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This report contains the papers presented at the Third Workshop on Scheme and
Functional Programming, on October 3, 2002, in Pittsburgh, Pennsylvania.
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Every paper was reviewed by every member of the program committee. This un-
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the server infrastructure supporting the reviewing process. (His task was faciliated,
in turn, by the fact that this server infrastructure was written in Scheme, as were
the scripts used in the production of this workshop proceedings.) Publicity for the
workshop was managed by Shriram Krishnamurthi, of Brown University.
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larly Matthias Felleisen, for advice and general counsel during the planning of the
workshop.
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A library for quizzes

Christian Queinnec
Université Paris 6 — Pierre et Marie Curie

LIP6, 4 place Jussieu, 75252 Paris Cedex — France

Christian.Queinnec@lip6.fr

ABSTRACT
Programming web dialogs is already known to be well served
by continuations; this paper presents a continuation-based li-
brary for a particular class of web dialogs: quizzes for stu-
dents. The library is made ofobjectsrepresenting the individ-
ual questions and offunctionalcombinators hiding theimper-
ative aspects of page shipping over HTTP and management
of continuations. Mixing these three styles provide an elegant
framework that fulfills our initial goal. The description of that
library is hoped to be helpful for quizzes designers.

1. INTRODUCTION
Last year, we designed a CD-ROM in order to support a

college-level course named “Evaluation process” strongly based
on the Scheme programming language [1]. This is the first
computer science (CS) course delivered to young scientists
(eighteen-year old) who still have to choose whether to spe-
cialize in maths, CS, mechanics or physics. The goal of the
course is to introduce students to recursion, trees, grammars
and language interpretation.

The CD-ROM was given to a special group of 45 computer-
equipped students who were then able to work at home com-
fortably with the same means they have access to at the univer-
sity. Therefore, besides our course material, the CD-ROM also
contains copies of the DrScheme programming environment
[3] along with some add-ons providingexercisesandquizzes.

An exercise is an assignment that should be performed with
the help of the programming environment. A student chooses
an exercise (with an additional menu), reads the question (an
HTML page displayed by the inner browser of DrScheme),
writes the required function(s) (as well as the required testing
function(s)), tests them then hit the “check” button which syn-
thetizes a new HTML page with some comments and a mark
ranking the provided solution (see Figure 1). Above a given
threshold, teachers’ solutions are displayed and the student
may proceed to the next question.

Permission to make digital or hard copies, to republish, to post on servers
or to redistribute to lists all or part of this work is granted without fee
provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To otherwise copy or redistribute requires prior specific
permission.
Third Workshop on Scheme and Functional Programming. October 3,
2002, Pittsburgh, Pennsylvania, USA.
Copyright c© 2002 Christian Queinnec.

Quizzes are tightly bound to the written course. The course
is chopped into a number of HTML pages, each centered on a
single topic. For ease of use, these pages are accessed through
a mainstream browser such as Explorer or Communicator (the
inner browser of DrScheme 103 was not able to handle forms).
After every topic, the system proposes various quizzes (as HTML
links) checking various levels of understanding. We distin-
guish level-1 quizzes that are simple applications of the course:
they mainly correspond to very simple Scheme questions that
do not require the whole power of the DrScheme environment
(see Figure 2). Level-2 quizzes strive the student to verbalize
its understanding; these questions are not checked but links
to appropriate answers are given back. Finally, level-3 quizzes
help to understand how the topic contributes to the overall goal
of the whole course.

Technically, links to quizzes are served by a web server run-
ning as a thread inside DrScheme. A quiz (and the average ten
questions it contains) is entirely held in a single file that is sim-
ply evaluated by the web server. Continuations [6] are used

• to suspend the server after shipping a page to the student

• and to resume the server with student’s answers to the
displayed questions.

In order to give a uniform look for the quizzes and to min-
imize code for the definition of the individual questions of
quizzes, quizzes were defined with the help of a library of
functions and macros. A question is represented by an ob-
ject, a quiz is a combination of questions, and combinators
embed (and hide) the imperative aspects of page shipping and
continuations management.

The rest of the paper presents that library and some elements
of the rationale behind it. Section 2 will describe the “ques-
tion” object, Section 3 will present how questions are com-
posed via appropriate combinators to form quizzes. Section 4
will detail the imperative implementation of combinators and
their use of continuations. Finally, Section 5 will conclude.

2. QUESTIONS
A quiz is made of a succession of pages, each of them con-

tains one or more questions. When a question is asked, its
terms are generated into HTML. Answers are graded; this grad-
ing triggers the synthesis of a good or a bad answer (both in
HTML). The grade is a number – positive if the answer is cor-
rect, negative otherwise. The HTML produced by a question
is limited to the terms or to the good or bad answer without
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Figure 1: Screen capture of an exercise – The student hit the “Tester” (check) button and got a mark good enough to let him
see a solution (more than one solution may appear).

Figure 2: Screen capture of a quiz – This quiz corresponds to a compound question where the student has to write a function
that is, its type, its definition and some associated tests.
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any adornment. The resulting HTML is one (or more) para-
graph(s), not a complete HTML page.

Besides these characteristics, a question also knows how to
be logged (when displayed, answered or graded): this is nec-
essary in order to assess students’ progress. Of course, all
questions are identified with a unique identifier. Logging is
done via an HTTP Post request to a centralized logging service
feeding a database from which students’ progress is deduced.

When a question is displayed again (for instance after a stu-
dent answers incorrectly), the HTML fields are pre-filled with
their former content. It is also possible to blank those fields if
required.

We chose to represent questions as objects with fields and
methods. Here are the signatures of the methods on the ques-
tion objects. They are given in a Meroon [5] style (although
the current implementation uses message passing rather than
Meroon itself).

(define-method (id (question))
returns the identifier (a string))

(define-method (author (question))
returns the author (a string))

(define-method (reset (question))
erases all already-filled fields)

(define-method
(html-question (question) interactive?)

returns an HTML string: the question stem.
if interactive? is true then generate also the
HTML INPUT tags (textfield, textarea, checkbox, etc.))

(define-method
(report-question (question) nextUrl)

logs that the question was asked)

(define-method
(report-answer (question) request)

logs the answer)

(define-method (verify (question) request)
grades student’s answer (encoded in the HTTP
request) and returns a number coding the
grade )

(define-method
(html-good-answer (question) request a)

generates a positive comment (an HTML string)
based on a gradea )

(define-method
(html-bad-answer (question) request a)

generates a negative comment (an HTML string)
based on gradea )

We adopt objects to structure behavior sharing. The hierar-
chy of questions is sketched on Figure 3 where indentation de-
notes the subclass relationship. The first two classes generate
questions offering single or multiple choices. The terms of a
question of the third class always display a box where the stu-
dent types in his answer. Thepredicate field of the ques-
tion analyzes this answer that is, a string. Some subclasses
exist for instance, thequestion-regexp which imposes
students’ answers to satisfy a given regexp.

Another, more important, subclass is thequestion-scheme
that expects students’ answers to be legal Scheme expressions.
The associatedpredicate then receives that Scheme ex-
pression instead of a string (of course, the Scheme expres-
sion might be a Scheme string). Among questions expecting a

question-qcu with radio buttons
question-qcm with check boxes for multiple choice
question-simple with a box for the answer: a string
question-regexp the answer must satisfy a regexp
question-scheme the answer must be a legal S-expression

question-evaluation
question-reverse-evaluation

question-context
question-function with multiple specialized S-expression
boxes

Figure 3: Fragment of the class hierarchy for questions

Scheme answer, we have thequestion-evaluation that
says “What is the value ofsome expression?”. Thepredicate
checks that the students’ answer is indeed thatsome expres-
sion: the quiz writer just has to mention thesome expres-
sion. Similarly, thequestion-reverse-evaluation
says “Give an expression whose value issome value”. Fi-
nally, thequestion-context says “Give an expression
usingsome expressionand its expected value”. There again,
the quiz writer just mentions the fragmentsome expressionto
be used (for instance(list +)). Questions of this last class
display two boxes related by one predicate.

The last mentioned class,question-function, see Fig-
ure 2, displays a number of boxes to help a student define a
function, its type, its definition, some invocations of this func-
tion and their expected values. The quiz writer just has to men-
tion his own version of the specified function.

To sum up, we have a number of questions constructors for
various types:

• question without answer

• question with an unchecked textual answer

• question with a regexp-checked textual answer

• question with a checked Scheme answer

• question with unique choice (radio buttons or menus).
For instance, what is the arity ofsome function?

• question with multiple choices For instance, which arity
are correct forsome function?

We also have a number of refinements for questions with
checked answers. Their appearance may differ as well as the
grading process. Here are some of our scheme-based ques-
tions:

• what is the Scheme encoding of. . . ?

• what is the value of. . . ?

• give a program whose value is . . .

• give a valid program containing. . . , what will be its
value ?

• define a function whose specification is. . . , given ex-
amples of invocations and the expected values.

For the moment, they cover all our needs for our CD-ROM.
We even use a quiz for the registration procedure (when stu-
dents install the CD-ROM on their home machine in order to
log in our databases the sole students we want to assess). We
also write a little quiz to define simple quizzes.



4

3. COMBINATORS
Questions form the basic building blocks for HTML pages,

therefore, they should be freely re-usable in various contexts.
For instance, when building a quiz, one may want a simple
question to be iterated until the student answers it correctly,
repeat another question at most twice if badly answered and
so on. Questions must be combined in order to form quizzes.

A quiz is a Scheme file that, when evaluated, builds pages
with questions and ships them to the student. When the student
answers (with an HTTP request), the quiz is resumed at the
point where the page was shipped. This is the essence of web
continuations [6]. When resumed, the quiz dispatches the re-
quest towards the asked questions, gathers the positive/negative
comments along with some new or previous questions, packs
these all in a new page and ships it to the student. Reaching
the end of the file ends the quiz.

In order to be able to re-use questions in various contexts,
we separate questions’ content from the way questions are
asked. In a given context, a question may be mandatory while
in another context, the same question may be grouped (and dis-
played) with three others among which two good answers may
be sufficient to proceed past this group of four questions. We
must be able to precisely state how the student is led through
the quiz depending on his previous good or bad answers.

Here are our current combinators:
(ask-only-once question)
(loop-until-verified question)
(loop-at-most n question exhaustion)

(ask-multiple-questions-once questions...)
(ask-multiple-questions n questions...)

(mute-ask-only-once question)
(mute-ask-multiple-questions-once questions...)

We group them into three families. The first family just
confers a behavior to questions that is, — ask a question only
once and proceed to the rest of the quiz even if the answer
is incorrect — ask a question until obtaining a correct an-
swer (students complain against this behavior, even though we
scarcely used it) — ask a question until obtaining a correct
answer or at mostn times. Aftern failures, the student may
proceed to the next question but is given a notice generated by
(exhaustion n).

The second family just gathers questions to make them ap-
pear as a single one. This is not an easy point since the mean-
ing of the correctness of a group of questions immediately oc-
curs. There is no such problem with theask-multiple-
questions-once, it just gathers the comments for the group
of questions. The second combinator generalizes theloop-
at-most combinator with the following behavior: the group
of questions is asked again and again but correctly answered
questions are removed from the group until the maximal num-
ber of iterations is reached or all questions are correctly an-
swered.

The last family corresponds to examination performed on
computers. They are similar to the combinators with the same
name less themute- prefix. The differences are

• positive/negative comments are not displayed

• students are not allowed to submit more than one answer
to any questions (more on that point later).

Here is a contorted example of a quiz that asks a question
over and over until the student clicks the “Yes” button. A con-
firmation is asked for (only once) immediately after. The first
two questions are roughly the same but they are defined with
alternate means: the first uses a macro while the second uses a
function instead. The macro makes available finer details and
adopts a uniform keyword-value look and feel.

The third question asks for a Scheme expression returning a
number (but at most 2 times). The question generator, named
7-77 (a local value) generates a question asking for a pro-
gram whose value is a number between 7 and 77. If the an-
swer is correct, the quiz ends with a finalcul-de-sac com-
binator that displays a specific page telling the student that
the quiz is over (this allows us to override the implicit call to
cul-de-sac with a default message). If the answer is not
correct (this is notified with an assignment to thelocal vari-
able namedsuccess?) the same question generator exactly
is called to create a new question that will be askedad libitum.

;;; parameterless question generator
(define-question-generator (understood?)

type: qcu ;question with unique choice
id: "q-qnc-understood1"

choices: ’(yes no) ;rendered as radio-buttons
correct: ’yes
author: "Christian.Queinnec@lip6.fr"

bad-answer: "Please think harder!"
text: "This is a quiz, i.e., a dialog

where you get questions that you must answer."
(p "Do you understand ?") )

(h1 "Welcome to a regular quiz") ;inter-title

(loop-until-verified ;combinator
(understood?) ) ;question

(ask-only-once ;combinator
(one-choice-question ;question
"q-qnc-understood2"
’(yes no)
’yes
(div "Do you really understand ?") ) )

(h1 "Welcome to a less simplistic quiz");inter-title

(let again ((success? #t))

;;another (hand-made) question generator:
(define (7-77)

(reverse-evaluation-question ;question
"q-qnc-7-77"
(+ 7 (random 70)) ) )

(loop-at-most ;combinator
2
(7-77)
(lambda (n)

(set! success? #f)
"Alas!" ) )

(if success?
(cul-de-sac ;combinator
"The quiz ends here!" )

;;otherwise:
(again #t) ) )

So far we have a library of combinators over objects to de-
fine quizzes. Regular quizzes writers do not need further de-
tails, they just have to pick the right question generator, the
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appropriate arguments and the right combinators (the first two
questions of the example are examples of regular quizzes).
Some of our colleagues even told us that they have the im-
pression of writing Scheme data rather than Scheme code.

4. IMPERATIVE ASPECTS OF COMBI-
NATORS

The combinators hide two very different aspects: they hide
continuation management and HTML generation details. Since
they manage continuations and HTTP, they require a deeper
understanding to be written.

4.1 HTML generation details
Questions only generate fragments of HTML. Between combi-

nator-expressions, there may be other HTML-generating ex-
pressions in the quiz (see, for instance, theh1 function gen-
erating aH1 tag in the previous quiz example; this tag will
appear before the HTML stem of the next question). All these
HTML fragments are sequentially (imperatively) accumulated
in thecommunication channel.

All combinators force an interaction with the student. They
gather all HTML fragments so far accumulated, wrap them in
a FORM tag with a fresh URL bound to the continuation of
the quiz (materialized as a “Submit” button), wraps again this
form into a complete HTML page (then introducing standard
headers, footers, logos, titles, styles, CSS, etc.) and ship it to
the student.

Observe that it is up to the final wrapper (a mutable prop-
erty of the communication channel) to decide how to arrange
all these HTML fragments. This isolates questions from their
appearance on students’ browsers. This also allows us to have
a uniform presentation for all pages.

The combinators also solve another problem on the ergonomic
side. To consider the quiz as made of a series of question/answer
is rather abstract since the quiz has to deal with HTTP where
server answers are only displayed when the user requests some-
thing. This is the usual inversion of control [4] which we
name question/answer (from the view point of the server) or
reply/request (from the point of view of the client’s browser)
where the question is the reply while the answer is the request.

When the server receives an answer, there are various dia-
logical strategies, see Figure 4:

1. it may reply with a negative comment and a link direct-
ing the student back to the old question,

2. it may reply with a negative comment and the old ques-
tion again (with pre-filled fields),

3. it may reply with a positive comment and a link to the
new question,

4. it may reply with a positive comment and the new ques-
tion,

After some experiments, we chose options 2 and 4 since
they minimize the number of clicks. Some of our colleagues
do not like option 4 when the comment is too big since it
refers to the previous question whose terms are gone and there-
fore pollutes the terms of the new following question. There
again, combinators isolate questions from the way the dialog
is chopped into pages.

go

q1 terms

q2 terms

go

good!

q2 terms

go

OK
good!

OK
bad!

go

q1 terms
go

bad!

q1 terms

previous

previous

Figure 4: Dialogical split

The imperative side of the communication channel allows
pages to share some information: the communication channel
plays the role of a sort of shared “session object”, but limited
to the quiz (as for servlets or ASP dynamic pages). For in-
stance, to be less uniform, messages, button labels and titles
are varied. Questions may also put some hints in the commu-
nication channel to suggest a title (recall the title of the page
is chosen by the HTML wrapper that may pack more than one
question on a single page).

For combinators that iterate over a question, the suggested
title displays the current trial number and the maximal number
of allowed trials.

4.2 Continuation management
Following previous work [6], continuations are mainly put

to use via theshow function that receives an HTML page gen-
erator, captures the current continuation, binds it with a fresh
URL, feeds the HTML page generator with that URL, ships
the obtained HTML page and waits for an answer, that is, an
HTTP request that will become the value of the invocation of
theshow function.

Combinators wrap a call to theshow function with specific
management of continuations. These continuations are ob-
tained through the regularcall/cc however some hackery
specific to DrScheme was required since continuations cannot
be called out of their birth thread.

On Figure 5 left, the student hits the “submit” button (la-
beledgo), resumes the quiz server that decides whether to re-
ply with a positive comment and the new question or to reply
with a negative comment and the old question. This latter page
is not the same as the first one since the second one contains,
in addition, the negative comment. However the continuation
of the “submit” button is the same.

This situation must be contrasted with themute- combi-
nators that prevent students from re-submitting to an already
answered question. On Figure 5 right, the student answers
question 1 then answers question 2 and obtains the terms of
question 3, the student then instructs the browser to go back
and back to question 1 and tries to change the answer. The
combinator detects that and forces the student back to the last
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go

good comment
question2 go

go
question1

(show ...)
go

question1

go
question2

go

go
question1

bad comment
question1

question3
back−back

Figure 5: Continuations and dialogs

unanswered question that is, question 3. A fine point is that
the invoked continuation leads to the point right beforeshow-
ing question 3 and not the continuation bound to the “submit”
button of question 2 (since the answer of question 2 is already
graded).

Still playing with continuations we also introduce a mode
where a teacher may see a quiz at once that is in a single page.
This is, of course, only possible if the quiz is static enough and
linear. The trick is to transform theshow operator to simply
accumulate HTML fragments rather than shipping them. The
concatenation of all these fragments is performed at the end of
the quiz file.

These various modes are well served by the separation of
methods on questions. Answers may be not graded (when the
teacher wants to have a global look to the entire quiz or wants a
paper copy to circulate), answers may be graded without emit-
ting any comment (this is the examination mode).

5. CONCLUSIONS AND PERSPECTIVES
Concerning web continuations, the paper does not present

new results. It only shows how they may be put to work for
quizzes. Only the trick concerning the continuations just be-
fore or after the shipping of a page in the implementation of
themute- combinators is new.

Therefore, the paper is centered on the main features of the
quiz library that had several goals:

1. separation of concerns: A question writer just has to
understand how to build questions. These questions may
then be put in a big database (correctly indexed to let
them be easily retrieved); this is future work!

A quiz writer just has to understand combinators in or-
der to assemble questions into dialogs. A quiz program-
mer may dynamically builds thematic quizzes extracted

from the previous database. A special quiz may be de-
signed to build quizzes interactively.

An HTML designer just has to change the HTML gener-
ation part of questions and combinators to alter the look.

A web-dialog designer (just) has to understand continu-
ations to implement other kinds of dialog. For instance,
students asked us in the examination mode (themute-
combinators) to be able to see all questions in advance
that is, to only prevent submitting more than once to any
given question.

2. nice multi-paradigmatic fit: Programmation requires
mastering various programming styles making some tasks
easier. Refining questions is well served by objects and
classes. Combinators are nice means to assemble ques-
tions to form dialogs. The sequentiality of web interac-
tions via HTTP forces an imperative view for continua-
tions and HTML fragments accumulation.

This is the third version of that library, each version has im-
proved the separation of concerns and adopted the most appro-
priate framework to deal with the new concerns. The current
library has been stable for the last year. Quizzes may have
very reactive behaviors and are far more easier to define and
manage compared to the very static tools of generic authoring
systems. In such systems, a quiz is usually defined with a num-
ber of boxes, radio-buttons, menus to fill, click or unroll. The
resulting quizzes are, most of the time, sequential and made of
independent questions that are syntactically graded (syntacti-
cally since there is no relationship between the label of a radio-
button and the fact that this radio-button should be pressed for
a correct answer).

In our system and since we are teaching a language with an
easy to useevaluator, questions may be specified in a more
semantical way. Since the quiz is a program, it may use the full
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power of the underlying language and use conditional or re-
cursion as shown in the previous quiz example where students
with good answers may terminate quickly whereas others are
provided fresh exercises until they got one right.
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Incorporating Scheme-based Web Programming

in Computer Literacy Courses

Timothy J. Hickey �

Department of Computer Science

Brandeis University

Waltham, MA 02254, USA

Abstract

We describe an approach to introducing non-science ma-
jors to computers and computation in part by teach-
ing them to write applets, servlets, and groupware ap-
plications using a dialect of Scheme implemented in
Java. The declarative nature of our approach allows
non-science majors with no programming background to
develop surprisingly complex web applications in about
half a semester. This level of programming provides a
context for a deeper understanding of computation than
is usually feasible in a Computer Literacy course. The
course does not require the students to download any
software as all programming can be done with Scheme
applets. The instructor however must provide a Scheme
server which will run the students' servlets.

1 Introduction

There are two general approaches to teaching a Com-
puter Literacy class. The most common approach is
a broad overview of Computer Science including hard-
ware, software, history, ethics, and an exposure to in-
dustry standard oÆce and internet software. On the
other end of the spectrum is the class that focuses on
programming in some particular general purpose lan-
guage, (e.g. Javascript [12], Scheme[5], MiniJava[11]).

The primary disadvantage of the breadth-�rst approach
is that it tends to o�er a super�cial view of computing.

�This work was supported by the National Science Founda-
tion under Grant No. EIA-0082393.

Permission to make digital or hard copies, to republish, to post
on servers or to redistribute to lists all or part of this work is
granted without fee provided that copies are not made or dis-
tributed for pro�t or commercial advantage and that copies
bear this notice and the full citation on the �rst page. To oth-
erwise copy or redistribute requires prior speci�c permission.
Third Workshop on Scheme and Functional Programming. Oc-
tober 3, 2002, Pittsburgh, Pennsylvania, USA.
Copyright 2002 Timothy J. Hickey.

The depth-�rst programming approach on the other hand
often requires a substantial e�ort just to learn the syn-
tax of the language and the semantics of the underly-
ing abstract model of computation, leaving little time
to look at other aspects of computing such as internet
technology or computer architecture.

Several authors have recently proposed merging these
two approaches by using a simpler programming lan-
guage (e.g. Scheme[5], [6], [7]) or by using an internet-
based language (e.g. Javascript[12], MiniJava[11]).

In this paper we describe a �ve year experiment in com-
bining these two approaches in a Computer Literacy
course at Brandeis University (CS2a: Introduction to
Computers). We deviate from many Computer Liter-
acy courses in that we spend very little time discussing
the standard application programs (e.g. word proces-
sors, spreadsheets, email, instant messaging, �le shar-
ing, image processing etc.) It has been our experience
that students are able to learn how to use most of these
programs on their own and that use of these applica-
tions does not generally require a deep understanding
of computation. In a phrase, we don't teach them what
they are going to learn by themselves anyway.

The CS2a:Introduction to Computers course teaches pro-
gramming concepts and uses a small (but powerful) sub-
set of Jscheme[2] { a Java-based dialect of Scheme. The
tight integration of Java with Jscheme allows it to be
easily embedded in Java programs and hence makes it
easy for students to implement servlets, applets, and
other web-deliverable applications. Jscheme is an im-
plementation of Scheme in Java (meeting almost all of
the requirements of the R4RS [4] Scheme standard). It
also includes two simple syntactic extensions:

� javadot notation: this provides full access to
Java classes, methods, and �elds

� quasi-string notation: this simpli�es the pro-
cess of generating HTML.

The javadot notation provides a transparent access to
Java and the quasi-string notation provides a gentle



10

path from HTML to Scheme for novices. It also pro-
vides a convenient syntax for generating complex strings
of other sorts (such as SQL queries). These two exten-
sions will be discussed at length below.

Jscheme can be accessed as an interpreter applet (run-
ning on all Java-enabled browsers) or as a Java Network
Launching Protocol (JNLP) application. Both of these
provide one click access to the Jscheme IDE from stan-
dard browsers. It can also be downloaded as a jar �le
and run from the command line as a standard read-eval-
print-loop program.

Jscheme has been built into a Jakarta Tomcat webserver
as a webapp which allows students to write servlets
and JNLP applications directly in Jscheme. This web-
server typically runs on the instructor's machine, but
students can easily download and install the server on
their home/dorm PCs as well.

In the sequel, we explain, in detail, how Jscheme can be
used to teach non-science majors in a large lecture class
how to build servlets and applets in a six week section
of a Computer Literacy course. The approach described
here is very similar to the approach used in the Autumn
2001, \Introduction to Computers" course at Brandeis
University, but it reects changes that will be incor-
porated in the next year's version of the course. The
course and the underlying language have been evolving
steadily over the past �ve years and will likely continue
to do so.

This approach to teaching Computer Literacy is feasible
because of the declarative style of programming that is
possible in Scheme, together with the extremely simple
syntax and semantics of Scheme.

We posit that this web-programming based approach
would work with other declarative languages (e.g. Haskell
or Prolog), but would be infeasible with imperative lan-
guages such as Java or Perl. Scheme however is ideally
suited to this application because of the relative sim-
plicity of its syntax and semantics, both of which can
be stumbling blocks for novice programmers.

Although the particular languages and techniques that
we use may not be the best match at other institutions,
we feel that the general approach could be easily repli-
cated using other languages provided care is taken to
make the syntax and semantics that must be learned as
simple as possible.

2 Related Work

The need for a simple, but powerful, language for teach-
ing introductory CS courses has been discussed recently
by Roberts [11] who argues for a new language, Mini-
java, that provides both a simpler computing model

(e.g. no inner classes, use of wrapper class for all scalar
values, optional exception throwing) and a simpler run-
time environment (e.g. a read-eval-print loop is pro-
vided).

Jscheme can be viewed as an even more radical simpli�-
cation of Java in that it replaces the syntax of Java with
the much simpler syntax of Scheme while maintaining
access to all of the classes and objects of Java.

Another recent approach for introductory courses is to
use Javascript to both teach programming concepts and
to provide a vehicle for discussing other aspects of com-
puting such as the internet and web technology. For
example, David Reed proposes teaching a course [12]
in which about 15% of class time is devoted to HTML,
50% to Javascript, and 35% to other topics in computer
science. Our approach follows a similar breakdown but
also allows the students to build servlets, applets, and
GUI-based applications.

A third related approach is to teach Scheme directly as
a �rst course. The MIT approach, pioneered by Abelson
and Sussman [1], is not suitable for non-science majors
as it requires a mathematically sophisticated audience.
The approach being developed by the PLT group [5],
[6],[7], on the other hand, provides a rigorous introduc-
tion to Scheme programming but is designed to be ac-
cessible to students from all disciplines.

In our aproach, we provide an introduction to only a
subset of the language (for example, introducing lists
only toward the end). We start by introducing some
high-level declarative libraries for teaching an event-
driven model of GUI construction. The Scheme section
of the course requires only about 6 weeks. This leaves
half of the course for standard Computer Literacy top-
ics.

3 Goals, Syllabus, and Rationale

Our main goal in teaching a Computer Literacy course
is to help the students gain a broad understanding of
digital computation. It is our feeling that Computer
Literacy courses are most e�ective if they focus on the
fundamental mechanisms of computing at all levels and
if they ground this theoretical material by requiring
the students to build programs using these fundamental
concepts.

The syllabus covers the mechanisms underlying CMOS
gates and VLSI, the structure and interpretation of as-
sembly language, the design of simple GUI-based ap-
plications, the mechanisms underlying servlets (includ-
ing counters, logs, and auto-generated email), the basic
design and structure of the internet, and the limits of
computers (e.g. the Halting problem and the Turing
test).
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We test their understanding of this material using weekly
quizzes, biweekly homework assignments, and a �nal
exam in which they must write and/or trace programs
at these various levels (from semiconductors to servlets).
Before delving into a detailed description of the curricu-
lum we �rst explain what we do not cover and provide
some justi�cation for these choices.

This course also does not delve very deep into the soft
aspects of Computing. These topics are covered in a
companion course (CS33b: Internet and Society), which
is focused primarily on the social, ethical, legal, eco-
nomic, political and aesthetic aspects of computers. It
is our opinion that these issues are best taught in an in-
terdisciplinary context. Indeed, the CS33b course is cur-
rently taught by a dozen instructors from half a dozen
di�erent departments.

The course does not teach algorithms and data struc-
tures. Although the students do learn to trace through
the execution of fast-exponential procedures, gcd calcu-
lators, and the "map" function, we do not teach them to
use computers for problem solving. Thus we do not ask
them to write sorting procedures or programs to �nd
average grade scores, etc.

We do teach "reactive" programming in this course,
i.e. programs that interact with the user (through GUIs
or HTML forms) and use the user-supplied information
to generate responses and perform simple actions (log-
ging, sending email, updating counters, performing sim-
ple calculations and tests). We also teach the students
to understand how to trace recursive programs which
is a far easier task than learning how to write recursive
programs. More precisely,the students are required to
be able to write applets and servlets in three languages
(HTML, CSS, Scheme) and to trace programs in two
additional "languages" (pcode assembly language, and
CMOS circuit diagrams).

The goal in teaching them to write "reactive" programs
and to trace recursive programs is to help them under-
stand the deeper issues of computation more clearly.
For instance, one of the applet programs we present is a
simple "Psychiatrist" simulator which they are encour-
aged to modify. This provides a context for a deeper
discussion of arti�cial intelligence, ethics, and the Tur-
ing problem. For another example, when we discuss
the substitution model of Scheme the students are re-
quired to trace recursive programs with function param-
eters (e.g. map). This paves the way for a discussion of
the Halting problem. We consider the consequences of
extending the Scheme language by adding a primitive
procedure (halts? F X) which returns true if (F X)
eventually returns an answer and false if it throws an
exception or does not return. In particular, we look at
the following program:

(define (skeptic Q)
(if (halts? Q Q) (skeptic Q) 'ha))

(skeptic skeptic)

The trace of (skeptic skeptic) yields the expected
contradiction which then leads to a discussion of the lim-
its of computation. It is true that the skeptic example
only makes sense in the context of a Scheme which pro-
vides source code access to all procedures and closures,
but the impossibility of adding a recursive "halts?" pro-
cedure still illustrates well the limits of computation.
We usually couple this lecture with a classroom exer-
cise in which the students must prove that the instruc-
tor can not tell the future. The proof consists of asking
the instructor to predict the student's behavior using
the same strategy as the "skeptic" procedure.

A rough outline of the syllabus, which shows the context
of the web-programming part of the course is shown
below.

� 1 week HTTP and the structure of the Inter-
net: IP addresses, ports, sockets, services, routers,
gateways. Use of telnet, dig, traceroute, ping,
portscan to illustrate these issues.

� 2 weeksHTML/CSS { the thirty non-style HTML
tags and 10 basic CSS properties. Copyright is-
sues.

� 3 weeks Scheme Servlets { quasi-string nota-
tion, abstraction, conditional execution, lists, �le
I/O, email, database access. Security, privacy,
cookies, ethics.

� 3 weeks Scheme Applets/Groupware { GUI
components, layout, callbacks, animation, network-
ing primitives, groupware components. Doctor ap-
plet, Turing Test. Halting problem. Substitution
model. Software licenses.

� 1 week Assembly Language/Pcode - von Neu-
mann architecture, memory-mapped peripherals,
memory, speed, bandwidth, cacheing, super-scalar
architectures. Operating Systems, �le systems,
time sharing, ...

� 1 week CMOS/Logic Circuits - semiconductors
(P/N-type), gates, circuits, adders, latches and
bits.

Observe that the course contains a sign�cant amount of
non-Scheme material that would be found in most typi-
cal Computer Literacy courses (such as copyright issues
and ethical questions dealing with servers), but with
this programming-based approach these issues are more
meaningful as the students are able to write servers that
create logs and must deal with the resulting ethical ques-
tions.

4 Courseware

The main language used in the course is Jscheme1 [2, 3,
8], an open source implementation of Scheme in Java.

1http://jscheme.sourceforge.net
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SYNTACTIC CONSTRUCT JAVA MEMBER EXAMPLE
"." at the end constructor (Font. NAME STYLE SIZE)
"." at the beginning instance method (.setFont COMP FONT)
"." at beginning, "$" at end instance field (.first$ '(1 2))
"." only in the middle static method (Math.round 123.456)
".class" suffix Java class Font.class
"$" at end, no "." at beg. static field Font.BOLD$
"$" in the middle inner class java.awt.geom.Point2D$Double.class
"$" at the beginning packageless class $ParseDemo.class
"#" at the end access private data Symbol.#

Figure 1: Java reectors in Jscheme

It is almost completely compliant with the R4RS stan-
dard 2 [4] and also provides full access to Java using the
Java Reector syntax shown in Figure 1. Jscheme also
provides full access to Java thread and exception han-
dling. The following example illustrates the ease with
which one can access Java libraries in Jscheme. It im-
plements a simple multi-threaded \echo service" on a
speci�ed port and catches/reports any errors that may
arise in each thread:

(define (echoserver N)
(let ((SS (java.net.ServerSocket. N)))
(let loop ()
(let ((S (.accept SS)))
(.start
(java.lang.Thread.
(lambda()
(tryCatch
(let*

((in (java.io.BufferedReader.
(java.io.InputStreamReader.
(.getInputStream S))))

(out (java.io.PrintStream.
(.getOutputStream S))))

(.println out (.readLine in))
(.close S))

(lambda(e)
(.println java.lang.System.out$

(.toString e))))))))
(loop))))

The course uses a small but powerful subset of Scheme
and also relies on only a few selected Java reectors and
a small GUI-building library. For control ow and ab-
straction it uses define, set!, lambda, if,cond, case,
let*. For primitives, it uses arithmetic operators and
comparisons, a simple GUI-building library (providing
declarative access to Swing components, events, and
layout managers).

2strings are not mutable, and call/cc is only implemented for
try/catch like applications

4.1 Scheme Servlets

Files which appear in the Jscheme webserver student
directory with the extension ".servlet" are treated as
Jscheme expressions which are evaluated to generate the
html to send back to the client. After working with this
model for a while, we found that the need to combine
scheme and text resulted in programs containing large
numbers of string-append's and quoted strings (with
many quoted quotes). In response to this somewhat
confusing syntax, we introduced a slight syntactic ex-
tension to Scheme which allows curly braces fg to be
used in place of double quotes for strings. Moreover,
inside a fg string, any scheme expressions appearing
within square brackets [], are evaluated and appended
into the string. These two devices make use of the unas-
signed out�x operators [] and fg, and allow for a more
concise method for constructing strings in Scheme. We
call this quasi-string notation3

For example, using quasi-string notation we can write

(define (my-li NAME IMAGEFILE COST)
{<div style="background:rgb(0,150,150)">

<table width="100%">
<tr><td>
<a href="[IMAGEFILE]">
<img src="[IMAGEFILE]"

alt="[NAME]" width="150"></a><br>
</td><td> <h1 style="background:lightgreen;

color:black">[NAME]</h1>
</td><td style="text-align:right">

Cost: $[COST] </td></tr></table>
</div> <br> <br> <br>
})

which is equivalent to the following (less elegant) stan-
dard Scheme expression. Note in particular the confu-
sion that arises from the need to quote double quotes.
In the quasi-string syntax, it is much easier to verify the
syntactic correctness of the resulting code.

3The quasi-string notation is a syntactic variant on Bruce R
Lewis' Beautiful Report Language (BRL) Syntax. Our approach
is based on the quasiquote/unquote approach for constructing
lists in Scheme.
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(define (my-li NAME IMAGEFILE COST)
(string-append
"<div style=\"background:rgb(0,150,150)\">
<table width=\"100%\">

<tr><td>
<a href=\""

IMAGEFILE
"\">
<img src=\""

IMAGEFILE
"\"

alt=\""
NAME

"\" width=\"150\"></a><br>
</td><td> <h1 style=\"background:lightgreen;

color:black\">"
NAME

"</h1>
</td><td style=\"text-align:right\">

Cost: $"
COST

" </td></tr></table>
</div> <br> <br> <br>

"))

The quasi-string notation is similar to the quasiquote
syntax used to construct s-expressions in Scheme.

4.1.1 Dynamic content

The �rst non-trivial examples of servlets that we provide
are servlets that include runtime generated data (such
as the current date, or information from the HTML
headers, like the client operating system). For exam-
ple, by enclosing their HTML in curly braces, chang-
ing the extension from html to servlet, they can add
this dynamic content to their page just by including the
[(java.util.Date.)] expression into their HTML.

{<html>
<head><title>Date/Time</title></head>
<body>

Current local time is
[(java.util.Date.)]

</body>
</html>}

Evaluating this expression yields

<html>
<head><title>Date/Time</title></head>
<body>

Current local time is
Fri Sep 07 09:33:30 EDT 2001

</body>
</html>

These small syntactic changes provide a gentle intro-
duction to servlets that, as we will show below, leads
naturally to abstraction, conditional execution, and ex-
pression evaluation.

4.1.2 Introducing Abstraction

Once the idea of dynamic content is clearly established,
we move on to abstraction and show how to use the
"de�ne" form to create "scheme tags." This simple and
powerful idea only requires an understanding of the sub-
stitution model of scheme evaluation, and yet allows
students to start writing and sharing new HTML tag li-
braries, written in Scheme. For example, Figure 2 shows
a typical and simple library that includes a generic web-
page procedure and a captioned image procedure.

;; loadmylib.servlet
(define (cimg C I) ;; captioned images
{<table border=5>

<tr><td>
<img src="[I]" alt="[C]">

</td></tr>
<tr><td>[C]

</td></tr> </table>})

(define (generic-page Title CSS Body)
{<html>

<head><title> [Title]</title>
<style type="text/css" media="screen">
<!-- [CSS] --></style></head>

<body> [Body]</body>
</html>})

Figure 2: An HTML abstraction library

An example of the use of this simple library is shown
in Figure 3. The bene�ts of this sort of abstraction be-
come even greater when the abstractions start using so-
phisticated inline-CSS style attributes to create a highly
stylized HTML components.

(begin
(generic-page "Pets"

"body {background:black;color:white}
h1{border: thick solid red}"

{<h1>Pets</h1>
[(list

(cimg "Snappy" "snappy.jpg")
(cimg "Pepper" "pepper.jpg")
(cimg "Missy" "missy.jpg")
(cimg "Kitty" "kitty.jpg")
(cimg "Tarzan" "dog17.jpg"))]

})

Figure 3: Using HTML abstraction libraries
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This technique for abstracting HTML is well-known is
Lisp/Scheme web programming (e.g. LAML[10], BRL4)
and is similar to Server-Side Includes in JSP5 or the
publishing model of the Zope environment6.

4.1.3 Introducing User Interaction

The next pedagogical step is to introduce the notion of
using HTML forms to send data from the user to the
servlet.

To simplify the computational model for novice stu-
dents, Jscheme provides easy access to form parameters
using the (servlet (p1 p2 ...) ....) macro which
binds the variables p1,... to the strings associated
with the form parameters of the same names. This al-
lows one to easily write servlets that process form data
from webpages. This also proves to be a good time to
introduce the notion of conditional execution (using if,
cond, and case):

(servlet (password bg fg words)
(case password

((#null) ; first visit to page, make form
(generic-page {color viewer form} {}
{<h1>pw-protected color viewer</h1>
<form method=post action="demo1.servlet">
pw <input type=text name="pw"><p>
bg <input type=text name="bg"><p>
fg <input type=text name="fg"><p>
text<textarea name="words">
Enter text to view here</textarea>
<input type=submit>

</form>}))

(("cool!") ;; correct pw, process data
(generic-page "color viewer"
"body {background:[bg];color:[fg]}"
words))

(else ;; incorrect password, complain!
(generic-page "ERROR"
" body {color:red;background:black}"
{<h1>WRONG PASSWORD<h1>

Go back and try again!}))))

Figure 4: A password protected page

For example, after a week of HTML instruction we have
found that beginning students easily create HTML forms
and it is then a small step to the servlet in Figure 4
which either generates a form or generates a response
to the form, depending on whether the form parameter
has been given a value by the browser.

4http://brl.sourceforge.net
5http://java.sun.com/products/jsp
6http://www.zope.org

4.1.4 Expression Evaluation

The next step is to introduce numerical computation
into servlets. An example, of the type of program the
students are able to construct at this level is shown in
Figure 5 below.

