PICOBIT’s address space. For instance, a
pair (whose internal layout is discussed in section 7.4) could have its car stored
in ROM and its cdr stored in RAM, in the heap. To reflect this address space
partition, the object reference determines whether it points towards a ROM
object or a RAM object.

References can denote ROM and RAM objects, and also preallocated con-
stants that occupy no memory. As shown in figure 3, references with a value from
0 to 259 (0 to 44 for PICOBIT Light) refer to immediate values. Preallocating
commonly used values reduces the amount of memory, both ROM and RAM,
required to store values. Many common operations, in particular arithmetic on
small numbers, can therefore be done without allocating any memory. Further-
more, since special short instructions (see section 6.2) exist to handle references
with small values, the use of these frequently occurring preallocated constants
can help reduce the size of application bytecode.

Finally, the fourth zone of PICOBIT’s address space is used for byte vectors.
The use of this zone will be detailed in section 7.7.

To simplify, and therefore reduce the size of, the virtual machine, RAM and
ROM objects have the same layout, which only depends on their type, not on
their location. Further details about these layouts are found in section 7.4.

Fig. 4. Object encodings in PICOBIT and PICOBIT Light

7.4 Object Representation

The PICOBIT virtual machine being designed for dynamic languages, it is nec-
essary to encode objects stored in memory along with their type and garbage
collection information.

First of all, all objects are 32 bits wide, whether they are stored in ROM,
along with the program, or in RAM, in the heap. We can therefore consider the
heap as a simple array of objects, and short indices can be used to refer to ob-
jects instead of longer pointers, which leads to a compact object representation.
Having a single object size also simplifies garbage collection. Instead of having
to figure out where objects begin and end, the sweeping phase of the garbage
collector only has to iterate on the array representing the heap. In addition, since
the garbage collection flags are located in the same place for objects of all types,
it is not necessary to know the exact type of an object when sweeping it.

In addition to being all the same size, PICOBIT objects all follow the same
general structure, as shown in figure 4. These similarities reduce the number of
virtual machine primitives needed to access the data contained in objects, as
the same primitives can be used on most data types. Once again, needing fewer
data access primitives helps keep the PICOBIT virtual machine’s size small.

7.5 Unbounded Precision Integers

A feature that sets PICOBIT apart from most other embedded programming
environments is the availability of unbounded precision integers. Traditionally,
embedded programming environments on 8-bit microcontrollers offer support for
numeric values up to 32 bits wide. However, larger values are needed in some
embedded applications. For instance, the S3 network stack, which runs on top of
the PICOBIT system, uses 48 bit integers to store MAC addresses. Large integral
values are also necessary for some cryptographic calculations, for instance the
SHA family of cryptographic hashing functions, which need values up to 512 bits
wide.

Embedded applications also often need to keep track of time, sometimes
with a high degree of precision (when controlling machinery, for example). If an
application keeps track of time at the microsecond level using a 32-bit value, a
wraparound will occur every hour or so. To handle such wraparounds, complex
logic might have to be included in the application, leading to an ad-hoc bignum
implementation.

The support for large integers in embedded systems can also create oppor-
tunities to do processing that would traditionally be done on host systems or
specialized hardware directly on microcontrollers, therefore reducing latency and
bandwidth needs, and increasing the autonomy of such embedded systems.

As can be seen in figure 4, unbounded precision integers are encoded in
PICOBIT as linked lists of 16 bit values. At the end of each list is either the
integer 0 or -1, to represent the sign. 0, -1 and other small integers have dedicated
encodings and do not need to be represented as linked lists. The use of this
“little-endian” representation simplifies the bignum algorithms in particular for
numbers of different lengths.

On versions of PICOBIT which do not support unbounded precision integers
(including PICOBIT Light), integers are limited to 24 bits, and encoded directly
in the object.

7.6 First-Class Continuations

Many Scheme systems implement first-class continuations by copying the stack
into the heap with each call to call/cc, which can cause an important overhead
both in terms of speed and in terms of space.

PICOBIT avoids this overhead by avoiding the use of a call stack, and di-
rectly allocating each continuation in the heap like any other object. Manipulat-
ing continuations is therefore as simple and efficient as manipulating any other
object. In effect, this representation gives us first-class continuations for free.
Thus, operations on continuations are implemented as simple virtual machine
instructions. Being allocated in the heap, discarded continuations are garbage
collected, regardless of how they have been used.

As shown in figure 4, continuations are represented as a chain of continuation
objects, each containing a reference to its parent continuation and a reference

to a closure object. The closure object contains the entry point of the function
associated to the continuation and the enclosed environment.

This representation of continuations is very compact, with two objects (the
continuation object and the closure object) per frame. When using the multi-
threading system included in the PICOBIT standard library, each thread only
causes an overhead of one continuation frame, or 8 bytes. Applications with sev-
eral threads, such as systems monitoring multiple sources of input, can thus be
implemented with a very low memory footprint.

