This is Scribe!

Manuel Serrano
Inria Sophia-Antipolis
2004 route des Lucioles - BP 93
F-06902 Sophia Antipolis, Cedex
France
Manuel.Serrano@sophia.inria.fr
http://www.inria.fr/mimosa/Manuel.Serrano

ABSTRACT

This paper presents SCRIBE, a functional programming lan-
guage for authoring documents. Even if it is a general pur-
pose tool, it best suits the writing of technical documents
such as web pages or technical reports, API documentations,
etc. Executing SCRIBE programs can produce documents of
various formats such as PostScript, PDF, HTML, Texinfo
or Unix man pages. That is, the very same program can
be used to produce documents in different formats. SCRIBE
is a full featured programming language but it looks like a
markup language a la HT'ML.

1. INTRODUCTION

SCRIBE is a functional programming language designed for
authoring documentations, such as web pages or technical
reports. It is built on top of the Scheme programming lan-
guage [5]. Its concrete syntax is simple and it sounds familiar
to anyone used to markup languages. Authoring a document
with SCRIBE is as simple as with HTML or IXTgX. It is even
possible to use it without noticing that it is a programming
language because of the conciseness of its original syntax:
the ratio markup/test is smaller than with the other markup
systems we have tested.

Executing a SCRIBE program with a SCRIBE evaluator pro-
duces a target document. It can be HTML files that suit web
browsers, ITEX files for high-quality printed documents, or
a set of info pages for on-line documentation.

Building purely static texts, that is texts avoiding any kind
of computation, is generally not sufficient for elaborated
documents. Frequently one needs to automatically produce
parts of the text. This ranges from very simple operations

Permission to make digital or hard copies, to republish, dstwn
servers or to redistribute to lists all or part of this worlgianted with-
out fee provided that copies are not made or distributed fofitpor
commercial advantage and that copies bear this notice arditcita-
tion on the first page. To otherwise copy or redistribute iguprior
specific permission. Third Workshop on Scheme and FundtiBra
gramming. October 3, 2002, Pittsburgh, Pennsylvania, WS¥yright
2002 Manuel Serrano, Erick Gallesio.

31

Erick Gallesio
Université de Nice - Sophia Antipolis
930 route des Colles, BP 145
F-06903 Sophia Antipolis, Cedex
France
Erick.GallesioQunice.fr
http://saxo.essi.fr/~gallesio

such as inserting in a document the date of its last update
or the number of its last revision, to operations that work
on the document itself. For instance, one may be willing
to embed inside a text some statistics about the document,
such as the number of words, paragraphs or sections it con-
tains. SCRIBE is highly suitable for these computations. A
program is made of static texts (that is, constants in the
programming jargon) and various functions that dynami-
cally compute (when the SCRIBE program runs) new texts.
These functions are defined in the Scheme programming lan-
guage. The SCRIBE syntax enables a sweet harmony between
the static and dynamic components of a program.

Authoring documents with a programming language is of
course not a novel idea, and a lot of systems have used this
approach, such as the TEX [8] typesetting system. PostScript
[1] can also be classified in this category. Even if it is not
generally directly used for authoring, it represents a docu-
ment as a program whose execution yields a set of printed

pages.

On the other side, solutions based on the SGML [2] or XML
[3] formats propose a model where all the computations on a
document are expressed outside of the document itself. For
instance, the DOM [20] approach extols a strict dichotomy
between documents and programs. This dichotomy is pre-
sented as a virtue by its proponents, but it is our opinion
that it makes simple documents harder to code than with a
general linguistic tool because it requires the usage of sev-
eral different languages with different semantics and differ-
ent syntax.

With the development of dynamic content web sites, a great
number of intermediate solutions based on programming
languages have been proposed. These solutions generally
consist in giving a way to embed calls to a programming
language inside a document. PHP [9] is probably the most
representative of this kind. A document is a mix of text and
code expressed with different syntaxes. This implies that
the author/programmer must deal at the very same time
with the underlying text markup system as well as the pro-
gramming language. Furthermore, these tools do not permit
to reify a document structure and are generally limited to
the production of web pages only.

The approach we propose is inspired by the LAML system

[12] which uses Scheme as a markup language. In LAML
as in SCRIBE, a document is a program and its evaluation
yields its final form. Both languages permit the user to type-
set documents using an unique syntax. However, LAML is
limited to the production of HTML, whereas, as said before,
the evaluation of a SCRIBE program can produce several out-
put formats.

In Section 2 we present an overview of the SCRIBE system for
authoring simple static documents. We show that a SCRIBE
program looks like a document specified in a markup lan-
guage. A more complex usage of the language is shown in
Section 3, where some simple text generations are done, as
well as some text inclusions built by introspecting the doc-
ument itself. Section 4 shows various customizations that
can take place during the execution of a SCRIBE program.
Finally, we compare in Section 5 SCRIBE with various tools
or programming languages used for authoring documents.