(servlet (inches pounds)
(if (equal? inches #null)
;; first visit to page, create form
(generic-page {color viewer form} {}
{<h1>BMI Calculator</h1>
<form method=post action="bmi.servlet">
height:
<input type=text name="inches"> inches<br>
weight:
<input type=text name="weight">pounds<br>
<input type=submit>

</form>})
;; else compute BMI, display results
(let*( (h-in-m (* inches 0.0254))

(w-in-kg (/ pounds 2.2))
(bmi (/ w-in-kg (* h-in-m h-in-m))))

(generic-page "Body Mass Index"
" body {background:rgb(255,235,215)}"
{<h1>Body Mass Index<h1>
With a height of [inches] inches and
a weight of [pounds] pounds, your
Body Mass Index is [bmi] <br>
Note: a BMI over 25 indicates you may be
overweight, while a BMI over 30 indicates
that your weight may cause significant health
problems!}))))

Figure 5: A sample quasi-string servlet

This requires two new ideas:

� evaluation of arithmetic s-expressions7

� introduction of intermediate variables using let*

This is admittedly a big step. At this point we review
the substitution model to explain how expression evalu-
ation proceeds, and we introduce an environment model
to explain the semantics of the let* expression.

For students to be able to write this type of servlet
they need to learn to use pre�x Scheme arithmetic ex-
pressions and to use the servlet and case macros.

4.1.5 System Interaction

We have also added a few additional primitives for writ-
ing or appending scheme terms to a �le, and for reading

7The servlet macro automatically converts numerals to Java
numbers, thus pounds and inches are numbers
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a �le either as a string or as a list of scheme terms. These
allow students to easily write logs and counters as in
Figure 6. This example also shows the send-mail pro-
cedure which allows the students to specify the "from",
"to", "subject" �elds and give a quasi-string for the
body.

(servlet()
(let* ((c (read-from-file "counter" 0))

(d (list c (Date.)
(.getRemoteHost request))))

(write-to-file "counter" (+ 1 c))
(append-to-file "log" d)
(send-mail

"tjhickey@brandeis" "nobody@brandeis"
"counter" {You got a hit: [d]!})

{<html><body>
This list has been visited by <xmp>

[(read-string-from-file "log" "")</xmp>
and you are visitor number [(+ 1 c)]

Figure 6: Logs and Counters in test.servlet

In order to simplify the problem of associating log and
counter �les to servlets, these primitives read and write
from �les whose pre�x is the name of the servlet. Thus,
for the log and counters example, the "log" �le would
be named "test.servlet log" and the counter would be
"test.servlet counter". The students can also use library
procedures that allow absolute addresses for �les, but
this is discouraged.

4.1.6 Data Structures and map

Students naturally want to handle list-style data (e.g.
multiple checkboxes in form data). This leads naturally
into a description of "map" and also to table abstrac-
tions. We �nd it useful to introduce map before car,
cdr, cons, since it provides a powerful and intuitively
clear operation and does not require an understanding
of recursion. Moreover, as the examples in Figure 7
below illustrate, the map procedure gives the students
most of what they need to handle lists of data values.
There is also a map* procedure which uses a generalized
map that converts Java collection objects into lists, and
hence can be used with arrays, hashtables, etc.

(define (li x) {<li>[x]</li>})
(define (lis L) (map li L))
(define (ul L) {<ul>[(lis L)]</ul>})
(define (ol L) {<ol>[(lis L)]</ol>})
(define (td X) {<td>[X]</td>})
(define (tds Ts) (map td Ts))
(define (tr Ts) {<tr> [(tds Ts)] </tr>})
(define (trs Rs) (map tr Rs))
(define (table Rs) {<table> [(trs Rs)] </table>})

Figure 7: Generating lists and tables

4.2 Scheme Applets

After spending about three weeks studying servlets, we
turn to client-side computing. The tomcat server has
been con�gured so that any scheme program that ends
with ".applet" is transformed into a Jscheme applet
and runs on the client's browser. Likewise, Jscheme
programs that end in "snlp" are converted into Java
Network Protocol format which will be automatically
downloaded and run in the Java Web Start plugin.8.

"John Doe"
"http://www.johndoe.com"
"years->secs calculator"
"Convert age in years to age in seconds"
"http://www.johndoe.com/jd.gif"

(jlib.JLIB.load)
(define t (maketagger))
(define w (window "years->secs"
(menubar
(menu "File"
(menuitem "quit"
(action (lambda(e) (.hide w))))))

(border
(north (label "Years->Seconds Calculator"

(HelveticaBold 60)))
(center
(table 3 2
(label "Years:")
(t "years" (textfield "" 20))

(label "Seconds:")
(t "secs" (label ""))

(button "Compute" (action(lambda(e)
(let*

((y (readexpr (t "years")))
(s (* 365.25 24 60 60 y)))

(writeexpr (t "secs") s))))))))))
(.pack w)
(.show w)

Figure 8: A sample SNLP program

Jscheme has also been extended to allow students to
learn to implement simple programs with Graphical User
Interfaces. We have written a library, JLIB, that pro-
vides declarative access to the AWT package (There is
also a version for the Swing package). An example of a
simple Scheme program using this library is shown be-
low in Figure 8. The �rst �ve lines of the program listed
above are strings that provide documentation about this
program which is required by the Java Network Launch-
ing Protocol (JNLP).

8http://java.sun.com/products/javawebstart
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4.2.1 JLIB

The JLIB model is based on �ve fundamental concepts:

� COMPONENTS { there are a small number of
ways to construct basic components (buttons, win-
dows, ...)

� LAYOUTS { there are a small number of ways to
layout basic components (row, col, table, grid, ...)

� ACTIONS { there is a simple mechanisms for as-
sociating an action to a component

� PROPERTIES { there are easy ways for setting
the font and color of components

� TAGS { this is a mechanism for giving names to
components while they are being laid out.

Another key idea is that operations on all components
should be as uniform as possible. For example, there are
procedures "readstring" and "writestring" which allow
one to read a "string" from a component, and write
a string onto a component. Thus "writestring" can
change the string on a label, a button, a text�eld, a
textarea. It can also change the title of a window or add
an item to a choice component. Likewise, readstring re-
turns the label of a button, the text in a textarea or
text�eld, the text of the currently selected item in a
choice, the title of a window, and the text of a label.
The readexpr and writeexpr procedures are similar, but
they allow reading and writing of Scheme expressions
on GUI components. For example, the following snip-
pet of code de�nes a button which changes state when
pushed:

(define (flip x)
(case x

(("on") "off")
(("off") "on")))

(define B
(button "off" (action (lambda(e)

(writestring B (flip (readstring B)))))))

JLIB provides procedures for each of the main GUI wid-
gets (window, button, menubar, label) and it also pro-
vides procedures for specifying layouts (e.g. border, cen-
ter, row, col, table). The �rst few arguments of these
procedures are mandatory (e.g. window must have a
string argument, text�eld requires a string and a inte-
ger number of columns). The remaining arguments are
optional and can appear in any order. Examples are
fonts, background colors, and actions.

The JLIB package provides a \tagger" procedure which
allows one to give names to components in situ

� (define t (maketagger)) creates a tagger,

� (t NAME OBJ) assigns the NAME to the OBJ and

� (t NAME) looks up the OBJ with that NAME.

This makes the code more declarative because the name
for a text�eld appears with its constructor in the expres-
sion that creates the GUI.

4.2.2 Graphics and Animation

We also provide a simple graphics library providing ac-
cess to a canvas with an o�screen bu�er. The draw-
ing primitives are the Java instance methods of the
java.awt.Graphics class. The "canvas" procedure is a
JLIB procedure that creates a canvas with an o�screen
bu�er accessed by (.bufferg$ c) and which can be
drawn to the screen using (.repaint c). The program
in Figure 9 shows a simple example drawing a red ball
moving across a blue background.

(jlib.JLIB.load)
(define c (canvas 400 400))
(define w (window "graphics1"
(border
(center c)
(south

(button "draw"
(action (lambda(e)
(run-it drawballs))))))))

(define (run-it F) (.start (Thread. F)))

(define (drawballs) (drawball 200))

(define (drawball N)
(define g (.bufferg$ c)) ;get graphics object
(.setColor g blue)
(.fillRect g 0 0 1000 1000) ;; clear background
(.setColor g red)
(.fillOval g N N 100 100) ;draw red disk
(.repaint c) ; copy buffer to screen
(Thread.sleep 100L) ;; pause 0.1 sec
(if (> N 0) (drawball (- N 1))) ;; loop
)

(.resize w 400 400)
(.show w)

Figure 9: Graphics programming

The run-it procedure is used when the students write
animations. They seem to understand the notion of
multi-threaded programming in the context of having
several animations each running in their own thread 9

9We also have a version of run-it that looks for errors and
reports them in a debugging window.
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4.3 Networking Abstractions

After spending two weeks mastering the JLIB library we
introduce network programming using a simple model
where applets communicate by sending scheme terms to
each other through a group-server. Since applets are
only able to open sockets on their host server, we must
run the group-server on the same machine that man-
ages the students' applets. The students connect to this
group-server using the make-group-client procedure:

(define S
(make-group-client Name Group Host Port))

This creates an object, S, that can communicate with
the group-server. To send the scheme terms key b c
... to the server, one evaluates the expression

(S 'send key b c ...)

The �rst term, key, is used as a �lter. Indeed, the group-
server bounces back every message it receives to all the
members of the group. A member can specify how to
handle a message using the add-listener method

(S 'add-listener key
(lambda (key . restargs ) ...))

This method indicates that the indicated procedure should
be called on each message that arrives from the server
with the speci�ed key.

This model builds on the student's experience with call-
backs in GUI's and with reading/writing on GUI com-
ponents. The analogy is that "send" is like writing to a
component and "add-listener" is like adding an action.

An example of the kind of applet that is explained in
class is the chat applet shown in Figure 10. In the most
recent semester we did not require students to write an
applet using networked communication, but several stu-
dents chose to write such applets for their �nal project.
The best example was a pictionary program which al-
lowed any number of students to join in a game of pic-
tionary using a shared whiteboard as well as private and
group chats. This program was written by a student
with no previous programming experience and made use
of almost all of the examples we had given previously in
the course.

In the coming year we plan on introducing networked
communication using the notion of groupware compo-
nents. These are textareas and canvases which are shared
among several users on the network. This approach may
provide an even simpler model of network programming
that builds more directly on their understanding of GUI
programs.

(jlib.JLIB.load)
(jlib.Networking.load)
(define (chatwin

UserName ChatGroup Host Port)
(define t (maketagger))
(define S (make-group-client

UserName ChatGroup Host Port))
(define w (window "test"
(col
(button "quit" (action (lambda (e)

(S 'logout) (.hide w))))
(t "chatarea" (textarea 20 50))
(t "chatline" (textfield "" 50
(action (lambda(e)
(S 'send "chat" (string-append

UserName ": "
(readstring (t "chatline"))))

(writeexpr (t "chatline") "")
)))))))

(S 'add-listener "chat" (lambda R
(appendlnexpr (t "chatarea") R)))
(.pack w) (.show w)
w)

(define (rand N)
(Math.round (* N (Math.random))))

(chatwin
(string-append "user-" (rand 1000))
"chat"
(.getHost (.getDocumentBase thisApplet))
23456)

Figure 10: A multi-room chat program

5 Student Evaluation Strategies

We have used several techniques to accommodate the
non-science students that are a majority in this class.
The homework assignments allow students to exercise
their creativity in creating a web artifact (webpage,
servlet, applet, application) which must meet some gen-
eral criteria. For example, in one assignment they are
required to create a servlet that uses several speci�c
form tags (in HTML) and generates a webpage in which
some arithmetic computation is performed. This en-
courages a bricolage approach to learning programming
concepts which seems to appeal to non-science majors.

The course features weekly quizzes which take an oppo-
site approach. The students are shown a simple web ar-
tifact and asked to write the code for it during a twenty
minute in-class quiz. This practice helps keep the stu-
dents from falling behind in the class and also helps
counterbalance the openness of the homework assign-
ments.

The �nal exam is based on the weekly quizzes so the
quizzes also prepare students for the exam. The course
provides a high level of teaching assistant support and
uses peers who have completed the course in a previous
year. The students post their homework assignments on
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the web and are thereby able to learn from each other,
while the creativity requirement and the sheer joy of
creating keeps copying to a minimum.

In the most recent class the three hour open-notes �nal
exam required students to write a webpage, a Scheme
servlet, a Scheme applet, and to trace through Scheme
code, a logic circuit, and a CMOS circuit. The goal of
the exam was to test their ability to synthesize solutions
to problems using the tools they had learned.

5.1 Pitfalls

The course requires a substantial investment in TA re-
sources and in class preparation time as there is no text-
book for the course. Indeed the course has been heavily
revised each year to include more web programming.
We are currently working on a textbook which should
lessen the class preparation time.

The fact that the course is taught as a large lecture
course makes it diÆcult to keep track of the students
who are doing poorly. This is partly ameliorated by
weekly quizzes which help track student performance.
Smaller class sizes or sectionals might make it easier to
track students, but would require a greater commitment
of staÆng resources.

The current version of software tools used in the course
(debuggers, help systems, etc.) are not as well-suited for
novice programmers as are other more mature systems
(e.g. DrScheme), but they are available as applets so
there is a tradeo� between ease of access and ease of
use. We are strongly considering porting the class to
DrScheme and/or other Scheme systems.

Although the course covers a great deal of material and
requires the students to demonstrate their mastery of it
in timed quizzes and exams as well as substantial home-
work projects, the grades are always highly skewed to-
ward the top. This suggests that the class should be
taught in two or more sections as the very best stu-
dents are clearly not being suÆciently challenged. For
these students a modi�ed version of the course which in-
cluded more "algorithmic" computer science would be
ideal. This would, again, require a greater commitment
of department resources to the non-major course o�er-
ings.

6 Lessons learned

Overall the most surprising aspect of the course is that
these non-science students have been able to learn how
to write servlets, applets, and applications in Scheme,
all within a 6 week unit of a 13 week semester. Al-
though they have not delved deeply into "algorithmic"

computer science, most of the students do thoroughly
understand the mechanism by which a computer pro-
gram can specify the appearance and functionality of
simple applets and servlets. They also understand the
notion of a formal semantics (the substitution model)
for a computer language and the idea of the evolution
of a process as a model of computation as in SICP [1].

The primary reasons for the success of this approach
seems to be two-fold:

� Scheme reduces cognitive overload. By us-
ing a subset of Scheme we eliminate the problem
of learning complicated syntax (as one must only
match parens (of various sorts) and quotes and
the Jscheme IDEs help one do this) and also min-
imize the problem of learning the underlying ab-
stract machine due to the declarative nature of the
language. They can understand the Scheme pro-
grams they write using a combination of the sub-
stitution model with an intuitive notion of objects
(window, buttons, label, menus), events (button
pushes, choice selections), and simple operations
on these objects (reading/writing data from GUI
components or HTML �elds). If we were to use
Java for this class they would be exposed to a
much more complicated model with di�erent kinds
of methods (static/instance/constructor), variables
(static/instance �elds, local variables, parameters),
types (classes, interfaces, scalars), and a dizzying
array of packages. The use of Jscheme reduces all
of the Java libraries to a set of primitive proce-
dures and greatly reduces cognitive overload.

� JScheme makes applets and servlets easily
accessible to non-majors. By using a Scheme
implemented in Java we are able to maintain strong
student interest by embedding Scheme in applets,
servlets, and JNLP applications and thereby al-
lowing the students to develop web artifacts that
are usually only accessible to upper level Com-
puter Science majors. Most of these types of ap-
plications could be made accessible through other
Scheme implementations. Applets would require a
plug-in, but students would probably be just as ex-
cited (if not more excited) about creating double-
clickable GUI applications in Scheme, which would
not require a plug-in.
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ABSTRACT
We present two little languages implemented in Scheme:
SchemeUnit, a language for writing unit tests, and SchemeQL,

a language for manipulating relational databases. We dis-
cuss their design and implementation and show how the fea-
tures of functional languages in general, and Scheme in par-
ticular, contribute to the ease of use and implementation of
our languages.
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1. INTRODUCTION
The domain speci�c language, or little language, is a power-

ful technique for increasing programmer productivity. Much
work in domain speci�c languages has been done in func-
tional languages (e.g. [28, 13, 8]). Our work is no di�erent
in this regard. Our contribution is to focus on the interface
of our languages and show how we can use the features of
functional languages in general, and Scheme in particular,

to improve the user experience. We describe little languages
for unit testing and relational database manipulation. The
two languages have been used by the authors and others in
real applications, and the code is available from

http://schematics.sourceforge.net/

2. THE SCHEMEUNIT FRAMEWORK
Unit testing concerns testing individual elements of a pro-
gram in isolation. SchemeUnit is a framework for de�ning,
organizing, and executing unit tests written in the PLT di-

alect of Scheme[11]. We drawn inspiration from two strands
of work: existing practice in interactive environments and
the development of unit testing frameworks following the
growth of Extreme Programming.

In an interactive environment it is natural to write in a

\code a little, test a little" cycle: evaluating de�nitions and
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or to redistribute to lists all or part of this work is granted without fee
provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To otherwise copy or redistribute requires prior specific
permission.
Third Workshop on Scheme and Functional Programming. October 3,
2002, Pittsburgh, Pennsylvania, USA.
Copyright 2002 Noel Welsh, Francisco Solsona, and Ian Glover

then immediately testing them in the read-eval-print loop
(REPL). We take the simplicity and immediacy of this cy-
cle as our model. By codifying these practices we preserve

the test cases beyond the running time of the interpreter
allowing the tests to be run again when code changes.

Unit testing is one of the core practices of the Extreme Pro-
gramming[3] software development methodology. Unit test-
ing is not new to Extreme Programming but Extreme Pro-

gramming's emphasis on unit testing has spurred the devel-
opment of software frameworks for unit tests. The original
unit testing framework (SUnit) is written in SmallTalk[2].
Since then unit testing frameworks have been written for
many languages[18]. We draw inspiration from these frame-
works and �nd it enlightening to compare the expressivity

of these frameworks with SchemeUnit. In particular we will
compare SchemeUnit to JUnit[4], an extremely popular unit
testing framework for the Java language (it has been down-
loaded over 340,000 times at the time of writing).

We start our discussion by clarifying the goals of Scheme-

Unit. We then describe the framework's design and show
how our goals have inuenced the design. We follow with
a comparison of SchemeUnit and JUnit that illustrates how
the expressivity of Scheme leads to a cleaner implementa-
tion and better user experience. We �nish with a discussion
of related and future work.

2.1 Goals
We have three goals for SchemeUnit. Firstly we want to
remain as close as possible to the \code a little, test a little"
cycle we described above. Secondly we want to support the
main testing patterns we encounter in practice. Finally we
want to support user extensions to the testing framework.

Throughout this paper we shall use an example of simple
interactive testing to illustrate our design. Suppose the user
is testing the invariance of write and read. The code they
may execute is given below:

(de�ne data (list 1 2 3 4))

(with-output-to-�le "test.dat"
(lambda () (write data)))

(with-input-from-�le "test.dat"
(lambda () (equal? data (read))))

(delete-�le "test.dat")
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The programmer checks the test by inspecting the result of

the (equal? data (read)) expression. If the result is #t the
test has succeeded.

We shall show how this example is coded in our framework
and take the simplicity of the above example as our goal.

2.2 Core Design
The test is the core type in our framework. A test is either
a test case, which is a single action to test, or a test suite,
which is a collection of tests.

test �! test-case j test-suite

test-case �! name � action
test-suite �! name � tests

tests �! listof test

The hierarchical arrangements of tests into suites helps the
programmer organize and maintain their tests.

We represent a test action as a closure. Three ways spring
to mind to signal test success or failure:

1. Indicate success by returning a non-#f value and fail-
ure by returning #f.

2. Return a datatype indicating success or failure and
additional information

3. Throw an exception on failure and return normally for
success

The �rst method has the advantage of simplicity but the dis-
advantage that we lose information about the cause of fail-

ure, so we discard it immediately. The other two methods
are equivalent in terms of the information they can return
(we can encode arbitrary information in the return value or
the exception). We have several reasons for choosing the
third option over the second. Firstly we wish to catch ex-
ceptions anyway to prevent an unexpected error (i.e. ones

that we are not testing for) from halting the testing frame-
work. Secondly when using the second method and testing
a sequence of expressions it is necessary to use continua-
tion passing style to propagate a test failure that occurs in
an intermediate expression. In this case we are simulating
exceptions! Therefore for simplicity of implementation and

use we choose to throw an exception to signal an error. We
also divide the types of exception we catch into those we
catch as the result of a tested failure (which we call fail-
ures) and those we catch due to untested failures (which we
call errors).

We provide a run-test-case function that takes a test-case
and returns a test-result :

(run-test-case test-case) ) test-result

test-result �! test-failure test-case � failure-exn
j test-error test-case � error-exn
j test-success test-case � result

Finally, the two functions fold-test and fold-test-results make

it easy to walk over tests.

(fold-test test-collector seed test) ) seed

(fold-test-results result-collector seed test) ) seed

seed �! �

test-collector �! (test �) �! �

result-collector �! (test-result �) �! �

2.3 Testing Patterns
Our example in the core framework is:

(make-test-case
(assert binary-predicate actual expected)
"write/read invariance"

(lambda ()
(let ((data (list 1 2 3 4)))
(dynamic-wind
(lambda ()
(with-output-to-�le "test.dat"

(lambda () (write data))))
(lambda ()
(with-input-from-�le "test.dat"
(lambda ()
(let ((actual (read)))
(if (not (equal? actual data))

(raise
(make-exn:test:assertion
(string-append
"write/read invariance failed with "

(format "actual ~a" actual)
" and "

(format "expected ~a" data))))
#t)))))

(lambda () (delete-�le "test.dat"))))))

Clearly we have lost the simplicity of the original REPL! By
adding common testing patterns to SchemeUnit we show
how we can regain this simplicity.

2.3.1 Assertions
Checking actual output against expected output is the most
common test pattern. We borrow the idea of assertion func-

tions from JUnit. An assert function tests a condition, rais-
ing a failure exception if the condition is false. The failure
exception contains the location of the failed assertion, the
actual and expected parameters, and an optional user spec-
i�ed message string.

The core functionality can be provided by a single function:

(assert binary-predicate actual expected [message])

We know from experience that it pays to provide assertions
for the most common cases, so SchemeUnit provides a li-
brary of assertions:

� (assert binary-predicate actual expected [message])

� (assert-equal? actual expected [message])

� (assert-eqv? actual expected [message])

� (assert-eq? actual expected [message])

� (assert-true actual [message])
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� (assert-false actual [message])

� (assert-pred unary-predicate actual [message])

� (assert-exn exn-predicate thunk [message])

� (fail [message])

Assertions are de�ned using the de�ne-assertion macro:

(de�ne-assertion (name param . . . ) expr . . . )

The de�ne-assertion macro expands into the de�nition of a

macro and a function1 that takes the given parameters and
an optional message string. If the result of the expressions
is #f the assertion raises a failure exception containing the
all the information given above.

The de�ne-assertion macro is exported so users can de�ne

their own domain-speci�c assertions on par with those al-
ready provided. We hope over time to accumulate libraries
of specialized assertions.

2.3.2 State Management
Note that our example test uses state and hence requires
initialization and cleanup code. This is fairly common and
we would like to make is easier for the user to specify these
actions. Borrowing again from JUnit we call this code setup
and teardown actions and we augment test-case to optionally
include them. So

test-case �! name � action [� setup] [� teardown]

2.3.3 Interface Enhancements
We use macros to add the repetitive lambda statements

around the action, setup, and teardown expressions. We
also wrap the call to action with calls to setup and tear-
down in the macro rather than requiring the test framework
to preform this action.

Our example is now:

(let ((data (list 1 2 3 4)))
(make-test-case "write/read invariance"
(with-input-from-�le "test.dat"
(lambda ()
(assert-equal? (read) data)))

(with-output-to-�le "test.dat"
(lambda () (write data)))

(delete-�le "test.dat")))

This code is almost identical to the original example typed at
the REPL. We have achieved our ease-of-use goal, and we
have done so by supporting testing patterns and allowing
user extensions to the testing framework.

1Only macros can get location information in PLT Scheme.
We de�ne the function variant as we have occasionally found
uses for higher order assertions. The function variant has a
� appended to its name.

Figure 1: The SchemeUnit graphical interface

2.4 Interfaces
We provide textual and graphical interfaces to SchemeUnit.

An example run shows the user interface in action. The
following test suite

(test/text-ui

(make-test-suite "Example suite"
(make-test-case "Will succeed"
(assert-equal? (+ 1 2) 3))

(make-test-case "Will fail"
(assert-equal? (+ 1 1) 3))

(make-test-case "Will cause error"

(assert-equal? (/ 1 0) 0))))

gives the output:

Error:

Will cause error

an error of type exn:application:divide-by-zero

occurred with message: "/: division by zero"

Failure:

Will fail

assert-equal? failed at: top-level 8:7

Inputs: <2> <3>

1 success(es) 1 error(s) 1 failure(s)

The graphical interface is still in development. When com-

plete it will provide source level highlighting and allow navi-
gation to error location using DrScheme. An example of the
current graphical interface is shown in Figure 1.

2.5 SchemeUnit versus JUnit
It is instructive to compare SchemeUnit with the popular
JUnit test framework, as doing so serves to illustrate the
expressive advantage of SchemeUnit. Our discussion centers
on a basic example from [25] based on a telephone class. The

Java code is:
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public class TelephoneNumberTests extends TestCase f
public static void main(String[] args) f

junit.textui.TestRunner.run(suite());
g

public static TestSuite suite() f
return new TestSuite(TelephoneNumberTests.class);

g

public TelephoneNumberTests(String testname) f
super(testname);

g

public void testSimpleStringFormatting()
throws Exception f

// Build a complete phone number

TelephoneNumber number ->
new TelephoneNumber("612", "630",

"1063", "1623");
assertEquals("Bad string",

"(612) 630-1063 x1623",
number.formatNumber());

g

public void testNullAreaCode()
throws Exception f

// Build a phone number without area code
TelephoneNumber number ->

new TelephoneNumber(null, "630",

"1063", "1623");
assertEquals("Bad string",

"630-1063 x1623",
number.formatNumber());

gg

A translation of this to the SchemeUnit syntax is

(require (lib "test.ss" "schemeunit")
(lib "text-ui.ss" "schemeunit"))

(test/text-ui
(make-test-suite "Telephone number tests"

(make-test-case "Simple format"
(assert-equal? "(612) 630-1063 x1623"
(format-number
(make-number 612 630 1063 1623))

"Bad String"))

(make-test-case "No area code"
(assert-equal? "630-1063 x1623"

(format-number
(make-number (void) 630 1063 1623))

"Bad string"))))

There are several points to note about this example. One is
the amount of typing required for this short example. The
Java code is far more verbose, most notably in the setup
code. This is largely a result of the type declarations and
noise keywords (like return and new) required by Java. To

our eyes the Scheme code is much more elegant though we
recognize this is a subjective judgment.

JUnit relies extensively on reection. Test cases are de�ned
by pre�xing the method name with test. This is an elegant
solution to the problem that Java has no �rst class repre-

sentation of functions but can lead to problems: JUnit uses

a custom class loader that can interact unpredictably with

other Java code that makes extensive use of reection (e.g.
Java remote method calls). This makes testing diÆcult in
these environments. There is no such problem in Scheme.

In JUnit setup and teardown methods are similarly identi-
�ed by name and discovered by reection. Again �rst class

functions reduce the complexity of the SchemeUnit frame-
work.

In general structuring the test suites by value rather than by
name makes for a simpler and more exible system. There
are fewer new conventions for the user to remember and

tests can be manipulated on the y.

2.6 Related and Future Work
SUnit has spawned a large and increasing number of testing
frameworks of which SchemeUnit is one. We shall briey
consider those that are particularly relevant to SchemeUnit.

HUnit[14], an implementation for the Haskell Language, is
a recent addition to the family. There are broad similarities
between HUnit and SchemeUnit. Both signal failure with
exceptions and both provide a number of convenience asser-
tion functions. HUnit recognizes the importance of interface

and de�nes in�x operators that make test speci�cation eas-
ier. The combination of lazy evaluation and in�x operators
achieves a similar e�ect to our macros. We briey illustrate
HUnit below, along with the equivalent code in SchemeUnit:

test1 -> 3 ~->? (1 + 2)
tests -> TestList [TestLabel "Addition" test1]

(de�ne tests
(make-test-suite
"All tests"
(make-test-case "Addition" (assert -> 3 (+ 1 2)))))

LIFT[20], CLUnit[1] (Common Lisp) and CurlUnit[5] (Curl)
are Lisp dialect implementations of the SUnit framework.
All are broadly similar to SchemeUnit. Both LIFT and
CLUnit have some stateful features to ease interactive de-
velopment of tests. De�ning a test in LIFT (with deftest)
implicitly creates a test suite to which later tests (created

with addtest) are automatically added. In CLUnit tests are
categorized by name and stored in a global collection. Tests
override existing tests with the same name and are removed
with the remove-test function. CurlUnit is a direct transla-
tion of JUnit to Curl so most of our earlier comments about

JUnit apply to CurlUnit.

The FORT[9] framework, implemented in O'Caml, takes a
di�erent approach to the SUnit family. Test results take
one of seven values including unexpected success, expected
failure, untested, and unresolved in addition to the more

usual pass and fail. Test results and returned by the normal
function return mechanism so we envisage some diÆculty
in constructing a single test case containing multiple test
expressions. The multitude of test results is an interesting
idea but we have yet to encounter a situation where they
are necessary. Lacking a clear need we favor simplicity and

stick with our three result types.
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As the Extreme Programming community evolved from the

design pattern community it is no surprise that testing pat-
terns[23][10] have been developed. We intend to analyze
these patterns and see how SchemeUnit can provide direct
support for them.

A more advanced approach is to generate tests from speci-

�cations (e.g. [6]). This approach naturally leads to model
checkers like ACL2[19] and SPIN[15] that prove correctness.
This is a powerful approach, though quite a leap from our
simple system.

SchemeUnit only targets unit tests. In future we wish to

target functional (whole system) testing, and testing of non-
functional requirements such as performance. We are also
aim to extend SchemeUnit to support domain speci�c func-
tionality such as web site testing.

3. THE SCHEMEQL QUERY LANGUAGE
The International Standard Database Language[17] (SQL

1992, SQL'92 or just SQL) is a declarative language for
manipulating data in database manager systems (DBMS).
SQL is the standard interface to relational databases and
is implemented by all major (and most minor) DBMSs.
SchemeQL integrates a database manipulation language into
the Scheme language o�ering an alternative to raw SQL.

Nowadays most database programmers already know SQL,
and SchemeQL is designed to o�er a gentle slope[16] from
existing SQL knowledge to the higher level abstractions of-
fered by SchemeQL.

We start by discussing the limitation of embedded SQL and
why an alternative is desirable. We then describe the design
and implementation of SchemeQL. We follow with an ex-
tended example that shows how SchemeQL builds on SQL
but provides extended functionality that makes program-

ming in SchemeQL easier than SQL. We �nish with a dis-
cussion of related and future work.

3.1 The Limitations of Embedded SQL
The traditional approach to mixing SQL with another lan-
guage is to embed the SQL as text strings. Even supposedly
modern languages like Java [12] continue this tradition. The

disadvantages of this approach are:

� SQL statements are not checked until execution time.
It is easy to make grammatical or type errors when
embedding SQL. For example, forgetting to include a
space when concatenating two strings is a common er-
ror. Similarly one can write a SQL statement that uses
SQL constructs where they aren't allowed, or uses the

wrong type for arguments to SQL functions and so on.
All these errors will cause execution time exceptions
that may a�ect end users, whereas compilation time
exceptions would have been caught and dealt with by
the programmer.

� SQL statements can not be manipulated like host lan-
guage statements. Except by using crude text pro-
cessing one cannot programaticaly compose, abstract,

and re�ne SQL statements. Hence code quality and

programmer productivity su�er when using embedded

SQL

If SQL statements were �rst class members of the program-
ming language we could use our existing tools and language
constructs to work with them, avoiding the problems given

above.

3.2 The SchemeQL Design: a better SQL
SchemeQL embeds in Scheme a little language for creating
and manipulating SQL queries. SchemeQL allows complex
structured statements to be treated as �rst class citizens,

thus considerably raising the level of abstraction a program-
mer can use.

The SchemeQL grammar is very schemish while following
closely, in spirit, the SQL grammar. This eases the imple-

mentation as SQL is a complex mix between the relational
algebra and the relational calculus, but more importantly
allows the programmer to use their existing knowledge of
basic SQL constructions and programming in Scheme. Fur-
thermore, by making SchemeQL a set of syntactic exten-
sions and procedures we can concentrate on the design of

our little language, while retaining the whole power of a
real programming language, Scheme, following the steps of
other little languages [28], and [8].

SQL statements are divided into three main groups:

� Selection (SELECT)

� Modi�cation (INSERT, UPDATE, and DELETE)

� Data de�nition (CREATE TABLE)

Selection (aka projection) statements produce a result set.
Modi�cation statements return a natural number represent-
ing the number of rows a�ected by the execution of the

statement. Data de�nition statements are only interesting
for their side e�ects, such as creating a new table or view in
the database.

SchemeQL has the same logical division, with the following

di�erences: result sets are represented by cursors, a lazy
stream of rows (which basically allows the programmer to
work with one row at the time), and instead of having a
one to one mapping from SQL statements to Scheme pro-
cedures, we have a set of procedures to mimic the work of
a single SQL statement. This simpli�es the construction,

combination, and re�nement of statements. For instance,
the full power of the SQL SELECT statement is achieved
by the appropriate combination of several SchemeQL forms.
Basic selection in SchemeQL follows this grammar:

selection ::= (query <exp>)

| (query ((LITERAL <exp>)))

| (query <col-spec> <table-spec>)

| (query <col-spec> <table-spec>

<pred-spec>)

<exp> ::= string-or-symbol
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(passed verbatim to the DBMS)

<col-spec> ::= ALL | (<column> ...)

<column> ::= string-or-symbol | Number

| (<table> string-or-symbol)

| (AS <column> string-or-symbol)

| (LITERAL <exp>)

<table-spec> ::= <table>

| (<action> <table-spec> <table-spec>)

<table> ::= string-or-symbol

<action> ::= ALIAS | INNERJOIN | STRAIGHTJOIN

| NATURALLEFTJOIN

<pred-spec> ::= (<op> <col-spec> <col-spec-or-value>)

| ([AND|OR|NOT] <pred-spec> ...)

<op> ::= < | <= | > | >= | = | <>

| Any DBMS defined binary operator

<col-spec-or-value> ::= <col-spec>

| Any value suitable for comparison

It is important to note, that the subforms in query, and
in most forms in SchemeQL for that matter, are implicitly
backquoted. Thus, (query ALL ,(f x)) means \select every-
thing from the table, or tables returned by the application
of Scheme procedure f, to the Scheme variable x".

3.2.1 More on Selection, and the SchemeQL Times
The query procedure alone does not provide all the func-
tionality a programmer may want when selecting data from
a database, and for a good reason: it would be as com-
plex as the SQL's SELECT statement. Instead of o�ering a
much too complex form, SchemeQL provides a set of forms,

and procedures to specialized, compose, and otherwise han-
dle selections. These forms are: query, distinct!, group-by!,
order-by!, having!, limit!, union, intersect, and di�erence.

<selection> ::= (distinct! <selection>)

| (group-by! <selection> <limit-col>)

| ... the other forms

<limit-col> ::= ([ASC|DESC] <col-spec>) | <col-spec>

The syntax of the rest of the forms is just minor variations
of that given above.

The reader may wonder what a SchemeQL selection exactly
does. A selection in SchemeQL is an internal Scheme struc-

ture, that holds the information provided thus far to perform
the selection, and that is why you can continue specializing
it.

(query param . . . ) ) query-struct

This is what we called the SchemeQL compilation time, for
it allows us to perform basic static checking, based only on
the information already provided to perform the selection.
Only when schemeql-execute is called is the selection is per-
formed and a result set (also called a cursor in SchemeQL)

is returned.

(schemeql-execute schemeql-struct [conn]) ) cursor

This is the SchemeQL execution time. The same scenario
repeats itself for the data modi�cation and data de�nition

forms in SchemeQL.

Since sometimes we want to immediately execute a form,

SchemeQL provides some useful shorthands for some forms
that combine the generation of the internal structures and
their execution. Here are some such forms that we will use
later:

(direct-query conn param . . . ) ) cursor
(query-with-current-connection param . . . ) ) cursor

(query/cc param . . . ) ) cursor

where conn is an open connection to a DBMS, which is cre-

ated by a call to the SchemeQL form connect-to-database,
and param ... are exactly those parameters valid for query.

3.2.2 SchemeQL Cursors
SQL result sets can be seen as tuples that form a table.

SchemeQL cursors are pairs of values, (row promise), where
row is a list representing the �rst tuple in the result set, and
promise is a cursor holding a promise (that has to be forced)
to return the rest of the tuples in the result set.

cursor ! row � promise
row ! listof any

A library to work with cursors is provided as part of SchemeQL.
Programmers most likely will use the following basic proce-
dures to work with cursors:

� (cursor-car cursor): returns the �rst tuple in cursor.

� (cursor-cdr cursor): returns the rest of cursor, another
cursor, similar to the original only that the next ele-
ment, if any, is on the cursor-car position of the re-
turned cursor.

� (cursor-null? cursor): #t i� cursor is the empty cursor.

� (cursor-map proc cursor): returns another cursor, whose
�rst element is the application of proc to the �rst el-
ement in cursor, and whose second element holds the
promise to apply proc to the rest of cursor.

� (cursor->list cursor N): returns a list containing the
�rst N, or less if there are not enough, rows in cursor.

� (�nite-cursor->list cursor): returns a list containing
all the elements of cursor.

It is worth noting that cursors in SQL are a completely
di�erent concept, and are used to retrieve a small number of
rows at a time out of a larger query. SchemeQL also provides

support for them, through the procedures open-cursor, which
receives a query and optional information to create di�erent
kinds2 of cursors, the initial size of the set, and the starting
row. Two other procedures work on the result of open-cursor:
roll-cursor!, that changes the orientation of the given cursor,
and close-cursor!, which closes the given cursor.

One important feature of this way of handling SQL cur-
sors is that the resulting set of tuples is represented as an

2Kinds as those de�ned by Open Database Connectivity
(ODBC) [27], which are: FORWARD ONLY, STATIC, KEYSET
DRIVEN, and DYNAMIC.
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SchemeQL cursor, and thus can be handled in the same way

as the result of regular queries. We will not go into more
detail here for space reasons.

3.2.3 The Rest of SQL
Most of the \usual" SQL functionality is already part of
SchemeQL. Transactions, for instance, can be handled in
two di�erent ways. The �rst one, is by using the (transac-
tion exp . . . ) form which executes all the expressions given
in order, and if no exception occurs then it commits the

block, otherwise, it sends a rollback to the DBMS, and pass
along the exception. The transaction form tries to set the
transaction isolation level to the highest possible, ideally to
serializable level.

The second way allows the programmer to select the iso-

lation level required and is represented by two procedures:
begin-transaction and end-transaction. The begin-transaction
form switches to manual commit mode, and sets the isola-
tion level to the highest supported by the DBMS, or to the
requested one if given. Then end-transaction either commits

or rolls back the transaction block, depending on the argu-
ment supplied by the programmer. The transaction form is
more scheme-like, since the other two can lead to the com-
mon error of opening a transaction, executing a block of
expressions, and never closing the transaction again.

SchemeQL supports basic user and table management, and
connection management that allows simultaneous connec-
tions to di�erent databases. Even non-standard, yet very
useful and regularly employed, SQL extensions such as CRE-
ATE DATABASE and USE DATABASE are supported, though
no SQL standard procedure depends internally on these ex-

tensions.

3.3 The SchemeQL Implementation
SchemeQL is layered upon SrPersist3 and takes full advan-
tage of SrPersist's knowledge of the particular DBMS in use.
SrPersist provides a safety check for every SQL statement
sent to the DBMS, in addition to the SchemeQL's error de-
tection, and thus we can o�er a hierarchical approach to

error handling.

SchemeQL together with SrPersist is a highly portable li-
brary since ODBC is the de facto standard for database
connectivity and is widely supported (although it should
be noted that many ODBC drivers have di�erent levels of

conformance4). In this regard SchemeQL o�ers two speci�c
and crucial bene�ts. Firstly it hides the tedious and ugly
details of the ODBC conformance levels from the Scheme
programmer. Secondly, and more importantly, it removes
the complexity of standard ODBC manipulation, which is
probably the biggest drawback of ODBC when compared to

other DBMS drivers.

3SrPersist is an ODBC library for PLT Scheme. More in-
formation on SrPersist can be found at:

http://www.plt-scheme.org/software/srpersist/

4At the time of writing there have been several major re-
leases, from 1.0 through 3.51, and SrPersist supports them
all.

Even though, for portability reasons, we use SrPersist, SchemeQL

allows the use of di�erent DBMS drivers. ODBC drivers are
known to do extensive error checking, and so it is possible
to have a database speci�c driver outperforming a generic
ODBC driver. SQL support and basic error checking facili-
ties are independent of the driver in use.

