
31

This is Scribe!

Manuel Serrano
Inria Sophia-Antipolis

2004 route des Lucioles - BP 93
F-06902 Sophia Antipolis, Cedex

France
Manuel.Serrano�sophia.inria.fr

http://www.inria.fr/mimosa/Manuel.Serrano

Erick Gallesio
Université de Nice - Sophia Antipolis

930 route des Colles, BP 145
F-06903 Sophia Antipolis, Cedex

France
Eri
k.Gallesio�uni
e.fr

http://saxo.essi.fr/

~

gallesio

ABSTRACT

This paper presents S
ribe, a fun
tional programming lan-

guage for authoring do
uments. Even if it is a general pur-

pose tool, it best suits the writing of te
hni
al do
uments

su
h as web pages or te
hni
al reports, API do
umentations,

et
. Exe
uting S
ribe programs
an produ
e do
uments of

various formats su
h as PostS
ript, PDF, HTML, Texinfo

or Unix man pages. That is, the very same program
an

be used to produ
e do
uments in di�erent formats. S
ribe

is a full featured programming language but it looks like a

markup language �a la HTML.

1. INTRODUCTION

S
ribe is a fun
tional programming language designed for

authoring do
umentations, su
h as web pages or te
hni
al

reports. It is built on top of the S
heme programming lan-

guage [5℄. Its
on
rete syntax is simple and it sounds familiar

to anyone used to markup languages. Authoring a do
ument

with S
ribe is as simple as with HTML or L

A

T

E

X. It is even

possible to use it without noti
ing that it is a programming

language be
ause of the
on
iseness of its original syntax:

the ratio markup/text is smaller than with the other markup

systems we have tested.

Exe
uting a S
ribe program with a S
ribe evaluator pro-

du
es a target do
ument. It
an be HTML �les that suit web

browsers, L

A

T

E

X �les for high-quality printed do
uments, or

a set of info pages for on-line do
umentation.

Building purely stati
 texts, that is texts avoiding any kind

of
omputation, is generally not suÆ
ient for elaborated

do
uments. Frequently one needs to automati
ally produ
e

parts of the text. This ranges from very simple operations

Permission to make digital or hard copies, to republish, to post on
servers or to redistribute to lists all or part of this work isgranted with-
out fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full cita-
tion on the first page. To otherwise copy or redistribute requires prior
specific permission. Third Workshop on Scheme and Functional Pro-
gramming. October 3, 2002, Pittsburgh, Pennsylvania, USA.Copyright
2002 Manuel Serrano, Erick Gallesio.

su
h as inserting in a do
ument the date of its last update

or the number of its last revision, to operations that work

on the do
ument itself. For instan
e, one may be willing

to embed inside a text some statisti
s about the do
ument,

su
h as the number of words, paragraphs or se
tions it
on-

tains. S
ribe is highly suitable for these
omputations. A

program is made of stati
 texts (that is,
onstants in the

programming jargon) and various fun
tions that dynami-

ally
ompute (when the S
ribe program runs) new texts.

These fun
tions are de�ned in the S
heme programming lan-

guage. The S
ribe syntax enables a sweet harmony between

the stati
 and dynami

omponents of a program.

Authoring do
uments with a programming language is of

ourse not a novel idea, and a lot of systems have used this

approa
h, su
h as the T

E

X [8℄ typesetting system. PostS
ript

[1℄
an also be
lassi�ed in this
ategory. Even if it is not

generally dire
tly used for authoring, it represents a do
u-

ment as a program whose exe
ution yields a set of printed

pages.

On the other side, solutions based on the SGML [2℄ or XML

[3℄ formats propose a model where all the
omputations on a

do
ument are expressed outside of the do
ument itself. For

instan
e, the DOM [20℄ approa
h extols a stri
t di
hotomy

between do
uments and programs. This di
hotomy is pre-

sented as a virtue by its proponents, but it is our opinion

that it makes simple do
uments harder to
ode than with a

general linguisti
 tool be
ause it requires the usage of sev-

eral di�erent languages with di�erent semanti
s and di�er-

ent syntax.