2. SCRIBE OVERVIEW

This section presents an overview of the SCRIBE program-
ming language and its implementation. First, the syntax is
presented in Section 2.1. Then, in Section 2.2, the structure
of a program is presented. Finally, Section 2.3 contains some
few words about the current state of the SCRIBE implemen-
tation.

2.1 Sc-expressions

We have designed the SCRIBE syntax so that it as unobtru-
sive as possible. We have found of premium importance to
minimize the weight of meta information when authoring
documentations. A complex syntax would prevent it to be
used by non computer scientists. A SCRIBE program is a list
of expressions (Sc-expression henceforth) that are extended
S-expressions [11]. An Sc-expression is:

e An atom, such as a string or a number.
e A list of Sc-expressions.

o A text.

Atomic expressions and lists are regular Scheme expressions.
A text is a sequence of characters enclosed inside square
brackets. This is the sole extension to the standard Scheme
reader. The bracket syntax is very similar to the standard
quasiquote Scheme construction. In Scheme, the quasiquote
syntax allows to enter complex lists by automatically quoting
the components of the list. It is to be used in conjunction of
the comma operator that allows to unquote the expressions.
For instance, the Scheme form:

‘(compute pi = ,(* 4 (atan 1)))
is equivalent to the expression:
(list ’compute ’pi ’= (* 4 (atan 1)))

which evaluates to:

(compute pi = 3.1415926535898)

The SCRIBE bracket form collects all the characters between
the brackets in a list of characters strings. Computations
inside brackets are handled by the characters sequence “, (”.
For instance, the text:

[text goodies: ,(bold "bold") and ,(it "italic").]
is parsed by the SCRIBE reader as:

(list "text goodies: " (bold "bold")
"and" (1_t "italic“) ||‘||)

The SCRIBE syntax is unobtrusive, and easy to typeset with
an editor aware of Lisp-like syntax, such as Emacs. Doc-
uments expressed in SCRIBE are also generally shorter to
type-in than their counterpart expressed in classical format-
ting languages. For instance, the size of the SCRIBE source
files of this paper is about 42,200 characters long, whereas it
is 53,000 characters in X TEX and 72,000 in HTML. Even if
it is somehow unfair to compare hand-written code against
generated ones, these figures give the intuition of the com-
pactness of SCRIBE programs. The idea of extending a stan-
dard Scheme reader for text processing comes from the BRL
system [10].

2.2 Scribe as a markup language

In this section, we present how to build a document using
SCRIBE. As said before, programming skill is not needed to
produce a document. In fact, non programmer writers can
see SCRIBE as a simple document formatting system such as
HTML or nroff [14].

SCRIBE provides an extensive set of pre-defined markups.
These roughly correspond to the HTML markups. The goal
of this section is to give an idea of the look and feel of this
system. It will avoid the tedious presentation of an extensive
enumeration of all the markups available. For a complete
manual of SCRIBE, interested readers can have a look at
http://www-sop.inria.fr/mimosa/fp/Scribe.

2.2.1 Scribe Markups

A ScCRIBE markup is close to an XML element. The at-
tributes that can appear inside an XML element are repre-
sented by Scheme keywords. They are identifiers whose first
(or last character) is a colon. Scheme keywords have been
introduced by DSSSL [4], the tree manipulation language
associated to SGML. So, the following XML expression:

<elmtl attl="v1i" att2="v2">
Some text <elmt2>for the example</elmt2>
</elmt1>

is represented in SCRIBE as:

(elmtl :attl vl :att2 v2
[Some text ,(elmt2 [for the examplel])])

2.2.2 Document Structure

As said before, a SCRIBE program consists in a list of Sc-
expressions. Among these, the document one serves a special
purpose. It is used to represent the complete document. All
the subdivisions of a document must appear as arguments
of the document call. So, the general structure of a SCRIBE
document looks like:

<sc-expr>

(document :title <sc-ezpr> :author <sc-expr>
(abstract <sc-expr>)
(section :title <sc-expr>

(subsection :title <sc-ezpr>)

(subsection :title <sc-ezpr>)

L)

(section :title <sc-expr>))

As we can see, all the sectioning components of a document
are embedded in their containing component (i.e. subsec-
tions are embedded in sections, sections are inside chapters,
and so on). This strict nesting of document components is
particularly useful when one wants to do introspection on
the structure of the document, as we will see in Section 3.2.

2.2.3 <cribe standard library

SCRIBE is provided with the usual functions for text pro-
cessing. Some of these are presented here.

The Lists offered in SCRIBE are classical: itemization, enu-
meration and description. For instance, the following ex-
pression:

[A first item.])
[A ,(bold "second") one.])
(description
(item :key (bold "foo")
[is a usual Lisp identifier.])
(item :key (bold "bar")
[is another one.])))
(enumerate (item "One.")
(item "Two."))))

(itemize (item
(item
(item

(item

produces the following output text:

o A first item.

e A second one.

e foo is a usual Lisp identifier.
bar is another one.

e 1. One.
2. Two.