3.4 SchemeQL in action
All examples below are based around the following database
structure. Suppose you own a software company, and the
following tables are a snippet of your employees database.

personnel salaries

id name lid

1 Noel 1

2 Ian 1
3 Francisco 1
4 Simon 2
5 James 3
6 Brian 4
7 Dennis 4

id salary

1 30'000

2 30'000
3 30'000
4 30'000
5 45'000
6 45'000
7 45'000

languages

id lang

1 Scheme
2 Haskell
3 Java

4 C

We start with the most common sort of query, which is a
SELECT statement such as the following statement to get
the names of all the programmers:

SELECT name FROM personnel

In SchemeQL this query has almost exactly the same struc-
ture as its SQL equivalent:

(query (name) personnel)

Now suppose we wish to get all the ids of those employees

who program in Scheme. In SQL we'd write:

SELECT personnel.id
FROM personnel, languages
WHERE personnel.lid = languages.id
AND languages.lang = 'Scheme'

In SchemeQL we write

(query ((personnel id))
(personnel languages)

((= (personnel lid) (languages id))
(= (languages lang) "'Scheme'")))

Again the two queries have a very similar structure. Now
suppose we want to get all Java programmers. Immediately
we see an opportunity for code reuse if we parameterize the
above queries on the language. This is trivial in SchemeQL

as we can use abstraction facilities provided by Scheme:
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(de�ne (programmers language)

(query ((personnel id))
(personnel languages)
((= (personnel lid) (languages id))
(= (languages lang) ,language))))

Remember that most subforms in SchemeQL are backquoted.

There is no way to do this in standard SQL, though individ-
ual DBMSs may provide parameterized queries. To do this
in embedded SQL we could append strings:

(de�ne (programmers language)
(string-append
"SELECT id "

"FROM personnel, languages"
"WHERE personnel.lid = languages.lid "

"AND languages.lang = " language))

We note that this method is error-prone as it is easy, for
example, to forget to include a space between strings as
we have done above (between languages, and the keyword
WHERE ).

Now suppose you want to get the ids of all C programmers
who are earning 45'000. This is the intersection of all C
programmers, which we already know how to do, with all
programmers who are earning 45'000. In SQL we can write:

SELECT id
FROM personnel, languages
WHERE personnel.lid = languages.lid

AND languages.lang = 'C'
INTERSECT ( SELECT id

FROM salaries
WHERE salary = '45000' )

In SchemeQL we can form the two sets separately and then
perform the intersection:

(let ((c-programmers (programmers "'C'"))

(high-earners (query (id) (salaries) (= salary "45000"))))
(intersect c-programmers high-earners))

Notice how we have reused the programmers function de-
�ned above and then composed a query from parts. We
cannot do this in SQL.

That does it! Impressed by the productivity of your func-
tional programmers you decide to �re all the Java and C
programmers and use the extra money to give a raise to
your �ne Scheme programmers (you �nd the Haskell pro-
grammers productive but inexplicably lazy). Coincidentally
this also give us an opportunity to show further query com-

position and cursor handling in SchemeQL.

First we de�ne the sets of interest: the Schemers, who are
getting a raise, the Haskell programmers, who just stay as
they are, and everyone else, who are getting the opportunity
to explore other interests.

(de�ne schemers (programmers "'Scheme'"))

(de�ne haskellers (programmers "'Haskell'"))

(de�ne �red
(let ((all (query (id) personnel)))
(schemeql-execute
(di�erence all (union schemers haskellers)))))

Now all programmer who have been �red are removed from
the salaries table:

(cursor-map
(lambda (programmer)
(let ((id (car programmer)))
(delete/cc salaries (= id ,id))))

(result-cursor �red))

Finally, to give the Scheme programmers a raise:

(cursor-map
(lambda (id)
(update/cc salaries

((salary (LITERAL "salary � 2")))
(= id ,(car id))))

(result-cursor (schemeql-execute schemers)))

The above operations cannot be performed in pure SQL as

query results cannot be used as the input to modi�cation
statements. We give below equivalent statements to perform
the above actions. Where an action requires repetition of a
number of very similar statements (eg, when DELETEing
the imperative programmers) we only give an example.

SELECT personnel.id
FROM personnel
EXCEPT (SELECT personnel.id

FROM personnel,languages
WHERE personnel.lid = languages.lid

AND languages.lang = 'Scheme'
UNION

SELECT personnel.id
FROM personnel,languages

WHERE personnel.lid = languages.lid
AND languages.lang = 'Haskell');

DELETE FROM salaries
WHERE id = 4;

SELECT personnel.id
FROM personnel

INTERSECT (SELECT personnel.id
FROM personnel,languages
WHERE personnel.lid = languages.lid

AND languages.lang = 'Scheme');
UPDATE salaries

SET salary = salary � 2

WHERE id = 1;

3.5 Related and Future Work
Haskell/DB, a compiler embedded in Haskell that dynami-
cally generates SQL queries, was developed as an instance of
the more general design pattern for embedding client-server
style services into Haskell detailed in[22]. Some of the ben-
e�ts this technique o�ers are:

� Programmers need to know only one language,
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� it allows language extensions in the form of libraries

to be presented,

� it is possible to impose speci�c typing rules,

� integration with other domain speci�c libraries (e.g.
CGI, mail) is possible, and �nally

� this approach o�ers a strategic advantage, for it em-
powers programmers to use the language infrastruc-
ture, such as the module, and type systems.

SchemeQL has all of these bene�ts except for static typing.

The implementation of Haskell/DB, presented in[22] uses

ActiveX Data Objects (ADO) to connect to the DBMS. In
this regard Haskell/DB is limited to the Windows platform.
SchemeQL does not share this limitation as it uses SrPersist,
which can interact with any ODBC driver.

Our approach is to de�ne a limited domain speci�c language

that can be translated into SQL. Another approach is to
expand the database query language into a full programming
language[29]. This approach has many bene�ts but requires
the underlying DBMS to change.

It is clear that structured data is taking over. The Exten-

sible Markup Language [26] (XML) is now considered the
universal format for structured documents and data on the
Web. With XML arises the need for eÆcient query lan-
guages to exploit structured data. XML Query [24] is a
working group aiming to create a set of query facilities to
extract data from XML, or viewing XML �les as databases.

Unfortunately there is not yet any direct point of comparison
between XML and current database technology. This will
remain one of the most interesting topics of research in the
years to come. Whether or not a language like SchemeQL
will be able to enter the XML realm is a question we cannot

answer yet.

In the immediate future we will be adding support for spe-
ci�c DBMS drivers and SQL dialects (e.g. Oracle, Post-
greSQL, etc.). We will also attempt to standardize the
SchemeQL syntax as a Scheme Request for Implementa-

tion[21] (SRFI).

4. SCHEMEUNIT AND SCHEMEQL
SchemeUnit and SchemeQL have both been designed with
a `gentle-slope' philosophy: start with an already familiar
base and then build additional functionality as independent

components on that base. In SchemeUnit this is evident in
the way test code mimics the \code a little, test a little"
cycle and adds facilities to organize and rerun tests. In
SchemeQL the starting point is the SQL SELECT statement
upon which the query macro is modeled. The combinators
intersect, di�erence and so on are then introduced as ways of

modifying the basic query.

SchemeUnit and SchemeQL both take advantage of Scheme's
macro facilities to present a cleaner interface to the user. In
both languages macros are used to avoid repetitious lambda
statements. In SchemeUnit this is in the creation of test

cases. In SchemeQL this is in cursor creation. Macros are

also used for other purposes: in SchemeUnit to allow user-

extensions via the de�ne-assertion macro and in SchemeQL
to provide implicit backquoting on forms. These simple uses
of macros go a long way to improving the user experience.

SchemeUnit is used extensively to test itself and SchemeQL.

5. CONCLUSIONS
A language is a user interface just like a graphical interface
and deserves as much attention from the language designer
as a GUI would get from it's designer.

We have described SchemeUnit, a little language for writing

tests in Scheme, and have illustrated how we have used the
features of functional languages in general, and Scheme in
particular, to simplify the interface. Via comparison with
the \code a little, test a little" cycle and the JUnit frame-
work we have shown that SchemeUnit achieves an admirable
level of simplicity without sacri�cing expressive power.

SchemeQL, our little language for database interaction, has
been shown to be a feasible alternative to embedded SQL.
By building on the programmer's knowledge of SQL and
extending it with modular combinators we achieve tighter
integration with the Scheme language, a better, more mod-

ular, parameterization of SQL statements and improved ex-
pressibility and abstraction.

PLT Scheme, the host language for both our little languages
gives us a certain number of extra, and free advantages that
makes them usable, through its DrScheme programming en-

vironment[11]: a syntax-sensitive editor, a syntax checker,
an stepper, and interaction with other libraries, and plugins.

� Since our little languages consists entirely of tree-structure
expressions, the editor's features are inherited. Users
only needs to add the keywords in our little languages
to DrScheme (to have them indented appropriately.)

� No modi�cation is needed to work with the syntax
checker, and the stepper since these two work trans-
parently over procedures, and macros.

� Since all of the host language is available to users, a
program can load, or enable a certain number of li-

braries, plugins, or other embedded little languages as
needed with no extra fuss.

The only extra advantage we are not exploiting is the va-
lidity checking available through the MrFlow component of
DrScheme though it should not be hard to expand the con-
structions of our little languages to type de�nitions, as in [8].

Finally we note that our language evaluation has been quali-

tative; based on our experiences using the languages in ques-
tion. We are aware of some work in quantitative evalua-
tion[7] and this research will contribute to a better under-
standing of what makes good language design.
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ABSTRACT

This paper presents Scribe, a functional programming lan-
guage for authoring documents. Even if it is a general pur-
pose tool, it best suits the writing of technical documents
such as web pages or technical reports, API documentations,
etc. Executing Scribe programs can produce documents of
various formats such as PostScript, PDF, HTML, Texinfo
or Unix man pages. That is, the very same program can
be used to produce documents in di�erent formats. Scribe
is a full featured programming language but it looks like a
markup language �a la HTML.

1. INTRODUCTION

Scribe is a functional programming language designed for
authoring documentations, such as web pages or technical
reports. It is built on top of the Scheme programming lan-
guage [5]. Its concrete syntax is simple and it sounds familiar
to anyone used to markup languages. Authoring a document
with Scribe is as simple as with HTML or LATEX. It is even
possible to use it without noticing that it is a programming
language because of the conciseness of its original syntax:
the ratio markup/text is smaller than with the other markup
systems we have tested.

Executing a Scribe program with a Scribe evaluator pro-
duces a target document. It can be HTML �les that suit web
browsers, LATEX �les for high-quality printed documents, or
a set of info pages for on-line documentation.

Building purely static texts, that is texts avoiding any kind
of computation, is generally not suÆcient for elaborated
documents. Frequently one needs to automatically produce
parts of the text. This ranges from very simple operations
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such as inserting in a document the date of its last update
or the number of its last revision, to operations that work
on the document itself. For instance, one may be willing
to embed inside a text some statistics about the document,
such as the number of words, paragraphs or sections it con-
tains. Scribe is highly suitable for these computations. A
program is made of static texts (that is, constants in the
programming jargon) and various functions that dynami-
cally compute (when the Scribe program runs) new texts.
These functions are de�ned in the Scheme programming lan-
guage. The Scribe syntax enables a sweet harmony between
the static and dynamic components of a program.

Authoring documents with a programming language is of
course not a novel idea, and a lot of systems have used this
approach, such as the TEX [8] typesetting system. PostScript
[1] can also be classi�ed in this category. Even if it is not
generally directly used for authoring, it represents a docu-
ment as a program whose execution yields a set of printed
pages.

On the other side, solutions based on the SGML [2] or XML
[3] formats propose a model where all the computations on a
document are expressed outside of the document itself. For
instance, the DOM [20] approach extols a strict dichotomy
between documents and programs. This dichotomy is pre-
sented as a virtue by its proponents, but it is our opinion
that it makes simple documents harder to code than with a
general linguistic tool because it requires the usage of sev-
eral di�erent languages with di�erent semantics and di�er-
ent syntax.

With the development of dynamic content web sites, a great
number of intermediate solutions based on programming
languages have been proposed. These solutions generally
consist in giving a way to embed calls to a programming
language inside a document. PHP [9] is probably the most
representative of this kind. A document is a mix of text and
code expressed with di�erent syntaxes. This implies that
the author/programmer must deal at the very same time
with the underlying text markup system as well as the pro-
gramming language. Furthermore, these tools do not permit
to reify a document structure and are generally limited to
the production of web pages only.

The approach we propose is inspired by the LAML system
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[12] which uses Scheme as a markup language. In LAML
as in Scribe, a document is a program and its evaluation
yields its �nal form. Both languages permit the user to type-
set documents using an unique syntax. However, LAML is
limited to the production of HTML, whereas, as said before,
the evaluation of a Scribe program can produce several out-
put formats.

In Section 2 we present an overview of the Scribe system for
authoring simple static documents. We show that a Scribe

program looks like a document speci�ed in a markup lan-
guage. A more complex usage of the language is shown in
Section 3, where some simple text generations are done, as
well as some text inclusions built by introspecting the doc-
ument itself. Section 4 shows various customizations that
can take place during the execution of a Scribe program.
Finally, we compare in Section 5 Scribe with various tools
or programming languages used for authoring documents.

2. SCRIBE OVERVIEW

This section presents an overview of the Scribe program-
ming language and its implementation. First, the syntax is
presented in Section 2.1. Then, in Section 2.2, the structure
of a program is presented. Finally, Section 2.3 contains some
few words about the current state of the Scribe implemen-
tation.

2.1 Sc-expressions

We have designed the Scribe syntax so that it as unobtru-
sive as possible. We have found of premium importance to
minimize the weight of meta information when authoring
documentations. A complex syntax would prevent it to be
used by non computer scientists. A Scribe program is a list
of expressions (Sc-expression henceforth) that are extended
S-expressions [11]. An Sc-expression is:

� An atom, such as a string or a number.

� A list of Sc-expressions.

� A text.

Atomic expressions and lists are regular Scheme expressions.
A text is a sequence of characters enclosed inside square
brackets. This is the sole extension to the standard Scheme
reader. The bracket syntax is very similar to the standard
quasiquote Scheme construction. In Scheme, the quasiquote
syntax allows to enter complex lists by automatically quoting
the components of the list. It is to be used in conjunction of
the comma operator that allows to unquote the expressions.
For instance, the Scheme form:

`(compute pi = ,(* 4 (atan 1)))

is equivalent to the expression:

(list 'compute 'pi '= (* 4 (atan 1)))

which evaluates to:

(compute pi = 3.1415926535898)

The Scribe bracket form collects all the characters between
the brackets in a list of characters strings. Computations
inside brackets are handled by the characters sequence \,(".
For instance, the text:

[text goodies: ,(bold "bold") and ,(it "italic").]

is parsed by the Scribe reader as:

(list "text goodies: " (bold "bold")
"and" (it "italic") ".")

The Scribe syntax is unobtrusive, and easy to typeset with
an editor aware of Lisp-like syntax, such as Emacs. Doc-
uments expressed in Scribe are also generally shorter to
type-in than their counterpart expressed in classical format-
ting languages. For instance, the size of the Scribe source
�les of this paper is about 42,200 characters long, whereas it
is 53,000 characters in LATEX and 72,000 in HTML. Even if
it is somehow unfair to compare hand-written code against
generated ones, these �gures give the intuition of the com-
pactness of Scribe programs. The idea of extending a stan-
dard Scheme reader for text processing comes from the BRL
system [10].

2.2 Scribe as a markup language

In this section, we present how to build a document using
Scribe. As said before, programming skill is not needed to
produce a document. In fact, non programmer writers can
see Scribe as a simple document formatting system such as
HTML or nro� [14].

Scribe provides an extensive set of pre-de�ned markups.
These roughly correspond to the HTML markups. The goal
of this section is to give an idea of the look and feel of this
system. It will avoid the tedious presentation of an extensive
enumeration of all the markups available. For a complete
manual of Scribe, interested readers can have a look at
http://www-sop.inria.fr/mimosa/fp/Scribe.

2.2.1 Scribe Markups

A Scribe markup is close to an XML element. The at-
tributes that can appear inside an XML element are repre-
sented by Scheme keywords. They are identi�ers whose �rst
(or last character) is a colon. Scheme keywords have been
introduced by DSSSL [4], the tree manipulation language
associated to SGML. So, the following XML expression:

<elmt1 att1="v1" att2="v2">
Some text <elmt2>for the example</elmt2>

</elmt1>

is represented in Scribe as:

(elmt1 :att1 v1 :att2 v2
[Some text ,(elmt2 [for the example])])
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2.2.2 Document Structure

As said before, a Scribe program consists in a list of Sc-
expressions. Among these, the document one serves a special
purpose. It is used to represent the complete document. All
the subdivisions of a document must appear as arguments
of the document call. So, the general structure of a Scribe

document looks like:

<sc-expr>

...
(document :title <sc-expr> :author <sc-expr>

(abstract <sc-expr>)
(section :title <sc-expr>

...
(subsection :title <sc-expr> )
...
(subsection :title <sc-expr> )
...)

...
(section :title <sc-expr>))

As we can see, all the sectioning components of a document
are embedded in their containing component (i.e. subsec-
tions are embedded in sections, sections are inside chapters,
and so on). This strict nesting of document components is
particularly useful when one wants to do introspection on
the structure of the document, as we will see in Section 3.2.

2.2.3 Scribe standard library

Scribe is provided with the usual functions for text pro-
cessing. Some of these are presented here.

The Lists o�ered in Scribe are classical: itemization, enu-
meration and description. For instance, the following ex-
pression:

(itemize (item [A first item.])
(item [A ,(bold "second") one.])
(item (description

(item :key (bold "foo")
[is a usual Lisp identifier.])

(item :key (bold "bar")
[is another one.])))

(item (enumerate (item "One.")
(item "Two."))))

produces the following output text:

� A �rst item.

� A second one.

� foo is a usual Lisp identi�er.

bar is another one.

� 1. One.

2. Two.

Of course, all the usual text ornaments are available in
Scribe, that is one can easily produce text in bold, italic,
underline or combine them.

The Scribe standard library also o�ers the usual tools for
inter and intra document references, footnotes, tables, �g-
ures, ... It provides also an original construction, the prgm

markup, to pretty-print codes or algorithms. In contrast
with previous systems such as LATEX there is no need, in
Scribe to use external pre-processors such as SLaTex [17]
and Lisp2TeX [15] for pretty-print programs inside texts.
The prgm form takes as an option the language in which
the code is expressed and its evaluation yields a form that
is the pretty-printed version of this code. For instance, the
following call

(prgm :language c (from-file "ex/C-code.c"))

produces the following output

int main(int argc, char **argv) f
/* A variant of a classical C program */

printf("Hello, Scribe\n");
return 0;

g

if the C program source is located in �le ex/C-code.c.

2.3 Front-ends and Back-ends

The current version of Scribe which is available at http:/-
/www-sop.inria.fr/mimosa/fp/Scribe contains two front-
ends which are used to translate existing document sources
into Scribe documents:

� scribeinfo compiles Texinfo into Scribe. An exam-
ple of such a compilation can be browsed at http:/-
/www.inria.fr/mimosa/fp/Bigloo/doc/r5rs.html. It
is an on-line version of the Scheme de�nition, automat-
ically produced from a Texinfo source.

� scribebibtex translates Bibtex bibliography databases
into Scribe sources. This tool is, for instance, used to
produce the bibliographic references of this paper.

Scribe can produce various kinds of document formats.
Currently �ve back-ends are supported:

� HTML: It is extensively used on the Scribeweb page.

� PS or PDF (via LATEX): That is, for instance, used
to produce the PostScript version of this paper.

� Man: which is the format of Unix \man pages".

� Text: which is a plain text format.

� Info: which is the format of the Emacs documenta-
tion.

Scribe user programs are independent of the target for-
mats. That is, using one unique program, it is possible to
produce an HTML version, and a PostScript version, and
an ASCII version, etc. The Scribe API is general purpose.
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It is not impacted by speci�c output formats. Independence
with respect to the �nal document format does not limit
the expressiveness of Scribe programs because speci�cities
of particular formats are handled by dedicated back-ends.
Back-ends are free to �nd convenient ways to implement
Scribe features. For instance, intra document references
are handled di�erently by the HTML back-end and the TEX
back-end. In HTML, they appear as hyper-links whose text
is the title of the section. In TEX they appear as section
numbers. An output target may even not support some
Scribe features. In that case, the back-end could possibly
omit them (for instance, �gures in ASCII formats, or dialog
boxes in PostScript documents).

When customization of the produced documents is required,
the Scribe hook form must deployed. It enables to insert
characters in the �nal document. Coupled with conditional
evaluation, the hook form can be used to implement �ne
grain tuning aware of the idiosyncrasies of the target format
(see Section 3.3).

3. DYNAMIC TEXTS

We show in this section various situations where dynamic
texts, that is texts not written as is in the Scribe sources,
can be used when authoring documents. We have isolated
two kinds of computations. The ones that produce some
parts of the document being processed (Section 3.1). The
ones that involve introspection on the source text (Section
3.2). These computations correspond to two di�erent eval-
uation stages of the Scribe evaluator. The �rst ones are
front-end computations that take place at the very begin-
ning of the execution of a program. The second ones are
back-end computations that take place at the very end of
the execution while an internal representation of the whole
Scribe program has been loaded in memory.

3.1 Computing Sc-expressions

Many typesetting systems such as LATEX enable users to de-
�ne convenience macros. In its simplest form, a macro is
just a name that is expanded into, or replaced with, a text
that is part of the produced document. Macros are imple-
mented in Scribe by the means of functions that produce
Sc-expressions. For instance, a macro de�ning the typeset-
ting of the word \Scribe" is used all along this paper. It is
de�ned as follow:

(define (Scribe.tex)
(sc "Scribe"))

That can be used in a Sc-expression such as:

[This text has been produced by ,(Scribe.tex).]

That produces the following output:

\This text has been produced by Scribe."

The function Scribe.tex is overly simple because it merely
inserts in the Scribe program one new string each time it is

called. Sometimes we need to compute more complex parts
of a document and some texts are better to be computed.
Either because they contain pattern repetitions or because
they are the result of the evaluation of an algorithm, such
as the table of Figure 1.

n= fact

3 6

4 24

5 120

6 720

7 5040

8 40320

9 362880

10 3628800

11 39916800

Figure 1: Factorial

This table can be statically declared in a program using a
Sc-expression such as:

(table :border 1
(tr (th "n=") (th "fact"))
(tr (td :align 'center (bold 3))

(td :align 'right (it 6)))
(tr (td :align 'center (bold 4))

(td :align 'right (it 24)))
(tr (td :align 'center (bold 5))

(td :align 'right (it 120)))
(tr (td :align 'center (bold 6))

(td :align 'right (it 720)))
(tr (td :align 'center (bold 7))

(td :align 'right (it 5040)))
(tr (td :align 'center (bold 8))

(td :align 'right (it 40320)))
(tr (td :align 'center (bold 9))

(td :align 'right (it 362880)))
(tr (td :align 'center (bold 10))

(td :align 'right (it 3628800)))
(tr (td :align 'center (bold 11))

(td :align 'right (it 39916800))))

Obviously the table construction can be automated. The
factorial values can be computed and the table rows can be
generated. Unlike many other markup languages, Scribe
enables this computation to take place inside the document
itself. Let us assume the standard de�nitions for the upto

and fact functions:

(define (upto min max)
(if (= min max)

(list max)
(cons min (upto (+ min 1) max))))

(define (fact n)
(if (< n 2)

n
(* n (fact (- n 1)))))

The generation of the factorial table requires two additional
Scribe functions. The �rst one builds table rows:

(define (make-fact-row n)
(tr (td :align 'center (bold n))

(td :align 'right (it (fact n)))))
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The second one is in charge of creating the table:

(define (make-fact-table n)
(apply table :border 1

(tr (th "n=") (th "fact"))
(map make-fact-row (upto 3 n))))

3.2 Computing Sc-ast

.html

.ps

Sc−expr Sc−ast
.scr

Scribe Evaluator.bib

.texi

.html

A B

C

D

E F

G

.tex

... ...

.pdf

Figure 2: The Scribe process

The evaluation of a Scribe program involves three steps
(see Figure 2):

� First, the source �le is read and represented as a list
of Sc-expressions (edge \A").

� Second, the Sc-expressions are evaluated using the stan-
dard Scribe library. This produces an abstract syntax
tree named Sc-ast (edge \B").

� Third, the Sc-ast is translated into the target format
i.e., HTML, LATEX , ... (edges \C" and \D").

The computations previously presented in Section 3.1 take
place on the edge \E". This section focuses now on the com-
putations that are involved on edges \F" and \G".

Frequently some parts of a document may refer to the docu-
ment itself. For instance, introspection is needed to compute
a table of contents. Scribe is provided with introspection
facilities that can be used in user programs. For instance, it
enables the computation of such a sentence:

\This document contains 9 sections."

The actual number of sections is the result of a user com-
putation. The whole sentence is computed by the following
Sc-expression:

[This document contains
,(hook :after

(lambda ()
(display (length

(document-sections*
(current-document))))))

sections.]

It uses the Scribe library function hook which enables com-
putations to take place while the Sc-ast is built, that is on
the edge \F" of Figure 2. The :after argument is a func-
tion which is executed once the Sc-ast is translated into the
target format. It prints a string that is inserted in the tar-
get. Obviously, the dynamic text of the previous example
cannot be computed earlier in the Scribe evaluation pro-
cess since the number of sections cannot be computed until
all the sections are built! The function of the standard li-
brary current-document returns a structure that describes
the document being processed. The function document-

-sections* returns the list of sections contained in a doc-
ument. Not that, since the hook function enables arbitrary
characters insertion, it can be used to introduce low level
back-end commands such as TEX commands or HTML com-
mands in the target. For instance, the Scribe command
LaTeX which produces the following \LATEX" is implemented
as:

(define-markup (LaTeX)
(if (scribe-format? 'tex)

(hook :after (lambda () (display "\\LaTeX")))
"LaTeX"))

Sometimes, instead of printing characters into the target,
it is needed that the evaluation of a hook node produces a
fresh Sc-expression. That is, an expression that has to be
evaluated by the Scribe engine (the edge \G" of Figure 2 )1.
This is illustrated by the following example. The user func-
tion document-tree computes the hierarchical structure of
a document. Applied to the current document it produces:

+--ABSTRACT
+--1 Introduction
+--2 Scribe overview
| +--2.1 Sc-expressions

| +--2.2 Scribe as a markup language

| | +--2.2.1 Scribe Markups

| | +--2.2.2 Document Structure

| | +--2.2.3 Scribe standard library

| +--2.3 Front-ends and Back-ends

+--3 Dynamic texts

| +--3.1 Computing Sc-expressions

| +--3.2 Computing Sc-ast

| +--3.3 Conditional execution

+--4 Customization
+--5 Related work
| +--5.1 SGML and XML

| +--5.2 Scheme vs. other functional languages

| +--5.3 LAML

| +--5.4 BRL

| +--5.5 Wash

+--6 Conclusion
+--7 References
+--APPENDIX

Figure 3: Tree

The tree branches are displayed using a typewriter font and
a layout that preserves spaces and line breaks. The tree

1Introducing a fresh Sc-expression in the tree may intro-
duce incoherences for cross-references. When iterations are
needed, it belongs to the programmer to implement it.
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nodes are displayed underlined and in italic. The compu-
tation involved in document-tree produces a regular Sc-
expression that is evaluated by the Scribe engine. This
ensures back-end independence because it prevents the hook
call to specify how underline and italic have to be rendered
for each speci�c target format. The function document-tree

is de�ned as:

(define (document-tree)
(hook :process #t

:after (lambda ()
(prgm

(make-tree (current-document))))))

The argument :process #t means that the result of the
application of the :after function has to be evaluated back
by the Scribe engine. This function constructs a new Sc-
expression which is made of a prgm call. The de�nition of
make-tree is:

(define (make-tree doc)
(let loop ((s (scribe-get-children doc))

(m "")
(f underline))

(if (null? s)
'()
(append (make-row m (car s) f)

(loop (scribe-get-children (car s))
(string-append m "| ")
it)

(loop (cdr s) m f)))))

The function make-row is:

(define (make-row m s f)
(list (string-append m "+--")

(f (scribe-get-title s))
"\n"))

The library function scribe-get-children returns the el-
ements contained in a section or a subsection. The library
function scribe-get-title returns the title of a section or
a subsection.

In addition to illustrating Scribe introspection, this exam-
ple also shows how suitable functional programming lan-
guages are to compute over texts: the whole implementa-
tion of Figure 3 is a simple recursive traversal of the tree
representing the document (function make-tree).

3.3 Conditional execution

Conditional execution is required when the text to be pro-
duced depends on some properties of the target format. The
scribe-format? predicate checks which target format is to
be produced. It is used several times in the paper. For in-
stance, in Section 3.1 we have presented the de�nition of the
Scribe.tex macro. The actual macro used in the sources
of this paper is slightly more complex. Instead of rendering
the word \Scribe", when targeting HTML, it introduces a
reference to the Scribe home page. Moreover, because of
our poor English style, we have also decided to introduce

an URL link only once per section. So, the actual function
used in the paper source is de�ned as:

(define Scribe
(let ((sec #f))

(lambda ()
(if (scribe-format? 'html)

(hook :after

(lambda ()
(let ((s (current-section)))

(if (eq? s sec)
(Scribe.tex)
(begin

(set! sec s)
(ref :url (scribe-url)

"Scribe")))))
:process #t)

(Scribe.tex)))))

4. CUSTOMIZATION

A real and practical programming language is useful when
considering customizations (in Scribe they usually take place
in style �les). Scribe customizations enable users to change
the way documents are rendered. They are ubiquitous in the
standard Scribe API. For instance, one may setup the way
a bold text is rendered, con�gure the header and the footer
of the document, or even de�ne margins. One may also spec-
ify the structure of the produced documents. In this section
we illustrate how one may bene�t from the expressiveness
of Scribe in order to achieve complex customizations. In
particular, we will show how computers program can be ren-
dered.

Depending of the speci�ed language, Scribe uses di�erent
colors and fonts when rendering computer programs. The
standard implementation supports several languages such as
Scribe, Scheme, C, or XML. Computer programs are spec-
i�ed by the prgm markup (see Section 2.2.3) which accepts
one optional argument which is a function implementing the
rendering of the program. This function is called a pretty-
printer. One may de�ne its own pretty-printers.

For the sake of the example, let us implement a pretty-
printer for rendering make�les which uses some colors for
make targets, variables, and comments. In addition, for
back-ends supporting hyper links (such as HTML) a ref-
erence to its de�nition is added to the text when a variable
is used. For other back-ends, variable references are under-
lined.

SCRIBE= scribe
SFLAGS= -J style

MASTER= main.scr
INPUT= abstract.scr intro.scr what.scr why.scr this.scr
EXAMPLE= ex0 ex1 ex2 ex3 ex4 makefile
STYLE= style/local.scr

# main entry

all: scribe.tex

scribe.tex: $(MASTER) $(INPUT) $(STYLE) $(EXAMPLE)
$(SCRIBE) $(SFLAGS) $(MASTER) -o scribe.tex
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A pretty-printer function is a Scribe function accepting one
parameter. This formal parameter is bound to a string rep-
resenting the text to be pretty-printed. A pretty-printer
returns a Sc-expression representing the pretty-printed pro-
gram that must be included in the target document. The
de�nition of the makefile pretty-printer is:

(define (makefile obj)
(parse-makefile (open-input-string obj)))

In order to implement the pretty-printer we are using Bigloo
regular parser [16]. This mechanism enables a lexical anal-
ysis of character strings.

(define (parse-makefile port::input-port )
(read/rp
(regular-grammar ()

((: #\# (+ all))
;; makefile comment

(let ((cmt (the-string)))
(cons (it cmt) (ignore))))

((bol (: (+ (out " \t\n:")) #\:))
;; target

(let ((prompt (the-string)))
(cons (bold prompt) (ignore))))

((bol (: (+ alpha) #\=))
;; variable definitions

(let* ((len (- (the-length) 1))
(var (the-substring 0 len)))

(cons `(list ,(mark var)
(color :fg "#bb0000" (bold ,var))
,"=") (ignore))))

((+ (out " \t\n:=$"))
;; plain strings

(let ((str (the-string)))
(cons str (ignore))))

((: #\$ #\( (+ (out " )\n")) #\))
;; variable references

(let ((str (the-string))
(var (the-substring 2 (- (the-length) 1))))

(cons (ref :mark var (underline str))
(ignore))))

((+ (in " \t\n:"))
;; separators

(let ((nl (the-string)))
(cons nl (ignore))))

(else
;; default

(let ((c (the-failure)))
(if (eof-object? c)

'()
(error "prgm(makefile)"

"Unexpected character"
c)))))

port))

5. RELATED WORK

In this section we compare Scribe and other markup lan-
guages. We also compare it with other e�orts for handling
texts in functional programming languages.

5.1 SGML and XML

As stated in [3] \XML, the Extensible Markup Language, is

W3C-endorsed standard for document markup. It de�nes a

generic syntax used to mark up data with simple, human-

readable tags. It provides a standard format for computer
documents". In other words, XML is a mean to specify
external representations for data structures. It is a mere
formalism for specifying grammars. It can be used to repre-
sent texts but this is not its main purpose. The most pop-
ular XML application used for representing texts (hence-
forth XML texts) is XHTML (a reformulation of HTML
4.0). XML can be thought as a simpli�cation of SGML.
They both share the same goals and syntax.

The fundamental di�erence between XML and Scribe is
that the �rst one is de�nitely not a programming language.
In consequence, any processing (formating, rendering, ex-
tracting) over XML texts requires one or several external
tools using di�erent programming languages which appear
to be, most of the time, Java, Tcl, and C. A vast e�ort has
been made to provide most of the functional programming
languages with tools for handling XML texts. It exists XML
parsers for mostly all functional programming languages.
Haskell has HaXml [19], Caml has Px and Tony, and Scheme
has SSax [7].

In addition to parsers, Scheme has also SXML [6] which is
either an abstract syntax tree of an XML document or a con-
crete representation using S-expressions. SXML is suitable
for Scheme-based XML authoring. It is a term implementa-
tion of the XML document.

The document style semantics and speci�cation language
(aka DSSSL [4]) de�nes several programming languages for
handling SGML applications. The DSSSL suite plays ap-
proximatively the same role as XML XSLT, DOM and SSAX
do: it enables parsing and computing over SGML docu-
ments. The DSSSL languages are based on a simpli�ed ver-
sion of Scheme.

XEXPR [21] is a scripting language that uses XML as its
primary syntax. It has been de�ned to easily embed scripts
inside XML documents and overcomes the usage of an ex-
ternal scripting language in order to process a document.
The language de�nes itself to be very close to a typical Lisp

or combinator-based language where the primary means of
programming is through functional composition. XEXPR al-
lows the de�nition of functions using the<define> element.
Hereafter is a de�nition of the factorial function expressed
in XEXPR:

<define name="factorial" args="n">
<if>

<lt><n/>2</lt>
<n/>
<multiply>
<n/>
<factorial>

<substract><n/>1</substract>
</factorial>

</multiply>
</if>

</define>

which must be compared with the Scheme version given in
Section 3.1. Obviously, writing by hand large scripts seems
hardly achievable in XEXPR. Furthermore, a careful reading
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of the report de�ning this language seems to indicate that
there is no way to manipulate the document itself inside
an XEXPR expression. The language seems then limited
to simple text generations inside an XML document, as the
ones presented Section 3.1

Besides deploying one unique formalism and syntax for au-
thoring documents we have found that Scribe enables more
compact sources than XML (see Section 2.1). The Scribe

syntax is less verbose than the XML one mainly because the
closing parenthesis of a Sc-expression is exactly one charac-
ter long when it is usually much more in XML.

5.2 Scheme vs. other functional languages

We have chosen to base Scribe on Scheme mainly because
its syntax is genuinely close to traditional markup languages.
Such as XML, the Scheme syntax is based on the represen-
tation of trees. The modi�cations to apply to the Scheme
grammar are very limited and simple. This makes this lan-
guage suitable for text representation. The other functional
languages such as, Caml and Haskell, rely on LALR syntaxes
that do not �t the markup look-and-feel.

In addition, we think that the Scheme type system is an
advantage for Scribe programs. It is convenient to dispose
of fully polymorphic data types. As presented in Section 2.1,
an Sc-expression can be a list whose elements are of di�erent
types. For instance, the �rst element of such a list could be
a character string and the next one a number. This enables
compact representation of texts. If the underlying language
imposes a stronger typing system, the source program, that
is the user text, will be polluted with cast operations that
transform all the values into strings.

We have considered using a call-by-name semantics for Scri-
be function application in order to implement the nesting
of Sc-expressions. As presented in Section 3.2 the Scribe

library proposes introspection functions. For instance, the
document-sections* returns the list of sections contained
in a document structured such as:

(document ...
(chapter ...)

(chapter
...
(section ...)
...)

...)

The container nodes (representing documents, chapters, sec-
tions, ...) of the Sc-ast are provided with pointers to the
children they contain and vice versa. Since laziness enables
to postpone the computation of expressions until they are
required, it can be used to delay the evaluation of inner ele-
ments of a document until the whole document is declared.
We have obtained the same e�ect by adding a second traver-
sal of the Sc-ast (see 3.2).

5.3 LAML

LAML (Lisp as a Markup Language) [13] is an attempt to
use Scheme as a markup language. It mirrors the HTML

markups in Scheme. That is, for each HTML markup there
is a corresponding Scheme function in LAML. The HTML
document:

<html>
<head><title>An example</title></head>
<body>
<br>
This is an <em>HTML</em>example.
<br>

</body>
</html>

is mirrored in LAML as:

(html
(head (title "An example"))
(body (br)

"This is an" (em "HTML") "example."
(br)))

So, LAML and Scribe are very close. They rely on the
natural Scheme syntax and they both consider a document
as a program. However, there is two important di�erences
between them:

� The syntax: Scribe uses an extended Scheme syntax.
As presented Section 2.1, it introduces the [...] no-
tation that, as we have shown, enables compact source
texts.

� The Sc-ast: The evaluation of a LAML function call
directly produces an HTML expression. For instance,
the de�nition of the LAML em function of the previous
example is:

(define (em str)
(string-append "<EM>" str "</EM>"))

Contrarily to Scribe, LAML does not build a tree rep-
resenting the text to be generated. This direct map-
ping has three drawbacks:

1. LAML sources cannot produce other formats than
HTML.

2. It is complex to implement eÆciently a LAML in-
terpreter. As reported in [12], the LAML evalua-
tion process allocates a lot of strings of characters.
This exercises intensively the memory manager
(garbage collection and memory copies). These
string manipulations are totally avoided by Scri-

be. One Scribemarkup allocates one object that
is a node of the Sc-ast. This node is used until
the back-end has completed the �le generation.
It never happens that a node nor the characters
is contains are duplicated.

3. Introspection over a LAML document is complex.
In particular, it has to take place before the string
representing an HTML expression is built. That
is, it has to take place before LAML functions are
called. In other words, LAML is of no help for
computing on documents. LAML users have to
implement their own data representation before
using LAML functions.
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5.4 BRL

The Beautiful Report Language BRL [10] de�nes itself as a
database-oriented language to embed in HTML and other
markups. In some extent BRL approach is very similar to
the PHP one: it proposes to mix the text and the program
which form the document in the same source �le. For BRL,
a document is a sequence of either strings or Scheme ex-
pressions. BRL displays strings as is and evaluates Scheme
expressions. To alleviate document typesetting using this
conventions, BRL has introduced a new syntax for charac-
ter strings: there is no need to put a quote for a string
starting a �le or terminating a �le. Furthermore, \]" and
\[" can be used to respectively open and close a string. So,

]a string[

is a valid string in BRL. The interest of this notation seems
more evident in a construction such as

The value of pi is [(* 4 (atan 1))].

where we have a Scheme expression enclosed between two
strings (\The value of pi is" and \."). However, this
syntax can be sometimes complex as it is shown in the fol-
lowing excerpt from the reference manual.

[(define rowcount (sql-repeat ...)
(brl ]<li><strong>

<a href="p2.brl?[
(brl-url-args brl-blank? color)
]">(brl-html-escape color)]</a></strong>
[)))]

As we can see, BRL is just a sort of preprocessor and as such
it cannot be used to do introspective work on a document.

5.5 Wash

Wash [18] is a family of embedded domain speci�c languages
for programming Web applications. Each language is em-
bedded in the functional language Haskell, which means that
it is implemented as a combinator library. The basic idea
of Wash is to build a data structure that can be rendered
to HTML text. Because of the type system of the Haskell
type checker, Wash guarantees the well-formedness of the
generated HTML pages. Using a Haskell interpreter it is
possible with Wash to interactively create and manipulate
web pages.