With the development of dynami

ontent web sites, a great

number of intermediate solutions based on programming

languages have been proposed. These solutions generally

onsist in giving a way to embed
alls to a programming

language inside a do
ument. PHP [9℄ is probably the most

representative of this kind. A do
ument is a mix of text and

ode expressed with di�erent syntaxes. This implies that

the author/programmer must deal at the very same time

with the underlying text markup system as well as the pro-

gramming language. Furthermore, these tools do not permit

to reify a do
ument stru
ture and are generally limited to

the produ
tion of web pages only.

The approa
h we propose is inspired by the LAML system

32

[12℄ whi
h uses S
heme as a markup language. In LAML

as in S
ribe, a do
ument is a program and its evaluation

yields its �nal form. Both languages permit the user to type-

set do
uments using an unique syntax. However, LAML is

limited to the produ
tion of HTML, whereas, as said before,

the evaluation of a S
ribe program
an produ
e several out-

put formats.

In Se
tion 2 we present an overview of the S
ribe system for

authoring simple stati
 do
uments. We show that a S
ribe

program looks like a do
ument spe
i�ed in a markup lan-

guage. A more
omplex usage of the language is shown in

Se
tion 3, where some simple text generations are done, as

well as some text in
lusions built by introspe
ting the do
-

ument itself. Se
tion 4 shows various
ustomizations that

an take pla
e during the exe
ution of a S
ribe program.

Finally, we
ompare in Se
tion 5 S
ribe with various tools

or programming languages used for authoring do
uments.

2. SCRIBE OVERVIEW

This se
tion presents an overview of the S
ribe program-

ming language and its implementation. First, the syntax is

presented in Se
tion 2.1. Then, in Se
tion 2.2, the stru
ture

of a program is presented. Finally, Se
tion 2.3
ontains some

few words about the
urrent state of the S
ribe implemen-

tation.

2.1 Sc-expressions

We have designed the S
ribe syntax so that it as unobtru-

sive as possible. We have found of premium importan
e to

minimize the weight of meta information when authoring

do
umentations. A
omplex syntax would prevent it to be

used by non
omputer s
ientists. A S
ribe program is a list

of expressions (S
-expression hen
eforth) that are extended

S-expressions [11℄. An S
-expression is:

� An atom, su
h as a string or a number.

� A list of S
-expressions.

� A text.

Atomi
 expressions and lists are regular S
heme expressions.

A text is a sequen
e of
hara
ters en
losed inside square

bra
kets. This is the sole extension to the standard S
heme

reader. The bra
ket syntax is very similar to the standard

quasiquote S
heme
onstru
tion. In S
heme, the quasiquote

syntax allows to enter
omplex lists by automati
ally quoting

the
omponents of the list. It is to be used in
onjun
tion of

the
omma operator that allows to unquote the expressions.

For instan
e, the S
heme form:

`(
ompute pi = ,(* 4 (atan 1)))

is equivalent to the expression:

(list '
ompute 'pi '= (* 4 (atan 1)))

whi
h evaluates to:

(
ompute pi = 3.1415926535898)

The S
ribe bra
ket form
olle
ts all the
hara
ters between

the bra
kets in a list of
hara
ters strings. Computations

inside bra
kets are handled by the
hara
ters sequen
e \,(".

For instan
e, the text:

[text goodies: ,(bold "bold") and ,(it "itali
").℄

is parsed by the S
ribe reader as:

(list "text goodies: " (bold "bold")

"and" (it "itali
") ".")

The S
ribe syntax is unobtrusive, and easy to typeset with

an editor aware of Lisp-like syntax, su
h as Ema
s. Do
-

uments expressed in S
ribe are also generally shorter to

type-in than their
ounterpart expressed in
lassi
al format-

ting languages. For instan
e, the size of the S
ribe sour
e

�les of this paper is about 42,200
hara
ters long, whereas it

is 53,000
hara
ters in L

A

T

E

X and 72,000 in HTML. Even if

it is somehow unfair to
ompare hand-written
ode against

generated ones, these �gures give the intuition of the
om-

pa
tness of S
ribe programs. The idea of extending a stan-

dard S
heme reader for text pro
essing
omes from the BRL

system [10℄.