7.7 Byte Vectors

Unlike other PICOBIT objects, byte vectors do not necessarily occupy four bytes.
In order to guarantee fast random access, byte vectors have to be allocated as
a single contiguous space of the appropriate size. To preserve the advantages
brought by having all objects of the same size in the heap, we allocate byte
vectors in a different section of memory. As such, references with values over
4095 point to objects within this zone, which we call the byte vector space.

Like the heap, the byte vector space is allocated by increments of four bytes.
However, unlike with the heap, contiguous segments of any length (bounded by
the size of the byte vector space) can be allocated in the byte vector space. A
simple first-fit allocation algorithm is used to decide where to allocate each byte
vector.

In addition to the byte vector contents which are located in the byte vector
space, byte vectors are also composed of a header, containing the length of the
byte vector and a pointer to the start of the contents (as seen in figure 4). These
headers are stored in the heap, and as such are four bytes wide and follow the
same general layout as any heap object.

PICOBIT Light does not offer support for byte vectors, which removes the
need for a separate byte vector space, and simplifies several algorithms of the
virtual machine, leading to a more compact VM.

8 The SIXPIC C Compiler

When using the PICOBIT Scheme system, the total size of the software running
on the target system is the sum of the size of the PICOBIT virtual machine
and of the application programs, and our goal is to minimize that total size. As
we have seen earlier, the PICOBIT Scheme compiler was designed to generate
compact application bytecode. The size of the virtual machine remains, and in
some cases it can account for an important part of the whole system. While the
PICOBIT virtual machine can be compiled with any C compiler, some savings
in code size can be achieved by using a specialized C compiler to compile it. The
SIXPIC C compiler is one such compiler.

The SIXPIC C compiler was designed to generate compact code, especially
when compiling virtual machines. This was done by analyzing the code of typical
virtual machines (including the PICOBIT virtual machine) to find and then

optimize common patterns. This analysis also showed us which features of the C
language were seldom used for virtual machines, and could therefore be omitted
from SIXPIC. In addition to reducing the complexity of the compiler, some of
these omissions also opened possibilities for optimization which would not have
been valid otherwise.

8.1 Restrictions

Even though virtual machines are complex pieces of software, they do not make
use of every single feature of the C language. Therefore, while designing SIXPIC,
some features could be left out and some others were restricted to the subset
actually used by most virtual machines.

The first notable omission is support for floating point numbers. Since the
PICOBIT Scheme system does not support them, and that most microcontrollers
do not support floating point operations, this omission is pretty straightforward.

Since virtual machines typically manage their data structures at the bit level
(especially in embedded systems), ordinary C structs are not generally useful in
the context of virtual machines.

A more controversial restriction would be that SIXPIC does not support
recursive (or mutually-recursive) functions. At first glance, this might appear
restrictive. However, since typical virtual machines consist mostly of a switch

statement in a loop, recursion is not needed. This omission is what makes our
specialized calling convention possible.

8.2 Calling Convention

To support recursive functions, a call stack is usually needed. Most modern work-
station architectures provide hardware support for such stacks, which makes the
compiler’s job easier. However, most microcontroller architectures do not offer
such support, which means that the compiler would need to build a software
stack in memory in order to support recursive functions. The creation and use
of such a stack increases the complexity, and therefore the size, of the generated
code. By giving up support for recursive functions, no such stack is needed any-
more and it becomes possible to use a calling convention which passes function
arguments in pre-determined registers. This approach is taken by the leading
embedded C compilers, such as Microchip’s Hi-Tech C R© compiler.

With the SIXPIC C compiler, we take this approach further. Since we do
not support recursive functions, every variable (be it a local variable, a global
variable, or a function parameter) can be allocated at a static location. We then
use whole-program analysis to determine which variables interfere with each
other and use the results to do register allocation for the whole program all at
once.

Since the location of each variable is known at compile-time, we can avoid
moving values to and from the registers needed by the calling convention. In-
stead, we use a specialized calling convention where the caller moves the argu-

C code Stack-based Register-based Specialized

byte f (byte x) {

return x + 3; push $y move $y A move $y $x

} call $f call $f call $f

byte y = 3;

f(y); f: pop $x f: move A $x f:

...

Bytes of PIC18 machine code: 20 12 8

Fig. 5. Comparison between a stack-based calling convention, a register-based calling
convention and our specialized calling convention

ments directly in the registers where the callee’s local variables reside, as shown
in figure 5.

8.3 Optimizations

As with the PICOBIT Scheme compiler, the optimizations present in the SIXPIC
C compiler were chosen for their impact in reducing the size of the resulting code.