Of course, all the usual text ornaments are available in
SCRIBE, that is one can easily produce text in bold, italic,
underline or combine them.

33

The ScrIBE standard library also offers the usual tools for
inter and intra document references, footnotes, tables, fig-
ures, ... It provides also an original construction, the prgm
markup, to pretty-print codes or algorithms. In contrast
with previous systems such as I#TEX there is no need, in
SCRIBE to use external pre-processors such as SLaTex [17]
and Lisp2TeX [15] for pretty-print programs inside texts.
The prgm form takes as an option the language in which
the code is expressed and its evaluation yields a form that
is the pretty-printed version of this code. For instance, the
following call

(prgm :language c (from-file "ex/C-code.c"))
produces the following output

int main(int argc, char **argv) {
/* A variant of a classical C program */
printf("Hello, Scribe\n");
return 0;

}

if the C program source is located in file ex/C-code.c.

2.3 Front-ends and Back-ends

The current version of SCRIBE which is available at http:/-
/www-sop.inria.fr/mimosa/fp/Scribe contains two front-
ends which are used to translate existing document sources
into SCRIBE documents:

e scribeinfo compiles Texinfo into SCRIBE. An exam-
ple of such a compilation can be browsed at http:/-
/www.inria.fr/mimosa/fp/Bigloo/doc/rbrs.html. It
is an on-line version of the Scheme definition, automat-
ically produced from a Texinfo source.

e scribebibtex translates Bibtex bibliography databases
into SCRIBE sources. This tool is, for instance, used to
produce the bibliographic references of this paper.

SCRIBE can produce various kinds of document formats.
Currently five back-ends are supported:

e HTML: It is extensively used on the SCRIBE web page.

e PS or PDF (via ITEX): That is, for instance, used
to produce the PostScript version of this paper.

e Man: which is the format of Unix “man pages”.
e Text: which is a plain text format.

e Info: which is the format of the Emacs documenta-
tion.

SCRIBE user programs are independent of the target for-
mats. That is, using one unique program, it is possible to
produce an HTML version, and a PostScript version, and
an ASCII version, etc. The SCRIBE API is general purpose.

It is not impacted by specific output formats. Independence
with respect to the final document format does not limit
the expressiveness of SCRIBE programs because specificities
of particular formats are handled by dedicated back-ends.
Back-ends are free to find convenient ways to implement
SCRIBE features. For instance, intra document references
are handled differently by the HTML back-end and the TEX
back-end. In HTML, they appear as hyper-links whose text
is the title of the section. In TEX they appear as section
numbers. An output target may even not support some
SCRIBE features. In that case, the back-end could possibly
omit them (for instance, figures in ASCII formats, or dialog
boxes in PostScript documents).

When customization of the produced documents is required,
the SCRIBE hook form must deployed. It enables to insert
characters in the final document. Coupled with conditional
evaluation, the hook form can be used to implement fine
grain tuning aware of the idiosyncrasies of the target format
(see Section 3.3).

3. DYNAMIC TEXTS

We show in this section various situations where dynamic
texts, that is texts not written as ¢s in the SCRIBE sources,
can be used when authoring documents. We have isolated
two kinds of computations. The ones that produce some
parts of the document being processed (Section 3.1). The
ones that involve introspection on the source text (Section
3.2). These computations correspond to two different eval-
uation stages of the SCRIBE evaluator. The first ones are
front-end computations that take place at the very begin-
ning of the execution of a program. The second omnes are
back-end computations that take place at the very end of
the execution while an internal representation of the whole
SCRIBE program has been loaded in memory.

3.1 Computing Sc-expressions

Many typesetting systems such as IXTEX enable users to de-
fine convenience macros. In its simplest form, a macro is
just a name that is ezpanded into, or replaced with, a text
that is part of the produced document. Macros are imple-
mented in SCRIBE by the means of functions that produce
Sc-expressions. For instance, a macro defining the typeset-
ting of the word “SCRIBE” is used all along this paper. It is
defined as follow:

(define (Scribe.tex)
(sc "Scribe"))

That can be used in a Sc-expression such as:
[This text has been produced by ,(Scribe.tex).]

That produces the following output:
“This text has been produced by SCRIBE.”