2.2 Scribe as a markup language

In this se
tion, we present how to build a do
ument using

S
ribe. As said before, programming skill is not needed to

produ
e a do
ument. In fa
t, non programmer writers
an

see S
ribe as a simple do
ument formatting system su
h as

HTML or nro� [14℄.

S
ribe provides an extensive set of pre-de�ned markups.

These roughly
orrespond to the HTML markups. The goal

of this se
tion is to give an idea of the look and feel of this

system. It will avoid the tedious presentation of an extensive

enumeration of all the markups available. For a
omplete

manual of S
ribe, interested readers
an have a look at

http://www-sop.inria.fr/mimosa/fp/S
ribe.

2.2.1 Scribe Markups

A S
ribe markup is
lose to an XML element. The at-

tributes that
an appear inside an XML element are repre-

sented by S
heme keywords. They are identi�ers whose �rst

(or last
hara
ter) is a
olon. S
heme keywords have been

introdu
ed by DSSSL [4℄, the tree manipulation language

asso
iated to SGML. So, the following XML expression:

<elmt1 att1="v1" att2="v2">

Some text <elmt2>for the example</elmt2>

</elmt1>

is represented in S
ribe as:

(elmt1 :att1 v1 :att2 v2

[Some text ,(elmt2 [for the example℄)℄)

33

2.2.2 Document Structure

As said before, a S
ribe program
onsists in a list of S
-

expressions. Among these, the do
ument one serves a spe
ial

purpose. It is used to represent the
omplete do
ument. All

the subdivisions of a do
ument must appear as arguments

of the do
ument
all. So, the general stru
ture of a S
ribe

do
ument looks like:

<s
-expr>

...

(do
ument :title <s
-expr> :author <s
-expr>

(abstra
t <s
-expr>)

(se
tion :title <s
-expr>

...

(subse
tion :title <s
-expr>)

...

(subse
tion :title <s
-expr>)

...)

...

(se
tion :title <s
-expr>))

As we
an see, all the se
tioning
omponents of a do
ument

are embedded in their
ontaining
omponent (i.e. subse
-

tions are embedded in se
tions, se
tions are inside
hapters,

and so on). This stri
t nesting of do
ument
omponents is

parti
ularly useful when one wants to do introspe
tion on

the stru
ture of the do
ument, as we will see in Se
tion 3.2.

2.2.3 Scribe standard library

S
ribe is provided with the usual fun
tions for text pro-

essing. Some of these are presented here.

The Lists o�ered in S
ribe are
lassi
al: itemization, enu-

meration and des
ription. For instan
e, the following ex-

pression:

(itemize (item [A first item.℄)

(item [A ,(bold "se
ond") one.℄)

(item (des
ription

(item :key (bold "foo")

[is a usual Lisp identifier.℄)

(item :key (bold "bar")

[is another one.℄)))

(item (enumerate (item "One.")

(item "Two."))))

produ
es the following output text:

� A �rst item.

� A se
ond one.

� foo is a usual Lisp identi�er.

bar is another one.

� 1. One.

2. Two.

Of
ourse, all the usual text ornaments are available in

S
ribe, that is one
an easily produ
e text in bold, itali
,

underline or
ombine them.

The S
ribe standard library also o�ers the usual tools for

inter and intra do
ument referen
es, footnotes, tables, �g-

ures, ... It provides also an original
onstru
tion, the prgm

markup, to pretty-print
odes or algorithms. In
ontrast

with previous systems su
h as L

A

T

E

X there is no need, in

S
ribe to use external pre-pro
essors su
h as SLaTex [17℄

and Lisp2TeX [15℄ for pretty-print programs inside texts.