First of all, our register allocation algorithm does register coalescing. Since
the SIXPIC C compiler does whole-program register allocation, register coa-
lescing can be used more broadly. Instead of being limited to coalescing virtual
registers inside each function, as would be the case with intra-procedural register
allocation, global register allocation makes it possible to coalesce registers being
used in two different functions. With our specialized calling convention (see sub-
section 8.2), such opportunities occur enough to be worthwhile. We measured
that the use of register coalescing reduces the size of the generated code by
around 4.5%, mostly by eliminating move instructions between coalesced regis-
ters. Out of the 2420 byte cells found in the PICOBIT virtual machine, 1453
end up being coalesced. After register allocation, only 324 bytes of RAM are
necessary for the VM’s variables, excluding the heap.

By looking for patterns in the code of several virtual machines, we noticed
that the switch/case construct was extensively used, especially for instruc-
tion decoding. PICOBIT is no exception. We also noticed that most of the
switch/case statements used in virtual machines respected several other proper-
ties, including the absence of default labels and the presence of mostly contigu-
ous label numbers. We therefore worked on an implementation of switch/case
that would generate compact code, especially when the above properties hold.
After trying several implementations, we settled on a branch table-based ap-
proach which, despite the absence of computed branches on the PIC18 architec-
ture, generates compact code in the cases that interest us.

Like the PICOBIT Scheme compiler, SIXPIC does trace scheduling. The
benefits explained in section 6.1 also apply to SIXPIC, since it also does single-
program compilation. When compiling the PICOBIT virtual machine, 519 jumps
are shortened thanks to trace scheduling and 228 are eliminated altogether,
which saves 6.3% of the virtual machine size.

Program Code size (B)

Flashing led 9
Follow the light 101
Remote control 106

Hello 355
Light sensors 374

Multi-threaded presence counter 599
Web server 1033

Fig. 6. Example PICOBOARD2 programs

Instead of providing an external set of hardware access routines with which
applications can be linked, these routines are defined in terms of the compiler’s
abstract assembly language. When compiling a program, SIXPIC joins these
routine’s control flow graphs to the program’s, and uses the resulting graph for
the rest of the compilation process. Therefore, all the whole-program optimiza-
tions describes above are run on these routines at the same time, resulting in a
greater optimization potential.

Finally, the SIXPIC C compiler uses, like the PICOBIT Scheme compiler, a
treeshaker to remove any unused code from the generated executable, reducing
its size. As is the case with the Scheme compiler, SIXPIC appends its standard
library to application programs, then compiles only the reachable parts. Once
again, the use of this treeshaker helps SIXPIC achieve low application code sizes
by excluding unused code in the application (or in the standard library).

9 Experimental Results

9.1 Bytecode-Based Approach

As we anticipated, a bytecode-based approach to embedded application devel-
opment leads to compact application sizes.

In figure 6, we show examples of programs used with the PICOBOARD2
robot, and the amount of bytecode required for each. As we can see, all these
programs, even relatively sophisticated ones like a web server, can be represented
compactly using bytecode. That these small code sizes were obtained despite
PICOBIT having a large (2064 bytes) standard library, thanks to the treeshaker,
which removes unused parts of the library from the final bytecode.

We have also compared the S3 TCP/IP stack, which is used with the PI-
COBIT Scheme system, to Adam Dunkels’s uIP [9] stack, which is written in C
and is compiled natively to machine code. Both stacks implement a similar set
of features and share most design decisions. They can be therefore considered
roughly equivalent for our comparison’s purposes.

When compiling S3 with the PICOBIT Scheme compiler, we obtain 3.1 kB
of bytecode whereas when we compile the uIP stack using Microchip’s MCC18
compiler, we obtain a 10.0 kB binary. Thus compiling to bytecode resulted in
the application being about three times as compact.

Stack Code size (kB) VM size (kB) Total size (kB)

S3 3.1 15.6 18.7
uIP 10.0 - 10.0

Fig. 7. Comparison between the S3 and uIP embedded network stacks

Version SIXPIC MCC18 Hi-Tech C

Full PICOBIT 17.5 kB 24.8 kB 15.6 kB
Without bignums 13.0 kB 17.0 kB 11.6 kB

PICOBIT Light 7.2 kB 8.0 kB 5.2 kB

Fig. 8. Size comparison between the different versions of the PICOBIT VM compiled
with various C compilers

Since the bytecode is useless without the PICOBIT virtual machine to in-
terpret it, we have to include the size of the virtual machine to get realistic
figures. When comparing the size of the whole systems (see figure 7), the na-
tively compiled uIP is about twice as compact as the combination of S3 and of
the PICOBIT virtual machine.

However, the size of the virtual machine is a fixed cost which is independent
of the size of the application it interprets. Therefore, the cost of the virtual
machine is amortized over all the applications it executes.