If Wash shares with Scribe the construction of a data struc-
ture representing the text to be rendered, no e�ort is made
to provide it with a concise syntax. A \hello, word" page
which is in HTML:

<html>
<head>
<title>Hello, World</title>

</head>
<body>

This is the traditional &#34;Hello, World!&#34; page.
<hr>

</body>
</html>

and that can be implemented in Scribe as:

(define *title* "Hello, World!")
(document :title "Hello, World" [
This is the traditional ,(begin *title*) page.
,(hrule)])

would be written in Wash as:

doc head :: HEAD
doc head =

make head
`add` (make title `add` "Hello, World")

doc body :: BODY
doc body =

make body
`add` (make heading 1 `add` title)
`add` ("This is the traditional \""

++ title ++
"\" page.")

`add` make hr
where title = "Hello, World!"

doc :: HTML
doc = make html `add` doc head `add` doc body

putStr (show html doc)

It is obvious that Wash is designed for programmers. Un-
like Scribe it cannot be as easily used in replacement of
traditional markup languages.

6. CONCLUSION

Scribe is a functional programming language for authoring
various kind of electronic documents. It can be used to
produce target formats such as HTML and PostScript. It
relies on an original syntax that makes it looking familiar to
anyone used to markup languages such as HTML.

We have shown that the evaluation of a Scribe program
involves two separate stages. During the �rst one the source
expressions are read using the Scribe reader. These expres-
sions are then evaluated using a classical Scheme interpreter.
This stage produces an internal representation of the source
program. The second evaluation stage uses that represen-
tation and, as a consequence, enables computations on the
representation itself. That is, during the second stage a
Scribe program may compute properties about itself.

Scribe is used on daily basis to produce large documents.
For instance, the whole web page http://www.inria.fr-

/mimosa/fp/Bigloo and the documentations it contains are
implemented in Scribe. Obviously, the current paper is
a Scribe program. An HTML version can be browsed at
http://www.inria.fr/mimosa/fp/Scribe/doc/scribe.html.
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APPENDIX

For the sake of the example, we present in this Annex, the
whole Scribe source code for the abstract of this paper:

(paragraph [

This paper presents ,(Scribe), a functional programming
language for authoring documents. Even if it is a general
purpose tool, it best suits the writing of technical
documents such as web pages or technical reports, API
documentations, etc. Executing ,(Scribe) programs can
produce documents of various formats such as PostScript,
PDF, HTML, Texinfo or Unix man pages. That is, the very
same program can be used to produce documents in different
formats. ,(Scribe) is a full featured programming language
but it ,(emph "looks") like a markup language ,(emph "�a la")
HTML.
]))

This paper has been generated by Scribe (http://www-sop.inria.fr-

/mimosa/fp/Scribe) (via LATEX and the ACMproc class.)
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ABSTRACT
Many language implementations provide a mechanism to
express concurrent processes, but few provide support for
terminating a process based on its resource consumption.
Those implementations that do support termination gener-
ally charge the cost of a resource to the principal that al-
locates the resource, rather than the principal that retains
the resource. The di�erence matters if principals represent
distinct but cooperating processes.
In this paper, we present preliminary results for a ver-

sion of MzScheme that supports termination conditions for
resource-abusing processes. Unlike the usual approach to
resource accounting, our approach assigns �ne-grained (per-
object) allocation charges to the process that retains a re-
source, instead of the process that allocates the resource.

1. MOTIVATION
Users of modern computing environments expect applica-

tions to cooperate in sophisticated ways. For example, users
expect web browsers to launch external media players to
view certain forms of data, and users expect a word proces-
sor to support active spreadsheets embedded in other doc-
uments. In a conventional operating system, however, pro-
grammers must exert considerable e�ort to integrate appli-
cations. Indeed, few software developers have the resources
to integrate applications together as well as, for example,
Adobe Acrobat in Microsoft's Internet Explorer.
Implementing cooperating applications in a conventional

OS is diÆcult because the OS isolates applications to contain
malfunctions. Cooperating applications must overcome this
built-in isolation. In contrast, language run-time systems
(a.k.a. \virtual machines") typically rely on language safety,
rather than isolation, to contain malfunctions. Since VMs
otherwise play the same role as OSes, and since they lack a
bias towards isolation, safe VMs seem ideally suited as the
platform for a next generation of application software.
Mere safety, however, does not provide the level of protec-

tion between applications that conventional OSes provide.
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Although language-based safety can prevent a program from
trampling on another program's data structures, it cannot
prevent a program from starving another process or from
leaking resources. Regardless of the degree of cooperation,
a practical OS/VM must track each application's resource
consumption and prevent over-consuming applications from
taking down the entire system.
A variation on conventional isolation can certainly enable

resource tracking in a VM. For example, the VM can restrict
values passed from one process to another to those values
allocated within a certain pool of memory [1]. This com-
promise provides something better than a traditional OS, in
that a suitably allocated value can be passed directly and
safely between applications. Nevertheless, this kind of iso-
lation continues to interfere with cooperation: even if a pro-
gram can move values from one allocation pool to another,
explicit accounting with allocation pools amounts to manual
memory management as in malloc and free. This manual
management encourages narrow communication channels; in
order to foster communication, applications must be free to
exchange arbitrary data with potentially complex allocation
patterns.
We are investigating memory-management techniques that

place the responsibility for accounting with the run-time sys-
tem, instead of the programmer, while still enabling control
over an application's memory use. The essential idea is that
a garbage collector can account for memory use using reach-
ability from an application's roots. Thus, an application is
charged not for what it allocates, but for what it retains.
This di�erentiation is critical in systems where one appli-
cation may use memory allocated by another application.
The central design problem is how to deal with these shared
values usefully and eÆciently.
We present preliminary results on our exploration, based

on a new garbage collector for MzScheme [7]. Our results
suggest that a garbage collector can maintain usefully pre-
cise accounting information with a low overhead, but that
the implementation of the rest of the VM requires extra care
to trigger reliable termination of over-consuming processes.
This extra care is of the same avor as avoiding references
in the VM that needlessly preserve values from collection.
Section 2 describes the existing notion of \process" within

MzScheme, and Section 3 describes our new API for resource
enforcement. Section 4 describes in more detail possible ac-
counting policies behind the API, including the two that we
have implemented. Section 5 reports on our implementa-
tions, and Section 6 reports on our experience with them.
Section 7 presents performance results.
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2. PROCESSES IN MZSCHEME
In MzScheme, no single language construct encompasses

all aspects of a conventional process. Instead, various or-
thogonal constructs implement di�erent aspects of processes:

� Threads implement the execution aspect of a process.
The MzScheme thread function takes a thunk and cre-
ates a new thread to execute the thunk.

The following example runs two concurrent loops, one
that prints \1"s and another that prints \2"s:

(letrec ([loop (lambda (v)
(display v)
(loop v))])

(thread (lambda () (loop 1)))
(loop 2))

� Parameters implement process-speci�c settings, such
as the current working directory. Each parameter is
represented by a procedure, such as current-directory,
that gets and sets the parameter value. Every thread
has its own value for each parameter, so that setting
a parameter value a�ects the value only in the current
thread. Newly created threads inherit initial parame-
ter values based on the current values in the creating
thread.

The following example sets the current directory to
"/tmp" while running do-work , then restores the cur-
rent directory:1

(let ([orig-dir (current-directory)])
(current-directory "/tmp")
(do-work)
(current-directory orig-dir))

Meanwhile, the current-directory setting of other exe-
cuting threads is una�ected by the above code.

� Custodians implement the resource-management as-
pect of a process. Whenever a thread object is created,
port object opened, GUI object displayed, or network-
listener object started, the object is assigned to the
current custodian, which is determined by the current-
custodian parameter. The main operation on a cus-
todian is custodian-shutdown-all, which terminates all
of the custodian's threads, closes all of its ports, and
so on. In addition, every new custodian created with
make-custodian is created as a child of the current cus-
todian. Shutting down a custodian also shuts down all
of its children custodians.

The following example runs child-work-thunk in its
own thread, then terminates the thread after one sec-
ond (also shutting down any other resources used by
the child thread):

(let ([child-custodian (make-custodian)]
[parent-custodian (current-custodian)])

(current-custodian child-custodian)
(thread child-work-thunk)
(current-custodian parent-custodian)
(sleep 1)
(custodian-shutdown-all child-custodian))

1Production code would use the parameterize form so that
the directory is restored if do-work raises an exception.

A thread's current custodian is not the same as the
custodian that manages the thread. The latter is de-
termined permanently when the thread is created. A
thread can, however, change its current custodian at
any time. In the above example, since child-custodian
is current when the child thread is created, the child is
placed into the management of child-custodian. Thus,
(custodian-shutdown-all child-custodian) reliably termi-
nates the child thread. In addition, if child-custodian is
the only custodian accessible in child-work-thunk , then
any custodian, thread, port, or network listener cre-
ated by the child is reliably shut down by (custodian-
shutdown-all child-custodian).

Evaluating (current-custodian) immediately in child-

work-thunk would produce child-custodian, because the
initial parameter values for the child thread are in-
herited at the point of thread creation. The child
thread may then change its current custodian at any
time, perhaps creating a new custodian for a grand-
child thread. Again, if child-custodian is the only cus-
todian accessible in child-work-thunk , then newly cre-
ated custodians necessarily fall under the management
of child-custodian.

MzScheme includes additional constructs to handle other
process aspects, such as code namespaces and event queues,
but those constructs are irrelevant to accounting.

3. ACCOUNTING API
Accounting information in MzScheme depends only on

custodians and threads. Accounting depends on custodians
because they act as a kind of process ID for termination pur-
poses. In particular, since the motivation for accounting is
to terminate over-consuming processes, MzScheme charges
memory consumption at the granularity of custodians. Ac-
counting also depends on threads, because threads encom-
pass the execution aspect of a process, and the execution
context de�nes the set of reachable values. Thus, the mem-
ory consumption of a custodian is de�ned in terms of the
values reachable from the custodian's threads.
We defer discussion of speci�c accounting policies until the

next section. For now, given that accounting is attached to
custodians, we de�ne a resource-limiting API that is similar
to Unix process limits:

� (custodian-limit-memory cust1 limit-k cust2 ) installs a
limit of limit-k bytes on the memory charged to the
custodian cust1 . If there comes a time when cust1

uses more than limit-k bytes, then cust2 is shut down.

Typically, cust1 and cust2 are the same custodian,
but distinguishing the accounting center from the cost
center can be useful when cust1 is the parent of cust2
or vice-versa.

Although custodian-limit-memory is useful in simple settings,
it does not compose well. For example, if a parent process
has 100 MB to work with and its child processes typically use
1 MB but sometimes 20 MB, should the parent limit itself
to the worst case by running at most 5 children? And how
does the parent know that it has 100 MB to work with in the
case of parent-siblings with varying memory consumption?
In order to address the needs of a parent more directly

and in a more easily composed form, we introduce a second
interface:
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� (custodian-require-memory cust1 need-k cust2 ) installs
a request for need-k bytes to be available for custo-
dian cust1 . If there comes a time when cust1 would
be unable to allocate need-k bytes, then cust2 is shut
down.

Using custodian-require-memory, a parent process can declare
a safety cushion for its own operation but otherwise allow
each child process to consume as much memory as is avail-
able. A parent can also combine custodian-require-memory
and custodian-limit-memory to declare its own cushion and
also prevent children from using more than 20 MB without
limiting the total number of children to 5.
In addition to the two memory-monitoring procedures,

MzScheme provides a function that reports a given custo-
dian's current charges:

� (current-memory-use cust) returns the number of allo-
cated bytes currently charged to custodian cust .

4. ACCOUNTING POLICIES

4.1 Reachability
As described in the previous section, we de�ne a custo-

dian's memory consumption in terms of the values reachable
from the custodian's threads, as opposed to the values orig-
inally allocated by the threads. In addition, we require that
the custodian hierarchy propagates accounting charges: if a
custodian B is charged for a value, then its parent custodian
is charged for the value as well.
Generally, reachability for accounting coincides with reach-

ability for garbage collection. In particular, a value is not
charged to a custodian if it is accessible through only weak
pointers. Finalization poses no problem for accounting, be-
cause every �nalizer in Mzscheme is created with respect
to a will executor. Running a �nalizer requires an explicit
action on the executor, which means that a �nalized object
can be charged to the holder of the �nalizer's executor.
Accounting reachability deviates from garbage-collection

reachability in one respect. If a value is reachable from
thread A only because thread A holds a reference to thread
B, then B's custodian is charged and not A's (unless A's cus-
todian is an ancestor of B's). Similarly, if a value is reachable
by A only through a custodian C, then C is charged instead
of A's custodian.
This deviation makes intuitive sense, because holding a

reference to another process does not provide any access to
the process's values. Moreover, this deviation is necessary
for making accounting useful in our test programs, as we
explain in Section 6.

4.2 Sharing
In a running system, some values may be reachable from

multiple custodians. Di�erent accounting policies might al-
locate charges for shared values in di�erent ways, depending,
on the amount of sharing among custodians, the hierarchi-
cal relationship of the custodians, the original allocator for
a particular value or other factors. Among the policies that
seem useful, we have implemented two:

� The precise policy charges every custodian for each
value that it reaches. If two custodians share a value,
they are both charged the full cost of the value. For
example, in �gure 1, objects w and z will be charged

to both custodians A and B, object x will be charged
to both custodians B and C, and object Y will be
charged only to custodian C.

� The blame-the-child policy charges every value to at
least one custodian, but not every custodian that reaches
the value. The main guarantee for blame-the-child ap-
plies to custodians A and B when A is an ancestor of
B ; in that case, if A and B both reach some value,
then A is charged if and only if B is charged. Mean-
while, if B and C share a value but neither custodian
is an ancestor of the other, then at most one of them
will be charged for the object. For example, in �gure
1, object Y will be charged only to custodian C as in
the precise policy. Also, since custodian B is a child
of custodian A, B will necessarily be charged for W
and Z. In the case of X, since there is no ancestral
relationship between B and C, no guarantees are given
as to which will be charged.

The precise policy is the most obvious one, and seems easi-
est to reason about. We have explored the blame-the-child
policy, in addition, because it can be implemented more ef-
�ciently than the precise policy (at least in theory).
The blame-the-child policy, despite its imprecision, can

work with custodian-limit-memory to control the memory
consumption of a single sand-boxed application. Since the
sand-boxed application will share only with its parent, ac-
counting will reliably track consumption in the sand box.
Blame-the-child is less useful with custodian-limit-memory

in a setting of multiple cooperating children. In that case,
a well-behaved, cooperating application might incur all of
the cost of all shared values, triggering the termination of
the over-charged child (possibly leaving the rest stuck, lost
without a collaborator). However, blame-the-child always
works well with custodian-require-memory. With memory
requirements instead of memory limits, how memory charges
are allocated among children does not matter.
One policy that we have not explored is a variant of precise

that splits charges among sharing custodians. For example,
suppose that x custodians share a value of size y. With split-
ting, each of the x custodians would be charged y=x. This
policy is normally considered troublesome, because termi-
nating one of the x custodians triggers a sudden jump in
the cost of the other x � 1. Like blame-the-child, though,
this policy might be useful with custodian-require-memory.
We have not explored the cost-splitting policy because it
seems expensive to implement, and it does not appear to
o�er any advantage over blame-the-child.

4.3 Timing
Ideally, a policy should guarantee the termination of a cus-

todian immediately after it violates a limit or requirement.
A naive implementation of this guarantee obviously cannot
work, as it amounts to a full collection for every allocation.
The policies that we have implemented enforce limits and

requirements only after a full collection. Consequently, a
custodian can overrun its limit temporarily. This tempo-
rary overrun seems to cause no problems in practice, be-
cause a custodian that allocates lots of memory (and thus
might violate limits or requirements) tends to trigger fre-
quent collections. Furthermore, a failure in allocation for
any custodian triggers a garbage collection which will then
terminate usage o�enders to satisfy the allocation.
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Figure 1: An example set of custodians and roots with a small heap

One potential problem is that a child overrun could push
its parent past a limit, where terminating the child earlier
might have saved the parent. Another problem is that a
child overrun may occur at a time when custodians cannot
be safely terminated. These potential problems have not ap-
peared in practice, primarily because programmers cannot
know the exact cost of values and must include signi�cant
safety margins. Nevertheless, the problems merit further
investigation.

5. IMPLEMENTATION
The implementation of both the precise and blame-the-

child policies proceeds roughly as follows:2

1. When a thread is created, the creating thread's current
custodian is recorded in the new thread.

2. The collector's mark procedure treats thread objects
as roots and as it marks from each thread, it charges
the thread's custodian.

3. After collection, the collector checks the accumulated
charges against registered memory limits and require-
ments. The collector schedules custodians for destruc-
tion (on the next thread-scheduling boundary) accord-
ing to the comparison results.

Our two implementations di�er only in the details of step
2. We �rst describe the implementation of precise account-
ing, then the implementation of blame-the-child accounting.
Finally, we discuss the impact of generational garbage col-
lection on the algorithms.

5.1 Precise Accounting
For precise accounting, the collector reserves space in the

header of each object to record the object's set of charged

2The algorithms described should work in any collection sys-
tem. We use the terminology of a mark/sweep style collector
to simplify the description.

oObject    CS

CSm CSm CSmCSm CSm

Figure 2: Mark queue with an object

custodians (CSo in �gure 2). During collection, the mark
queue contains objects paired with the custodian set to be
charged for the object. Initially, the charged set for all ob-
jects is the empty set. The initial mark queue contains all
thread objects, where each thread is paired to the charged
set containing only the thread's custodian.
When mark propagation reaches an object (see �gure 2),

the charged set in the object's header (CSo) is compared
to the charge used in marking (CSm). If the charge set
for marking is a subset of the charged set CSo in the object
header, no further work is performed for the object.3 Other-
wise, the union of the sets is computed and installed into the
object's header, and charges for the object are shifted from
the old set (if it is non-empty) to the unioned set. Mark-
ing continues with the object's content using the unioned
set. After marking is complete, all garbage objects have an
empty charged set, and the charges accumulated for each
set can be relayed back to the set members.

3If the object contains a charge set, then it has been marked,
and the mark propagation has either already been done or
is queued. Since the item's charged set is a superset of the
mark's charge set, then no additional information is avail-
able and no further work needs to be done.
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In the case of a single custodian, the above algorithm de-
generates to plain garbage collection, since the only possible
charge sets are the empty set and the set containing the one
custodian. In the case of c custodians, collection potentially
requires c revisions to the charged set of every object. Thus,
in the worst case, collection requires O(c � r) time, where r
is the size of reachable memory and c is the size of the set
of all custodians. An entire heap containing only a single
linked list with every thread pointing to the head of the list
is an example of this worst case.

5.2 Blame-the-child
Unlike precise accounting, blame-the-child accounting re-

quires only linear time in the amount of live memory. Roughly,
the blame-the-child implementation works in the same way
as the precise implementation, except that objects with non-
empty charge sets are never re-marked. This change is
enough to achieve linear time collection.
To completely implement the blame-the-child policy, the

collector sorts the set of custodians before collection so that
descendents precede ancestors. Then, the threads of each
custodians are taken individually. Each thread is marked
and the marks are propagated as far as possible before con-
tinuing with the next threads. Due to this ordering, objects
reachable from both a parent and child will be �rst reached
by tracing from the child's threads, and thus charged to the
child. Once collection is complete, charges to child custodi-
ans are propagated back to their parents.
In our implementation, the blame-the-child implementa-

tion also incurs a smaller per-object overhead, since object
headers need not contain a charge set. During marking, ex-
actly one custodian is charged at a time, so that charges
can be accumulated directly to the custodian. Each object
needs only a mark bit, as in a normal collector.
A naive implementation of blame-the-child allows an ob-

vious security hole. By creating sacri�cial children, a malev-
olent custodian may arbitrarily delay its destruction when
it uses too much memory. Such children would have point-
ers back into the malevolent custodian's space so that they
would be blamed for its bad behavior. These, then, would
be killed instead of the parent.
Several possible mechanisms can be used to keep this from

happening, and we simply chose the easiest one from an
implementation perspective. They are:

1. Place an order on the list of limits and requirements so
that older custodians are killed �rst. In this case, the
parent will be killed before the children, so creating
sacri�cial children is useless.

2. Kill every custodian that breaks a limit or requirement,
rather than just one. Since a child's usage is included
in the parent's usage, both will be killed.

3. Choose a random ordering. In this way, a malevolent
program would have no guarantee that the above tactic
would work.

Our implementation chooses the second tactic.

5.3 Generational Collection
After a full collection is �nished and accounting is com-

plete, comparing charges to registered limits and require-
ments is simple. Therefore, the collector can guarantee that

a custodian is terminated after the �rst garbage collection
cycle after which a limit or requirement is violated. This
implies that there may be some delay between the detec-
tion of a violation and the actual violation. However, if the
program is allocating this delay will be small, as frequent
allocation will quickly trigger a garbage collection.
Accounting information after a minor collection is neces-

sarily imprecise, however, since the minor collection does not
examine the entire heap. Previously computed sets of custo-
dians for older objects might be used regardless of changes
since their promotion to an older generation. This old in-
formation may arbitrarily skew accounting. Worse, in the
blame-the-child implementation described above, the collec-
tor does not preserve charges in object headers, so there
is no information for older generations available to partial
collections (except those that reclaim only the nursery).
Our implementation therefore enforces limits and require-

ments only after a full collection. This choice can delay
enforcement by several collections, but should not introduce
any new inherent potential for limit overruns, since overruns
must lead to a full collection eventually.

6. EXPERIENCE
To determine the usefulness of our accounting policies in

realistic environments, we wrote and modi�ed several pro-
grams to take advantage of accounting. One program simply
tests the ability of a parent to kill an easily sand-boxed child.
A second program, DrScheme, tests child control where the
parent and child work closely together. A third program,
a web server allowing arbitrary servlet plug-ins, tests child
control with some cooperation among the children.

6.1 Simple Kill Test
In the simple kill test, the main process creates a single

sub-custodian, places a 64 MB limit on the sub-custodian's
memory use, and creates a single thread in the sub-custodian
that allocates an unbounded amount of memory:

(let ([child-custodian (make-custodian)])
(custodian-limit-memory child-custodian
(� 64 1024 1024) child-custodian)

(current-custodian child-custodian)
(thread-wait ; blocks until the thread completes
(thread (lambda ()

(let loop ()
(+ 1 (loop)))))))

Since accounting works, the child custodian is destroyed,
which in turn halts the child thread, and the entire program
completes. If accounting were not successful, then the pro-
gram would not terminate. Under both of our accounting
system implementations, we �nd this program terminates.
Unfortunately, it terminates several garbage collection cy-
cles after the limit is actually violated.
Although simple, this program presents two items of in-

terest. First, it shows that the blame-the-child policy can
work, and that it allows the natural creation of parent/child
pairs where the parent wishes to limit its children. Second,
the program shows that generational collection does delay
the detection of resource overruns.
Safety nets in our garbage collector assure that a program

does not run out of available memory before its limit is no-
ticed, but in systems with tight memory requirements, our
technique may not be acceptable. We are investigating ways
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to detect overruns more quickly.

6.2 DrScheme
The DrScheme programming environment consists of one

or more windows, where each window is split into two parts.
The top part of the window is used to edit programs. The
bottom part is an interactive Scheme interpreter loop where
the program can be tested. Each interpreter (one per win-
dow frame) is run under its own custodian. With a single
line of code, we modi�ed DrScheme to constrain each inter-
preter to 16 MB of memory.
Initial experiments with the single-line change did not pro-

duce the desired result, even with precise accounting. After
opening several windows, and after making one interpreter
allocate an unbounded amount of memory, every interpreter
custodian in DrScheme terminated. Investigation revealed
the problem:

� Each interpreter holds a reference into the DrScheme
GUI. For example, the value of the parameter current-
output-port is a port that writes to the text widget for
the interaction half of the window. The text widget
holds a reference to the whole window, and all open
Drscheme windows are chained together.

� Each window maintains a reference to the interpreter
thread, custodian, and other interpreter-speci�c val-
ues, including the interpreter's top-level environment.

Due to these references, every interpreter thread reaches ev-
ery other interpreter's data through opaque closures and ob-
jects, even though programs running in di�erent interpreters
cannot interfere with each other. Hence, in the precise ac-
counting system, every thread was charged for every value
in the system, which obviously defeats the purpose of ac-
counting.
Correcting the problem required only a slight modi�cation

to DrScheme. We modi�ed it so that a window retains only
weak links to interpreter-speci�c values. In other words, we
disallow direct references from the parent to the child. Thus
a child may trace references back to the parent's values, but
will never trace these references back down to another child.
Finding the parent-to-child references in DrScheme|a fairly

large and complex system|required only a couple of hours
with garbage-collector instrumentation. The actual changes
required only a half hour. In all, �ve references were changed:
two were converted into weak links, two were extraneous and
simply removed, and one was removed by pushing the value
into a parameter within the child's thread.
Breaking links from parent to child may seem backward,

but breaking links in the other direction would have required
far too much work to be practical. For example, we could not
easily modify the interpreter-owned port to weakly reference
the DrScheme window. The port requires access to many in-
ternal structures within the GUI widget. Indeed, such a con-
version would amount to the �le-descriptor/handle approach
of conventional operating systems|precisely the kind of de-
sign that we are trying to escape when implementing coop-
eration.

6.3 Web Server
In the DrScheme architecture, children never cooperate

and share data. In the web server, however, considerable

sharing exists between child processes. Whenever a server
connection is established, the server creates a fresh custo-
dian to take charge of the connection. If the connection
requires the invocation of a servlet, then another fresh cus-
todian is created for the servlet's execution. However, the
servlet custodian is created with the same parent as the
connection custodian, not as a child of the connection custo-
dian, because a servlet session may span connections. Thus,
a connection custodian and a servlet custodian are siblings,
and they share data because both work to satisfy the same
request.
The precise accounting system performs well when a servlet

allocates an unbounded amount of memory. The o�ending
servlet is killed right after allocating too much memory, and
the web server continues normally.
The blame-the-child system performs less well, in that

the servlet kill is sometimes delayed, but works acceptably
well for our purposes. The delayed kill with blame-the-child
arises from the sibling relationship between the connection
custodian and the servlet custodian. When the servlet runs,
the connection is sometimes blamed for the servlet's memory
use. In practice, this happens often. The result is that
the connection is killed, and then the still-live memory is
not charged to the servlet until the next garbage collection.
This example points again to the need for better guarantees
in terms of the time at which accounting charges trigger
termination, which is one subject of our ongoing work.

7. PERFORMANCE EVALUATION
Memory accounting incurs some cost, with trade-o�s in

terms of speed, space usage, and accounting accuracy. To
measure these costs, we have implemented these two mem-
ory accounting systems within MzScheme.4 Our collector is
a generational, copying collector[8] implemented in C. This
collector is designed for production-level systems; it can han-
dle all situations that the default MzScheme garbage collec-
tor handles, including �nalizers which may resurrect dying
objects. For analysis purposes, the collector can be tuned
statically to behave as one the following:

� NoAccnt: The base-line collector. No memory ac-
counting functionality is included in this collector.

� Precise: The base-line collector plus the memory ac-
counting system described in section 5.1.

� BTC: The base-line collector plus the memory blame-
the-child accounting system described in section 5.2.

We evaluate the space usage, accuracy and time penalty of
the BTC and Precise collectors on the following bench-
mark programs:

� Prod: An implementation of a producer/consumer
system, with �ve producers and �ve consumers paired
o�. A di�erent custodian is used for each producing or
consuming thread. This case covers situations wherein
sibling custodians share a large piece of common data;
in this case, they share a common queue.

� Kill: A basic kill test for accounting. A child custo-
dian is created and a limit is placed on its memory use.

4Accounting builds on the \precisely" collected variant of
MzScheme, instead of the \conservatively" collected variant.
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Precise BTC
Test # of owner sets Additional required space # of owner sets Additional required space

Web 360 60,054 bytes 360 30,570 bytes
Prod 35 3,842 bytes 21 1,130 bytes
DrScheme 15 6100 bytes 9 5076 bytes
PSearch 4 266 bytes 3 186 bytes
Kill 2 146 bytes 2 146 bytes

Figure 3: Additional space requirements for accounting.

NoAccnt BTC Precise
Time S.D. Time S.D. % slowdown Time S.D. % slowdown

Web 1.30 0.05 1.77 0.06 36.2% 1.80 0.06 38.5%
Prod 2.60 0.05 1.31 0.04 n/a 1.41 0.04 n/a
DrScheme 23.10 0.14 23.55 0.11 1.7% 43.19 1.73 87.0%
PSearch 2.33 0.12 2.41 0.12 3.4% 2.42 0.13 3.9%
Kill n/a n/a 1.74 0.03 n/a 1.76 0.04 n/a

Figure 4: Timing results in seconds of user time with standard deviations. Where applicable, the table
provides a percentage slowdown relative to the NoAccnt collector. All benchmark programs were run on
a 1.8Ghz Pentium IV with 256MB of memory, running under FreeBSD 4.3 and MzScheme (or DrScheme)
version 200pre19.

Under the child custodian, memory is then allocated
until the limit is reached. This case covers the situ-
ation wherein proper accounting is necessary for the
proper functioning of a program.

� PSearch: A search program that seeks its target us-
ing both breadth-�rst and depth-�rst search and uses
whichever it �nds �rst. This case is included to con-
sider situations where there are a small number of
custodians, but those custodians have large, unshared
memory use.

� Web: A web server using custodians. This test was
included as a realistic example where custodians may
be necessary. The server is initialized, and then three
threads each request a page 200 times. Every thread
on the server side which answers a query is run in its
own custodian.

� DrScheme: A program, run inside DrScheme, that
creates three custodian/thread pairs and starts a new
DrScheme process in each.

7.1 Space Usage
Regardless of the implemented policy, some additional

space is required for memory accounting. Space is required
internally to track the custodian of registered roots, and to
track owner sets. In the case of Precise, additional space
may be required for objects whose headers do not contain
suÆcient unused space to hold the owner set information for
the object.
In our tests, the space requirements usually depend on the

number of owner sets. Figure 3 shows the amount of space
required for each of our test cases. These numbers show the
additional space overhead tracking, roughly, the number of
owner sets in the system. The numbers for DrScheme do
not scale with the others because the start-up process for
the underlying GUI system installs a large number of roots.
As expected, the additional space needed for precise ac-

counting is somewhat larger than the space required for

blame-the-child accounting. This space is used for union
sets (owner sets which are derived as the union of two owner
sets), and the blame-the-child implementation never per-
forms a set union. The di�erence thus depends entirely upon
the number of custodians and the sharing involved.
The MzScheme distribution includes a garbage collector

that is tuned for space. In particular, it shrinks the headers
of one common type of object, but this shrinking leaves no
room for owner set information. Compared to the space-
tuned collector, the NoAccnt and the accounting collectors
require between 15% and 35% more memory overall.

7.2 Accuracy
To check the accuracy of memory accounting for di�erent

collectors, we tested each program under the precise sys-
tem and compared the results to the blame-the-child sys-
tem. The results were exactly as expected: the blame-the-
child algorithm accounts all the shared memory to one ran-
dom child. For example, in DrScheme, precise accounting
showed that around 49 MB of data was shared among the
children. Under BTC, one of the custodians (and not neces-
sarily the same one every time) and its parent were charged
49 MB, but the other two child custodians were charged only
for local data (around 80 KB each).

7.3 Time efficiency
To measure the trade-o� between the accuracy of account-

ing information and the execution speed of the collector (and
hence the program as a whole), we recorded the total run-
ning time of the test programs. Figure 4 shows the results
of these benchmarks.
In every case, precise accounting takes additional time.

The amount of additional time depends on the number of
custodians, the amount of sharing among the custodians,
and the size of the data set. In Web, Prod, PSearch,
and Kill, the custodians and heap are arranged so that the
additional penalty of precise accounting (that is, the penalty
beyond that of BTC accounting) is minimal. The greatest
slowdown in those cases, around two percent, is forWeb. In
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contrast, for cases where there is considerable sharing and
the heap is large, the penalty for precise accounting can be
quite large. DrScheme �ts this pro�le, and the slowdown
for precise accounting is predictably quite high.
Blame-the-child accounting also incurs a performance penalty.

In both DrScheme and PSearch, the penalty is small. In
Web, the penalty is signi�cant. The di�erence between the
former two tests and the latter one is primarily in the num-
ber of owner sets they use. The penalty di�erence, then, may
result from cache e�ects during accounting. Since owner-
set space usage is kept in a table, this table may become
large enough that it no longer �ts in cache. By reading
and writing to this table on every mark, a large number
of owner sets imply considerably more cache pressure and
hence cache misses. In ongoing work, we are investigating
this possibility.
The strange case in our results is Prod. In this case,

the work of accounting actually speeds up the program. In
ongoing work we are trying to determine the cause of the
speed-up.

8. RELATED WORK
Recent research has focused on providing hard resource

boundaries between applications to prevent denial-of-service.
For example, the Ka�eOS virtual machine [1] for Java pro-
vides the ability to precisely account for memory consump-
tion by applications. Similar systems include MVM [5],
Alta [2], and J-SEAL2 [4]. This line of work is limited in that
it constrains sharing between applications to provide tight
resource controls. Such restrictions are necessary to execute
untrusted code safely, but they are not exible enough to
support high levels of cooperation between applications.
More generally, the existing work on resource controls|

including JRes [6] and research on accounting principals in
operating systems, such as the work on resource contain-
ers [3]|addresses only resource allocation, and does not
track actual resource usage.

9. CONCLUSIONS
We have presented preliminary results on our memory-

accounting garbage collection system for MzScheme. Our
approach charges for resource consumption based on the re-
tention of values, as opposed to allocation, and it requires
no explicit declaration of sharing by the programmer. Our
policy de�nitions apply to any runtime system that includes
a notion of accounting principles that is tied to threads,
In the long run, we expect our blame-the-child account-

ing policy to become the default accounting mechanism in
MzScheme. It provides accounting information that seems
precise enough for many applications, and it can be imple-
mented with a minimal overhead.
The main question for ongoing work concerns the timing

of accounting checks. Our current implementation checks for
limit violations only during full collections, and the charges
for a terminated custodian are not transferred until the fol-
lowing full collection. Both of these e�ects delay the en-
forcement of resource limits in a way that is diÆcult for
programmers to reason about, and we expect that much
better guarantees can be provided to programmers.
A second question concerns the suitability of weak links

for breaking accounted sharing between a parent and child,
and perhaps between peers. The current approach of weak-

ening the parent-to-child links worked well for our test pro-
grams, but we need more experience with cooperating ap-
plications.
The collectors described in this paper are distributed with

versions 200 and above of the PLT distribution of Scheme for
Unix.5 Interactive performance of the accounting collectors
is comparable to the performance of the default collector,
although some pause times (particularly when doing precise
accounting) are noticeably longer.
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Abstract

The new version of scsh enables concurrent system programming
with portable user-level threads. In scsh, threads behave like pro-
cesses in many ways. Each thread receives its own set of process re-
sources. Like Unix processes, forked threads can inherit resources
from the parent thread. To store these resources scsh usespreserved
thread fluids, a special kind of fluid variables. The paper gives a
detailed description of an efficient implementation for thread-local
process resources. Scsh also provides an interface to thefork sys-
tem calls which avoids common pitfalls which arise with a user-
level thread system. Scsh contains a binding forfork that forks
“only the current thread.”

1 Introduction

Scsh [14] is a variant of Scheme 48 [11, 10] with extensive support
for Unix systems and shell programming. Specifically, it contains
full access to all basic primitive functions specified by POSIX. Scsh
0.1, the first version, came out in 1994.

In late 1999, the scsh maintainers set out to produce a version of
scsh capable of multithreading. The main motivation was to im-
prove scsh’s abstraction of the operation system [15] as well as to
implement multi-threaded Internet servers with scsh. At the time,
scsh was based on Scheme 48 version 0.36 which did not sup-
port multithreading. Meanwhile, Scheme 48 had reached version
0.53 which did support fast, preemptive user-level multithreading.
Hence, the task was originally to disentangle scsh from the under-
lying 0.36 substrate and port it to 0.53.

However, once the basic porting work was finished, it turned out
that some of the POSIX functionality interfered with the user-
level threads. Writing multi-threaded scsh programs is easiest
when threads behave mostly like processes. However, this analogy
breaks in a straightforward implementation of user-level threads
and POSIX system calls in two important respects:
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to redistribute to lists all or part of this work is granted without fee provided
that copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page. To
otherwise copy or redistribute requires prior specific permission.
Third Workshop on Scheme and Functional Programming. October 3, 2002,
Pittsburgh, Pennsylvania, USA.
Copyright 2002 Martin Gasbichler and Michael Sperber.

• A number of system resources, such as the environment or
current working directory are process-local but thread-global.
This would cause programs which would work correctly in
a single-threaded system to interfere with each other when
run concurrently in multiple threads, even though there is no
explicit shared state or communication with other threads.

• The POSIXfork system call would copy the entire process,
and all threads of the parent would also run in the child. This
interferes with the intuition of the programmer who expects
“only the current thread to fork.” Moreover, it causes a num-
ber of race conditions associated with thefork /exec * pattern
common in POSIX programming. Worse, the programmer
cannot work around this problem easily because the primi-
tives of the thread system are not powerful enough.

Moreover, the C library causes some problems: Thesyslog in-
terface to the system’s message logging facility offers only a sin-
gle global, implicit connection which needs to be multiplexed
among threads. Also, some POSIX library calls block indefi-
nitely, making timely preemption of threads impossible while they
are running. The most notable examples aregethostbyname and
gethostbyaddress whose functionality is indispensable for im-
plementing multi-threaded Internet servers.

This paper describes the steps taken in scsh 0.6 towards handling or
working around those problems:

• Scsh represents thread-local process resources bythread flu-
ids, thread-local cells which support binding, assignment, and
preservation across afork -like operation on threads.

• Scsh usesresource alignmentto lazily keep the internal rep-
resentation synchronized with the process state.

• Scsh’s thread system supports a novel primitive callednarrow
which allows implementing a fork operation that forks “only
the current thread.”

OverviewSection 2 gives a brief account of the Scheme 48 thread
system. Section 3 briefly describes the process resource functional-
ity POSIX offers. Section 4 describes thread fluids which scsh uses
to represent process resources. Next, Section 5 describes how to use
thread fluids to keep the thread-local process state lazily aligned
with the actual process state. Scsh’s implementation offork is
described in Section 6. Section 7 describes some of the miscella-
neous problems with integrating the standard C library with user-
level threads. Section 8 reviews some related work, and Section 9
concludes.
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2 The Scheme 48 Thread System

Concurrency within scsh is expressed in terms of the user-level
thread system of Scheme 48 [2]. Its structure is inspired by nestable
engines [7, 8, 4] and is almost entirely implemented in Scheme, and
therefore extensible without changing the VM in any way. The VM
supports the thread system in two ways:

• It schedules timer interrupts and thus allows preemption of
running threads off the interrupt handler.1

• The VM I/O primitives are non-blocking. The VM manages
queues of outstanding I/O requests and schedules interrupts as
they become enabled.

Each thread is represented by a Scheme object which, while it is
running, keeps track of its remaining time before preemption. As
in other engines-based thread systems, Scheme 48 uses continua-
tions for saving and restoring the control contexts of threads. For a
blocked thread, the thread object contains a saved continuation and
an interrupt mask.

As in any continuations-based system, Scheme 48 needs to take
dynamic-wind into account: for context switching, the thread sys-
tem employs theprimitive-cwcc VM primitive which merely rei-
fies the VM-level continuation. Each thread object also keeps track
of the dynamic environment and the dynamic wind point, which
in turn are used to implementdynamic-wind and the full-scale
call-with-current-continuation .

The dynamic environment contains thread-local bindings forfluid
variables(or justfluids) that implement a form of dynamic binding
local to a single thread. Specifically, Scheme 48 holds the current
input and output ports in fluids. Fluids play a crucial role in coordi-
nating thread-local state and process state. Section 4 explains this
issue in detail.

Each thread is under the control of ascheduler, itself a regular
thread. Schedulers nest, so all threads in the running system are
organized as a tree. A scheduler can run a thread for a slice of its
own time by calling(run thread time) . The call torun returns
either when the time slice has expired or aneventhappened. This
event might signify termination, an interrupt, a blocked operation,
another thread becoming runnable, or a request from the thread to
the scheduler. For example, a thread can cause the scheduler to
spawn a new thread by returning aspawned event along with a
thunk to be run in the new thread. Note that it is easily possible
to pass an event upwards in the thread tree if the current scheduler
is unwilling to handle it.

Thus, a scheduler performs at least two tasks: it implements a
scheduling policy by deciding which threads to run for how long,
and it must handle events returned byrun .