The prgm form takes as an option the language in whi
h

the
ode is expressed and its evaluation yields a form that

is the pretty-printed version of this
ode. For instan
e, the

following
all

(prgm :language
 (from-file "ex/C-
ode.
"))

produ
es the following output

int main(int arg
,
har **argv) f

/* A variant of a
lassi
al C program */

printf("Hello, S
ribe\n");

return 0;

g

if the C program sour
e is lo
ated in �le ex/C-
ode.
.

2.3 Front-ends and Back-ends

The
urrent version of S
ribe whi
h is available at http:/-

/www-sop.inria.fr/mimosa/fp/S
ribe
ontains two front-

ends whi
h are used to translate existing do
ument sour
es

into S
ribe do
uments:

� s
ribeinfo
ompiles Texinfo into S
ribe. An exam-

ple of su
h a
ompilation
an be browsed at http:/-

/www.inria.fr/mimosa/fp/Bigloo/do
/r5rs.html. It

is an on-line version of the S
heme de�nition, automat-

i
ally produ
ed from a Texinfo sour
e.

� s
ribebibtex translates Bibtex bibliography databases

into S
ribe sour
es. This tool is, for instan
e, used to

produ
e the bibliographi
 referen
es of this paper.

S
ribe
an produ
e various kinds of do
ument formats.

Currently �ve ba
k-ends are supported:

� HTML: It is extensively used on the S
ribeweb page.

� PS or PDF (via L

A

T

E

X): That is, for instan
e, used

to produ
e the PostS
ript version of this paper.

� Man: whi
h is the format of Unix \man pages".

� Text: whi
h is a plain text format.

� Info: whi
h is the format of the Ema
s do
umenta-

tion.

S
ribe user programs are independent of the target for-

mats. That is, using one unique program, it is possible to

produ
e an HTML version, and a PostS
ript version, and

an ASCII version, et
. The S
ribe API is general purpose.

34

It is not impa
ted by spe
i�
 output formats. Independen
e

with respe
t to the �nal do
ument format does not limit

the expressiveness of S
ribe programs be
ause spe
i�
ities

of parti
ular formats are handled by dedi
ated ba
k-ends.

Ba
k-ends are free to �nd
onvenient ways to implement

S
ribe features. For instan
e, intra do
ument referen
es

are handled di�erently by the HTML ba
k-end and the T

E

X

ba
k-end. In HTML, they appear as hyper-links whose text

is the title of the se
tion. In T

E

X they appear as se
tion

numbers. An output target may even not support some

S
ribe features. In that
ase, the ba
k-end
ould possibly

omit them (for instan
e, �gures in ASCII formats, or dialog

boxes in PostS
ript do
uments).

When
ustomization of the produ
ed do
uments is required,

the S
ribe hook form must deployed. It enables to insert

hara
ters in the �nal do
ument. Coupled with
onditional

evaluation, the hook form
an be used to implement �ne

grain tuning aware of the idiosyn
rasies of the target format

(see Se
tion 3.3).

3. DYNAMIC TEXTS

We show in this se
tion various situations where dynami

texts, that is texts not written as is in the S
ribe sour
es,

an be used when authoring do
uments. We have isolated

two kinds of
omputations. The ones that produ
e some

parts of the do
ument being pro
essed (Se
tion 3.1). The

ones that involve introspe
tion on the sour
e text (Se
tion

3.2). These
omputations
orrespond to two di�erent eval-

uation stages of the S
ribe evaluator. The �rst ones are

front-end
omputations that take pla
e at the very begin-

ning of the exe
ution of a program. The se
ond ones are

ba
k-end
omputations that take pla
e at the very end of

the exe
ution while an internal representation of the whole

S
ribe program has been loaded in memory.

3.1 Computing Sc-expressions

Many typesetting systems su
h as L

A

T

E

X enable users to de-

�ne
onvenien
e ma
ros. In its simplest form, a ma
ro is

just a name that is expanded into, or repla
ed with, a text

that is part of the produ
ed do
ument. Ma
ros are imple-

mented in S
ribe by the means of fun
tions that produ
e

S
-expressions. For instan
e, a ma
ro de�ning the typeset-

ting of the word \S
ribe" is used all along this paper. It is

de�ned as follow:

(define (S
ribe.tex)

(s
 "S
ribe"))

That
an be used in a S
-expression su
h as:

[This text has been produ
ed by ,(S
ribe.tex).℄

That produ
es the following output:

\This text has been produ
ed by S
ribe."