Since TCP/IP stacks are complex applications, we believe that the compact-
ness of bytecode versus machine code that we have observed when compiling
S3 would hold when compiling other complex applications. We therefore expect
that for sufficiently large applications, our bytecode-based approach would lead
to smaller system sizes than a native compilation-based one. Due to their smaller
size, we expect that the restricted versions of PICOBIT will fare even better in
this regard.

Keeping in mind that our motivation was to execute larger programs on
smaller chips, the fact that our bytecode-based approach will likely behave better
than native compilation for sufficiently large programs is promising.

9.2 Specialized C compiler

Another key element of our approach towards embedded development is the use
of a specialized C compiler optimized towards virtual machines. So far, this ap-
proach looks promising, but a sufficiently optimizing general-purpose C compiler
can still generate more compact code than our specialized SIXPIC C compiler,
as is shown in figure 8.

Thanks to its domain-specific optimizations, SIXPIC outperforms Microchip’s
MCC18 general-purpose C compiler by about 42% when compiling the PICOBIT
virtual machine. However the more mature Microchip’s Hi-Tech C compiler gen-
erates code that is 12% more compact than SIXPIC’s, likely due to its broader
range of general-purpose optimizations. We expect that adding more domain-
specific optimizations to the SIXPIC C compiler will allow it to close the gap.

10 Future Work

While some work has already been done towards making the PICOBIT bytecode
compact, it has mostly consisted in observing the generated code and finding
more compact encodings by hand. An interesting, and more rigorous, approach
would be to use Huffman encoding on the bytecode to further reduce its size.
Such an approach has been successful [10] for several virtual machines, and could
lead to reductions in application code size.

Some work also remains to be done on the SIXPIC C compiler to handle in
a more compact fashion some common virtual machine idioms. So far, work has
been done to leverage several interesting properties of virtual machines, most
notably their lack of recursive functions, but some observed virtual machine
patterns are not yet properly exploited by SIXPIC.

Finally, as previously mentioned, the instruction set and data types of the
PICOBIT virtual machine, even though they were chosen and designed with
the Scheme language in mind, are general enough to support other dynamic
languages, such as Python or Perl. The Factor language also comes to mind, as
a dynamically-typed garbage-collected stack-based language could integrate well
with the stack-based PICOBIT virtual machine.

11 Conclusion

We have presented an implementation of the Scheme programming language
which is suitable for programming small microcontrollers. The system supports
several high-level constructs not usually available in microcontroller development
tools, including garbage collection, higher-order procedures, first-class continu-
ations, threads, and unbounded precision integers. Our approach tackles the
space issue in three ways: the design of a Scheme compiler generating com-
pact bytecode, a small virtual machine, and an optimizing C compiler suited
to the compilation of the virtual machine. Although there are still avenues for
improvement that we will pursue in our future work, our results show that a
fairly featurefull Scheme system can run on platforms with only a few kilobytes
of memory. For instance, it allows a basic network protocol stack (S3) to run on
a microcontroller with less than 19 kB of ROM.

Bibliography

[1] St-Amour, V., Bouchard, L., Feeley, M.: Small Scheme Stack: a Scheme
TCP/IP stack targeting small embedded applications. In: Proceedings of
the 2008 Workshop on Scheme and Functional Programming. (2008) 11–18

[2] Sun Microsystems, Inc.: Java card 3.0.1 platform specification (2009)
[3] Dube, D.: BIT: A very compact Scheme system for embedded applications.

In: Proceedings of the Workshop on Scheme and Functional Programming.
(2000) 35–43

[4] Feeley, M., Dube, D.: PICBIT: A Scheme system for the PIC microcon-
troller. In: Proceedings of the Fourth Workshop on Scheme and Functional
Programming. (2003) 7–15

[5] Clinger, W., Rees, J.: The Revised4 Report on the algorithmic language
Scheme (1991)

[6] Kelsey, R., Clinger, W., Rees, J.: The Revised5 Report on the algorithmic
language Scheme. Higher-Order and Symbolic Computation 11(1) (1998)

[7] Semantic Microsystems: MacScheme + Toolsmith, a LISP for the future
(1987)

[8] Schorr, H., Waite, W.M.: An efficient machine-independent procedure for
garbage collection in various list structures. Commun. ACM 10(8) (1967)
501–506

[9] Dunkels, A.: Full TCP/IP for 8-bit architectures. In: MobiSys ’03: Pro-
ceedings of the 1st international conference on Mobile systems, applications
and services. (2003) 85–98

[10] Latendresse, M., Feeley, M.: Generation of fast interpreters for Huffman
compressed bytecode. In: IVME ’03: Proceedings of the 2003 workshop on
Interpreters, virtual machines and emulators. (2003) 32–40