A non-interactive Scheme 48 process has only a singleroot sched-
uler. The root scheduler, in addition to managing its subordinate
threads, also periodically wakes sleeping threads and takes care of
port flushing. An interactive Scheme 48 also has a scheduler for
eachcommand levelthat encapsulates a state of interaction with the
user. This allows Scheme 48 to cleanly interrupt all running threads
at any time by entering a new command level, and later continue
them by throwing back into an old one. The built-in schedulers all
use a simple round-robin scheduling policy.

1Scsh restarts system calls interrupted by the timer at the
Scheme level.

3 Unix Process Resources

The representation of a process within the kernel of a Unix opera-
tion system contains severalprocess resources. The kernel initial-
izes these resources during creation of a process, typically by copy-
ing the values from the parent process. Here are the most important
process resources:

• the current working directory,

• the file mode creation mask, calledumask,

• the user and group ID,

• the environment.

For each resource the kernel provides system calls to read and set
the resource. For the current working directory,getcwd returns the
path as a string andchdir sets the directory to a new path.

A number of system calls implicitly consult the resources of the
calling process. In the current working directory example, when
the process uses theopen system call to open a file, the kernel in-
terprets the filename argument ofopen relative to the value of the
current working-directory resource. Likewise,chdir resolves its
path argument relative to the current working directory if it does
not start with a slash.

4 Scheme Thread-Local Resources

Threads share state. This enables inter-thread communication by
explicitly providing to several threads access to shared state by lex-
ical binding. The various process resources, however, constitute
implicit state, just like the settings forcurrent-input-port and
current-output-port .

For managing the latter, Scheme 48 keeps their values influid bind-
ings: a fluid is a cell that allows dynamic binding.(make-fluid
v) creates a fluid with default valuev, (fluid f ) references the
value bound to a fluid, and(let-fluid f v t) calls thunkt with
fluid f bound to valuev during the dynamic extent of this call. That
is, the fluid mechanism resets the binding to the value before the
let-fluid if the thunk calls a previously stored continuation, and
if the thunkt captures a continuation, on a later call to this contin-
uation the fluid mechanism again binds the fluidf to the valuev.
Here are some examples from a Scheme 48 session, where> marks
the command prompt andcall-with-current-continuation is
abbreviated ascall/cc :

> (define f (make-fluid 1))
> (fluid f)
; 1

Let-fluid binds the fluid only during the execution of the thunk:

> (+ (let-fluid f 3 (lambda () (fluid f)))
(fluid f))

; 4

Save a continuation with a dynamic binding in*k* :

> (define *k*)
> (let-fluid f 25

(lambda ()
(* (call/cc (lambda (k) (set! *k* k) 10))

(fluid f))))
; 250
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The top-level binding is still the initialization value:

> (fluid f)
; 1

Throwing back into the thunk using the stored continuation reacti-
vates the binding introduced by thelet-fluid above:

> (*k* 100)
; 2500

Capture a continuation that returns the value of the fluid added to
the argument of the continuation:

> (define *kk*)
> ((lambda (x) (+ x (fluid f)))

(call/cc
(lambda (k)

(set! *kk* k)
20)))

; 21

Calling the stored continuation amounts to throwing out of the dy-
namic extent of the thunk:

> (let-fluid f -1
(lambda ()

(*kk* 3)))
; 4

The environment that associates fluids with their values is local to
each thread. Each newly spawned thread gets a fresh dynamic envi-
ronment from its scheduler, typically with all fluids bound to their
default values:

> (define f (make-fluid 1))

Start a new thread:

> (let-fluid f 23
(lambda ()

(spawn (lambda ()
(display (fluid f))))))

; prints 1

For process resources, sharing their settings among the threads is
undesirable, as threads might interfere with each other, even though
there is no explicit, intended communication among them. More-
over, it often makes more sense to dynamically bind a process re-
source rather than mutate it permanently. (To this end, scsh has
always offered constructs likewith-cwd , with-env etc.)

Therefore, fluids seem like the right low-level means for imple-
menting thread-local process resources. However, they do not
support assignment, primarily because its intended semantics is
not immediately obvious: should assignments be visible in other
threads?2 Scsh therefore offers a primitive mechanism orthog-
onal to fluids calledthread-local cellsor thread cells: a thread
cell supports assignment, and assignment is always thread-local.
(make-thread-cell v) returns a thread cell with default valuev,
(thread-cell-ref c) returns the current contents of the cell, and

2The parametermechanism of MzScheme [6] supports both
binding and assignment. Assignment is always thread-local. The
(as of the time of writing) soon-to-be-released version of Gambit-C
also has parameters. These will have “binding-local” assignment:
assignment by default is visible in other threads unless there is an
intervening binding [5].

(thread-cell-set! c v) mutates the cell’s value as seen by the
current thread tov.

> (define a-cell (make-thread-cell 23))
> (thread-cell-ref a-cell)
; 23

Start a new thread which mutates the cell:

> (spawn (lambda ()
(thread-cell-set! a-cell 42)
(let lp ()

(display (thread-cell-ref a-cell))
(lp))))

; Keeps printing 42 until the end of days

The top-level thread still sees the initial value:

> (thread-cell-ref a-cell)
; 23

Moreover, scsh also ships with an abstraction built upon thread
cells—thread fluids. Thread fluids obey the rules of dynamic bind-
ing just as ordinary fluids but also support mutation like thread cells.
In fact, a thread fluid corresponds to a fluid containing a thread cell.
Here is the transcript of a Scheme 48 session using thread fluids:

> (define f (make-thread-fluid 1))

Save a continuation with a dynamic binding in*k* :

> (define *k*)
> (let-thread-fluid f 25

(lambda ()
(* (call/cc (lambda (k) (set! *k* k) 10))

(thread-fluid f))))
; 250

Modify the value of the thread fluid:

> (set-thread-fluid! f -1)
> (thread-fluid f)
; -1

A call to the stored continuation shows that the dynamic binding is
still active:

> (*k* 100)
; 2500

To sum up, a thread fluid supportsboth binding and thread-local
assignment, thereby offering the right functionality for representing
process resources per thread.

Just as with fluids, a newly spawned thread receives the default val-
ues for the thread-fluid bindings from its scheduler, rather than from
the thread which evaluated the call tospawn . This is contrary to
how process resources work, where the child inherits from the par-
ents.3 Simple lexical bindings allows communicating a thread fluid
to a spawned thread “by hand:”

3In fact, in MzScheme, a spawned thread inherits the param-
eter bindings from the spawning thread. However, the built-in
error-escape-handler parameter alone does not propagate to
spawned threads—this would cause a space leak [1]. The po-
tential for space leaks alone suggests that the programmer should
have control over the propagation of thread fluid values to spawned
threads.



52

(define t-fluid (make-thread-fluid #f))
...
(spawn

(let ((val (thread-fluid t-fluid)))
(lambda ()

(let-thread-fluid t-fluid val
...))))

The thread-fluids library exports two proceduresmake-
preserved-thread-fluid and preserve-thread-
fluids : make-preserved-thread-fluid is just like
make-thread-fluid , but marks the thread fluid for preser-
vation. Preserve-thread-fluids accepts a thunk as an
argument and returns another thunk wrapped in pairs oflet and
let-thread-fluid forms for all live thread fluids marked for
preservation. Thus, the above code could be rewritten as:

(define t-fluid (make-preserved-thread-fluid #f))

...
(spawn

(preserve-thread-fluids
(lambda ()

...)))

The thread-fluids package also exports a procedure
fork-thread with the following definition:4

(define (fork-thread thunk . rest)
(apply spawn (preserve-thread-fluids thunk) rest))

Now a forked thread can inherit values from its parent:

> (define f (make-preserved-thread-fluid 0))
> (let-thread-fluid f 1

(lambda ()
(fork-thread

(lambda () (display (thread-fluid f))))))
; prints 1

Mutation of preserved thread fluids is still thread-local:

> (begin
(let-thread-fluid f 1

(lambda ()
(fork-thread

(lambda () (set-thread-fluid! f -1)))))
(thread-fluid f))

; 0

5 Thread-Local Process Resources

To enable modular system programming in the presence of threads
the values of process resources must be local to each thread. To
mimic processes, freshly created threads should inherit the re-
sources from their parents. Preserved thread fluids provide the right
vehicle to store the values within the threads, but communicating
the values to the actual process resources requires additional ma-
chinery.

A simple approach to implement thread-local process resources is
to adjust the process resources on a thread context switch: If the

4One reviewer rightly noted that “A fluid friendly version of
fork would have to be calledspoon .” The next version of scsh
will feature this alias.

scheduler suspends the current thread the values of all resources are
saved in thread fluids. Before the scheduler runs the next thread,
it updates the process resources with the values of the thread fluid
of the respective thread. This means that the process resources are
alignedwith the thread fluids on a context switch. Unfortunately,
this method requires system calls for saving and restoring on each
context switch as well as crossing the C foreign function interface
boundary, both of which are comparatively expensive.

As the kernel inspects the process resources only during certain sys-
tem calls, it is not required that process resources and thread fluids
match all the time. It is sufficient to align a process resource when
the thread actually performs a system call which is affected by the
resource. Theopen system call would then be defined as:

(define (open filename)
(chdir-syscall (thread-fluid $cwd)
(set-umask-syscall (thread-fluid $umask)
(open-syscall filename))

This code has a race condition: Another thread could align the
umask and the current working directory with its own values before
theopen . Locks remedy this problem by performing alignment and
the actual system call atomically:

(define cwd-lock (make-lock))
(define umask-lock (make-lock))
(define (open filename)

(obtain-lock cwd-lock)
(obtain-lock umask-lock)
(chdir-syscall (thread-fluid $cwd))
(open-syscall filename)
(release-lock umask-lock)
(release-lock cwd-lock))

Make-lock creates a standard mutex lock. After one thread has
calledobtain-lock on this lock all other threads doing the same
will block until the lock is released byrelease-lock .

The performance of this approach is still not optimal: for each
open , scsh executes onechdir and oneset-umask , regardless of
the actual values of the respective resources. Scsh caches the value
of the process resource whenever it is changed and compares the
cache with the thread fluid to determine if the process needs to align
with the resource. The rest of the section describes how scsh im-
plements this strategy for the various process resources.

The umask case is the simplest. There is a cache and a replacement
for set-umask that sets the cache:

(define *umask-cache* (process-umask) 5)
(define umask-lock (make-lock))
(define $umask (make-preserved-thread-fluid (umask-cache)))

(define (umask-cache)
*umask-cache*)

(define (change-and-cache-umask new-umask)
(set-process-umask new-umask)
(set! *umask-cache* (process-umask)))

This code uses another call toumask to feed the cache: this ensures
proper error detection in case the specified value was not valid.

5The actual implementation initializes the cache when the sys-
tem starts.
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Next, there is code to access and modify the thread fluid:

(define (umask) (thread-fluid $umask))
(define (thread-set-umask! new-umask)

(set-thread-fluid! $umask new-umask))
(define (let-umask new-umask thunk)

(let-thread-fluid $umask new-umask thunk))

To change the umask scsh provides the following procedure:

(define (set-umask new-umask)
(with-lock umask-lock

(lambda ()
(change-and-cache-umask new-umask)
(thread-set-umask! (umask-cache)))))

A lock is required to synchronize the access to the cache. The fol-
lowing procedure aligns the resource with the thread fluid:

(define (align-umask!)
(let ((thread-umask (umask)))

(if (not (= thread-umask (umask-cache)))
(change-and-cache-umask thread-umask))))

The test of the conditional compares the value of the cache with
the thread fluid; the code in the consequence adjusts the resource
in case of a mismatch. The following procedure aligns the umask
and then calls its argument which is typically the actual system call
wrapped in a thunk:

(define (with-umask-aligned* thunk)
(obtain-lock umask-lock)
(align-umask!)
(with-handler

(lambda (cond more)
(release-lock umask-lock)
(more))

(lambda ()
(let ((ret (thunk)))

(release-lock umask-lock)
ret))))

The lock prevents another thread from aligning the umask with its
own value before the system call completes. As always with locks,
some care must be taken to ensure the code releases the lock un-
der unusual circumstances. Thethunk argument usually contains
only the call to the C function which in turn performs the system
call so throwing out and back into its execution state by saved con-
tinuations is not an issue. However, in case the system call fails
the C code will immediately raise an exception which allows ex-
ecution to resume at a different point. To release the lock in this
case the code above installs an exception handler which releases
the lock and passes the exception along to the next handler: The
with-handler procedure installs its first argument as a exception
handler for the second argument. The handler releases the lock and
calls the surrounding handler passed as argumentmore afterwards.

For the current working directory, caching is more involved as the
chdir syscall itself reads the current working directory in case the
given path is not absolute. Scsh circumvents this case by making
the path absolute:

(define (change-and-cache-cwd new-cwd)
(if (not (file-name-absolute? new-cwd))

(process-chdir (assemble-path (cwd) new-cwd))
(process-chdir new-cwd))

(set! *cwd-cache* (process-cwd)))

Again, the cache is fed by consulting the kernel, this time to find out
if the kernel has resolved any symbolic links. Setting and aligning
the current working directory is completely analogous to the umask
case:

(define (chdir cwd)
(with-lock cwd-lock

(lambda ()
(change-and-cache-cwd cwd)
(thread-set-cwd! (cwd-cache)))))

(define (align-cwd!)
(let ((thread-cwd (cwd)))

(if (not (string=? thread-cwd (cwd-cache)))
(change-and-cache-cwd thread-cwd))))

The environment requires special treatment: First, there is a direct
access to the resource itself. It is stored in the C variableenviron
of type char ** . Programs normally access this vector through
the functionsgetenv , putenv and setenv provided by the C li-
brary. Moreover, the only system call the environment influences is
exec *. Therefore, scsh represents the environment by an associa-
tion list in Scheme and turns it into an C array onexec * only. In
this case scsh maintains an association of the Scheme list and the C
array to allow the latter to be reused and automatically deleted. The
caching procedure setsenviron** :

(define (change-and-cache-env env)
(environ**-set env)
(set! *env-cache* env))

Reading the resource is only required on startup of the system;
There the C vector is read into a Scheme list.

The last remaining process resource is the user identification.6 In
Unix, user identification comes in three flavors:

1. Thereal user IDencodes the identity of the owner of the pro-
cess. The kernel copies the value from the parent when creat-
ing the process.

2. Theeffective user IDdetermines which files the process may
access.

3. Thesaved set-user IDis set byexec * on start of the process
and provides an alternative value for the effective user ID.

For changing these values, POSIX specifies the system callsetuid .
Unfortunately, its semantics depends on the value of the effective
user ID: If the effective user ID is the ID of the super user,setuid
changesall three values to thesamebut arbitrary ID. However, af-
terwards the effective user ID is no longer the ID of the super user
andsetuid cannot change the IDs any more. Automatic mainte-
nance as described for the other resources is therefore not possible
in general.

For unprivileged users things look slightly different: hereSetuid
setsonly the effective user ID to either the real user ID or the saved
set-user ID. The other IDs remain untouched. As the real user ID
and the saved set-user ID may be different, both can act as a source
for the effective user ID in turn. This behavior is desirable for appli-
cations which are started with a special saved set-user ID but want
to exploit it only for certain tasks such as maintaining lock files.

6The following description translates literally to group identi-
fication. The presentation therefore does not consider group IDs
further.
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A multi-threaded application possibly wants to equip each thread
with one of the two IDs. To support this, scsh provides thread-local
effective user IDs.

The implementation of effective user IDs per thread is anal-
ogous to the umask case. A thread can read the ef-
fective user ID with user-effective-uid and set it with
set-user-effective-uid . Scsh guards system calls operation
on files with thewith-euid-aligned macro. Depending on the
platform, scsh uses one of the non-standard system callssetreuid
or seteuid which change only the effective user ID to prevent the
super user from unintentionally changing all three IDs.

Now the machinery is in place to properly define Scheme bindings
for resource-accessing system calls:

(define (open-fdes path flags . maybe-mode)
(with-cwd-aligned

(with-umask-aligned
(with-euid-aligned

(with-egid-aligned
(%open path

flags
(:optional maybe-mode #o666)))))))

The%open procedure is bound to theopen system-call. It opens the
file specified bypath with umask, current working directory, effec-
tive user id and effective group id aligned. Theoptional macro
returns the default mode#o666 if the caller supplied no third argu-
ment toopen-fdes .

6 Fork vs. Threads

The counterpart tospawn /fork-thread in the realm of Unix pro-
cesses is calledfork : it creates and starts a child process that is
a copy of the parent process, distinguished from the parent by the
return value offork . Moreover, the childhas its own process ID,
parent process ID and resource utilizations. The child process also
gets copies of the parents file descriptors which, however, reference
the same underlying objects.

In a user-level thread system, all threads are contained in the pro-
cess. Consequently, the child process also runs duplicates of the
threads of the parent process. Depending on the concrete thread
system, this is desirable for the the system threads, such as those
doing I/O cleanup, run finalizers, etc. However, this is usually
wrong for the threads explicitly created by a running program. The
most common use offork in scsh programs is from the& andrun
forms that run external programs: in Unix, the only way to run an-
other program is to replace the running process by it viaexec *(3).
Hence,run and& first fork, and the newly created child then re-
places itself by the new program. Unfortunately, the delay between
fork andexec * create a race condition: other threads of the run-
ning program can get scheduledin the child.

This race can have disastrous consequences: the Scheme Under-
ground web server [17] starts a separate thread for each connection.
Some connection requests require starting an external program such
as a CGI script [3]. Now, consider a web server simultaneously
serving two connections as shown in Figure 1. Thread #1 is busy
serving a connection on the shown socket. Thread #2 forks in order
to exec a CGI program. This creates an exact replica of the par-
ent process, including the scheduler and all of its children threads
which share access to the file descriptors of the parent process. It is
now possible that the child scheduler schedules thread #1, thereby

Scheduler Scheduler

Thread #1 Thread #1

Thread #2 Thread #2

Socket

fork

Figure 1. Interference between parent and child in a multi-
threaded Internet server

interfering with the parent thread #1. This at least leads to mangling
of the output.

This problem is well known in the realm of OS-level thread sys-
tems. Specifically, IEEE 1003.1-2001 [13] specifies that the child
only runs the currently executing thread:

A process shall be created with a single thread. If a
multi-threaded process callsfork() , the new process
shall contain a replica of the calling thread and its entire
address space, possibly including the states of mutexes
and other resources. [. . . ]

”
Forking the current thread“ is a more useful intuition for what

fork should do. However, this notion as such is rife with ambi-
guity. (For example, what happens if the current thread is holding
on to a mutex another thread is blocked on, and then, in the child,
releases that mutex?) Moreover,fork has been notoriously difficult
to implement correctly in Unix systems (see also Section 8).7

Fortunately, the implementation issues in the context of a nestable-
engines-based thread system are entirely different ones from more
traditional settings: Scsh solves the problem by providing a spe-
cial scheduler which accepts an additional kind of event from its
children threads callednarrow . Narrow accepts a thunk as an ar-
gument, and causes the scheduler to spawn a new scheduler and
suspend itself until the new scheduler terminates. The new sched-
uler starts off with a newly created single thread that runs the thunk.

The scsh scheduler sits beneath the root scheduler. Thus, the root
scheduler can still perform the necessary housekeeping. Figure 2
shows the setup: Thenarrow call from thread #2 suspends to the
scheduler, passing a thunk to run inside the narrowed thread under
the new scheduler. Thefork now happens in the narrowed thread,
which also runs the thunk passed to fork. In the parent process, the
narrowed thread terminates again which also returns operation to
the original scheduler.

Thus, a simplified version offork in scsh (the actual production
code needs to perform more complex argument handling and avoid
a subtle race condition) looks like this:

7In systems where threads are implemented as processes, the
correct implementation offork is trivial. However, then the im-
plementation ofexec *(2) becomes a problem because the new pro-
gram must replaceall threads of the old one. On the other hand, the
implementation ofexec is trivially correct in scsh.
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new Scheduler

Thread #1

scsh Scheduler

Root Scheduler

Thread #2 new Thread

Housekeeping

Socket

narrow

fork

spawn

Figure 2. Thenarrow operation

(define (fork thunk)
(let ((proc #f))

(narrow
(preserve-ports

(preserve-thread-fluids
(lambda ()

(let ((pid (%%fork)))
(if (zero? pid)

(call-terminally thunk) ; Child
(set! proc (new-child-proc pid))))))))

proc))

%%fork is the pure POSIXfork system call. It returns 0 in the child,
and a non-zero process ID in the parent.Call-terminally runs
the thunk in an empty continuation to save space and guarantee that
the child terminates oncethunk returns.

Note that, just as withthread-fork , fork needs to pre-
serve the thread fluids viapreserve-thread-fluids . More-
over, preserve-ports preserves the regular fluids holding the
current- {input,output,error } ports.

This implementation offork avoids the various semantic pitfalls:
All threads are still present after anarrow ; they are merely chil-
dren of a suspended scheduler. Therefore, if, for example, the cur-
rent thread releases mutex locks other threads are blocked on, these
threads are queued with their respective schedulers and can con-
tinue after thenarrow completes. There are no restrictions on what
the narrowed thread can do.

The implementation offork actually shipped with scsh also allows
duplicating all threads in the child. Consequently, through the use
of nested schedulersnarrow andspawn , the programmer has fine-
grained control over the set of running threads.

Of course, the user-level program might create its own schedulers
beneath the scsh scheduler. This, in general, requires that the new
scheduler passesnarrow events upwards in the scheduler tree to
the scsh scheduler, which is trivial in the Scheme 48 thread system.
On the other hand, it is possible that an application needs to handle
narrow in a different way. The key observations of this work are
thatnarrow is the appropriate mechanism for the feasible common
cases, and that nestable schedulers provide a suitable implementa-
tion mechanism for providing afork with well-defined behavior.

7 User-level threads and the C libraries

In addition to an interface to the Unix system calls, scsh also pro-
vides bindings for standard libraries. Two library facilities cause
problems: DNS queries viagethostbyname /gethostbyaddr
eventually block the process. The Syslog connections are an ad-
ditional process resource. This section explains how scsh tackles
these issues.

7.1 DNS queries

A user-level thread implementation must never call functions which
might block the process and thereby stops all threads. All POSIX
system calls can operate in non-blocking mode. Unfortunately, the
same is not true for the standard C library:gethostbyaddr and
gethostbyname turn host names into IP addresses and vice versa.
These functions are indispensable for writing almost any kind of
Internet server. They block until they receive an answer or time-
out. Thus, the process callinggethostby . . . blocks for up to several
minutes8. To prevent scsh from blocking, we have written a library
for DNS queries directly in Scheme; it is part of the upcoming ver-
sion of the Scheme Underground networking package[17].

7.2 Syslog

Another problem is the standard C library’s interface to the system
message logger: Theopenlog function opens a connection to the
syslogd daemon. Thesyslog function sends the actual messages
to the daemon. The syslog daemon processes the messages accord-
ing to the parameters ofsyslog and the ones specified by the last
openlog call. Calls toopenlog may not nest.

Therefore, scsh treats the connection to the logger analogously to
the process resources mentioned in Section 3: The interface to
openlog virtualizes connections to the loggers assyslog channels.
The syslog channel records all parameters given toopenlog . Scsh
stores the channel in a thread fluid and maintains a cache for the
current channel. When another thread callssyslog and the cache
differs from the thread’s connection, scsh closes the connection to
the syslog daemon usingcloselog and reconnects with the param-
eters obtained from the thread fluid. Thus, every thread has its own
virtual connection to the syslog daemon.

7.3 FFI Coding Guidelines

Generally, threads complicate FFI issues because the language sub-
strates on both sides of the FFI barrier are currently likely to be us-
ing different thread systems. The work on scsh indicates that coding
guidelines should impose certain restrictions on foreign code called
via the FFI:

• Foreign functions should not block indefinitely.

• Implicit state such as the process resources should be multi-
plexed via thread-local process resources.

• Non-reentrant foreign function APIs such assyslog should
be virtualized to reentrant interfaces.

8Internet applications such as Netscape [12] and the Squid web
cache [16] work around this problem by launching a second pro-
cess to perform DNS queries. This allows the normal process to
continue asynchronously or block on a pipe to the helper process
usingselect .
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8 Related work

The POSIX manpage [13] specifies thatfork replicate only the
calling thread. The manpage also mentions a proposedforkall
function that replicates all running threads in the child. However,
forkall was rejected for inclusion in the standard. The manpage
lists a number of semantic issues for bothfork and forkall that
arise in the context of the Unix API. Specifically, a kernel-level
thread system needs to deal with threads that are stuck in the ker-
nel at the time of thefork . Reports of problems with handling or
implementingfork with the proper semantics abound. Examples
can be found in the FreeBSD commit logs and various Linux fo-
rums. Details vary greatly depending on implementation details of
the operating system kernel and the thread system at hand.

The GNU adns C library [9] also provides an implementation of
asynchronous DNS lookups.

9 Conclusion

Scsh combines user-level threads and the Unix API to yield a pow-
erful tool for concurrent systems programming. The scsh API tries
to maintain an analogy between threads and processes wherever
possible. Specifically, threads see process resources as thread-
local, andfork only “forks the current thread.” The API issues
involved are not new, but they occur in new forms in the context of
Scheme 48’s user-level thread system and scsh’s support for the full
POSIX API. The solutions have led to the design of the thread-fluid
mechanism for managing thread-local dynamic bindings as well as
of thenarrow thread primitive which allows, together with nested
threads, more fine-grained control over the set of running threads.
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ABSTRACT
A Scheme letrec expression is easily converted into more
primitive constructs via a straightforward transformation
given in the Revised5 Report. This transformation, unfor-
tunately, introduces assignments that can impede the gener-
ation of efficient code. This paper presents a more judicious
transformation that preserves the semantics of the revised
report transformation and also detects invalid references and
assignments to left-hand-side variables, yet enables the com-
piler to generate efficient code. A variant of letrec that
enforces left-to-right evaluation of bindings is also presented
and shown to add virtually no overhead.

1. INTRODUCTION
Scheme’s letrec permits the definition of mutually recur-
sive procedures and, more generally, mutually recursive ob-
jects that contain procedures [2]. It is also a convenient
intermediate-language representation for internal definitions
and local modules [10]. When used for this purpose, the
values bound by letrec are often a mix of procedures and
nonprocedures.

A letrec expression has the form

(letrec ([x1 e1] ... [xn en]) body)

where each x is a variable and each e is an arbitrary ex-
pression, often but not always a lambda expression. The
Revised5 Report on Scheme [2] defines letrec via the fol-
lowing transformation into more primitive constructs.

(letrec ([x1 e1] ... [xn en]) body)
→ (let ([x1 undefined] ... [xn undefined])

(let ([t1 e1] ... [tn en])

(set! x1 t1)
...

(set! xn tn))
body)

where t1 ... tn are fresh temporaries.
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first page. To otherwise copy or redistribute requires prior specific
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Copyright 2002 Oscar Waddell, Dipanwita Sarkar, and R. Kent Dybvig.

This transformation effectively defines the meaning of letrec
operationally; a letrec expression (1) binds the variables
x1 ... xn to new locations, each holding an “undefined”
value, (2) evaluates the expressions e1 ... en in some un-
specified order, (3) assigns the variables to the resulting val-
ues, and (4) evaluates the body. The expressions e1 ... en

and body are all evaluated in an environment that contains
the bindings of the variables, allowing the values to be mu-
tually recursive.

The revised report imposes an important restriction on the
use of letrec: it must be possible to evaluate each of the
expressions e1 ... en without evaluating a reference or as-
signment to any of the variables x1 ... xn. References and
assignments to these variables may appear in the expres-
sions, but they must not be evaluated until after control has
entered the body of the letrec. We refer to this as the
“letrec restriction.” The revised report states that “it is
an error” to violate this restriction. This means that the
behavior is unspecified if the restriction is violated. While
implementations are not required to signal such errors, do-
ing so is desirable. The transformation given above does not
directly detect violations of the letrec restriction. It does,
however, imply a mechanism whereby violations can be de-
tected, i.e., a check for the undefined value can be inserted
before each reference or assignment to one of the left-hand-
side variables occurring within a right-hand side.

The revised report transformation of letrec faithfully im-
plements the semantics of letrec as described in the report,
and it permits an implementation to detect violations of the
letrec restriction. Yet, many of the assignments introduced
by the transformation are unnecessary, and the obvious error
detection mechanism inhibits copy propagation and inlining
for letrec-bound variables.

This paper presents an alternative transformation of letrec
that attempts to minimize the number of introduced assign-
ments. It enables the compiler to generate efficient code
while preserving the semantics of the revised report trans-
formation. The alternative transformation is shown to elimi-
nate most of the introduced assignments and to improve run
time dramatically. The transformation incorporates a mech-
anism for detecting all violations of the letrec restriction
that, in practice, has virtually zero overhead. The trans-
formation assumes that an earlier pass of the compiler has
recorded for each variable binding whether it has been ref-
erenced or assigned, and no other information is required.
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This paper also investigates the implementation of a variant
of letrec, which we call letrec*, that evaluates the right-
hand sides from left to right and assigns each left-hand side
immediately to the value of the right-hand side. It is often
assumed that this would result in less efficient code; how-
ever, we show that this is not the case in practice. While
there are valid software engineering reasons for leaving the
evaluation order for letrec unspecified, letrec* would be a
useful addition to the language and a reasonable intermedi-
ate representation for internal definitions, where left-to-right
evaluation is often expected anyway.

The remainder of this paper is organized as follows. Sec-
tion 2 describes our transformation in three stages, starting
with a basic version, adding an assimilation mechanism for
nested bindings, and adding valid checks for references and
assignments to left-hand-side variables. Section 3 introduces
the letrec* form and describes its implementation. Sec-
tion 4 presents an analysis of the effectiveness of the various
transformations. Section 5 describes related work. Finally,
Section 6 summarizes the paper and presents our conclu-
sions.

2. THE TRANSFORMATION
The transformation of letrec is developed in three stages.
Section 2.1 describes the basic transformation. Section 2.2
describes a more elaborate transformation that assimilates
let and letrec bindings that are nested on the right-hand
side of a letrec expression. Section 2.3 shows how to effi-
ciently detect violations of the letrec restriction.

The transformation expects that bound variables in the in-
put program are uniquely named. It also assumes that an
earlier pass of the compiler has recorded information about
references and assignments of the bound variables. In our
implementation, these conditions are met by running input
programs through the syntax-case macro expander [1]. If
this were not the case, a simple flow-insensitive pass to per-
form alpha conversion and record reference and assignment
information could be run prior to the transformation algo-
rithm.

The transformation is implemented in two passes. The first
performs the transformation proper, and the second intro-
duces the code that detects violations of the letrec restric-
tion.

2.1 Basic transformation
Each letrec expression (letrec ([x e] ...) body) in an
input program is converted as follows.

1. The expressions e ... and body are converted to pro-
duce e′ ... and body′.

2. The bindings [x e′] ... are partitioned into several
sets:
[xs es] ... simple
[xl el ] ... lambda
[xu eu] ... unreferenced
[xc ec] ... complex

3. A set of nested let and fix expressions is formed from
the partitioned bindings:

(let ([xs es] ... [xc (void)] ...)

(fix ([xl el] ...)

eu ...

(let ([xt ec] ...)

(set! xc xt)

...)

body′))
where xt ... is a set of fresh temporaries, one per xc.
The innermost let is produced only if [xc ec] ... is
nonempty. The expressions eu ... are retained for
their effects.

4. Because the bindings for unreferenced letrec-bound
variables are dropped, all assignments to unreferenced
variables are also dropped.

During the partitioning phase, a binding [x e′] is consid-
ered

simple if x is referenced but not assigned and e′ is a
simple expression;

lambda if x is referenced but not assigned and e′ is a
lambda expression;

unreferenced if no references to x appear in the pro-
gram;

complex if it does not fall into any of the other cate-
gories.

A simple expression contains no occurrences of the variables
bound by the letrec expression and must not be able to
obtain its continuation via call/cc, either directly or indi-
rectly. The former restriction is necessary because simple
expressions are placed outside the scope of the bound vari-
ables. Without the latter restriction, it would be possible to
detect the fact that the bindings are created after the evalu-
ation of a simple right-hand-side expression rather than be-
fore. To enforce the latter restriction, our implementation
simply rules out all procedure calls except those to certain
primitives (not including call/cc).

A fix expression is a variant of letrec that binds only unas-
signed variables to lambda expressions. It represents the
subset of letrec expressions that can be handled easily by
later passes of a compiler. In particular, no assignments
through external variables are necessary to implement mu-
tually recursive procedures bound by fix. Instead, the clo-
sures produced by a fix expression can be block allocated
and “wired” directly together. This leaves the fix-bound
variables unassigned for the duration, thus simplifying op-
timizations such as inlining and loop recognition. fix is
identical to the labels operator handled by Steele’s Rabbit
compiler [9] and the Y operator of Kranz’s Orbit compiler [4,
3] and Rozas’ Liar compiler [7, 8].

The output expression includes calls to void, a primitive
that evaluates to some “unspecified” value. It may be de-
fined as follows.

(define void (lambda () (if #f #f)))

We do not use a special “undefined” value; instead, we use
a different mechanism for detecting violations of the letrec

restriction, as described in Section 2.3.
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An unreferenced binding [x e′] may be dropped if e′ is sim-
ple or a lambda expression, although the code generated is
the same if a later pass eliminates such expressions when
they are used only for effect, as is the case in our compiler.

2.2 Assimilating nested binding forms
When a letrec right-hand side is a let or letrec expres-
sion, the partitioning described above treats it as complex.
For example,

(letrec ([f (letrec ([g (let ([x 5])

(lambda () ...))])

(lambda () ... g ...))])

f)

is translated into

(let ([f (void)])

(let ([ft (let ([g (void)])

(let ([gt (let ([x 5])

(lambda () ...))])

(set! g gt))

(lambda () ... g ...))])

(set! f ft))
f)

This is unfortunate, since it penalizes programmers who use
nested let and letrec expressions in this manner to express
scoping relationships more tightly.

We’d prefer a translation into the following equivalent ex-
pression.

(let ([x 5])

(fix ([f (lambda () ... g ...)]

[g (lambda () ...)])

f))

Therefore, the actual partitioning used is a bit more com-
plicated. When a binding [x e′] fits immediately into one
of the first three categories, the rules above suffice. The ex-
ception to these rules occurs when x is unassigned and e′

is a let or letrec binding, in which case the transformer
attempts to fold the nested bindings into the partitioned
sets, which leads to fewer introduced assignments and more
direct call optimizations in later passes of the compiler.

When e′ is a fix expression (fix ([xl el] ...) body), the
bindings [xl el] ... are simply added to the lambda parti-
tion and the binding [x body] is added to the set of bindings
to be partitioned.

Essentially, this transformation treats the nested bindings
as if they had originally appeared in the enclosing letrec.
For example,

(letrec ([f ef] [g (fix ([a ea]) eg)] [h eh]) body)

is treated as

(letrec ([f ef] [g eg] [a ea] [h eh]) body)

When e′ is a let expression (let ([x e] ...) body) and
the set of bindings [x e′] ... can be fully partitioned into a
set of simple bindings [xs es] ... and a set of lambda bind-
ings [xl el] ..., we add [xs es] ... to the simple parti-
tion, [xl el] ... to the lambda partition, and [x body] to
the set of bindings to be partitioned.

For example, when ea is a lambda or simple expression,

(letrec ([f ef] [g (let ([a ea]) eg)] [h eh]) body)

is treated as

(letrec ([f ef] [g eg] [a ea] [h eh]) body)

If during this process we encounter a binding [x e] where
x is unassigned and e is a let or fix expression, we simply
fold the bindings in and continue.

While Scheme allows the right-hand sides of a binding con-
struct to be evaluated in any order, the order used must not
involve (detectable) interleaving of evaluation. For possi-
bly assimilated bindings only, the definition of simple must
therefore be modified to preclude effects. Otherwise, the ef-
fects caused by the bindings and body of an assimilated let

could be separated, producing a detectable interleaving of
the assimilated let with the other expressions bound by the
outer letrec.

One situation not handled by this transformation is the fol-
lowing, in which a local binding is used to hold a counter or
other similar piece of state.

(letrec ([f (let ([n 0])

(lambda ()

(set! n (+ n 1))

n))])

body)

We are prevented from assimilating cases like this because
it may be possible to detect the separation of the creation
of the (mutable) binding for n from the evaluation of the
body of the nested let by invoking a continuation created
in another of the letrec bindings that causes the body of
the nested let to be evaluated multiple times. The separa-
tion cannot be detected in the given example, however, since
the body of the nested let is a lambda expression, and as-
similated bindings of lambda expressions are evaluated only
once.

Because it is desirable not to penalize such uses of local
state, we add an additional case to handle this situation.
When e′ is a let expression (let ([x e] ...) body) and
the set of bindings [x e] ... can be fully partitioned into
a set of simple bindings [xs es] ... and a set of lambda
bindings [xl el] ..., except that one or more of the vari-
ables xs ... is assigned, and body is a lambda expression,
we add [xs es] ... to the simple partition, [xl el] ... to
the lambda partition, and [x body] to the set of bindings
to be partitioned.

For example, when ea is a lambda or simple expression, a is
assigned, and eg is a lambda expression,

(letrec ([f ef] [g (let ([a ea]) eg)] [h eh]) body)

is treated as

(letrec ([f ef] [g eg] [a ea] [h eh]) body)

If during this process we encounter a binding [x e] where x
is unassigned and e is a let or fix expression, or if we find
that the body is a let or fix expression, we simply fold the
bindings in and continue.
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The let and fix expressions produced by recursive trans-
formation of a letrec expression can always be assimilated
if they have no complex bindings. Thus, the assimilation of
let and fix expressions in the intermediate language effec-
tively implements the assimilation of letrec expressions in
the source language.

2.3 Valid checks
According to the Revised5 Report, it must be possible to
evaluate each of the expressions e1 ... en in

(letrec ([x1 e1] ... [xn en]) body)

without evaluating a reference or assignment to any of the
variables x1 ... xn. This is the “letrec restriction” first
mentioned in Section 1.

The revised report states that “it is an error” to violate this
restriction. Implementations are not required to signal such
errors; the behavior is left unspecified. An implementation
may instead assign a meaning to the erroneous program.
Older versions of our system “corrected” erroneous programs
like the following.

(letrec ([x 1] [y (+ x 1)]) (list x y)) ⇒ (1 2)

(letrec ([y (+ x 1)] [x 1]) (list x y)) ⇒ (1 2)

We never liked this behavior, which fell out of an earlier
version of the partitioning algorithm.

We believe it is better for an implementation to detect and
report errors rather than to give meaning to technically
meaningless programs. Reporting these errors also helps
users create more portable programs. Fortunately, it turns
out that these errors can be detected with practially no over-
head, as we describe in this section.

It is possible to detect violations of the letrec restriction by
binding each left-hand-side variable initially to a special “un-
defined” value and checking for this value at each reference
and assignment to the variable within the right-hand-side
expressions. This approach introduces many more checks
than are actually necessary. More importantly, it prevents
us from performing the transformations described in Sec-
tions 2.1 and 2.2 and, as a result, may inhibit later passes
from performing various optimizations such as inlining and
copy propagation.

It is possible to analyze the right-hand sides to determine the
set of variables referenced or to perform an interprocedural
flow analysis to determine the set of variables that might
be undefined when referenced or assigned, by monitoring
the flow of the undefined values. With this information, we
could perform the transformations described in Sections 2.1
and 2.2 for all but those variables that might be undefined
when referenced or assigned.

We use a different approach that never inhibits our transfor-
mations and thus does not inhibit optimization of letrec-
bound variables merely because they may be undefined when
referenced or assigned. Our approach is based on two ob-
servations: (1) a separate boolean variable may be used to
indicate the validity of a letrec variable, and (2) we need
just one such variable per letrec; if evaluating a reference
or assignment to one of the left-hand-side variables is in-

valid at a given point, evaluating a reference or assignment
to any of those variables is invalid. With a separate valid
flag, the transformation algorithm can do as it pleases with
the original bindings.

This flag is introduced as a binding of a fresh variable,
valid?, wrapped around the code that evaluates the un-
referenced and complex expressions. If a letrec has no
unreferenced or complex bindings, no valid flag need be in-
troduced. This flag is checked at each point where a valid
check is deemed to be necessary. It is set initially to false,
meaning that references to left-hand-side expressions are not
allowed, and changed to true once control enters the body
of the letrec.

(let ([xs es] ... [xc (void)] ...)

(fix ([xl el] ...)

(let ([valid? #f])

eu ...

(let ([xt ec] ...)

(set! xc xt)

...)

(set! valid? #t))

body′))

In a naive implementation, valid checks would be inserted at
each reference and assignment to one of the left-hand-side
variables within the unreferenced and complex expressions.
A valid check simply tests valid? and signals an error if
valid? is false. For each valid check for a variable x, the
valid check appears as follows.

(unless valid? (error ’x "undefined"))

No checks need to be inserted in the body of the letrec,
since the bindings are necessarily valid once control enters
the body. No checks are required within the right-hand sides
of lambda bindings, since control cannot enter the body of
one of these lambdas except by way of a reference to the cor-
responding left-hand-side variable. Simple bindings contain
no references to the left-hand-side variables.