The fun
tion S
ribe.tex is overly simple be
ause it merely

inserts in the S
ribe program one new string ea
h time it is

alled. Sometimes we need to
ompute more
omplex parts

of a do
ument and some texts are better to be
omputed.

Either be
ause they
ontain pattern repetitions or be
ause

they are the result of the evaluation of an algorithm, su
h

as the table of Figure 1.

n= fa
t

3 6

4 24

5 120

6 720

7 5040

8 40320

9 362880

10 3628800

11 39916800

Figure 1: Fa
torial

This table
an be stati
ally de
lared in a program using a

S
-expression su
h as:

(table :border 1

(tr (th "n=") (th "fa
t"))

(tr (td :align '
enter (bold 3))

(td :align 'right (it 6)))

(tr (td :align '
enter (bold 4))

(td :align 'right (it 24)))

(tr (td :align '
enter (bold 5))

(td :align 'right (it 120)))

(tr (td :align '
enter (bold 6))

(td :align 'right (it 720)))

(tr (td :align '
enter (bold 7))

(td :align 'right (it 5040)))

(tr (td :align '
enter (bold 8))

(td :align 'right (it 40320)))

(tr (td :align '
enter (bold 9))

(td :align 'right (it 362880)))

(tr (td :align '
enter (bold 10))

(td :align 'right (it 3628800)))

(tr (td :align '
enter (bold 11))

(td :align 'right (it 39916800))))

Obviously the table
onstru
tion
an be automated. The

fa
torial values
an be
omputed and the table rows
an be

generated. Unlike many other markup languages, S
ribe

enables this
omputation to take pla
e inside the do
ument

itself. Let us assume the standard de�nitions for the upto

and fa
t fun
tions:

(define (upto min max)

(if (= min max)

(list max)

(
ons min (upto (+ min 1) max))))

(define (fa
t n)

(if (< n 2)

n

(* n (fa
t (- n 1)))))

The generation of the fa
torial table requires two additional

S
ribe fun
tions. The �rst one builds table rows:

(define (make-fa
t-row n)

(tr (td :align '
enter (bold n))

(td :align 'right (it (fa
t n)))))

35

The se
ond one is in
harge of
reating the table:

(define (make-fa
t-table n)

(apply table :border 1

(tr (th "n=") (th "fa
t"))

(map make-fa
t-row (upto 3 n))))

3.2 Computing Sc-ast

.html

.ps

Sc−expr Sc−ast
.scr

Scribe Evaluator.bib

.texi

.html

A B

C

D

E F

G

.tex

... ...

.pdf

Figure 2: The S
ribe pro
ess

The evaluation of a S
ribe program involves three steps

(see Figure 2):

� First, the sour
e �le is read and represented as a list

of S
-expressions (edge \A").

� Se
ond, the S
-expressions are evaluated using the stan-

dard S
ribe library. This produ
es an abstra
t syntax

tree named S
-ast (edge \B").

� Third, the S
-ast is translated into the target format

i.e., HTML, L

A

T

E

X , ... (edges \C" and \D").

The
omputations previously presented in Se
tion 3.1 take

pla
e on the edge \E". This se
tion fo
uses now on the
om-

putations that are involved on edges \F" and \G".

Frequently some parts of a do
ument may refer to the do
u-

ment itself. For instan
e, introspe
tion is needed to
ompute

a table of
ontents. S
ribe is provided with introspe
tion

fa
ilities that
an be used in user programs. For instan
e, it

enables the
omputation of su
h a senten
e:

\This do
ument
ontains 9 se
tions."