The function Scribe.tex is overly simple because it merely
inserts in the SCRIBE program one new string each time it is

called. Sometimes we need to compute more complex parts
of a document and some texts are better to be computed.
Either because they contain pattern repetitions or because
they are the result of the evaluation of an algorithm, such
as the table of Figure 1.

fact

6
24

120

720

5040
70320
362850
3628500
39916800

| >

Figure 1: Factorial

This table can be statically declared in a program using a
Sc-expression such as:

(table :border 1
(H (@ "Il=") (@ "fact"))
(tr (td :align ’center (bold 3))
(td :align ’right (it 6)))
(tr (td :align ’center (bold 4))
(td :align ’right (it 24)))
(tr (td :align ’center (bold 5))
(td :align ’right (it 120)))
(tr (td :align ’center (bold 6))
(td :align ’right (it 720)))
(tr (td :align ’center (bold 7))
(td :align ’right (it 5040)))
(tr (td :align ’center (bold 8))
(td :align ’right (it 40320)))
(tr (td :align ’center (bold 9))
(td :align ’right (it 362880)))
(tr (td :align ’center (bold 10))
(td :align ’right (it 3628800)))
(tr (td :align ’center (bold 11))
(td :align ’right (it 39916800))))

Obviously the table construction can be automated. The
factorial values can be computed and the table rows can be
generated. Unlike many other markup languages, SCRIBE
enables this computation to take place inside the document
itself. Let us assume the standard definitions for the upto
and fact functions:

(define (upto min max)
(if (= min max)
(list max)
(cons min (upto (+ min 1) max))))

(define (fact n)
(if (K n 2)
n

(* n (fact (- n 1)))))

The generation of the factorial table requires two additional
ScrIBE functions. The first one builds table rows:

(define (make-fact-row n)
(tr (td :align ’center (bold n))
(td :align ’right (it (fact n)))))

The second one is in charge of creating the table:

(define (make-fact-table n)
(apply table :border 1
(H (Q "Il=") (@ "fact"))
(map make-fact-row (upto 3 n))))

3.2 Computing Sc-ast

“bib Scribe Evaluator
G
i ﬁ c -html v | .html .
A Sc—expr B Sc-ast
scr k
Q Q ° /
tex
E 3 \\\\ AN
N .pdf
texi

Figure 2: The Scribe process

The evaluation of a SCRIBE program involves three steps
(see Figure 2):

e First, the source file is read and represented as a list
of Sc-expressions (edge “A”).

e Second, the Sc-expressions are evaluated using the stan-
dard ScrIBE library. This produces an abstract syntax
tree named Sc-ast (edge “B”).

e Third, the Sc-ast is translated into the target format
i.e., HTML, ITEX , ... (edges “C” and “D”).

The computations previously presented in Section 3.1 take
place on the edge “E”. This section focuses now on the com-
putations that are involved on edges “F” and “G”.

Frequently some parts of a document may refer to the docu-
ment itself. For instance, introspection is needed to compute
a table of contents. SCRIBE is provided with introspection
facilities that can be used in user programs. For instance, it
enables the computation of such a sentence:

“This document contains 9 sections.”

The actual number of sections is the result of a user com-
putation. The whole sentence is computed by the following
Sc-expression:

[This document contains
, (hook :after
(lambda ()
(display (length
(document-sections*
(current-document))))))
sections.]

35

It uses the SCRIBE library function hook which enables com-
putations to take place while the Sc-ast is built, that is on
the edge “F” of Figure 2. The :after argument is a func-
tion which is executed once the Sc-ast is translated into the
target format. It prints a string that is inserted in the tar-
get. Obviously, the dynamic text of the previous example
cannot be computed earlier in the SCRIBE evaluation pro-
cess since the number of sections cannot be computed until
all the sections are built! The function of the standard li-
brary current-document returns a structure that describes
the document being processed. The function document-
-sections* returns the list of sections contained in a doc-
ument. Not that, since the hook function enables arbitrary
characters insertion, it can be used to introduce low level
back-end commands such as TEX commands or HTML com-
mands in the target. For instance, the SCRIBE command
LaTeX which produces the following “ITEX” is implemented
as:

(define-markup (LaTeX)
(if (scribe-format? ’tex)
(hook :after (lambda () (display "\\LaTeX")))
"LaTeX"))

Sometimes, instead of printing characters into the target,
it is needed that the evaluation of a hook node produces a
fresh Sc-expression. That is, an expression that has to be
evaluated by the SCRIBE engine (the edge “G” of Figure 2)*.
This is illustrated by the following example. The user func-
tion document-tree computes the hierarchical structure of
a document. Applied to the current document it produces:

+--ABSTRACT

+--1 Introduction

+--2 Scribe overview

| +--2.1 Sc-expressions
| +--2.2 Scribe as a markup language
| | +--2.2.1 Scribe Markups

| | +--2.2.2 Document Structure

| | +--2.2.3 Scribe standard library
| +--2.3 Front-ends and Back-ends
+--3 Dynamic texts

| +--3.1 Computing Sc-expressions

| +--3.2 Computing Sc-ast

| +--3.3 Conditional ezecution

+--4 Customization
+-
I

I

I

I

I

-5 Related work
+--5.1 SGML and XML
+--5.2 Scheme vs. other functional languages
+--5.3 LAML
+--5.4 BRL
+--5.5 Wash
+--6 Conclusion
+--7 References
+--APPENDIX

Figure 3: Tree

The tree branches are displayed using a typewriter font and
a layout that preserves spaces and line breaks. The tree

ntroducing a fresh Sc-expression in the tree may intro-
duce incoherences for cross-references. When iterations are
needed, it belongs to the programmer to implement it.