We can do even better than to limit the valid checks to
the right-hand sides of unreferenced and complex bindings.
To do so, we introduce the notion of protected and unpro-
tected references. A reference (or assignment) to a variable
is protected if it is contained within a lambda expression
that cannot be evaluated and invoked during the evaluation
of an expression. Otherwise, it is unprotected.

Valid checks are introduced during a second pass of the
transformation algorithm. This pass uses a simple top-down
recursive descent algorithm. While processing the unrefer-
enced and complex right-hand sides of a letrec, the left-
hand-side variables of the letrec are considered to be in
one of three states: protected, protectable, or unprotected. A
variable is protectable if references and assignments found
within a lambda expression are safe, i.e., if the lambda ex-
pression cannot be evaluated and invoked before control en-
ters the body of the letrec. Each variable starts out in
the protectable state when processing of the right-hand-side
expression begins.

Upon entry into a lambda expression, all protectable vari-
ables are moved into the protected state, since they can-
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not possibly require valid checks. Upon entry into an un-
safe context, i.e., one that might result in the evaluation
and invocation of a lambda expression, the protectable vari-
ables are moved into the unprotected state. This occurs,
for example, while processing the arguments to an unknown
procedure, since that procedure might invoke the procedure
resulting from a lambda expression appearing in one of the
arguments.

For each variable reference and assignment, a valid check is
inserted for the protectable and unprotected variables but
not for the protected variables.

This handles well situations such as

(letrec ([x 0]

[f (cons (lambda () x)

(lambda (v) (set! x v)))])

body)

in which f is a sort of locative [6] for x. Since cons does
not invoke its arguments, the references appearing within
the lambda expressions are protected.

It doesn’t handle situations such as the following.

(letrec ([x 0]

[f (let ([g (lambda () x)])

(lambda () (g)))])

body)

In general, we must treat the right-hand side of a let expres-
sion as unsafe, since the left-hand-side variable may be used
to invoke procedures created by the right-hand-side expres-
sion. In this case, however, the body of the let is a lambda

expression, so there is no problem. To handle this situation,
we also record for each let- and fix-bound variable whether
it is protectable or unprotected and treat the corresponding
right-hand side as an unsafe or safe context depending upon
whether the variable is referenced or not. For fix this in-
volves a sort of demand-driven processing, starting with the
body of the fix and proceeding with the processing of any
unsafe right-hand sides.

The original letrec expressions no longer exist by the time
the second pass runs, so the first pass must leave behind suf-
ficient information to allow the second pass to know which
are the original letrec-bound variables and which expres-
sions may require the insertion of valid checks. The actual
output of the first pass is therefore as follows

(let ([xs es] ... [xc (void)] ...)

(fix ([xl el] ...)

(bind-valid-flag (x ...)

eu ...

(let ([xt ec] ...)

(valid-set! xc xt)

...))

body′))

where x ... is the original list of letrec-bound variables.
The bind-valid-flag expression expands into a let expres-
sion binding the variable valid? if any valid checks were in-
serted, otherwise it expands into the code in its body. It also
inserts the assignment to set the valid flag true at the end
of its body if the valid flag is introduced. The valid-set!

expression is used in place of set! for the introduced as-
signments to the complex variables; this tells the second
pass that this is already known to be valid so that no valid
check is inserted for the assignment.

3. FIXED EVALUATION ORDER
The Revised5 Report translation of letrec is designed so
that the right-hand-side expressions are all evaluated be-
fore the assignments to the left-hand-side variables are per-
formed. The transformation for letrec described in the
preceding section loosens this structure, but in such a man-
ner that cannot be detected, because an error is signaled
for any program that prematurely references one of the left-
hand-side variables and because the lifted bindings are im-
mutable and cannot be (detectably) reset by a continuation
invocation.

From a software engineering perspective, the unspecified or-
der of evaluation is valuable because it allows the program-
mer to express lack of concern for the order of evaluation.
That is, when the order of evaluation of two expressions is
unspecified, the programmer is, in effect, saying that neither
counts on the other being done first. From an implementa-
tion standpoint, the freedom to determine evaluation order
may allow the compiler to generate more efficient code.

It is sometimes convenient, however, for the values of a set
of letrec bindings to be established in a particular order.
This seems to occur most often in the translation of inter-
nal definitions into letrec. For example, one might wish
to define a procedure and use it to produce the value of a
variable defined further down in a sequence of definitions.

(define f (lambda ...))

(define a (f ...))

One can nest binding contours to order bindings, but this
is often inconvenient and prevents the sequenced bindings
from being mutually recursive. It is therefore interesting to
consider a variant of letrec that performs its bindings in
a left-to-right fashion. Scheme provides a variant of let,
called let*, that sequences evaluation of let bindings; we
therefore call our version of letrec that sequences letrec

bindings letrec*. The analogy to let* is imperfect, since
let* also nests scopes whereas letrec* maintains the mu-
tual recursive scoping of letrec.

letrec* can be transformed into more primitive constructs
in a manner similar to letrec using a variant of the Revised5

Report transformation of letrec.

(letrec* ([x1 e1] ... [xn en]) body)
→ (let ([x1 undefined] ... [xn undefined])

(set! x1 e1)

...

(set! xn en)

body)

This transformation is actually simpler, in that it does not
include the inner let binding a set of temporaries to the
right-hand-side expressions. This transformation would be
incorrect for letrec, since the assignments are not all in the
continuation of each right-hand-side expression, as in the
revised report transformation. Thus, call/cc could be used
to expose the difference between the two transformations.
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The basic transformation given in Section 2.1 is also easily
modified to implement the semantics of letrec*. As before,
the expressions e ... and body are converted to produce
e′ ... and body′, and the bindings are partitioned into sim-
ple, lambda, unreferenced, and complex sets. The difference
comes in the structure of the output code. If there are no
unreferenced bindings, the output is as follows

(let ([xs es] ... [xc (void)] ...)

(fix ([xl el] ...)

(set! xc ec)

...

body′))

where the assignments to xc are ordered as the bindings
appeared in the original input.

If there are unreferenced bindings, the right-hand sides of
these bindings are retained, for effect only, among the as-
signments to the complex variables in the appropriate order.

The more elaborate partitioning of letrec expressions to
implement assimilation of nested bindings as described in
Section 2.2 is compatible with the transformation above, so
the implementation of letrec* does not inhibit assimilation.

On the other hand, a substantial change to the introduction
of valid flags is necessary to handle the different semantics of
letrec*. This change is to introduce one valid flag for each
unreferenced and complex right-hand side, in contrast to one
per letrec expression. The valid flag for a given expression
represents the validity of references and assignments to the
corresponding variable and all subsequent variables bound
by the letrec. This may result in the introduction of more
valid flags but should not result in the introduction of any
additional valid checks. Due to the nature of letrec*, in
fact, there will likely be fewer valid checks and possibly fewer
actual valid-flag bindings.

As with letrec, the first pass of the transformation algo-
rithm inserts bind-valid-flag expressions to tell the sec-
ond pass where to insert valid flags and checks. If there are
no unreferenced bindings, the output is as follows

(let ([xs es] ... [xc (void)] ...)

(fix ([xl el] ...)

(set! xc

(bind-valid-flag (xc+ ...)

ec))

...

body′))

where xc+ ... represents the sublist of original left-hand-
side variables from xc on. If there are unreferenced bindings,
the right-hand sides are inserted into the code in the proper
sequence, each wrapped in a bind-valid-flag expression
that lists all variables from the next referenced variable on.

The second pass operates as before: no changes are needed
to support letrec*.

4. RESULTS
We have implemented the complete algorithm described in
Section 2 and incorporated it as two new passes in the Chez
Scheme compiler. The first pass performs the transforma-

tions described in Sections 2.1 and 2.2, and the second pass
inserts the valid checks described in Section 2.3. We have
also added a letrec* form that guarantees left-to-right eval-
uation as described in Section 3 and a compile-time param-
eter that allows internal definitions (including those within
modules) to be expanded into letrec* rather than letrec.

We measured the performance of the benchmark programs
using several transformations:

• the standard Revised5 Report (R5RS) transformation;

• a modified R5RS transformation (which we call “easy”)
that treats “pure” (lambda only) letrec expressions as
fix expressions and reverts to the standard transfor-
mation for the others;

• versions of R5RS and “easy” with naive valid checks;

• our transformation with and without assimilation and
with and without valid checks; and

• our transformation with assimilation and valid checks,
treating all letrec expressions as letrec* expressions.

Not surprisingly, the benchmark programs still run in the
system that treats letrec as letrec*, since none contain
code that detects the failure of that system to be faithful to
the Revised5 Report transformation. (Some of the tests in
our test suite did fail, but only because they were there to
keep our compiler honest in this regard.)

We compare these systems along several dimensions: run
time, compile time, code size, number of introduced as-
signments, number of valid checks, and numbers of bind-
ings classified as lambda, complex, simple, and unreferenced.
Run times were determined by averaging three runs for each
benchmark; programs were configured so that each run re-
quired at least two seconds. Code size was determined by
recording the size of the actual code objects written to com-
piled files. Compile times were recorded for a single com-
pilation of each benchmark, with the exception of the com-
piler bootstrapping benchmark (chezscheme), where three
such runs were averaged. With the exception of chezscheme,
similix, and texer, each benchmark was placed within a
module form, converting top-level definitions to internal def-
initions. A few programs that relied on left-to-right evalu-
ation of top-level definitions were edited so that they could
run successfully in all of the systems.

The results are given in Tables 1–4. Programs in these tables
are listed in sorted order, with larger programs (in terms of
object code) after smaller ones. The run-time results show
that the transformation is successful in reducing run-time
overhead in many cases and never increases overhead, even
with valid checks enabled. Using the “easy” transforma-
tion to catch pure letrec expressions is also effective, but
our transformation is even more effective, with noticible im-
provements on several benchmarks, including lattice-jw,
ray, maze, and conform.

Using our algorithm, run times are almost identical with or
without valid checks, so strict enforcement of the letrec
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restriction is achieved with practically no overhead. Most
of the benchmarks require no valid flags and few require a
substantial number of valid checks. In contrast, naive valid
checks significantly reduce the performance of the R5RS and
“easy” transformations in some cases.

For our compiler, the most substantial program in our test
suite, assimilating nested bindings allows the transformation
to decrease the number of introduced assignments by 17%.
Moreover, this allows the transformation to eliminate all of
the valid checks that would otherwise be inserted. Assimila-
tion of nested bindings does not seem to benefit run times,
however. This is somewhat disappointing, but may simply
indicate that few of the benchmarks try to express scoping
relationships more tightly, perhaps even because of a fear
that the resulting code would not be as efficient. We believe
it is an important optimization, nevertheless, as one of many
“bullets in [the compiler’s] gun” [5] that are not generally
applicable but are very useful in certain circumstances.

Compile time increases are modest for our algorithm, with or
without valid checks and assimilation. In many cases, the
compile times are less, even though more effort is clearly
expended in the new passes than is required to do the R5RS
transformation. This is because our transformation enables
more optimizations by later passes, leading to smaller code
and an overall reduction in compile times.

The numbers for letrec* indicate that there is no overhead
in practice for fixing the order of evaluation, even though
our compiler reorders expressions when possible to improve
the generated code. This is likely due in part to the rela-
tively few cases where our translation of letrec* actually
introduces constraints on the evaluation order. In addition,
almost no valid flags and checks are required for letrec*.
So while the implementation of letrec* may require more
valid flags in principle, it requires fewer in practice, since
the fixed evaluation order eliminates the need for most valid
checks and the flags used to support them.

As shown in Table 1, the “easy” algorithm, which is attrac-
tive for its simplicity, often introduces many more assign-
ments than are necessary, since not all letrec bindings are
lambda expressions. Naively enforcing the letrec restric-
tion also introduces far more valid checks than necessary,
even when pure letrec expressions are recognized.

Our algorithm identifies “simple” bindings in many of the
benchmarks and avoids introducing assignments for these.
Moreover, it avoids introducing assignments for pure lambda
bindings that happen to be bound by the same letrec that
binds a simple binding. In several cases, assimilating nested
let and letrec bindings allows the algorithm to assign more
of the bindings to the lambda or simple partitions.

5. RELATED WORK
Much has been written about generating efficient code for
ideal recursive binding forms, like our fix construct or the
Y combinator, that bind only lambda expressions. Yet virtu-
ally nothing has been written explaining how to cope with
the reality of arbitrary letrec expressions, e.g., by trans-
forming them into one of these ideal forms. Moreover, noth-
ing has been written describing efficient strategies for de-

tecting violations of the “letrec restriction.”

Steele [9] developed strategies for generating good code for
mutually recursive procedures bound by a labels form that
is essentially our fix construct. Because labels forms are
present in the input language handled by his compiler, he
does not describe the translation of general letrec expres-
sions into labels.

Kranz [4, 3] also describes techniques for generating effi-
cient code for mutually recursive procedures expressed in
terms of the Y operator. He describes a macro transforma-
tion of letrec that introduces assignments for any right-
hand side that is not a lambda expression and uses Y to
handle those that are lambda expressions. This transforma-
tion introduces unnecessary assignments for bindings that
our algorithm would deem simple. His transformation does
not attempt to assimilate nested binding constructs. The Y

operator is a primitive construct recognized by his compiler,
much as fix is recognized by our compiler.

Rozas [7, 8] shows how to generate good code for mutu-
ally recursive procedures expressed in terms of Y without
recognizing Y as a primitive construct, that is, with Y it-
self expressed at the source level. He does not discuss the
process of converting letrec into this form.

6. CONCLUSION
We have presented an algorithm for transforming letrec ex-
pressions into a form that enables the generation of efficient
code while preserving the semantics of the letrec transfor-
mation given in the Revised5 Report on Scheme [2]. The
transformation avoids many of the assignments produced
by the Revised5 Report transformation by converting many
of the letrec bindings into simple let bindings or into a
“pure” form of letrec, called fix, that binds only unas-
signed variables to lambda expressions. fix expressions are
the basis for several optimizations, including block alloca-
tion and internal wiring of closures. We have shown the al-
gorithm to be effective at reducing the number of introduced
assignments and improving run time with little compile-time
overhead.

The algorithm also inserts “valid checks” to implement the
letrec restriction that no reference or assignment to a left-
hand-side variable can be evaluated in the process of evaluat-
ing the right-hand-side expressions. It inserts few checks in
practice and adds practically no overhead to the evaluation
of programs that use letrec. More importantly, it does not
inhibit the optimizations performed by subsequent passes.
Most Scheme implementations currently omit such checks,
but this paper shows that the checks can be performed even
in compilers that are geared toward high-performance ap-
plications.

We have also introduced a variant of letrec, called letrec*,
that establishes the values of each variable in sequence from
left-to-right. letrec* may be implemented with a small
modification to the algorithm for implementing letrec. We
have shown that, in practice, our implementation of letrec*
is as efficient as letrec, even though later passes of our com-
piler take advantage of the ability to reorder right-hand-side
expressions. This is presumably due to the relatively few
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cases where our translation of letrec* actually introduces
constraints on the evaluation order, but in any case, debunks
the commonly held notion that fixing the order of evaluation
hampers production of efficient code for letrec.

While treating letrec expressions as letrec* clearly vio-
lates the Revised5 Report semantics for letrec, we wonder
if future versions of the standard shouldn’t require that in-
ternal definitions be treated as letrec* rather than letrec.
Left-to-right evaluation order of definitions is often what
programmers expect and would make the semantics of in-
ternal definitions more consistent with external definitions.
We have shown that there would be no significant perfor-
mance penalty for this in practice.
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# bindings in each partition
Introduced assignments Valid checks easy A N

R5RS easy A N S R5RS easy A N S λ c λ c s u λ c s u
fxtak 2 – – – – 5 – – – – 2 – 2 – – – 2 – – –
tak 2 – – – – 5 – – – – 2 – 2 – – – 2 – – –
div-iter 10 – – – – 14 – – – – 10 – 9 – – 1 9 – – 1
cpstak 3 – – – – 5 – – – – 3 – 3 – – – 3 – – –
takl 7 3 3 3 3 8 – – – – 4 3 4 3 – – 4 3 – –
ctak 3 – – – – 6 – – – – 3 – 3 – – – 3 – – –
mbrot 8 – – – – 7 – – – – 8 – 8 – – – 8 – – –
deriv 4 – – – – 8 – – – – 4 – 4 – – – 4 – – –
destruct 9 – – – – 8 – – – – 9 – 9 – – – 9 – – –
fxtriang 13 7 4 4 4 6 – – – – 6 7 6 4 3 – 6 4 3 –
fft-f 8 – – – – 7 – – – – 8 – 8 – – – 8 – – –
fft-d 11 – – – – 12 – – – – 11 – 11 – – – 11 – – –
dderiv 8 – – – – 4 – – – – 8 – 8 – – – 8 – – –
triang 13 7 4 4 4 6 – – – – 6 7 6 4 3 – 6 4 3 –
lattice 22 14 – 1 – 37 29 – – – 8 14 21 – 2 – 19 1 2 –
boyer 25 23 2 2 2 50 48 – – – 2 23 22 2 – 1 22 2 – 1
boyer-jw 23 22 4 4 4 67 66 – – – 1 22 19 4 – – 19 4 – –
browse 20 8 1 1 1 33 21 – – – 12 8 19 1 – – 19 1 – –
traverse 47 38 5 5 5 69 60 – – – 9 38 39 5 – 3 39 5 – 3
lattice-jw 22 10 – 1 – 33 19 – – – 12 10 23 – – – 21 1 – –
fft-g 11 4 – – – 9 2 – – – 7 4 8 – 3 – 8 – 3 –
ray 34 27 2 2 2 92 84 – – – 7 27 32 2 – – 32 2 – –
fxpuzzle 34 11 11 11 11 20 – – – – 23 11 22 11 – 1 22 11 – 1
graphs 32 – – – – 38 – – – – 32 – 28 – – 4 28 – – 4
tcheck 35 32 3 3 3 84 79 – – – 3 32 22 3 12 – 22 3 10 –
simplex 32 1 – – – 67 – – – – 31 1 31 – 1 – 31 – 1 –
graphs-jw 20 – – – – 24 – – – – 20 – 20 – – – 20 – – –
maze 83 62 1 1 1 183 161 – – – 21 62 68 1 3 11 68 1 3 11
maze-jw 85 – – – – 37 – – – – 85 – 74 – – 11 74 – – 11
puzzle 34 11 11 11 11 20 – – – – 23 11 22 11 – 1 22 11 – 1
earley 75 – – – – 117 – – – – 75 – 73 – – 2 73 – – 2
splay 13 – – – – 17 – – – – 13 – 13 – – – 13 – – –
matrix 49 26 – 2 – 64 34 – – – 23 26 49 – – 2 45 2 – 2
conform 104 82 5 5 5 261 240 – – – 22 82 91 5 5 3 91 5 5 3
matrix-jw 37 10 – 1 – 50 14 – – – 27 10 38 – – – 36 1 – –
peval 55 41 3 3 3 175 134 – – – 14 41 44 3 8 – 44 3 8 –
nucleic-sorted 265 236 2 2 2 7 2 – – – 29 236 124 2 60 79 124 2 60 79
nucleic-star 265 260 5 5 5 743 738 – – – 5 260 124 5 57 79 124 5 57 79
fxtakr 101 – – – – 401 – – – – 101 – 101 – – – 101 – – –
em-imp 103 47 1 1 1 204 148 – – – 56 47 94 1 7 1 94 1 7 1
nucleic-jw 48 34 5 5 5 173 160 80 80 – 14 34 38 5 4 1 38 5 4 1
em-fun 102 62 1 1 1 264 224 – – – 40 62 94 1 7 – 94 1 7 –
lalr 349 292 3 6 3 303 245 – – – 57 292 186 3 16 163 166 6 15 163
takr 101 – – – – 401 – – – – 101 – 101 – – – 101 – – –
nbody 58 6 – – – 79 – – – – 52 6 56 – 2 – 56 – 2 –
interpret 122 110 1 1 1 267 251 – – – 12 110 119 1 2 – 119 1 2 –
dynamic 201 187 2 2 2 561 548 – – – 14 187 144 2 41 14 144 2 41 14
texer 146 80 13 18 13 592 497 – – – 66 80 132 13 7 – 126 18 2 –
similix 527 141 – 1 – 1705 322 – – – 386 141 484 – 36 8 483 1 35 8
ddd 1161 550 14 45 14 3063 2164 2 2 2 611 550 1182 14 10 124 982 45 10 124
softscheme 1049 865 132 134 132 3382 2793 – 8 – 184 865 858 132 47 147 798 134 43 147
chezscheme 2411 1289 140 169 140 6051 4339 – 18 – 1122 1289 2137 140 110 114 2039 169 89 114

Table 1: Number of introduced assignments and valid checks for the straightforward R5RS transformation, the
modified R5RS transformation (easy) described in Section 4, and for the Assimilating (A), Non-assimilating
(N), and Sequential letrec* (S) variants of our transformation. Also shown are the number of bindings in the
lambda (λ), complex (c), simple (s), and unreferenced (u), partitions for the modified R5RS transformation
and for our transformation with and without assimilation. (All bindings are complex in standard R5RS
transformation.) Since assimilation incorporates both nested let and letrec bindings, the total number of
bindings may be greater when assimilation is enabled.
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R5RS R5RS easy A N A N S
Checks: no naive no naive yes yes no no yes

fxtak 1.00 1.16 .81 .81 .81 .81 .81 .81 .81
tak 1.00 1.12 .87 .87 .87 .87 .87 .87 .87
div-iter 1.00 1.05 .93 .93 .93 .93 .93 .93 .93
cpstak 1.00 1.03 .85 .85 .85 .85 .85 .85 .85
takl 1.00 1.23 .71 .71 .71 .71 .71 .71 .71
ctak 1.00 1.02 .89 .89 .89 .89 .89 .89 .89
mbrot 1.00 1.01 .99 .99 .98 .99 .99 .98 .99
deriv 1.00 1.02 .97 .97 .96 .96 .96 .96 .96
destruct 1.00 1.05 .81 .82 .81 .81 .81 .81 .81
fxtriang 1.00 1.15 .87 .87 .81 .80 .80 .80 .81
fft-f 1.00 1.01 .91 .91 .91 .91 .91 .91 .91
fft-d 1.00 1.00 .99 .99 .99 .99 .99 .99 .99
dderiv 1.00 1.03 .94 .94 .94 .94 .94 .94 .94
triang 1.00 1.11 .90 .91 .85 .85 .85 .85 .85
lattice 1.00 1.04 .53 .54 .52 .53 .52 .53 .52
boyer 1.00 1.13 .88 .92 .86 .86 .86 .86 .86
boyer-jw 1.00 1.18 1.00 1.18 .96 .96 .96 .96 .96
browse 1.00 1.01 .97 .97 .94 .94 .94 .94 .94
traverse 1.00 1.10 1.05 1.09 .97 .97 .97 .97 .97
lattice-jw 1.00 1.04 .80 .84 .28 .28 .28 .28 .28
fft-g 1.00 1.01 .88 .89 .88 .88 .88 .88 .88
ray 1.00 1.09 .99 1.06 .76 .75 .75 .75 .76
fxpuzzle 1.00 1.15 .76 .76 .77 .77 .77 .77 .77
graphs 1.00 1.00 .39 .60 .39 .39 .39 .39 .39
tcheck 1.00 1.01 .99 1.00 .96 .96 .96 .96 .96
simplex 1.00 1.06 .55 .56 .54 .54 .54 .54 .54
graphs-jw 1.00 1.01 .54 .54 .54 .54 .54 .54 .54
maze 1.00 1.12 .79 .83 .55 .55 .55 .55 .55
maze-jw 1.00 1.03 .70 .70 .70 .70 .70 .70 .70
puzzle 1.00 1.10 .89 .88 .88 .88 .88 .88 .88
earley 1.00 1.03 .73 .73 .73 .73 .73 .73 .73
splay 1.00 1.00 .77 .77 .77 .77 .77 .77 .77
matrix 1.00 .99 .62 .63 .59 .59 .59 .59 .59
conform 1.00 1.13 .92 1.09 .38 .38 .38 .38 .38
matrix-jw 1.00 1.01 .68 .68 .60 .60 .60 .60 .60
peval 1.00 1.08 .93 .98 .78 .78 .78 .78 .78
nucleic-sorted 1.00 .99 .98 .99 .74 .74 .74 .74 .74
nucleic-star 1.00 1.08 1.00 1.09 .76 .76 .76 .76 .76
fxtakr 1.00 1.56 .72 .73 .73 .73 .72 .73 .73
em-imp 1.00 1.05 .75 .77 .66 .66 .66 .66 .66
nucleic-jw 1.00 1.00 1.00 1.00 .99 .98 .98 .98 .99
em-fun 1.00 1.04 .77 .81 .69 .69 .69 .69 .69
lalr 1.00 1.03 .89 .90 .82 .81 .82 .81 .82
takr 1.00 1.17 .56 .56 .56 .56 .56 .56 .56
nbody 1.00 1.01 .72 .72 .66 .66 .66 .66 .66
interpret 1.00 1.20 1.02 1.00 .90 .90 .91 .91 .90
dynamic 1.00 1.01 .97 1.01 .93 .93 .93 .93 .93
texer 1.00 .91 .55 .58 .53 .53 .53 .53 .53
similix 1.00 1.02 1.00 1.01 .97 .97 .96 .96 .96
ddd 1.00 1.03 1.00 .99 .97 .96 .97 .96 .98
softscheme 1.00 1.17 .96 1.14 .79 .79 .79 .80 .79
chezscheme 1.00 1.10 .75 .84 .65 .66 .66 .65 .65

Table 2: Run time of the code produced by the various algorithms, normalized to the R5RS baseline.
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R5RS R5RS easy A N A N S
Checks: no naive no naive yes yes no no yes

fxtak 1.00 1.30 .90 .90 .90 .90 .90 .90 .90
tak 1.00 1.24 .91 .91 .91 .91 .91 .91 .91
div-iter 1.00 1.21 .47 .55 .47 .47 .47 .47 .47
cpstak 1.00 1.18 .93 .75 .93 .93 .93 .93 .93
takl 1.00 1.24 .83 .83 .83 .83 .83 .83 .83
ctak 1.00 1.19 .95 .95 .95 .95 .95 .95 .95
mbrot 1.00 1.15 .72 .80 .72 .72 .72 .72 .72
deriv 1.00 1.19 .96 .96 .96 .96 .96 .96 .96
destruct 1.00 1.12 .68 .74 .68 .68 .68 .68 .68
fxtriang 1.00 1.10 .84 .86 .77 .77 .77 .77 .77
fft-f 1.00 1.11 .69 .73 .69 .69 .69 .69 .69
fft-d 1.00 1.17 .82 .84 .82 .82 .82 .82 .82
dderiv 1.00 1.07 1.15 1.15 1.15 1.15 1.15 1.15 1.15
triang 1.00 1.08 .88 .90 .83 .83 .83 .83 .83
lattice 1.00 1.29 .94 1.20 .61 .64 .61 .64 .61
boyer 1.00 1.39 .99 1.37 .63 .63 .63 .63 .63
boyer-jw 1.00 1.52 1.00 1.52 .76 .76 .76 .76 .76
browse 1.00 1.24 .91 1.07 .76 .76 .76 .76 .76
traverse 1.00 1.35 .99 1.22 .57 .57 .57 .57 .57
lattice-jw 1.00 1.21 .92 1.06 .73 .76 .73 .76 .73
fft-g 1.00 1.07 1.05 1.08 .98 .98 .98 .98 .98
ray 1.00 1.40 .97 1.29 .54 .54 .54 .54 .54
fxpuzzle 1.00 1.13 .74 .76 .74 .74 .74 .74 .74
graphs 1.00 1.17 .72 .83 .72 .72 .72 .72 .72
tcheck 1.00 1.43 .98 1.38 .77 .77 .77 .77 .77
simplex 1.00 1.27 .60 .65 .59 .59 .59 .59 .59
graphs-jw 1.00 1.10 .71 .71 .71 .71 .71 .71 .71
maze 1.00 1.46 .94 1.29 .46 .46 .46 .46 .46
maze-jw 1.00 1.10 .46 .46 .46 .46 .46 .46 .46
puzzle 1.00 1.09 .87 .88 .87 .87 .87 .87 .87
earley 1.00 1.28 .49 .52 .49 .49 .49 .49 .49
splay 1.00 1.08 .86 .86 .86 .86 .86 .86 .86
matrix 1.00 1.18 .91 1.01 .67 .71 .67 .71 .67
conform 1.00 1.49 .94 1.41 .51 .51 .51 .51 .51
matrix-jw 1.00 1.15 .88 .92 .80 .80 .80 .80 .80
peval 1.00 1.40 .95 1.26 .76 .76 .76 .76 .76
nucleic-sorted 1.00 1.01 .96 .97 .39 .39 .39 .39 .39
nucleic-star 1.00 1.56 .99 1.55 .40 .40 .40 .40 .40
fxtakr 1.00 1.54 .59 .59 .59 .59 .59 .59 .59
em-imp 1.00 1.25 .93 1.07 .66 .66 .66 .66 .66
nucleic-jw 1.00 1.32 .95 1.25 .90 .90 .64 .64 .64
em-fun 1.00 1.33 .99 1.24 .68 .68 .68 .68 .68
lalr 1.00 1.18 .92 1.06 .53 .54 .53 .54 .53
takr 1.00 1.38 .72 .72 .72 .72 .72 .72 .72
nbody 1.00 1.10 1.01 1.01 .98 .98 .98 .98 .98
interpret 1.00 1.30 .99 1.27 1.09 1.09 1.09 1.09 1.09
dynamic 1.00 1.34 1.02 1.36 1.16 1.16 1.16 1.16 1.16
texer 1.00 1.28 .94 1.16 .93 .93 .93 .93 .93
similix 1.00 1.19 .94 .98 .91 .91 .91 .91 .91
ddd 1.00 1.21 .93 1.08 .81 .87 .78 .87 .81
softscheme 1.00 1.23 .98 1.18 .87 .89 .87 .88 .87
chezscheme 1.00 1.18 .98 1.11 .96 .97 .96 .97 .96

Table 3: Size of the object code produced by the various algorithms, normalized to the R5RS baseline.
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R5RS R5RS easy A N A N S
Checks: no naive no naive yes yes no no yes

fxtak 1.00 1.00 .50 1.00 .50 .50 1.00 .50 .50
tak 1.00 .50 .50 1.00 .50 .50 .50 1.00 .50
div-iter 1.00 .50 1.00 .50 1.00 .50 .50 .50 .50
cpstak 1.00 1.00 1.00 1.00 .50 1.00 1.00 .50 1.00
takl 1.00 1.00 .50 1.00 1.00 1.00 .50 .50 1.00
ctak 1.00 .50 .50 1.00 .50 .50 1.00 .50 1.00
mbrot 1.00 1.00 1.00 .67 .67 1.00 .67 1.00 1.00
deriv 1.00 1.00 1.00 1.00 1.00 1.00 .50 .50 1.00
destruct 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
fxtriang 1.00 1.00 1.00 1.50 1.50 1.00 1.00 .50 1.00
fft-f 1.00 .75 .75 .75 .75 .75 .75 .75 .75
fft-d 1.00 1.00 1.00 1.00 1.00 1.00 .50 1.00 1.00
dderiv 1.00 2.00 2.00 2.00 2.00 1.00 1.00 2.00 1.00
triang 1.00 1.50 1.50 1.00 .50 1.00 1.00 1.00 1.50
lattice 1.00 1.33 1.00 1.00 .67 1.00 1.00 1.00 1.00
boyer 1.00 1.25 1.00 1.00 1.00 .50 .75 .50 .50
boyer-jw 1.00 1.67 1.00 1.67 1.33 1.33 .67 .67 1.33
browse 1.00 1.33 .67 1.00 .67 1.00 1.00 .67 1.00
traverse 1.00 1.25 1.00 1.25 .75 .75 .75 .50 .75
lattice-jw 1.00 .75 1.00 .75 1.00 1.00 1.00 1.00 1.00
fft-g 1.00 1.00 1.50 1.50 1.50 1.00 1.50 1.50 1.00
ray 1.00 1.17 1.00 .83 .67 .83 .83 .83 .83
fxpuzzle 1.00 1.33 1.33 1.33 1.33 1.33 1.00 1.33 1.33
graphs 1.00 1.00 1.00 .80 1.00 1.00 .80 1.00 1.00
tcheck 1.00 1.50 1.00 1.25 1.00 1.00 1.00 1.25 1.25
simplex 1.00 1.14 .86 1.00 1.00 .86 .86 .86 .86
graphs-jw 1.00 .83 .83 .83 .83 .83 .83 .83 .67
maze 1.00 1.56 1.11 1.33 .89 .89 .89 .89 .89
maze-jw 1.00 .90 .70 .60 .60 .80 .80 .80 .80
puzzle 1.00 1.67 1.33 1.67 1.67 1.67 1.33 1.67 1.33
earley 1.00 1.40 .90 1.00 .90 1.00 .80 .90 1.00
splay 1.00 1.29 1.00 1.14 1.14 1.14 1.00 1.00 1.14
matrix 1.00 1.14 .86 1.14 .86 .86 1.00 1.00 .86
conform 1.00 1.36 .91 1.36 .73 .73 .73 .73 .73
matrix-jw 1.00 1.17 1.17 1.17 1.17 1.17 1.17 .83 1.17
peval 1.00 1.36 1.00 1.36 1.09 1.00 1.09 1.09 1.09
nucleic-sorted 1.00 1.00 1.03 1.07 .77 .77 .77 .77 .73
nucleic-star 1.00 1.41 1.00 1.38 .76 .76 .79 .76 .79
fxtakr 1.00 1.91 1.45 1.45 1.45 1.45 1.45 1.45 1.45
em-imp 1.00 1.25 1.00 1.12 .88 .88 .81 .75 .75
nucleic-jw 1.00 1.09 .95 .95 .95 .95 .91 .91 .82
em-fun 1.00 1.25 1.00 1.25 .88 .88 .88 .81 .88
lalr 1.00 1.11 1.00 1.14 .86 .89 .86 .89 .86
takr 1.00 1.29 1.06 1.06 1.06 1.06 1.06 1.06 1.06
nbody 1.00 1.06 1.00 1.06 1.12 1.12 1.12 1.00 1.06
interpret 1.00 1.17 .96 1.12 1.08 1.00 1.08 1.08 1.00
dynamic 1.00 1.32 1.05 1.32 1.29 1.29 1.16 1.13 1.26
texer 1.00 1.24 1.02 1.16 1.07 1.07 1.02 1.02 1.09
similix 1.00 1.16 1.01 1.04 .98 1.03 .98 .97 .98
ddd 1.00 1.19 .97 1.14 .91 .98 .87 .97 .91
softscheme 1.00 1.30 .99 1.27 1.01 1.02 .96 .96 1.01
chezscheme 1.00 1.17 1.01 1.16 1.10 1.10 1.09 1.08 1.10

Table 4: Total compile times, normalized to the R5RS baseline. The coarse granularity of the timing mech-
anism gives us poor differentiation among many of the times, since compile times for most of the programs
are very small.
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ABSTRACT
We present a systematic construction of a variadic
applicative-order multiple fixed-point combinator in
Scheme. The resulting Scheme procedure is a variadic ex-
tension of the n-ary version of Curry’s fixed-point combi-
nator. It can be used to create mutually-recursive proce-
dures, and expand arbitrary letrec-expressions.

Keywords: Fixed points, fixed-point combinators, applica-
tive order, lambda-calculus, Scheme, variadic functions

1. INTRODUCTION
Since the early days of Scheme programming, defin-
ing and using various fixed-point combinators have been
classical programming exercises (for example, Struc-
ture and Interpretation of Computer Programs [1, Sec-
tion 4.1.7, Page 393], and The Little LISPer [6, Chap-
ter 9, Page 171]): Fixed-point combinators are used to
replace recursion and circularity in procedures and data
structures, with self application.

Replacing mutual recursion with self-application is done
in one of two ways: (A) We can reduce mutually-recursive
functions to simple recursive functions, and use a singular
fixed-point combinator to replace singular recursion with
self-application. Examples of this approach can be found
in Bekič’s theorem for the elimination of simultaneous re-
cursion [3, Page 39], and in Landin’s classical work on the
mechanical evaluation of expressions [7]. (B) We can use
a set of multiple fixed-point combinators. This approach
is taken in a particularly beautiful construction due to
Smullyan [2, Pages 334-335]. When replacing recursion
among n ≥ 1 recursive functions, a different set of multiple
fixed-point combinators needs to be used for each n, each
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set containing progressively more complex expressions.
In Scheme, however, we can do better. Scheme pro-

vides syntax for writing variadic procedures (i.e., proce-
dures that take arbitrarily many arguments), so that upon
application, an identifier is bound to a list of these ar-
guments. Scheme also provides two procedures that are
particularly suitable for use in combination with variadic
procedures:

• The apply procedure, which takes a procedure and
a list, and applies the procedure to the elements
of the list, as if it were called directly with the
elements of the list as its arguments. For exam-
ple: (apply + ’(1 2 3)) returns the same result as
(+ 1 2 3).

• The map procedure, which, in its simplest form,
takes a procedure and a list of arguments, and
applies the procedure to each one of these ar-
guments, returning a list of the results. For
example, (map list ’(1 2 3)) returns the list
((1) (2) (3)).

By using variadic procedures, apply, and map, we can de-
fine a single Scheme procedure that can be used to define
any number of mutually-recursive procedures. This way,
we would not have to specify that number in advance.

The construction of variadic multiple fixed-point com-
binators is not immediate. We are only aware of one
published solution — in Queinnec’s book LISP In Small
Pieces [8]. In Section 5 we compare our construction and
the one found in Queinnec’s book [8, Pages 457–458].

This work presents a variadic multiple fixed-point com-
binator that is a natural extension of Curry’s fixed-point
combinator. Our construction uses only as many Scheme-
specific idioms as needed for working with variadic proce-
dures (namely, apply and map), and is thus faithful both
to the spirit of Scheme, in which it is written, as well as to
the λ-calculus whence it comes.

The rest of this paper is organized as follows. We first
review standard material about fixed-point combinators
for singularly recursive procedures (Section 2), and then
how to extend fixed-point combinators to handling mu-
tual recursion among n procedures (Section 3). We then
present our applicative-order variadic multiple fixed-point
combinator (Section 4), and compares it with Queinnec’s
solution (Section 5). Section 6 concludes.
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2. SINGULAR FIXED-POINT COMBINA-
TORS

Fixed-point combinators are used in the λ-calculus to solve
fixed-point equations. Given a term M , we are looking
for a term x (in fact, the “smallest” such x in a lattice-
theoretic sense) that satisfies the equation Mx = x (the
fixed-point equation), where equality is taken to be the
equivalence relation induced by the one-step βη-relation.
A fixed-point combinator is a term that takes any term M
as an argument and returns the fixed point of M . If Φ is a
fixed-point combinator, and M is some term, then x = ΦM
is the fixed point of M , and satisfies Mx = x. Substituting
the definition of x into the fixed point equation, we see that
a fixed-point combinator is a term Φ such that for any term
M , ΦM = M(ΦM).

There exist infinitely-many different fixed-point combi-
nators, though some are particularly well-known. The
best known fixed-point combinator is due to Haskell B.
Curry [4, Page 178]:

YCurry ≡ λf.((λx.f(xx))(λx.f(xx)))

Encoding literally the above in Scheme would not work:
Under Scheme’s applicative order the application of

(lambda (f)

((lambda (x) (f (x x)))

(lambda (x) (f (x x)))))

to any argument will diverge, because the application
(x x) will evaluate before f is applied to it, result-
ing in an infinite loop. The solution is to replace
(x x) with an expression that is both equivalent, and
in which the evaluation of the given appilcation is de-
layed, namely, with a lambda-expression: If (x x) should
evaluate to a one-argument procedure, then we can
replace it with (lambda (arg) ((x x) arg)); If to a
two-argument procedure, then we can replace it with
(lambda (arg1 arg2) ((x x) arg1 arg2)), etc.1 Not
wanting to commit, however, to the arity of (x x), we
will use a variadic version of the η-expansion, i.e., wrap
(x x) with (lambda args (apply · · · args)), giving:

(define Ycurry

(lambda (f)

((lambda (x)

(f (lambda args (apply (x x) args))))

(lambda (x)

(f (lambda args (apply (x x) args)))))))

(1)

Fixed-point combinators are used in programming lan-
guages in order to define recursive procedures [6, 7]. The
trick is to define the recursive procedure as the solution to
some fixed-point equation, and then use a fixed-point com-
binator to solve this equation. For example, the Scheme
procedure that computes the factorial function satisfies the

1This transformation is known colloquially as “η-
expansion.” The η-reduction consists of replacing (λν.Mν)
with M when ν does not occur free in M . The point of
the η expansion in Scheme is that the body of procedures
evaluate at application time rather than at closure-creation
time, and so the η-expansion is used to delay evaluation.

following recurrence relation

fact ≡ (lambda (n)

(if (zero? n) 1

(* n (fact (- n 1)))))

can be rewritten as the solution of the following fixed-point
equation:

fact = ((lambda (fact)

(lambda (n)

(if (zero? n) 1

(* n (fact (- n 1)))))) fact )

and can be solved using, e.g., Curry’s fixed-point combi-
nator (Expr. (1)):

(define fact

(Ycurry

(lambda (fact)

(lambda (n)

(if (zero? n) 1

(* n (fact (- n 1))))))))

3. MULTIPLE FIXED-POINT COMBINA-
TORS

Just as recursive functions are solutions to fixed-point
equations, which can be solved using fixed-point combina-
tors, so are mutually recursive functions the solutions to
multiple fixed-point equations, which can be solved using
multiple fixed-point combinators:

A set of n multiple fixed points is defined as fol-
lows: Given the terms M1, . . . , Mn, we want to find
terms x1, . . . , xn (the set of fixed points), such that xi =
Mix1 · · ·xn, for i = 1, . . . , n (a system of n multiple fixed-
point equations).