nodes are displayed underlined and in italic. The compu-
tation involved in document-tree produces a regular Sc-
expression that is evaluated by the SCRIBE engine. This
ensures back-end independence because it prevents the hook
call to specify how underline and italic have to be rendered
for each specific target format. The function document-tree
is defined as:

(define (document-tree)
(hook :process #t
:after (lambda ()
(prgm
(make-tree (current-document))))))

The argument :process #t means that the result of the
application of the :after function has to be evaluated back
by the SCRIBE engine. This function constructs a new Sc-
expression which is made of a prgm call. The definition of
make-tree is:

(define (make-tree doc)
(let loop ((s (scribe-get-children doc))
(m ||l|)
(f underline))
(if (null? s)
70
(append (make-row m (car s) f)
(loop (scribe-get-children (car s))
(string-append m "| ")
it)
(loop (cdr s) m £)))))

The function make-row is:

(define (make-row m s f)
(list (string-append m "+--")
(f (scribe-get-title s))
n \nll))

The library function scribe-get-children returns the el-
ements contained in a section or a subsection. The library
function scribe-get-title returns the title of a section or
a subsection.

In addition to illustrating SCRIBE introspection, this exam-
ple also shows how suitable functional programming lan-
guages are to compute over texts: the whole implementa-
tion of Figure 3 is a simple recursive traversal of the tree
representing the document (function make-tree).

3.3 Conditional execution

Conditional execution is required when the text to be pro-
duced depends on some properties of the target format. The
scribe-format? predicate checks which target format is to
be produced. It is used several times in the paper. For in-
stance, in Section 3.1 we have presented the definition of the
Scribe.tex macro. The actual macro used in the sources
of this paper is slightly more complex. Instead of rendering
the word “Scribe”, when targeting HTML, it introduces a
reference to the SCRIBE home page. Moreover, because of
our poor English style, we have also decided to introduce

36

an URL link only once per section. So, the actual function
used in the paper source is defined as:

(define Scribe
(let ((sec #f))
(lambda ()
(if (scribe-format? ’html)
(hook :after
(lambda ()
(let ((s (current-section)))
(if (eq? s sec)
(Scribe.tex)
(begin
(set! sec s)
(ref :url (scribe-url)
"Scribe")))))
:process #t)
(Scribe.tex)))))

4. CUSTOMIZATION

A real and practical programming language is useful when
considering customizations (in SCRIBE they usually take place
in style files). SCRIBE customizations enable users to change
the way documents are rendered. They are ubiquitous in the
standard SCRIBE API. For instance, one may setup the way
a bold text is rendered, configure the header and the footer
of the document, or even define margins. One may also spec-
ify the structure of the produced documents. In this section
we illustrate how one may benefit from the expressiveness
of SCRIBE in order to achieve complex customizations. In
particular, we will show how computers program can be ren-
dered.

Depending of the specified language, SCRIBE uses different
colors and fonts when rendering computer programs. The
standard implementation supports several languages such as
SCRIBE, Scheme, C, or XML. Computer programs are spec-
ified by the prgm markup (see Section 2.2.3) which accepts
one optional argument which is a function implementing the
rendering of the program. This function is called a pretty-
printer. One may define its own pretty-printers.

For the sake of the example, let us implement a pretty-
printer for rendering makefiles which uses some colors for
make targets, variables, and comments. In addition, for
back-ends supporting hyper links (such as HTML) a ref-
erence to its definition is added to the text when a variable
is used. For other back-ends, variable references are under-
lined.

SCRIBE= scribe
SFLAGS= -J style
MASTER= main.scr

INPUT= abstract.scr intro.scr what.scr why.scr this.scr
EXAMPLE= ex0 exl ex2 ex3 ex4 makefile
STYLE= style/local.scr

main entry
all: scribe.tex

scribe.tex: $(MASTER) $(INPUT) $(STYLE) $(EXAMPLE)
$(SCRIBE) $(SFLAGS) $(MASTER) -o scribe.tex

A pretty-printer function is a SCRIBE function accepting one
parameter. This formal parameter is bound to a string rep-
resenting the text to be pretty-printed. A pretty-printer
returns a Sc-expression representing the pretty-printed pro-
gram that must be included in the target document. The
definition of the makefile pretty-printer is:

(define (makefile obj)
(parse-makefile (open-input-string obj)))

In order to implement the pretty-printer we are using Bigloo
regular parser [16]. This mechanism enables a lexical anal-
ysis of character strings.

(define (parse-makefile port::input-port)
(read/rp
(regular-grammar ()
(C: #\# (+ all))
;; makefile comment
(let ((cmt (the-string)))
(cons (it cmt) (ignore))))
((bol (: (+ (out " \t\n:")) #\:))
;5 target
(let ((prompt (the-string)))
(cons (bold prompt) (ignore))))
((bol (: (+ alpha) #\=))
;; variable definitions
(let* ((len (- (the-length) 1))
(var (the-substring O len)))
(cons ‘(list ,(mark var)
(color :fg "#bb0000" (bold ,var))
,"=") (ignore))))
((+ (out " \t\n:=$"))
;; plain strings
(let ((str (the-string)))
(cons str (ignore))))
(C: #\$ #\((+ (out ")\n")) #\))
;; variable references
(let ((str (the-string))
(var (the-substring 2 (- (the-length) 1))))
(cons (ref :mark var (underline str))
(ignore))))
((+ (in " \t\n:"))
;; separators
(let ((nl (the-string)))
(cons nl (ignore))))
(else
;5 default
(let ((c (the-failure)))
(if (eof-object? c)
70
(error "prgm(makefile)"
"Unexpected character"
€))))
port))

5. RELATED WORK

In this section we compare SCRIBE and other markup lan-
guages. We also compare it with other efforts for handling
texts in functional programming languages.

5.1 SGML and XML

As stated in [3] “XML, the Extensible Markup Language, is
W3C-endorsed standard for document markup. It defines a

37

generic syntar used to mark up data with simple, human-
readable tags. It provides a standard format for computer
documents”. In other words, XML is a mean to specify
external representations for data structures. It is a mere
formalism for specifying grammars. It can be used to repre-
sent texts but this is not its main purpose. The most pop-
ular XML application used for representing texts (hence-
forth XML texts) is XHTML (a reformulation of HTML
4.0). XML can be thought as a simplification of SGML.
They both share the same goals and syntax.

The fundamental difference between XML and SCRIBE is
that the first one is definitely not a programming language.
In consequence, any processing (formating, rendering, ex-
tracting) over XML texts requires one or several external
tools using different programming languages which appear
to be, most of the time, Java, Tcl, and C. A vast effort has
been made to provide most of the functional programming
languages with tools for handling XML texts. It exists XML
parsers for mostly all functional programming languages.
Haskell has HaXml [19], Caml has Px and Tony, and Scheme
has SSax [7].

In addition to parsers, Scheme has also SXML [6] which is
either an abstract syntax tree of an XML document or a con-
crete representation using S-expressions. SXML is suitable
for Scheme-based XML authoring. It is a term implementa-
tion of the XML document.

The document style semantics and specification language
(aka DSSSL [4]) defines several programming languages for
handling SGML applications. The DSSSL suite plays ap-
proximatively the same role as XML XSLT, DOM and SSAX
do: it enables parsing and computing over SGML docu-
ments. The DSSSL languages are based on a simplified ver-
sion of Scheme.

XEXPR [21] is a scripting language that uses XML as its
primary syntax. It has been defined to easily embed scripts
inside XML documents and overcomes the usage of an ex-
ternal scripting language in order to process a document.
The language defines itself to be very close to a typical Lisp
or combinator-based language where the primary means of
programming is through functional composition. XEXPR al-
lows the definition of functions using the <define> element.
Hereafter is a definition of the factorial function expressed
in XEXPR:

<define name="factorial" args="n">
<if>
<1t><n/>2</1t>
<n/>
<multiply>
<n/>
<factorial>
<substract><n/>1</substract>
</factorial>
</multiply>
</if>
</define>

which must be compared with the Scheme version given in
Section 3.1. Obviously, writing by hand large scripts seems
hardly achievable in XEXPR. Furthermore, a careful reading

of the report defining this language seems to indicate that
there is no way to manipulate the document itself inside
an XEXPR expression. The language seems then limited
to simple text generations inside an XML document, as the
ones presented Section 3.1

Besides deploying one unique formalism and syntax for au-
thoring documents we have found that SCRIBE enables more
compact sources than XML (see Section 2.1). The SCRIBE
syntax is less verbose than the XML one mainly because the
closing parenthesis of a Sc-expression is exactly one charac-
ter long when it is usually much more in XML.

5.2 Scheme vs. other functional languages

We have chosen to base SCRIBE on Scheme mainly because
its syntax is genuinely close to traditional markup languages.
Such as XML, the Scheme syntax is based on the represen-
tation of trees. The modifications to apply to the Scheme
grammar are very limited and simple. This makes this lan-
guage suitable for text representation. The other functional
languages such as, Caml and Haskell, rely on LALR syntaxes
that do not fit the markup look-and-feel.

In addition, we think that the Scheme type system is an
advantage for SCRIBE programs. It is convenient to dispose
of fully polymorphic data types. As presented in Section 2.1,
an Sc-expression can be a list whose elements are of different
types. For instance, the first element of such a list could be
a character string and the next one a number. This enables
compact representation of texts. If the underlying language
imposes a stronger typing system, the source program, that
is the user text, will be polluted with cast operations that
transform all the values into strings.