Extending the notion of singular fixed-point combi-
nators, n multiple fixed-point combinators are terms
Φn

1 , . . . , Φn
n, such that for any M1, . . . , Mn, we can let

xi = Φn
i M1 · · ·Mn, for i = 1, . . . , n, and {xi}n

i=1 are the
multiple fixed points that solve the given system of equa-
tions. Substituting the definitions of {xi}n

i=1 into the sys-
tem of multiple fixed-point equations, we arrive at the con-
cise statement that multiple fixed-point combinators are
terms that Φn

1 , . . . , Φn
n, such that for any M1, . . . , Mn, we

have

(Φn
i M1 · · ·Mn) =

Mi(Φ
n
1 M1 · · ·Mn) · · · (Φn

nM1 · · ·Mn)

for all i = 1, . . . , n.
Curry’s fixed-point combinator can be extended to a set

of n multiple fixed-point combinators for solving a system
of n multiple fixed-point equations. The i-th such exten-
sion, YCurry

n
i
, is given by

YCurry
n

i
≡ λf1 · · · fn.((λx1 · · ·xn.fi(x1x1 · · ·xn)

· · ·
(xnx1 · · ·xn))

(λx1 · · ·xn.f1(x1x1 · · ·xn)
· · ·

(xnx1 · · · xn))
· · ·
(λx1 · · ·xn.fn(x1x1 · · · xn)

· · ·
(xnx1 · · · xn)))
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Encoded in Scheme, the applicative-order version of
Curry’s multiple fixed-point combinator, YCurry

n
i
, is given

by:

(define Ycurryin

(lambda (f1 ... fn)

((lambda (x1 ... xn)

(fi (lambda args

(apply (x1 x1 ... xn) args))

...

(lambda args

(apply (xn x1 ... xn) args))))

(lambda (x1 ... xn)

(f1 (lambda args

(apply (x1 x1 ... xn) args))

...

(lambda args

(apply (xn x1 ... xn) args))))

...

(lambda (x1 ... xn)

(fn (lambda args

(apply (x1 x1 ... xn) args))

...

(lambda args

(apply (xn x1 ... xn) args)))))))

(2)

Obviously, this is an abbreviated meta-notation, and for
any specific n, the ellipsis (‘· · · ’) would need to be re-
placed with the corresponding Scheme expressions (so that
fi refers to one of an actual list of parameters). In fact,
one way to describe the aim of this paper is that we would
like to avoid this meta-linguistic shorthand, and construct
a Scheme procedure that takes arbitrarily-many arguments
and returns a list of their multiple fixed points.

Mutually recursive function definitions can be rewritten
as solutions to multiple fixed-point equations. For exam-
ple, the Scheme procedures that compute the predicates
even, odd satisfy the following mutual recurrence relation:

even? ≡ (lambda (n)

(if (zero? n) #t

(odd? (- n 1))))

odd? ≡ (lambda (n)

(if (zero? n) #f

(even? (- n 1))))

can be rewritten as the solutions of the following system
of multiple fixed-point equations:

even? = ((lambda (even? odd?)

(lambda (n)

(if (zero? n) #t

(odd? (- n 1))))) even? odd? )

odd? = ((lambda (even? odd?)

(lambda (n)

(if (zero? n) #f

(even? (- n 1))))) even? odd? )

and can be solved using Curry’s multiple fixed-point com-

binators, where n = 2, and i = 1, 2:

(define E

(lambda (even? odd?)

(lambda (n)

(if (zero? n) #t

(odd? (- n 1))))))

(define O

(lambda (even? odd?)

(lambda (n)

(if (zero? n) #f

(even? (- n 1))))))

(define even? (Ycurry12 E O))

(define odd? (Ycurry22 E O))

(3)

The aim of the next section is to show how we can con-
struct a variadic version of Curry’s multiple fixed-point
combinator that can be used to define any number of re-
cursive mutually-recursive procedures.

4. A VARIADIC MULTIPLE FIXED-
POINT COMBINATOR

Expr. (Expr. (2)) specifies Ycurryin for any i, n, such that
1 ≤ i ≤ n. For different choices of i, n, we would get a
different procedure, and as n grows, each procedure gets
progressively larger and more complex. This could be
a real problem, for example, if we were to use multiple
fixed-point combinators to expand letrec-expressions: We
would need many different multiple fixed-point combina-
tors, for many different values of n, even in a moderately-
large program. We could, of course, hide the multiple
fixed-point combinators through the use of a macro, but we
couldn’t hide the code bloat that would follow from the cre-
ation of a large number of these ever-growing “recursion-
makers.”

We address this issue by constructing a variadic multiple
fixed-point combinator in Scheme. Variadic procedures,
used together with the builtin procedures apply and map,
form the basis for our programming idioms for working
with meta-linguistic ellipsis in Scheme.

Throughout the rest of the section we are going to em-
ploy the following conventions, or rules, for converting
“meta-linguistic Scheme” into actual Scheme:

Argv Lists of arguments will be written in Scheme as a
single variable named in the plural. For example,
x1 · · · xn and f1 · · · fn will be written as xs and fs

respectively.

AbsArgv An abstraction over a list of arguments will be
written in Scheme using a variadic lambda. For ex-
ample: (lambda (f1 · · · fn) M) will be written as
(lambda fs M ).

AppArgv An application of a procedure to a list of ar-
guments will be written as an application of the
Scheme procedure apply to the procedure and the
variable denoting the list of arguments. For exam-
ple: The expression (xi x1 · · · xn) will be written
as (apply xi xs).

IndAbsArgv A list of expressions that is indexed by
some variable (e.g., (xi x1 · · · xn), which is in-
dexed by xi = x1 · · · xn) will be written in
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the following way: We shall consider a “repre-
sentative member” indexed by some variable, and
then abstract over that variable and map the
resulting procedure over the indexing set, using
the map procedure. For example, the list of
terms (apply x1 xs) · · · (apply xn xs) will be
obtained by considering the “representative member”
(apply xi xs), abstracting over xi , and mapping
the resulting procedure over xs, giving

(map (lambda (xi) (apply xi xs)) xs)

Recall YCurry
n
i
, the variadic extension of Curry’s fixed-

point combinator, in Scheme (Expr. (2)):

(lambda (f1 · · · fn)

((lambda (x1 · · · xn)

(fi (lambda args

(apply (x1 x1 · · · xn) args))

· · ·
(lambda args

(apply (xn x1 · · · xn) args))))

(lambda (x1 · · · xn)

(f1 (lambda args

(apply (x1 x1 · · · xn) args))

· · ·
(lambda args

(apply (xn x1 · · · xn) args))))

· · ·
(lambda (x1 · · · xn)

(fi (lambda args

(apply (x1 x1 · · · xn) args))

· · ·
(lambda args

(apply (xi x1 · · · xn) args))

· · ·
(lambda args

(apply (xn x1 · · · xn) args))))

· · ·
(lambda (x1 · · · xn)

(fn (lambda args

(apply (x1 x1 · · · xn) args))

· · ·
(lambda args

(apply (xn x1 · · · xn) args)))))))

The various representative sub-expressions we will consider
are enclosed in nested frames.

Starting with the innermost frame, for any xi =
x1 . . . xn, the application (xi x1 · · · xn) is written, us-
ing the AppArgv rule, as

(apply xi xs) (4)

Moving outward, towards the next enclosing frame, we ap-
ply to Expr. (4) the variadic version of the η-expansion in
order to make sure that our fixed points reduce properly
under applicative order:

(lambda args

(apply (apply xi xs) args))

(5)

Note that the above expression is indexed by xi (that is,
xi is a free variable that ranges over a list) in Expr. (5),
and we need to obtain the list of such expressions for each
xi = x1 · · · xn. Using the IndAbsArgv rule, we abstract
xi over Expr. (5) and map the resulting procedure over
the list xs. The list of applications is therefore given by

(map (lambda (xi)

(lambda args

(apply (apply xi xs) args))) xs)

(6)

Moving outward towards the next enclosing frame, we see
that Expr. (6) forms the list of arguments to fi (which
is also a free variable that ranges over a list). Using the
AppArgv rule, the application is written out using apply:

(apply fi

(map (lambda (xi)

(lambda args

(apply

(apply xi xs) args))) xs))

(7)

Moving outward, towards the next enclosing frame, we see
that Expr. (7) is the body of an abstraction over x1 · · · xn.
Using the AbsArgv rule, we encode this abstraction using
a variadic lambda with the parameter xs:

(lambda xs

(apply fi

(map (lambda (xi)

(lambda args

(apply

(apply xi xs) args))) xs)))

(8)

Moving outward, towards the next enclosing frame, we see
that Expr. (8) is indexed by fi (that is, fi is a free vari-
able that ranges over a list) in Expr. (8), and we need to
obtain the list of such expressions for each xi = x1 . . . xn.
Using the IndAbsArgv rule, we abstract fi over Expr. (8)
and map the resulting procedure over the list fs. The list
of applications is therefore given by

(map (lambda (fi)

(lambda xs

(apply fi

(map (lambda (xi)

(lambda args

(apply (apply xi xs) args)))

xs))))

fs)

(9)

The above expression corresponds to the list x1 · · · xn.
The next step is to compute the list of multiple fixed
points: For any particular i ∈ {1, . . . , n}, the i-th fixed-
point combinator YCurry

n
i

is given by (xi x1 · · · xn),
which, in Scheme would be written as (apply xi xs).
Using the IndAbsArgv rule, to obtain the list of all
such terms, for each xi = x1 . . . xn, we abstract xi over
Expr. (9) and map the resulting procedure over the list
xs. This is the second time we have referred to the list
x1 · · · xn in this step, so rather than compute it twice, we
bind its value to the identifier xs, using a let-expression,
the body of which will be:

(map (lambda (xi)

(apply xi xs)) xs)
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Using the AbsArgv rule, we now abstract over f1 · · · fn

using a variadic lambda, and define the procedure
curry-fps that takes any number of procedures and re-
turns a list of their multiple fixed points:

(define curry-fps

(lambda fs

(let ((xs

(map

(lambda (fi)

(lambda xs

(apply fi

(map

(lambda (xi)

(lambda args

(apply (apply xi xs) args)))

xs))))

fs)))

(map (lambda (xi)

(apply xi xs)) xs))))

(10)

On the other hand, if we are only interested in YCurry
n
1
,

for example, for the purpose of macro-expanding letrec-
expressions without using side-effects, then we can simplify
the body of the let-expression in Expr. (10) so that we just
compute the first fixed point:

(define curry-fps-1n

(lambda fs

(let ((xs

(map

(lambda (fi)

(lambda xs

(apply fi

(map (lambda (xi)

(lambda args

(apply

(apply xi xs) args)))

xs))))

fs)))

(apply (car xs) xs))))

(11)

For example, consider the general letrec-expression,
where M 1, . . . ,M n denote the definitions of the procedures
f1, . . . , fn respectively, and Expr1, . . . ,Exprm denote the
expressions in the body of the letrec:

(letrec ((f1 M 1)
...

(fn M n))

Expr1 · · ·Exprm)

Using curry-fps-1n, the above expression can be rewrit-
ten, without side effects, using the fresh variable body, as
follows:

(curry-fps-1n

(lambda (body f1 · · · fn) Expr1 · · ·Exprm)

(lambda (body f1 · · · fn) M 1)
...

(lambda (body f1 · · · fn) M n))

5. RELATED WORK
In his book LISP In Small Pieces [8, Pages 457–458],
Queinnec exhibits the Scheme procedure NfixN2, that is
a variadic, applicative-order multiple fixed-point combina-
tor. The NfixN2 procedure, along with a help procedure
are given below:

(define NfixN2

(let ((d

(lambda (w)

(lambda (f*)

(map

(lambda (f)

(apply f

(map

(lambda (i)

(lambda a

(apply

(list-ref ((w w) f*)

i)

a)))

(iota 0 (length f*)))))

f*)))))

(d d)))

(define iota

(lambda (start end)

(if (< start end)

(cons start (iota (+ 1 start) end))

’())))

(12)

While Queinnec’s construction certainly works, it strikes
us as unnatural in the context of Scheme:

The name of the iota help procedure comes from the
programming language APL, where, given an integer ar-
gument n, the monatic iota function returns the vec-
tor of integer in the range 1, . . . , n. The above im-
plementation of iota in Scheme takes two integers start
and end, and returns the list of integers in the range
of start , . . . , end − 1. A common programming idiom
in APL is to de-reference a vector v by another vector
w of indecies into v, to obtain a permuted sub-vector
of v that is the same size as w. We note the use
of this idiom in the procedure NfixN2, where the list
(iota 0 (length f*)) is used as a list of indecies for ex-
tracting elements from the list returned by ((w w) f*),
and is used to construct a new list in the expression
(map (lambda (i) · · · ) (iota 0 (length f*))). In
fact, the procedure NfixN2 could be coded directly and
concisely into DyalogAPL [5], a dialect of APL2 that sup-
ports closures and higher-order functions.

Furthermore, the construction of the variadic fixed-point
combinator is not a natural extension of one of the familiar
singular fixed-point combinators, e.g., Curry’s or Turing’s
fixed-point combinators. This is probably due to the use
of APL idioms in the code.

We feel that from a pedagogical point of view, it would
be better to exhibit a variadic fixed-point combinator that
is a natural extension of one of the familiar singular fixed-
point combinators, in a way that would be both systematic
and native to Scheme.

The natural idioms for working with variadic procedures
are apply and map. By sticking to these procedures and de-
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clining the temptations to use other procedures and other
metaphors, we obtained a construction for multiple fixed-
point combinator that corresponds rather faithfully to the
extension of Curry’s fixed-point combinator to n multiple
fixed-point equations.

An additional benefit is efficiency: While fixed-point
combinators in Scheme are not normally evaluated by their
efficiency (but rather by applicative order call-by-value),
and while this remark is not intended to be a sales pitch
for super-fast, super-efficient fixed-point combinators, it
should not be surprising that when we adhere to program-
ming metaphors that are natural for a given language, we
are often rewarded by better execution times. The NfixN2

(Expr. (12)) procedure presented in Section 5 uses a vari-
ant of the iota function in APL in order to generate in-
dices, repeatedly, with each recursive call. But generating
indices is only half the problem: The individual functions
are then accessed using list-ref, which traversing a list
of functions at linear time. This suggests that the aver-
age time to access a function will increase as the number
of mutually recursive functions grows. Empirical evidence
suggests that this is indeed the case.

We ran two kinds of tests: Firstly, we tried to see how
the two variadic fixed-point combinators would perform on
a set of mutually-recursive functions, as the input grew.
Secondly, we tried to see how the two variadic fixed-point
combinators would perform when the number of mutually-
recursive functions was increased.

Below, we tabulated the CPU time (in milliseconds, un-
der Petite Chez Scheme running on a dual UltraSPARC-II
with 1G RAM) for evaluating the mutually-recursive even?
and odd? procedures for various input values (given by N):

N curry-fps NfixN2

103 10 30
104 70 250
105 760 2,430
106 7,500 24,650
107 74,810 242,570

In order to test execution speeds as the number
of mutually-recursive procedures changed, we created a
Scheme procedure that given an integer argument n cre-
ates n mutually-recursive procedures. We started with the
standard definition of Ackermann’s function:

(lambda (a b)

(cond ((zero? a) (+ b 1))

((zero? b) (ack (- a 1) 1))

(else (ack (- a 1)

(ack a (- b 1))))))

We duplicated this definition n times, numbering each
instance sequentially. Then, for each call to ack in the
body of each of the instances of ack, we randomly select
one of the numbered instances. We then use the same n
mutually-recursive procedures to time the computation of
Ackermann(3, 5) using both variadic multiple fixed-point
combinators.

The table below lists the CPU time (again, milliseconds,
under Petite Chez Scheme running on a dual UltraSPARC-

II with 1G RAM) for evaluating mutually-recursive ver-
sions of Ackermann’s function, as the number of mutually-
recursive procedures (given by N) varies.

N curry-fps NfixN2

1 320 570
2 390 1,160
3 390 1,910

10 770 14,280
20 1,240 51,670
30 1,770 112,050

100 5,640 1,199,370
200 12,650 5,020,170
300 18,970 > 12 hours

1000 99,929 —

It is clear that using either NfixN2 or curry-fps to de-
fine a large set of mutually-recursive procedures will result
in performance penalties that are proportional to the num-
ber of procedures, however it is also clear that using the
built-in support for working with lists of arguments (i.e.,
apply, map and variadic procedures) is superior to picking
individual elements explicitly.

6. CONCLUSION
We presented a systematic construction for an applicative-
order variadic multiple fixed-point combinator in Scheme.
Starting out with Curry’s singular fixed-point combina-
tor, we considered the extension to multiple fixed-point
equations, parameterized by the number of equations and
the index of the fixed point. Using variadic lambda-
expressions, and the elementary procedures for working
with lists of arguments (apply, map), we were able to for-
mulate four rules, or conventions, for converting Scheme
expressions written with meta-linguistic ellipses (‘· · · ’) into
actual Scheme code. This enabled us to define a multiple
fixed-point combinator without having to specify the num-
ber of equations. The value returned by this procedure is
the list of all the fixed points.

This variadic multiple fixed-point combinator directly
corresponds to the multiple fixed-point extension of
Curry’s singular fixed-point combinator.
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We encode the procedures even? and odd? in Scheme
(Exprs. (3)) using the variadic curry-fps procedure (de-
fined in Expr. (10)) for computing the list of multiple fixed
points.

;;; defining the Even functional:

> (define E

(lambda (even? odd?)

(lambda (n)

(if (zero? n) #t ; return Boolean True

(odd? (- n 1))))))

;;; Defining the Odd functional:

> (define O

(lambda (even? odd?)

(lambda (n)

(if (zero? n) #f ; return Boolean False

(even? (- n 1))))))

;;; Finding the list of fixed points:

> (define list-even?-odd? (curry-fps E O))

> (define even? (car list-even?-odd?))

> (define odd? (cadr list-even?-odd?))

> (even? 6)

#t

> (odd? 4)

#f
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Abstract

This paper details how folklore notions of hygiene and refer-
ential transparency of R5RS macros are defeated by a sys-
tematic attack. We demonstrate syntax-rules that seem to
capture user identi�ers and allow their own identi�ers to be
captured by the closest lexical bindings. In other words, we
have written R5RS macros that accomplish what commonly
believed to be impossible. We build on the the fundamental
technique by Petrofsky of extracting variables from argu-
ments of a macro. The present paper generalizes Petrofsky's
idea to attack referential transparency.

This paper also shows how to overload the lambda form.
The overloaded lambda acts as if it was infected by a virus,
which propagates through the lambda's body infecting other
lambdas in turn. The virus re-de�nes the macro being cam-
ou�aged after each binding. This rede�nition is the key
insight in achieving the overall referential opaqueness. Al-
though we eventually subvert all binding forms, we preserve
the semantics of Scheme as given in R5RS.

The novel result of this paper is a demonstration that
although R5RS macros are deliberately restricted in expres-
siveness, they still wield surprising power. We have exposed
faults and the lack of precision in commonly held informal
assertions about syntax-rule macros, and pointed out the
need for proper formalization. For a practical programmer
this paper o�ers an encouragement: more and more power-
ful R5RS macros turn out to be possible.

1 Introduction

One of the most attractive and unsurpassed features of Lisp
and Scheme is the ability to greatly extend the syntax of the
core language and to support domain-speci�c notations [14].
These syntactic extensions are commonly called macros. A
special part of a Lisp/Scheme system, a macro-expander,
systematically reduces the extended language to the core
one.

A naive macro system that merely �nds syntactic exten-
sions and replaces them with their expansions can corrupt

�Current a�liation: Fleet Numerical Meteorology and Oceanogra-
phy Center, Monterey, CA 93943.

Permission to make digital or hard copies, to republish, to post on
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variable bindings and break the block structure of the pro-
gram. For instance, free identi�ers in user code may be in-
advertently captured by macro-generated bindings, which
leads to insidious bugs. This danger is very well docu-
mented, for example in [8], [1]. Lisp community has devel-
oped techniques [1] that help make macros safer, but they
rely on e�orts and care of an individual macro program-
mer. The safety is not built into the system. Furthermore,
the techniques complicate the macro code and make it more
bug-prone.

Scheme community has recognized the danger of the naive
macro expansion to the block structure of Scheme code. The
community endeavored to develop a macro system that is
safe and respectful of the lexical scope by default. In limited
circumstances, exceptions to the block-structure-preserving
policy of macros are useful and can be allowed. These ex-
ceptions however should be statically visible. A number of
experimental macro systems with the above properties have
been built ([8], [9], [1], [2], [4], [13]). The least powerful
and the most restrictive set of common features of these
macro systems has been standardized in R5RS [7]. An ear-
lier version of that system has been mentioned in the previ-
ous Scheme report, R4RS, and expounded in [3]. The R5RS
macro system permits no exceptions to the safety policy (so-
called, hygiene, see below). Furthermore, R5RS macros are
speci�ed in a restricted pattern language, which gives the
macros another name: syntax-rules. The pattern language
is di�erent from the core language and therefore removes the
need for the full Scheme evaluator at macro-expand time.
Therefore, R5RS macros are severely limited in their abil-
ity. The strict safety policy with no exceptions has lead to
claims that "Scheme's hygienic macro system is a general
mechanism for de�ning syntactic transformations that re-
liably obey the rules of lexical scope" [3]. However, there
has been little work in formalizing this assertion. Only [8]
took upon the task of proving that the systematical renam-
ing of introduced identi�ers indeed guarantees the hygiene
condition, in the macro system of [8]. The latter is not an
implementation of R5RS macros.

Surprising discoveries of R5RSmacros' latent power ques-
tion commonly held beliefs about syntax-rule macros. For
example, the paper [3] claims "The primary limitation of the
hygienic macro system is that it is thoroughly hygienic, and
thus cannot express macros that bind identi�ers implicitly....
The loop-until-exit macro that is used as an example of the
low-level macro system in the Revised 4 Report is also a non-
hygienic macro." In 2001, however, Al Petrofsky did express
the loop-until-exit macro in the R5RS system [11] (see also
[12] for more discussion). Al Petrofsky's article introduced
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a general technique, Petrofsky extraction, of writing macros
that can extract a speci�c binding from their arguments. Al
Petrofsky has also shown how to make such macros nest.
The present paper generalizes Petrofsky's ideas to writing
of seemingly referentially opaque R5RS macros.

A syntactic extension by its nature introduces a new lan-
guage, which may di�er in some aspects from the core lan-
guage. Can we write a syntax-rule�based extension that
looks like R5RS Scheme but allows seemingly referentially
opaque and non-hygienic macros? Can such an extended
language still be called R5RS Scheme? At �rst sight, the an-
swer to both questions is negative. Although R5RS macros
are Turing complete [6], they were regarded as �thoroughly
hygienic� [3]. Furthermore, the fact that R5RS macros are
written in a restricted pattern language rather than in Scheme
makes them clearly incapable of certain computations (e.g.,
concatenating strings or symbols). It is impossible to write
an R5RS macro foo such that (foo a-symbol b-symbol)
expands into a a-b-symbol, where the latter is spelt as
the concatenation of characters constituting a-symbol and
b-symbol. It is not possible for an R5RS macro to tell if two
identi�ers have the same spelling. Ostensibly these restric-
tions were put in place to guarantee and enforce the rules
of lexical scope for macros and their expansions (this sen-
timent was discussed in [1]). In this paper we demonstrate
that the power of R5RS macros has been underestimated:
We can indeed implement a syntax-rule extension of Scheme
that permits seemingly referentially opaque and unhygienic
macros [12]. Furthermore, this extended language literally
complies with R5RS.

The next section brie�y describes the notions of hygiene
and referential transparency of macro expansions. Section
3 recalls Petrofsky extraction and its application to writ-
ing weakly non-hygienic macros. Section 4 introduces the
key idea that re-de�ning a macro after each binding leads
to the overall referential opaqueness. Carrying out such re-
de�nitions requires overloading of all Scheme binding forms,
in particular, the lambda itself. Section 5 accomplishes this
overloading with the help of Petrofsky extraction. We demon-
strate an R5RS macro that looks exactly like a careless,
referentially opaque Lisp-style macro. The end result is a
library syntax let-leaky-syntax that lets a programmer
de�ne a syntax-rule macro and designate a free identi�er
from that macro for capture by local bindings. The �nal
section discusses what it all means: for macro writers, for
macro users, and for programming language researchers.

2 Hygiene and Referential Transparency of Macro Expan-
sions

This section introduces the terminology and the working ex-
amples that are used throughout the paper. We will closely
follow [8] in our terminology. A syntactic extension, or a
macro (invocation), is a phrase in an extended language dis-
tinguished by its leading token, or keyword. During the
macro-expansion process the extended language is eventu-
ally reduced to the core Scheme, in one or several steps.
One step in this transformation of a syntactic extension is
called a (macro-) expansion step or a transcription step. A
syntactic transform function (a.k.a. a macro (transformer))
is a function de�ned by the macro writer that expands the
class of syntactic extensions introduced by the same key-
word. A transcription step, which is an application of a
transformer to a syntactic extension, yields a phrase in the
core language or another syntactic extension. The latter
will be expanded in turn. The result of an expansion step

may contain identi�ers that were not present in the original
syntactic extension; we will call them generated identi�ers.

A macro system is called hygienic, in the general sense, if
it avoids inadvertent captures of free variables through sys-
tematic renaming [3]. The free variables in question can be
either generated variables, or variables present in macro in-
vocations (i.e., user variables). A narrowly de�ned hygiene
is avoiding the capture of user variables by generated bind-
ings. The precise de�nition, a hygiene condition for macro
expansions (HC/ME), is given in [8]: "Generated identi�ers
that become binding instances in the completely expanded
program must only bind variables that are generated at the
same transcription step." If a macro system on the other
hand speci�cally avoids capturing of generated identi�ers,
the latter always refer to the bindings that existed when the
macro transformer was de�ned rather to the bindings that
may exist at the point of macro invocations. This property
is often called referential transparency.

The rest of the present section expounds sample R5RS
macros chosen to illustrate HC/ME and referential trans-
parency. We will be using the examples in the rest of the
paper.

The HC/ME condition demands that bindings introduced
by macros should not capture free identi�ers in macro ar-
guments. Let us de�ne a sample macro mbi such that (mbi
body) will expand into (let ((i 10)) body). In the pat-
tern language of R5RS macros, the de�nition reads:

(define-syntax mbi

(syntax-rules ()

((mbi body) (let ((i 10)) body))))

A naive, non-hygienic expansion of (mbi (* 1 i)) would
have produced (let ((i 10)) (* 1 i)). The generated
binding of i would have captured the free variable i occur-
ring in the macro invocation. A hygienic expansion prevents
such capture through a systematic renaming of identi�ers.
Therefore,

(let ((i 1)) (mbi (* 1 i)))

actually expands to

(let ((i~2 1))

(let ((i~5 10)) (* 1 i~2))

and gives the result 1. The identi�er i~2 is di�erent from
i~5: we will call them identi�ers of di�erent colors.

The referential transparency facet demands that gener-
ated free identi�ers should not be captured by local bindings
that surround the expansion. To be more precise, if a macro
expansion generates a free identi�er, the identi�er refers to
the binding occurrence in the environment of the macro's
de�nition. For example, given the de�nitions

(define foo 1)

(define-syntax mfoo

(syntax-rules ()

((mfoo) foo)))

The form (let ((foo 2)) (mfoo)) expands into

(let ((foo~1 2))

foo)

and yields 1 when evaluated. The local let binds foo of a
di�erent color, and therefore, does not capture foo gener-
ated by the macro mfoo.
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3 Petrofsky Extraction

In 2001 Al Petrofsky posted an article [11] that demon-
strated how to circumvent a weak form of hygiene. The
present paper generalizes Petrofsky's idea to attack referen-
tial transparency. For completeness and reference this sec-
tion systematically derives the Petrofsky technique. We aim
to write a macro mbi so that (mbi 10 body) expands into
(let ((i 10)) body) and the binding of i captures free
occurrences of i in the body. We assume that there are
no other bindings of i in the scope of (mbi 10 body), or i
was de�ned early in the global scope and was not re-de�ned
since. This assumption is the distinction between the weak
hygiene and the true one.

Developing even weakly non-hygienic macros is challeng-
ing. We cannot just write

(define-syntax mbi

(syntax-rules ()

((_ val body) (let ((i val)) body))))

because (mbi 10 (* 1 i)) will expand into

(let ((i~5 10)) (* 1 i))

where i in (* 1 i) refers to the top-level binding of i or
remains unde�ned. However, we can explicitly pass a macro
the identi�er to capture:

(define-syntax mbi-i

(syntax-rules ()

((_ i val body) (let ((i val)) body))))

In that case,

(mbi-i i 10 (* 1 i))

expands into

(let ((i 10)) (* 1 i))

and the capture occurs. Hence to circumvent the hygiene in
the weak sense, we only need to �nd a way to convert an
invocation of mbi into an invocation of mbi-i. The macro
mbi-i requires the explicit speci�cation of the identi�er to
capture � which we can get by extracting the identi�er i,
together with its color, from the argument of mbi. That is
the essence and the elegance of the Petrofsky's idea. Once
we have the rightly colored occurrence of i, we can use it in
the binding form and e�ect the capture.

The extraction of colored identi�ers from a form is done
by a macro extract, Fig. 1. This macro is the workhorse of
the hygiene circumvention strategy. We also need a macro
that extracts several identi�ers, extract* (Fig. 2). Now we
can de�ne:

(define-syntax mbi-dirty-v1

(syntax-rules ()

((_ _val _body)

(let-syntax

((cont

(syntax-rules ()

((_ (symb) val body)

(let ((symb val)) body) ))))

(extract i _body (cont () _val _body))))))

so that

(mbi-dirty-v1 10 (* 1 i))

expands into

(let ((i~11 10)) (* 1 i~11))

and evaluates to 10, as expected.
The macro mbi-dirty-v1 seems to do the job, but it has

a �aw. It does not nest:

(mbi-dirty-v1 10

(mbi-dirty-v1 20 (* 1 i)))

expands into

(let ((i~16 10))

(let ((i~17~25~28 20)) (* 1 i~16)))

and evaluates to 10 rather than to 20 as we might have
hoped. The outer invocation of mbi-dirty-v1 creates a
binding for i � which violates the weak hygiene assumption.
Petrofsky [11] has shown how to overcome this problem as
well: we need to re-de�ne mbi-dirty-v1 in the scope of the
new binding to i. Hence we need a macro that re-de�nes it-
self in its own expansion. We however face a problem: If the
outer invocation of mbi-dirty-v1 re-de�nes itself, this redef-
inition has to capture the inner invocation of mbi-dirty-v1.
We already know how to do that, by extracting the colored
identi�er mbi-dirty-v1 from the outer macro's body. We
need thus to extract two identi�ers: i and mbi-dirty-v1.
We arrive at the following code:

; A macro that re-defines itself in its expansion:

; (mbi-dirty-v2 val body)

; expands into

; (let ((i val)) body)

; and also re-defines itself in the scope of body.

; myself-symb, i-symb are colored ids extracted

; from the 'body'

(define-syntax mbi-dirty-v2

(syntax-rules ()

((_ _val _body)

(letrec-syntax

((doit ; continuation from extract*

(syntax-rules ()

((_ (myself-symb i-symb) val body)

(let ((i-symb val)) ; first bind 'i'

(let-syntax ; re-define oneself

((myself-symb

(syntax-rules ()

((_ val__ body__)

(extract*

(myself-symb i-symb)

body__

(doit () val__ body__))))))

body))))))

(extract* (mbi-dirty-v2 i) _body

(doit () _val _body))))))

Therefore

(mbi-dirty-v2 10

(mbi-dirty-v2 20 (* 1 i)))

now expands to
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; extract SYMB BODY CONT

; BODY is a form that may contain an occurrence of an identifier that

; refers to the same binding occurrence as SYMB.

; CONT is a form of the shape (K-HEAD K-IDL . K-ARGS)

; where K-IDL and K-ARGS are S-expressions representing lists or the

; empty list.

; The macro extract expands into

; (K-HEAD (extr-id . K-IDL) . K-ARGS)

; where extr-id is the extracted colored identifier. If the symbol SYMB does

; not occur in BODY at all, extr-id is identical to SYMB.

(define-syntax extract

(syntax-rules ()

((_ symb body _cont)

(letrec-syntax

((tr

(syntax-rules (symb)

; Found our 'symb' -- exit to continuation

((_ x symb tail (cont-head symb-l . cont-args))

(cont-head (x . symb-l) . cont-args))

((_ d (x . y) tail cont) ; if body is a composite form,

(tr x x (y . tail) cont)) ; look inside

((_ d1 d2 () (cont-head symb-l . cont-args))

(cont-head (symb . symb-l) . cont-args)) ; symb does not occur

((_ d1 d2 (x . y) cont)

(tr x x y cont)))))

(tr body body () _cont)))))

Figure 1: Macro extract: Extract a colored identi�er from a form

; extract* SYMB-L BODY CONT

; where SYMB-L is the list of identifiers to extract, and BODY and CONT

; has the same meaning as in extract, see above.

;

; The macro extract* expands into

; (K-HEAD (extr-id-l . K-IDL) . K-ARGS)

; where extr-id-l is the list of extracted colored identifiers. The extraction

; itself is performed by the macro extract.

(define-syntax extract*

(syntax-rules ()

((_ (symb) body cont) ; only one id: use extract to do the job

(extract symb body cont))

((_ _symbs _body _cont)

(letrec-syntax

((ex-aux ; extract id-by-id

(syntax-rules ()

((_ found-symbs () body cont)

(reverse () found-symbs cont))

((_ found-symbs (symb . symb-others) body cont)

(extract symb body

(ex-aux found-symbs symb-others body cont)))

))

(reverse ; reverse the list of extracted ids

(syntax-rules () ; to match the order of SYMB-L

((_ res () (cont-head () . cont-args))

(cont-head res . cont-args))

((_ res (x . tail) cont)

(reverse (x . res) tail cont)))))

(ex-aux () _symbs _body _cont)))))

Figure 2: Macro extract*: Extract several colored identi�ers from a form
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(let ((i~26 10)) (let ((i~52 20)) (* 1 i~52)))

and evaluates to 20.
The macro mbi-dirty-v2 is still only weakly unhygienic.

If we evaluate

(let ((i 1))

(mbi-dirty-v2 10 (* 1 i)))

we obtain

(let ((i 1)) (let ((i~3~22~29 10)) (* 1 i)))

which evaluates to 1 rather than 10.

4 Towards the Referential Opaqueness: a mylet Form

In this section, we attack referential transparency by writ-
ing a macro that seemingly allows free identi�ers in its ex-
pansion to be captured by the closest lexical binding. To be
more precise, we want to write a macro mfoo that expands in
an identi�er foo in such a way so that the form (let ((foo

2)) (let ((foo 3)) (list foo (mfoo)))) would evaluate
to the list (3 3). The key insight is a shift of focus from
the macro mfoo to the binding form let. The macro mfoo

is trivial:

(define-syntax mfoo

(syntax-rules ()

((mfoo) foo)))

We will concentrate on re-de�ning the binding form to per-
mit a referentially opaque capture. To make such rede�ni-
tion easier, we introduce in this section a custom binding
form mylet. The next section shall show how to make the
regular let act as mylet.

The goal of this section is therefore developing a binding
form mylet so that (mylet ((foo 2)) (mylet ((foo 3))

(list foo (mfoo)))) would evaluate to the list (3 3). To
make this possible, the expression should expand as follows:

(let ((foo 2))

(define-syntax-mfoo-to-expand-into-foo)
(re-define-mylet-to-account-for-

redefined-foo-and-mfoo)
(let ((foo 3))

(define-syntax-mfoo-to-expand-into-foo)

(re-define-mylet-to-account-for-

redefined-foo-and-mfoo)

(list foo (mfoo))

))

Di�erent bindings of a variable are typeset in di�erent fonts.
The expansion of the form mylet therefore binds foo and
then re-de�nes the macro mfoo within the scope of the new
binding. This mfoo will generate the identi�er foo that refers
to that local binding. The rede�nition of mfoo after a bind-
ing is the key insight. It makes it possible for the expansion
of the targeted macro to contain identi�ers whose bindings
are not inserted by the same macro. The process of de�ning
and rede�ning macros during the expansion of mylet looks
similar to the process described in the previous Section.
Therefore, we take the macro mbi-dirty-v2 as a prototype
for the design of mylet. A generator (which helps us de-
�ne and re-de�ne the macro mfoo) and the macro mylet are

given on Fig. 3. With these de�nitions, (mylet ((foo 2))

(mylet ((foo 3)) (list foo (mfoo)))) expands to ((lambda
(foo~47) ((lambda (foo~92) (list foo~92 foo~92)) 3))

2) and evaluates to (3 3). The result demonstrates that
(mfoo) indeed expanded to foo that was captured by the
local binding. The macro mfoo seems to have inserted an
opaque reference to the binding of foo. Because mylet

constantly re-generates itself, it nests. The following test
demonstrates the nesting and the capturing by the expan-
sion of (mfoo) of the closest lexical binding:

(mylet ((foo 3))

(mylet ((thunk (lambda () (mfoo))))

(mylet ((foo 4)) (list foo (mfoo) (thunk)))))

This expression evaluates to (4 4 3). The expansion of
(mfoo) within the closure thunk refers to the variable foo

that was lexically visible at that time.

5 Achieving the Referential Opaqueness: Rede�ning All Bind-
ing Forms

The previous section showed that we can indeed write a
seemingly referentially opaque R5RS macro, if we resort to
custom binding forms. R5RS does not prohibit us how-
ever from re-de�ning the standard binding forms let, let*,
letrec and lambda to suit our nefarious needs. We need
to 'overload' just one form: the fundamental binding form
lambda itself.

This overloading is done by a macro defile, which de�les
its body (Appendix B). It is worth noting a few fragments
from the macro's long code. The �rst one

(letrec-syntax

...

(lambda-native ; capture the native lambda

(syntax-rules ()

((_ . args) (lambda . args))))

does what it looks like: it captures the native lambda, which
is needed to e�ect bindings. Another fragment is:

(letrec-syntax

...

(let-symb ; R5RS definition of let

(syntax-rules ()

((_ . args)

(glet (let-symb let*-symb letrec-symb

lambda-symb) . args))))

A top-level macro glet (Appendix A) is a let with an extra
�rst argument. This argument is the �environment�, the list
of custom-bound let and lambda identi�ers for use in the
macro expansion. The de�nition of glet is taken from R5RS
verbatim, with the pattern modi�ed to account for the extra
�rst argument.

(define-syntax glet

(syntax-rules ()

((_ (let let* letrec lambda) ; the extra arg

((name val) ...) body1 body2 ...)

((lambda (name ...) body1 body2 ...) val ...))

((_ (let let* letrec lambda)

tag ((name val) ...) body1 body2 ...)

((letrec

((tag (lambda (name ...) body1 body2 ...)))

tag) val ...))))
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; Macro: make-mfoo NAME SYMB BODY

; In the scope of BODY, define a macro NAME that expands into an identifier SYMB

(define-syntax make-mfoo

(syntax-rules ()

((_ name symb body)

(let-syntax

((name

(syntax-rules ()

((_) symb))))

body))))

; (mylet ((var init)) body)

; expands into

; (let ((var init)) body')

; where body' is the body wrapped in the re-definitions of mylet and the macro mfoo.