We have considered using a call-by-name semantics for SCRI-
BE function application in order to implement the nesting
of Sc-expressions. As presented in Section 3.2 the SCRIBE
library proposes introspection functions. For instance, the
document-sections* returns the list of sections contained
in a document structured such as:

(document ...
(chapter ...)
(chapter

&;éction |
L))
L)

The container nodes (representing documents, chapters, sec-
tions, ...) of the Sc-ast are provided with pointers to the
children they contain and vice versa. Since laziness enables
to postpone the computation of expressions until they are
required, it can be used to delay the evaluation of inner ele-
ments of a document until the whole document is declared.
We have obtained the same effect by adding a second traver-
sal of the Sc-ast (see 3.2).

5.3 LAML

LAML (Lisp as a Markup Language) [13] is an attempt to
use Scheme as a markup language. It mirrors the HTML

38

markups in Scheme. That is, for each HTML markup there
is a corresponding Scheme function in LAML. The HTML
document:

<html>
<head><title>An example</title></head>
<body>

This is an HTMLexample.

</body>
</html>

is mirrored in LAML as:

(html
(head (title "An example"))
(body (br)
"This is an" (em "HTML") "example."
(br)))

So, LAML and ScRIBE are very close. They rely on the
natural Scheme syntax and they both consider a document
as a program. However, there is two important differences
between them:

e The syntax: SCRIBE uses an extended Scheme syntax.
As presented Section 2.1, it introduces the [...] no-
tation that, as we have shown, enables compact source
texts.

e The Sc-ast: The evaluation of a LAML function call
directly produces an HTML expression. For instance,
the definition of the LAML em function of the previous
example is:

(define (em str)
(string-append "" str ""))

Coutrarily to SCRIBE, LAML does not build a tree rep-
resenting the text to be generated. This direct map-
ping has three drawbacks:

1. LAML sources cannot produce other formats than
HTML.

2. It is complex to implement efficiently a LAML in-
terpreter. As reported in [12], the LAML evalua-
tion process allocates a lot of strings of characters.
This exercises intensively the memory manager
(garbage collection and memory copies). These
string manipulations are totally avoided by SCRI-
BE. One SCRIBE markup allocates one object that
is a node of the Sc-ast. This node is used until
the back-end has completed the file generation.
It never happens that a node nor the characters
is contains are duplicated.

3. Introspection over a LAML document is complex.
In particular, it has to take place before the string
representing an HTML expression is built. That
is, it has to take place before LAML functions are
called. In other words, LAML is of no help for
computing on documents. LAML users have to
implement their own data representation before
using LAML functions.

5.4 BRL

The Beautiful Report Language BRL [10] defines itself as a
database-oriented language to embed in HTML and other
markups. In some extent BRL approach is very similar to
the PHP one: it proposes to mix the text and the program
which form the document in the same source file. For BRL,
a document is a sequence of either strings or Scheme ex-
pressions. BRL displays strings as is and evaluates Scheme
expressions. To alleviate document typesetting using this
conventions, BRL has introduced a new syntax for charac-
ter strings: there is no need to put a quote for a string
starting a file or terminating a file. Furthermore, “]” and
“[” can be used to respectively open and close a string. So,

Ja string[

is a valid string in BRL. The interest of this notation seems
more evident in a construction such as

The value of pi is [(* 4 (atan 1))].

where we have a Scheme expression enclosed between two
strings (“The value of pi is” and “.”). However, this
syntax can be sometimes complex as it is shown in the fol-
lowing excerpt from the reference manual.

[(define rowcount (sql-repeat ...)

(brl]
<a href="p2.brl?[
(brl-url-args brl-blank? color)
1">(brl-html-escape color)]
DM]

As we can see, BRL is just a sort of preprocessor and as such
it cannot be used to do introspective work on a document.

5.5 Wash

Wash [18] is a family of embedded domain specific languages
for programming Web applications. Each language is em-
bedded in the functional language Haskell, which means that
it is implemented as a combinator library. The basic idea
of Wash is to build a data structure that can be rendered
to HTML text. Because of the type system of the Haskell
type checker, Wash guarantees the well-formedness of the
generated HTML pages. Using a Haskell interpreter it is
possible with Wash to interactively create and manipulate
web pages.

If Wash shares with SCRIBE the construction of a data struc-
ture representing the text to be rendered, no effort is made
to provide it with a concise syntax. A “hello, word” page
which is in HTML:

<html>
<head>
<title>Hello, World</title>
</head>
<body>

39

This is the traditional "Hello, World!" page.
<hr>
</body>
</html>

and that can be implemented in SCRIBE as:

(define *title*x "Hello, World!")

(document :title "Hello, World" [

This is the traditional ,(begin *title*) page.
, (hrule)])

would be written in Wash as:

doc_head ::
doc_head =
make_head
‘add‘ (make_title ‘add‘ "Hello, World")

HEAD

doc_body ::
doc_body =
make_body
‘add‘ (make_heading 1 ‘add‘ title)

BODY

‘add‘ ("This is the traditional \""
++ title ++
Il\ll Page-")

‘add‘ make_hr

where title = "Hello, World!"

HTML
make_html ‘add‘ doc_head ‘add‘ doc_body

doc ::
doc =

putStr (show_html doc)

It is obvious that Wash is designed for programmers. Un-
like SCRIBE it cannot be as easily used in replacement of
traditional markup languages.

6. CONCLUSION

SCRIBE is a functional programming language for authoring
various kind of electronic documents. It can be used to
produce target formats such as HTML and PostScript. It
relies on an original syntax that makes it looking familiar to
anyone used to markup languages such as HTML.

We have shown that the evaluation of a SCRIBE program
involves two separate stages. During the first one the source
expressions are read using the SCRIBE reader. These expres-
sions are then evaluated using a classical Scheme interpreter.
This stage produces an internal representation of the source
program. The second evaluation stage uses that represen-
tation and, as a consequence, enables computations on the
representation itself. That is, during the second stage a
SCRIBE program may compute properties about itself.

SCRIBE is used on daily basis to produce large documents.
For instance, the whole web page http://www.inria.fr-
/mimosa/fp/Bigloo and the documentations it contains are
implemented in SCRIBE. Obviously, the current paper is
a SCRIBE program. An HTML version can be browsed at
http://www.inria.fr/mimosa/fp/Scribe/doc/scribe.html.

7. REFERENCES

[1] Adobe System Inc. — PostScript Language Reference
Manual — Addison- Wesley, Readings, Massachusetts,
1985.

[2] Goldfarb, C. — The SGML Handbook — Ozford
University Press, 1991.

[3] Harold, E.R. and Means W.S. - XML in a nutshell -
O’Reilly, Jan, 2001.

[4] ISO/IEC - Information technology, Processing
Languages, Document Style Semantics and
Specification Languages (DSSSL) — 10179:1996(E),
150, 1996.

[5] Kelsey, R. and Clinger, W. and Rees, J. — The Revised(5)
Report on the Algorithmic Language Scheme —
Higher-Order and Symbolic Computation, 11(1), Sep, 1998.

[6] Kiselyov, O. — Implementing Metcast in Scheme —
Scheme workshop, Montréal, Canada, Sep, 2000.

[7] Kiselyov, O. — A better XML parser through
functional programming. — Practical Aspects of
Declarative Languages, Portland, Oregon, USA, Jan, 2002.

[8] Knuth, D. — The TEXbook, — Addison- Wesley, Readings,
Massachusetts, 1986.

[9] Lerdorf, R. - PHP Pocket Reference — O’Reilly &
Associates, Jan, 2000.

[10] Lewis, B — BRL Reference Manual —
http://brl.sourceforge.net/2002.

[11] McCarthy, J. — Recursive functions of symbolic
expressions and their computation by machine — I —
Communications of the ACM, 3(1), 1960, pp. 184-195.

[12] Ngrmark, K. — Programming World Wide Web Pages
in Scheme — Sigplan Notices, 34(12), 1999.

[13] Ngrmark, K. — Programmatic WWW authoring using
Scheme and LAML — The Eleventh International World
Wide Web Conference, Honolulu, Hawaii, USA, May, 2002.

[14] Ossana, J. - UNIX Programmer’s manual:
Supplementary Documents — 1982.

[15] Queinnec, C. — Literate programming from Scheme
to TeX — LIX RR 93.05, Laboratoire d’Informatique de I’
Polytechnique, 91128 Palaiseau Cedex, France, Nov, 1993.

[16] Serrano, M. — Bigloo user’s manual — 0169,
INRIA-Rocquencourt, France, Dec, 1994.

[17] Sitaram, D. — SLaTeX — http://www.ccs.neu.edu/home-
/dorai/slatex/slatxdoc.html.

(18] Thiemann, P. - Modeling HTML in Haskell — Practical
Aspects of Declarative Languages, 2000, pp. 263-277.

[19] Wallace, M. and Runciman, C. — Haskell and XML:
Generic Combinators or Type-Based Translation? —
Int’l Conf. on Functional Programming, Paris, France,
1999.

[20] World Wide Web Consortium — Document Object
Model (DOM) Level 1 Specification - W3C
Recommendation, Oct, 1998.

[21] World Wide Web Consortium — XEXPR - A Scripting
Language for XML - W3C Note, Nov, 2000.

APPENDIX

For the sake of the example, we present in this Annex, the
whole SCRIBE source code for the abstract of this paper:

40

(paragraph [

This paper presents ,(Scribe), a functional programming
language for authoring documents. Even if it is a general
purpose tool, it best suits the writing of technical
documents such as web pages or technical reports, API
documentations, etc. Executing ,(Scribe) programs can
produce documents of various formats such as PostScript,
PDF, HTML, Texinfo or Unix man pages. That is, the very
same program can be used to produce documents in different
formats. ,(Scribe) is a full featured programming language
but it ,(emph "looks") like a markup language ,(emph "a la")
HTML. T

IDD)

This paper has been generated by Scribe (http://www-sop.inria.fr-
/mimosa/fp/Scribe) (via IATEX and the ACMproc class.)