(define-syntax mylet

(syntax-rules ()

((_ ((_var _init)) _body)

(letrec-syntax

((doit ; The continuation from extract*

(syntax-rules () ; mylet-symb, etc. are extracted from body

((_ (mylet-symb mfoo-symb foo-symb) ((var init)) body)

(let ((var init)) ; bind the 'var' first

(make-mfoo mfoo-symb foo-symb ; now re-generate the macro mfoo

(letrec-syntax

((mylet-symb ; and re-define myself

(syntax-rules ()

((_ ((var_ init_)) body_)

(extract* (mylet-symb mfoo-symb foo-symb) (var_ body_)

(doit () ((var_ init_)) body_))))))

body)))

))))

(extract* (mylet mfoo foo) (_var _body)

(doit () ((_var _init)) _body))))))

Figure 3: Macros make-mfoo and mylet
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The macro glet therefore relates the let form and the
lambda precisely as R5RS does; glet however substitutes
our custom-bound lambda. Finally, the overloaded lambda

is de�ned as follows:

(letrec

...

(lambda-symb ; re-defined, infected lambda

(syntax-rules ()

((_ _vars _body)

(letrec-syntax

((doit (syntax-rules ()

((_ (mylet-symb mylet*-symb

myletrec-symb mylambda-symb

mymfoo-symb myfoo-symb)

vars body)

(lambda-native vars

(make-mfoo mymfoo-symb myfoo-symb

(do-defile ; proliferate

(mylet-symb mylet*-symb

myletrec-symb mylambda-symb

mymfoo-symb myfoo-symb)

body)))))))

(extract* (let-symb let*-symb letrec-symb

lambda-symb mfoo-symb foo-symb)

(_vars _body)

(doit () _vars _body))))))

We are relying on the previously captured lambda-native to
create bindings. After that we immediately rede�ne all our
macros in the updated environment. The corrupted lambda

acts as if it were infected by a virus: every mentioning of
lambda "transcribes" the virus and causes it to spread to
other binders within the body.

The following are a few excerpts from the de�le macro
regression tests. An expression

(defile

(let ((foo 2)) (list (mfoo) foo)))

expands into

((lambda (foo~186) (list foo~186 foo~186)) 2)

and predictably evaluates to (2 2). The expansion of (mfoo)
has indeed captured a locally-bound identi�er. All the in-
fected lambdas are gone: the expansion result is the regular
Scheme code. Furthermore,

(defile

(let ((foo 2))

(let ((foo 3) (bar (list (mfoo) foo)))

(list foo (mfoo) bar))))

evaluates to (3 3 (2 2)) and

(defile

(let ((foo 2))

(list

((letrec

((bar (lambda () (list foo (mfoo))))

(foo 3))

bar))

foo (mfoo))))

to ((3 3) 2 2). The de�led let and letrec indeed act
precisely as the standard ones. Finally,

(defile

(let* ((foo 2)

(i 3)

(foo 4)

; will capture binding of foo to 4

(ft (lambda () (mfoo)))

(foo 5)

; will capture the arg of ft1

(ft1 (lambda (foo) (mfoo)))

(foo 6))

(list foo (mfoo) (ft) (ft1 7) '(mfoo))))

evaluates to the expected (6 6 4 7 (mfoo)). In all these
examples, the expansion of (mfoo) captures the closest (lo-
cal) lexical binding of the variable foo. All the examples
run with the Bigloo 2.4b interpreter and compiler and with
Scheme48.

We must point out that the de�led examples behave as if
(mfoo), unless quoted, were just the identi�er foo. In other
words, as if mfoo were de�ned as a non-hygienic, referen-
tially opaque macro

(define-macro (mfoo) foo)

To be able to capture a generated identi�er by a local bind-
ing, we need to know the name of that identi�er and the
name of a macro that generates it. We also need to e�ec-
tively wrap the defile macro around victim's code. We
can do that explicitly as in the examples above. We can
also accomplish the wrapping implicitly, e.g., by re-de�ning
the top-level let or other suitable form so as to insert the
invocation of defile at the right spot. It goes without say-
ing that we assume no bindings to the identi�ers foo, mfoo,
let, letrec, let*, and lambda between the point the macro
defile is de�ned and the point it is invoked.

It is possible to remove the dependence of the macro
defile on ad hoc identi�ers such as foo and mfoo. We can
pass the targeted macro and the identi�er to be captured
by the closest lexical binding as arguments to defile. We
arrive at a form let-leaky-syntax (Appendix C), which is
illustrated by the following two examples. An expression

(let-leaky-syntax

bar

((mbar

(syntax-rules () ((_ val) (+ bar val)))))

(let ((bar 1)) (let ((bar 2)) (mbar 2))))

evaluates to 4, whereas

(let-leaky-syntax

quux

((mquux (syntax-rules ()

((_ val) (+ quux quux val)))))

(let* ((bar 1) (quux 0) (quux 2)

(lquux (lambda (x) (mquux x)))

(quux 3)

(lcquux (lambda (quux) (mquux quux))))

(list (+ quux quux) (mquux 0) (lquux 2)

(lcquux 5))))

evaluates to the list (6 6 6 15). The form let-leaky-syntax

is similar to let-syntax. The former takes an additional
�rst argument, an identi�er from the body of the de�ned
syntax-rules. This designated identi�er will be captured by
the closest lexical binding within the body of let-leaky-syntax.
The examples show that the variable is captured indeed. In
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particular, the macro mquux in the last example expands to
an expression that adds the value of an identi�er quux twice
to the value of the mquux's argument. Because the iden-
ti�er quux was designated for capture by the closest local
binding, a procedure (lambda (quux) (mquux quux)) e�ec-
tively triples its argument.

We have thus demonstrated the syntax form let-leaky-

syntax that de�nes a macro with a speci�c variable excepted
from the hygienic rules. The form let-leaky-syntax is a
library syntax, developed exclusively with R5RS (hygienic)
macros.

6 Discussion

In this section we will discuss the implications of the de-
�le macro. First however we have to assure the reader that
defile is legal: it fully complies with R5RS and does not
rely on unspeci�ed behavior. Indeed, the macro de�le is
written entirely in the pattern language of R5RS. Re-binding
of syntax keywords lambda, let, let*, and letrec is not
prohibited by R5RS. On the contrary, R5RS speci�cally
states that there are no reserved keywords, and syntactic
bindings may shadow variable bindings and other syntactic
bindings. Furthermore, re-de�ned let, let*, and letrec

forms relate to the lambda form precisely as the R5RS forms
do. The re-de�ned lambda form is also in compliance with
its R5RS description ([7], Section 4.1.4).

One can argue that our re-de�ned lambda leads to a vi-
olation of the constraint that R5RS places on the macro
system: "If a macro transformer inserts a free reference to
an identi�er, the reference refers to the binding that was vis-
ible where the transformer was speci�ed, regardless of any
local bindings that may surround the use of the macro."
This paragraph however applies exactly as it is to the de-
�led macros. In the code,

(define foo 1)

(defile

(let ((foo 2)) (list (mfoo) foo)))

the identi�er foo inserted by the expansion of the macro
mfoo indeed refers to the binding of foo that was visible
when the macro mfoo was de�ned. The twist is that the
de�nition of the macro mfoo happened right after the local
binding of foo. Despite mfoo being an R5RS, referentially
transparent macro, the overall result is equivalent to the
expansion of a referentially opaque macro.

The macro de�le indeed has to surround the victim's
code. One can therefore object if we merely create our own
'little language' that resembles Scheme but does not guar-
antee referential transparency of macro expansions. How-
ever, such a little language was presumed impossible with
syntax rules [2][3]! Any macro by de�nition extends the
language. The extended language is still expected to obey
certain constraints. The impetus for hygienic macros was
speci�cally to create a macro system with guaranteed hy-
gienic constraints. Although syntax-rules are Turing com-
plete, certain computations, for example, determining if two
identi�ers are spelled the same, are outside of their scope.
It was a common belief therefore that syntax-rules are thor-
oughly hygienic [3].

To be more precise, the argument that syntax-rules can-
not in principle implementmacros such as let-leaky-syntax
was informally advanced in [2]. That paper described a
macro-expansion algorithm that is used in several R5RS
Scheme systems, including Bigloo. Incidentally, the algo-
rithm accounts for the possibility that the binding forms

lambda and let-syntax may be rede�ned by the user. The
paper [2] informally argues that the algorithm satis�es two
hygiene conditions: (1) "It is impossible to write a high-level
macro that inserts a binding that can capture references
other than those inserted by the macro," and (2) �It is im-
possible to write a high-level macro that inserts a reference
that can be captured by bindings other than those inserted
by the macro." Unfortunately, the paper does not state the
conditions with su�cient precision, which precludes a for-
mal proof. The notion of 'inserting a binding' is partic-
ularly vague. The common folklore interpretation of the
conditions is that generated bindings can capture only the
identi�ers that are generated at the same transcription step.
Had this interpretation been true, let-leaky-syntax would
have been impossible. However, the interpretation is false
and Petrofsky's loop macro is a counter-example [12]. Sev-
eral examples in Section 4 demonstrated the capture of gen-
erated identi�ers across transcription steps.

It is interesting to ask if it is possible to create a macro
system that is provable hygienic, which provably does not
permit tricks such as the one in this paper. The paper [8]
showed that if we do not allow macros to expand into the
de�nitions of other macros, we can design a macro system
that is provably hygienic. A MacroML paper [5] claimed
that being generative seems to be a necessary condition for a
macro extension to maintain strong invariants (static typing,
in the context of MacroML). A generative macro can build
forms from its arguments but cannot deconstruct or inspect
its arguments.

We conclude that the subject of macro hygiene is not at
all decided, and more research is needed to precisely state
what hygiene formally means and which precisely assurances
it provides.

For a practical programmer, we o�er the let-leaky-syntax
library form. The form lets the programmer write a new
class of powerful syntactic extensions with the standard R5RS
syntax-rules, without resorting to lower-level macro facili-
ties. In general, the practical macro programmer will hope-
fully view the conclusions of this paper as an encouragement.
We should realize the informal and narrow nature of many
assertions about R5RS macros. We should not read into
R5RS more than it actually says. Thus we can write more
and more expressive macros than we were previously led to
believe [12].
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Appendix A

The following are de�nitions of let, let* and letrec taken
almost verbatim from R5RS. The only di�erence is in custom-
bound let, let*, letrec and lambda identi�ers, which we
explicitly pass to the glet macros in the �rst argument.

(define-syntax glet

(syntax-rules ()

((_ (let let* letrec lambda)

((name val) ...) body1 body2 ...)

((lambda (name ...) body1 body2 ...) val ...))

((_ (let let* letrec lambda)

tag ((name val) ...) body1 body2 ...)

((letrec ((tag (lambda (name ...) body1 body2 ...)))

tag) val ...))))

(define-syntax glet*

(syntax-rules ()

((_ mynames () body1 body2 ...)

(let () body1 body2 ...))

((_ (let let* letrec lambda)

((name1 val1) (name2 val2) ...) body1 body2 ...)

(let ((name1 val1))

(let* ((name2 val2) ...) body1 body2 ...)))))

; A shorter implementations of letrec [10]

(define-syntax gletrec

(syntax-rules ()

((_ (mlet let* letrec lambda)

((var init) ...) . body)

(mlet ((var 'undefined) ...)

; the native let will do fine here

(let ((temp (list init ...)))

(begin (set! var (car temp))

(set! temp (cdr temp))) ...

(let () . body))))))
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Appendix B1

; This macro defiles its body.

; It overloads all the let-forms and the lambda, and defines a non-hygienic macro 'mfoo'. Whenever any

; binding is introduced, the let-forms, the lambdas and 'mfoo' are re-defined. The overloaded lambda acts

; as if it were infected by a virus, which keeps spreading within lambda's body to infect other lambda's there.

(define-syntax defile

(syntax-rules ()

((_ dbody)

(letrec-syntax

((do-defile

(syntax-rules () ; all the overloaded identifiers

((_ (let-symb let*-symb letrec-symb lambda-symb mfoo-symb foo-symb) body-to-defile)

(letrec-syntax

((let-symb ; R5RS definition of let

(syntax-rules ()

((_ . args)

(glet (let-symb let*-symb letrec-symb lambda-symb)

. args))))

(let*-symb ; Redefinition of let*

(syntax-rules ()

((_ . args)

(glet* (let-symb let*-symb letrec-symb lambda-symb)

. args))))

(letrec-symb ; Redefinition of letrec

(syntax-rules ()

((_ . args)

(gletrec (let-symb let*-symb letrec-symb lambda-symb)

. args))))

(lambda-symb ; re-defined, infected lambda

(syntax-rules ()

((_ _vars _body)

(letrec-syntax

((doit

(syntax-rules ()

((_ (mylet-symb mylet*-symb myletrec-symb

mylambda-symb mymfoo-symb

myfoo-symb) vars body)

(lambda-native vars

(make-mfoo mymfoo-symb myfoo-symb

(do-defile ; proliferate in the body

(mylet-symb mylet*-symb myletrec-symb

mylambda-symb

mymfoo-symb myfoo-symb)

body)))))))

(extract* (let-symb let*-symb letrec-symb lambda-symb

mfoo-symb foo-symb)

(_vars _body)

(doit () _vars _body))))))

(lambda-native ; capture the native lambda

(syntax-rules () ((_ . args) (lambda . args))))

)

body-to-defile)))))

(extract* (let let* letrec lambda mfoo foo) dbody

(do-defile () dbody))

))))

1The current implementation of the macro defile does not corrupt bindings that are created by internal define, let-syntax and letrec-syntax

forms. There are no technical obstacles to corrupting those bindings as well. To avoid clutter, the present code does not detect a possible shadowing

of the macro mfoo by a local binding. The full code with validation tests is available at http://pobox.com/~oleg/ftp/Scheme/dirty-macros.scm.
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Appendix C

Given below is the implementation of a library syntax let-leaky-syntax. It is based on a slightly modi�ed version of
the macro defile. The latter uses parameters leaky-macro-name, leaky-macro-name-gen, and captured-symbol instead of
hard-coded identi�ers mfoo, make-mfoo and foo.

(define-syntax defile-what

(syntax-rules ()

((_ leaky-macro-name leaky-macro-name-gen captured-symbol dbody)

(letrec-syntax

((do-defile

... similar to the defile macro, Appendix B ...

(extract*

(let let* letrec lambda

leaky-macro-name captured-symbol) dbody (do-defile () dbody)) ))))

(define-syntax let-leaky-syntax

(syntax-rules ()

((_ var-to-capture ((dm-name dm-body)) body)

(let-syntax

((dm-generator

(syntax-rules ()

((_ dmg-name var-to-capture dmg-outer-body)

(let-syntax

((dmg-name dm-body))

dmg-outer-body)))))

(defile-what

dm-name dm-generator var-to-capture body)

))))
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ABSTRACT
The benefits of modularization are well known. However,
modules are not standard in Scheme. This paper accompanies
an invited talk at the Scheme Workshop 2002 on the current
state of modules for Scheme. Implementation is not addressed,
only linguistic features are covered.

Cave lector, this paper only reflects my own and instanta-
neous biases!

1. MODULES
The benefits of modularization within conventional languages

are well known. Modules dissociate interfaces and implemen-
tations; they allow separate compilation (or at least indepen-
dent compilationà la C). Modules tend to favor re-usability,
common libraries and cross language linkage.

Modules discipline name spaces with explicit names expo-
sure, hiding or renaming. Quite often, they also offer qualified
naming. These name spaces may cover variables, functions,
types, classes, modules, etc.

Just as components, modules may explicit their dependences
that is, the other modules they require in order to work prop-
erly. Building a complete executable is done via modules link-
ing or module synthesis in case of higher-order modules. Mod-
ules dependencies usually form a DAG but mutually depen-
dent modules are sometimes supported.

Proposals for modules for Scheme wildly differ among them
(as will be seen) but they usually share some of the following
features:

Determinization of the building of modules — For us, this
is the main feature that allows users to build a systemS
exactly as it should stand, that is, without any interfer-
ence of the current system whereS is developped and/or
compiled. This is in contrast with, say the Smalltalk
way, where the state of the entire (development) system
staid in memory (or in image files) making notoriously

Permission to make digital or hard copies, to republish, to post on servers
or to redistribute to lists all or part of this work is granted without fee
provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To otherwise copy or redistribute requires prior specific
permission.
Third Workshop on Scheme and Functional Programming. October 3,
2002, Pittsburgh, Pennsylvania, USA.
Copyright c© 2002 Christian Queinnec.

difficult to deliver (or even rebuild) stand-alone systems.

Interfaces as collection of names— If modules are about shar-
ing, what should be shared ? Values, locations (that is
variables), types, classes (and their cort`ege of accessors,
constructors and predicates) ?

The usual answer in Scheme is to share locations with
(quite often) two additional properties:(i) these loca-
tions can only be mutated from the body of their defin-
ing modules (this favors block compilation),(ii) they
should hold functions (and this should be statically (and
easily) discoverable). This restricts linking with other
(foreign) languages that may export locations holding
non-functional data (theerrno location for instance).
This is not a big restriction since modern interfaces (Corba
for example) tend to exclusively use functions (or meth-
ods). On the good side, this restriction allows for better
compilation since non mutated exported functions may
be directly invoked or inlined.

Let us remark that values, if staying in an entirely Scheme
world, would be sufficient since closures are values giv-
ing access to locations (boxes for dialects offering them
will equally serve). Since values may be shared viaλ -
applications, module linking would then be performed
by λ -applications without the need for, say, first-class
environments [10].

Creating a namespace— A module confines all the global
variables defined within its body. This global environ-
ment is initially stuffed with locations imported from
required modules. Some directives exist to specify the
exported locations. A location is specified by the name
of its associated variable though renaming (at export or
import) often exists.

To use locations is very different from the COMMON

LISP way that rather shares symbols, with a read-time
resolution, assigning symbols to packages. The Scheme
standard is mute with respect to read-time evaluation or
macro-characters that both heavily depend on the state
of the system whileread -ing.

Explicitation of required modules — In order to ease the build-
ing of large systems, modules should automatically keep
track of their dependencies so requiring a module would
trigger the requisition of all the other modules it depends
on.
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Another personal word: I have ported Meroon for years
on 12 different Scheme systems [7] and [8, p. 333]. While
missing library functions (last-pair for instance) or ob-
solete signatures (binary onlyapply for instance) were al-
ways easily accomodated, the most problematic points had al-
ways been (i) the understanding of how macro-expansion
and file compilation interfere and,(ii) how to install macros
(define-class and related) into an REP loop. These
problems were often solved by macros or invocations toeval
thus introducing a new problem: the relationship betweeneval
and macros!

Were not for macros, modules would probably be standard
in Scheme for a long time. Alas! Macros or syntaxes extend
Lisp or Scheme into new enriched languages providing syn-
tactic abstractions that allows programmers to define abbrevi-
ations that simplifies the expression of how to solve problems.
In mathematics, the “magic of (good) notations” has always
transformed delicate semantical problems into syntactical rou-
tines (compare Euclide’s elements language with usual alge-
bra language). I tend to think that macros are probably the
best reason for the survival of the Lisp family but there are the
root of the problems for modules!

A module is written in some Scheme extended with various
macros. It is expanded into core Scheme before being com-
piled. Macros do often occur in the module itself to be used
in the rest of the module. This clearly requires the expansion
engine to convert dynamically the definition of the macro (a
text) into an expander (a function): this is the rˆole ofeval and
the question is: what is the language used to define macros ?
This language is another instace of Scheme possibly enriched
with its own various macros. Therefore, in order to under-
stand a module, a “syntax tower” or “macro-expansion tower”
[9] must be erected. A module is therefore a tapestry of wo-
ven computations performed at different times within different
variants of Scheme.

To sum up, a module proposal should solve many problems
at the same time among which: share locations, manage their
names, determine the exact language a module is written with,
maintain module dependencies (for locations and languages)
and, in case some invocations toeval appear in the built sys-
tem, what language(s) do they offer?

2. TAXONOMY
In this Section, I will shallowly describe some features of

some existing systems, I will then try to establish a rough tax-
onomy. This Section borrows some material from [8, p. 311].
I will use the term “abbreviation” for macros and syntaxes in-
differently while I will only use syntaxes for R5RS hygienic
syntaxes.

In the snippets, the “languages” in which they are written
appear in right-aligned boxes. A language such asScheme+m1
means that the language is Scheme plus them1abbreviation.

The classified systems are Bigloo [13], ChezScheme [14],
Gambit [3], MzScheme [4] and Scheme48 [6].

2.1 Gambit
Gambit is probably the easiest to describe since there are no

modules per se! Gambit [3] is centered on a REP loop; the pre-
defined library offers thecompile-file function compil-
ing Scheme to C files that may be further compiled and linked

with C means. A(declare ...) special form exists to
alter the compilation behavior.

The language processed by the REP loop is assumed to be
the one in which the file to be compiled is written. When an
abbreviation is globally defined, it is immediately available.
A global abbreviation defined while compiling a file is only
available while compiling the rest of the file. Local abbrevia-
tions may be defined along with internal definitions.

Let us give an example of the various possibilities. The first
snippet is performed within a first REP loop (whose prompt
is REP1>). The snippet defines a functionf1 and an abbre-
viation m1: both are immediately usable in the REP loop and
in the file to be compiled. Them1abbreviation is written in
Scheme and may usef1 at expansion-time. Uses ofm1may
be expanded into invocations tof1 .

REP1> (define (f1 ) ) Scheme
REP1> (define-macro (m1 )

;; (f1 ) is OK
)

;;; (f1 ) and (m1 ) are OK Scheme+m1
REP1> (compile-file "f.scm")

;;; (f2 ) and (m2 ) are not OK Scheme+m1

Here is the content of the file,f.scm, to be compiled. It
defines a functionf2 that may use them1abbreviation (and
its expansion-time resourcef1 ). Invocations tof1 and f2
are of course allowed. Another abbreviation,m2, is defined
whose scope (though “global”) is only the rest of thef.scmfile.
Eventually a function, namedcompute , is defined wrapping
a call to eval . The result is a compiled module that may
requiref1 to run but always providef2 to whom will load it.

;;; File ”f.scm”
(define (f2 ) (Scheme+m1)

;; (m1 ) and (f1 ) and (f2 ) are OK
)

(define-macro (m2 )
;; (m1 ) and (f1 ) are OK
) (Scheme+m1)+m2

;;; (m1 ) and (m2 ) and (f1 ) and (f2 ) are OK
(define (compute exp)

(eval exp) )

The language in which is written thef.scmfile is not defined
per se but due to the ambiant language in whichcompile-
file is called, it is (scheme+m1). In the absence of com-
pilation, the file just specifies that them2 abbreviation ex-
tends an unknown language. When compiled with the above
conditions, them2abbreviation is considered to be written in
Scheme+m1. The body may also invokef1 which is indeed
present atf.scmexpansion-time.

The third snippet is run through another REP loop. The
compiled f.scmfile is loaded (a warning will be emitted to
mention the absence off1 ) then a functionf1 is defined (it
might not be the same as the previous one defined in REP1)
that will be used thoughout the rest of the REP loop. The
language of this REP loop is Scheme without any abbrevia-
tion. The language accepted by the call toeval within the
compute function is the current language in the current global
environment.
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REP2> (load "f") Scheme
;;; (f2 ) is OK

REP2> (define (f1 ) )
;;; (f1 ) and (f2 ) are OK
;;; (m1 ) and (m2 ) are not OK

REP2> (compute ’(list (f1 ) (f2 ))) ; is OK

If REP2 were in fact REP1,f2 would be loaded as be-
fore andf1 would be redefined, the initial language would
be Scheme+m1 instead of raw Scheme and the abbreviation
m1would be allowed incompute .

Repeatibility of compilation is achieved by starting fresh
REP loops. The model is simple, there is a single name space.
No module dependency is explicit, missing or conflicting loca-
tions are caught by the compiler. The initialization order may
be specified to the compiler.

The space of names is structured via namespaces offering
the possibility of qualified names. A variable may be prefixed
by the name of the namespace containing it thereforem#f is
the variablef from namespacem. A ##namespace directive
rules, in the current scope, to which namespaces belong the
defined variables.

2.2 Bigloo
Bigloo is compiler-centric. The compiler only compiles

a single module i.e., some files with a prependedmodule
clause. Themodule clause specifies the name of the module
as well as some compilation directives. The rest of the file(s)
is the source to compile (other files may also be adjoined with
the include module directive.

The Bigloo compiler creates.o files (through C) or.class
files for Java. When a module is mentioned in some mod-
ule directives, the module is associated to at least one file and
its module clause is read. Except when processing inlined
exportations, the rest of the module is not read, that is, the
module clause contains everything needed to compile or im-
port it.

Expansion is performed with (EPS-style [2]) macros and/or
(hygienically) with syntaxes. When a global abbreviation is
defined, the compiler makes it available for the rest of the mod-
ule. The language is which the module is written is specified
by themodule clause as well as its imported global environ-
ment.

Let us give a first, simple, example of a module, namedM1.
It only exports the immutable unaryf1 function (the arity and
the immutability are implied by the shape of theexport di-
rective). It also defines an abbreviationm1whose definition is
written in Scheme with the default global environment. This
m1abbreviation may be used throughout the rest of the mod-
ule.

(module M1 (export (f1 o)))

(define (f1 x) ) Scheme

(define-macro (m1 )
;; (cons ), (car ) are OK
;; (f1 ) is not OK
) Scheme+m1

;;; (m1 ) is now OK

Let us define a second module, namedf . It exports thef2
mutable variable (this is implied by theexport directive) as
well as the immutable unary functioncompute (that embeds
a call toeval ) and the immutable nullary functionget-bar .
The body of modulef defines a global (that is, until the end
of the module) abbreviationm2.

(module f
(export f2

(compute x)
(get-bar) )

(load (M1 "m1.scm"))
(import (f1 M1 "m1.scm"))
(eval (export f2)

(import bar) ) )

;;; (f1 ) is OK Scheme+m1

(define (f2 ) )

(define-macro (m2 )
;; (m1 ) and (f1 ) are OK
)

;;; Scheme+m1+m2

(define (compute exp)
(eval exp) )

(define (get-bar)
bar )

Theload clause of themodule directive instructs the com-
piler to load them1.scmfile (not theM1module) therefore the
f1 function and them1abbreviation are available to the com-
piler. The body of thef module may make use of them1ab-
breviation and the expansion of an(m1 ) abreviation may
call f1 . However if the result of the expansion contains a call
to f1 , the compiler would not find it in the global environ-
ment off and would therefore warn the user. To fix this,f1 is
explicitly imported with another module directive. This direc-
tive only import s f1 , this is to show that importation may
import all or an explicitly named subset of the global variables
of a module.

The last clause, theeval clause, specifies thatf2 will be
made available to the language processed by the call toeval
within compute . Conversely, it also says that thebar vari-
able ofeval may be used as thebar global variable within
modulef .

Let us now give a third module, namedM2.

(module M2
(import (f "f.scm"))
(main start)
(eval (export f1)) )

;;; Scheme

(define (start arglist)
;; f2, compute, get-bar are OK

)

(define (f1 x)
(list "f1@m2" x) )
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This is a main module whose entry point is thestart func-
tion. This function may use the functions imported from mod-
ule f . A third module directive exports foreval the current
f1 function defined in the currentM2module.

When the whole application is started, a call tocompute
will use Scheme as language in a global environment made of
f2 (from f ), f1 (from M2) andbar (seen fromf2 ). This
language may evolve if enriched with new abbreviations sub-
mitted viacompute .

The language of module directives is rich. It specifies im-
portation, exportation (but no renaming) and re-exportation.
Repeatability is ensured since only one module is compiled at
a time: abbreviations cannot share state between compilations.
The language of abbreviations may be specified (in Scheme
but not in terms of compiled modules). The language of (all
occurrences of)eval may be specified as well.

2.3 Scheme48
Scheme48 compiles modules in memory. An application

is built by dumping the current state of the heap (one may
also specify the function to invoke first when the image is re-
sumed). The initial image contains the byte-code compiler and
offers a REP loop able to interpret Scheme expressions as well
as commands to inspect values or specify the module within
which interpretation is performed. Commands are recognized
by their leading comma.

Abbreviations are defined as specified in R5RS. Syntaxes
are available immediately after being defined throughout the
rest of the module.

Modules are built with adefine-structure form (the
name comes from SML terminology since it is possible (but
undocumented in [6]) to define higher order modules). Mod-
ules export names (locations or syntaxes). There are some pos-
sibilities to filter the names to export as well as to modify them
(both locations and syntaxes).

Our first attempt will define a first module, namedM1, defin-
ing and exporting a functionf1 and an abbreviationm1.

;;; Within file m1.scm
(define (f1 ) )

Scheme
(define-syntax m1

(syntax-rules ()
((m1 x) (list "m1@m1" (f1 x))) ) )

Scheme+m1

After going in theconfig module, theM1module is com-
piled, at the level of the REP loop, with:

,config
(define-structure M1

(export f1 (m1 :syntax))
(open scheme)
(files "m1.scm") )

The M1 module imports thescheme module to gain ac-
cess to the associated global environment (for example, for
list ) and syntaxes (for instance, fordefine-syntax ).
This double-sided importation is easily specified with(open
scheme) . On exportation-side, them1 abbreviation is ex-
ported with the:syntax type. Due to hygien, them1syntax
captured the location of thef1 function.

This first module may be imported by another module,f ,

whose body is contained in thef.scmfile. This second mod-
ule is compiled as follows (where them1 syntax is renamed
mone):

(define-structure f
(export f2 compute)
(open scheme

f (modify M1 (rename (m1 mone))))
(files "f.scm") )

And its content is:

;;; Content of file f.scm
Scheme+mone

(define (f2 ) )

(define-syntax m2
(syntax-rules ()

((m2 x)
(list "m2@f" (f2 x)

(mone x) (f1 x) ) ) ) )
Scheme+mone+m2

(define (compute exp)
(eval exp

(scheme-report-environment 5) ) )

Due to hygien, the macrom2capturesf2 andf1 but it also
capturesmone. The language in which are written expanders
is Scheme which happened to definesyntax-rules . Were
we to use another language, we may enrich it with help of the
for-syntax clause. Here is a variation of modulef where
m1 is available to define them2macro while themone macro
may only appear in the expansion ofm2. The example is a little
contorted since the use ofm1 is very gratuitous but it shows
that Scheme48 differentiates the language of the module from
the language in which syntaxes are written. This shows the
first two level of the macro-expansion tower [9] named “syntax
tower” in [6].

;;; Content of file ff.scm
Scheme+mone

(define (f2 ) )

(define-syntax m2
(begin

;; Scheme+m1
(display (m1 111))(newline)
(syntax-rules ()

((m2 x)
(list "m2@f" (f2 x)

(mone x) (f1 x) ) ) ) ) )
Scheme+mone+m2

To compile the above module, we just open (that is, import),
for the language of syntaxes, thescheme (for display and
newline ) andM1(for m1) modules:

(define-structure ff
(export f2)
(open scheme

(modify M1 (rename (m1 mone))) )
(for-syntax (open scheme M1))
(files "ff.scm") )

Scheme48 compiles in memory so it offers various interest-
ing effects: it is possible, at the REP loop, to place oneself
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in the context of a module to evaluate some code and even to
enrich the current language and global environment:

,in F (list (f2 33) (m2 44) (m1 55))
,in F (define (f3) "f3@M1")
,in F (define-syntax m3

(syntax-rules ()
((m3) (list (f2 (f3)))) ) )

,in F (m3)

The REP loop offers some features useful for development;
for instance, it is possible to reload a module without changing
the exportation contract.

Since all modules are known from the REP loop, there is
no per se module dependencies. However to determinize the
building of an image requires to be able to reset modules to
their initial state (in order to reset syntaxes with shared state),
something possible with thereload-package command.

Whereas the language of modules and syntaxes is well de-
fined, I did not see any possibility to specify the language
of eval when specifying the module. It is possible though
in R5Rs with the usualscheme-report-environment
function and the like; this is probably also possible making
use of the internalget-package function.

2.4 Chez Scheme
This Section is only inferred from Waddell’s and Dybvig’s

paper [14]. A module is alike a definition (it may appear wher-
ever a definition may occur (globally or locally)) and looks like
(module module-name ( exported-names ) body ) .
A module opens a new namespace that captures all defini-
tions (variables or syntaxes) among which some are exported
as mentioned byexported-names.

Free variables of the module are also captured by themodule
form but they are not exported. Such a form defines a kind of
first-class environment namedmodule-nameexcept that syn-
taxes are also exported.

(let ((x 1))
(module A (f)

(define (f z) (list x z)) )
(module B (g)

(define (g y) (f y)) )
(import A)
(let ((x 2))

(import B)
(g x) ) ) ; yields (1 2)

Modules are imported with the(import module-name )
form. This is again a definition form that may appear wherever
a definition may occur. When an importation occurs locally
the exported names participate to theletrec effect as the
other internal definitions.

This module system is intimately tied withsyntax-case :
an interesting corollary is that a whole program making use
of module and import forms is transformed, after macro-
expansion, into a core Scheme expression (that is, without ab-
breviations or derived syntaxes). Thesyntax-case facil-
ity allows for selective importations, renaming individual vari-
ables and gathering exportations with the sole means of hygien
(see [14, Section 3.3] for details). It does not seem to allow the
renaming or prefixing of all exported variables.

Here are some (untested) examples though they do not make

these modules to shine.

(module M1 (f1 m1)
(define f1 )
(define-syntax m1 )
)

(let ()
(import M1)
(module F (f2 compute)

(define f2 )
(define-syntax m2 )
(define (compute exp) (eval exp)) ) )

Good examples where modules are imported in a local scope
are given in the paper [14] however, separate compilation of
local modules does not seem practical. These modules do not
seem to allow the specification of the language of expanders
though the strict and sole use ofsyntax-case alleviates
this need. Nor they allow the specification of the language of
eval .

A very interesting property mentioned in [14] is the struc-
ture of the compiled module. Since a module may export loca-
tions or syntaxes, the compiled code contains the code to ini-
tialize the locations and the code for the exported expanders.
Whenvisit -ing a module only the expansion resource are
set up whileload -ing a module also initialize the regular lo-
cations. This might have been done, in plain old Lisp, with
eval-when : the compiled code related to syntaxes is there-
fore conditionalized with a kind of(eval-when (visit)
...) .

2.5 MzScheme
MzScheme 200 is the most recently implemented module

proposal [4]. It improves on Chez Scheme’s module system
and solves a number of problems.

A module form specifies its name (bound in a specific names-
pace), the language it is written in and its body (a sequence
of definitions (locations and syntaxes), exportations, importa-
tions and expressions). Exportations (of locations or syntaxes)
are specified with theprovide form. This form offers facil-
ity to rename, prefix or selectively hide names.

Importing a module is performed with therequire form;
importations may also rename, prefix or selectively hide names.
The importation brings in names of locations or syntaxes. Note
that importations and exportations are not gathered in a single
place.

Let us give an example of a moduleM1exporting a function
and a syntax. The module is written in MzScheme; the lan-
guage of the abbreviation is not specified but as abbreviations
adopt the syntax language of R5RS, it should at least contain
this latter.

(module M1 MzScheme
MzScheme

(define (f1 ) )
(provide f1)
(define-syntax m1

(syntax-case ) )
MzScheme+m1

(provide m1)
)

Here is a second module,F, that importsM1 environment



94

and syntax.

(module F MzScheme
(provide f2 compute)
(require M1)

MzScheme+m1
(define (f2 ) )
(require-for-syntax (rename M1 m1 mone))
(begin-for-syntax

;; R5RS+mone
(mone ) )

(define-syntax m2
;; R5RS+mone

)
MzScheme+m1+m2

(define (compute exp)
(eval exp) )

)

Modules offer the usual syntax tower. In theF module,
the language for syntaxes also importsM1 (its function f1
and syntaxm1 renamedmone) therefore, the language for
syntaxes is R5RS enriched withmone. A specific syntax,
begin-for-syntax , evaluates its body in the language of
syntaxes (something not so dissimilar toeval-in-abbre-
viation-world [9]). Let us focus a little onbegin-
for-syntax . Compare the old writing with plain old macros
with the new syntax1:

(define-macro (foo )
(hack)
‘(bar ) )

is now written as
(define-syntax foo

(syntax-case
( (begin (begin-for-syntax (hack))

(bar ) )) ) )

Since dependencies are explicit,require -ing a moduleM
recursivelyrequire s the modulesM requires. Compiling
a moduleM requires the modulesM requires for syntax in
order to initialize the syntax tower and its first level: the syn-
tax language. Modules contains sequences of code associated
with their phase (run-time, expansion-time, etc.) and only the
needed part is run when required by a specific phase. Repeata-
bility is ensured since modules’ environments are not shared
by differing phase: if a module is required at some phase, it
will be reinitialized when required at a different phase.

Concerning explicit evaluation, there also exists in MzScheme
namespaces to provide global environments foreval (the stan-
dardscheme-report-environment function creates name-
spaces). They do not seem to be associated with a syntax
tower.

3. TAXONOMY
All these modules systems are very different, they have var-

ious goals and few common points. Here is an attempt to clas-
sify them.

What is a program? Scheme48 and MzScheme specify what
is a program with a grammar defining and instantiating

1I tend to think that the first one makes easier to understand
the two different languages that are involved.

modules. ChezScheme proposes a transformation map-
ping a program using modules into a single S-expression.
Bigloo and Gambit compile towards C (or JVM) and
leaveld build programs.

Do modules support separate compilation? This sieves Chez-
Scheme embeddable modules from the others.

Do modules support interactive debug? Debugging means,
most of the time, violating the language (modifying a
constant, conditionally aborting computations, etc.): de-
bugging is not constrained by the language. Offering a
toplevel for debug as in Scheme48 complexifies the se-
mantics.

Do modules support classes? Classes are not defined by Scheme
but all systems offer a variant of them. Bigloo is the only
one that combines class definition and exportation.

4. VAGUE FEELINGS, FUTURE QUES-
TIONS

This Section is highly hypothetic, it only reflects some in-
stantaneous feelings about modules and macros. It also con-
tains some shallow ideas that need much, much, much work to
be published :). Of course, readers are not compelled to share
these feelings!

Modules do not need to be embeddable, top-level modules
with explicit importations and exportations allow for easier
separate compilation. I also tend to think that higher-order
modules are not needed in an statically untyped language such
as Scheme (generic functions are probably sufficient).

Specifying a language or a global environment are two dif-
ferent things that operate at different times with very differ-
ent goals. Languages must be totally defined in order to ex-
pand modules: they extend the compiler with a pre-pass (an
expansion pass). Therefore a language may be represented
by a transformer that converts expressions using some abbre-
viations into expressions that do not use these abbreviations.
Therefore an abbreviation may be seen as a language trans-
former that is, creating a new language enriched with a new
abbreviation.

Today, the abbreviation protocol fuse all abbreviations into
a single transformer. To stage transformations would be ben-
efitful for instance for macros that want to code-walk expres-
sions after transformation to core Scheme (so they are free of
implementation-dependent special forms). How to compose
abbreviations into passes and how to rank passes is open.

Constituting global environments is rather independent of
the compiler. Even if requiring a unique thing, such asscheme ,
bringing both a global environment and a language is, of course,
easier for the user, I tend to separate expansion and linking.

Importation language should allow arbitrary computations
on sets of names (for instance, managing the whole set of
names associated to a class definition, or names obeying a
given naming pattern). The importation language should also
be able to accompany sets of locations with extra informations
required for better compilation. This extra information should
not obfuscate importations.

The only operation that can be performed on a compiled
module should be to load it (not to visit, import, use or what-
ever). I therefore favor a mode where a module is compiled
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into a single, monolithic, that is, non conditionalized, code.
However, compiling a module requires expanding its body.
Expansion requires an evaluation that is done with an appro-
priate syntax tower. Compiling another module requires an-
other appropriate syntax tower.

On the evaluation side, it should be possible to build special-
izedeval -uator(s) for any given language. Different parts of
the whole executable may need more than one language for
extension. It should also be possible (maybe with first-class
environments [10]) to set up the needed sharing.

The synthetisedeval takes an expression and a global en-
vironment as in R5RS. The returned evaluator comes with its
own syntax tower, the language of the macros for this evalua-
tor may be obtained. An example of these functions may be as
follows:

(make-eval language-expr) → evaluator
( evaluator expression environment) → value
(syntax-eval evaluator) → evaluator

A language-expris an expression in a language definition
language, a naive example might be:

( base-language macro...)

Finally, language expressions may also be used to specify
local languages to use:

(with-language language-expr s-expr)

Since a language is seen as an expression transformer it may
be obtained by loading a module. Finally, repeatibility must
be the paramount property of this system (with first-class lan-
guages?) to offer real separate compilation.

5. CONCLUSIONS
This paper discusses various points offered by some mod-

ule systems for Scheme, some problems they solve or not and
some ideas about them. As a conclusion, it seems highly hy-
pothetic to add soon a chapter on modules inR6RS. However,
thinking positively, I propose two measures that should be sim-
pler to introduce:

• Documentations should explain the syntax towers they
use (for their toplevel, modules,eval or expand fa-
cilities).

• Introduce aneval function with an additional third ar-
gument specifying the syntax tower to use.

The source of the various experiments may be found via the
net at:

http://youpou.lip6.fr/queinnec/Programs/
sws-2002Aug18.tgz
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