The a
tual number of se
tions is the result of a user
om-

putation. The whole senten
e is
omputed by the following

S
-expression:

[This do
ument
ontains

,(hook :after

(lambda ()

(display (length

(do
ument-se
tions*

(
urrent-do
ument))))))

se
tions.℄

It uses the S
ribe library fun
tion hook whi
h enables
om-

putations to take pla
e while the S
-ast is built, that is on

the edge \F" of Figure 2. The :after argument is a fun
-

tion whi
h is exe
uted on
e the S
-ast is translated into the

target format. It prints a string that is inserted in the tar-

get. Obviously, the dynami
 text of the previous example

annot be
omputed earlier in the S
ribe evaluation pro-

ess sin
e the number of se
tions
annot be
omputed until

all the se
tions are built! The fun
tion of the standard li-

brary
urrent-do
ument returns a stru
ture that des
ribes

the do
ument being pro
essed. The fun
tion do
ument-

-se
tions* returns the list of se
tions
ontained in a do
-

ument. Not that, sin
e the hook fun
tion enables arbitrary

hara
ters insertion, it
an be used to introdu
e low level

ba
k-end
ommands su
h as T

E

X
ommands or HTML
om-

mands in the target. For instan
e, the S
ribe
ommand

LaTeX whi
h produ
es the following \L

A

T

E

X" is implemented

as:

(define-markup (LaTeX)

(if (s
ribe-format? 'tex)

(hook :after (lambda () (display "\\LaTeX")))

"LaTeX"))

Sometimes, instead of printing
hara
ters into the target,

it is needed that the evaluation of a hook node produ
es a

fresh S
-expression. That is, an expression that has to be

evaluated by the S
ribe engine (the edge \G" of Figure 2)

1

.

This is illustrated by the following example. The user fun
-

tion do
ument-tree
omputes the hierar
hi
al stru
ture of

a do
ument. Applied to the
urrent do
ument it produ
es:

+--ABSTRACT

+--1 Introdu
tion

+--2 S
ribe overview

| +--2.1 S
-expressions

| +--2.2 S
ribe as a markup language

| | +--2.2.1 S
ribe Markups

| | +--2.2.2 Do
ument Stru
ture

| | +--2.2.3 S
ribe standard library

| +--2.3 Front-ends and Ba
k-ends

+--3 Dynami
 texts

| +--3.1 Computing S
-expressions

| +--3.2 Computing S
-ast

| +--3.3 Conditional exe
ution

+--4 Customization

+--5 Related work

| +--5.1 SGML and XML

| +--5.2 S
heme vs. other fun
tional languages

| +--5.3 LAML

| +--5.4 BRL

| +--5.5 Wash

+--6 Con
lusion

+--7 Referen
es

+--APPENDIX

Figure 3: Tree

The tree bran
hes are displayed using a typewriter font and

a layout that preserves spa
es and line breaks. The tree

1

Introdu
ing a fresh S
-expression in the tree may intro-

du
e in
oheren
es for
ross-referen
es. When iterations are

needed, it belongs to the programmer to implement it.

36

nodes are displayed underlined and in itali
. The
ompu-

tation involved in do
ument-tree produ
es a regular S
-

expression that is evaluated by the S
ribe engine. This

ensures ba
k-end independen
e be
ause it prevents the hook

all to spe
ify how underline and itali
 have to be rendered

for ea
h spe
i�
 target format. The fun
tion do
ument-tree

is de�ned as:

(define (do
ument-tree)

(hook :pro
ess #t

:after (lambda ()

(prgm

(make-tree (
urrent-do
ument))))))

The argument :pro
ess #t means that the result of the

appli
ation of the :after fun
tion has to be evaluated ba
k

by the S
ribe engine. This fun
tion
onstru
ts a new S
-

expression whi
h is made of a prgm
all. The de�nition of

make-tree is:

(define (make-tree do
)

(let loop ((s (s
ribe-get-
hildren do
))

(m "")

(f underline))

(if (null? s)

'()

(append (make-row m (
ar s) f)

(loop (s
ribe-get-
hildren (
ar s))

(string-append m "| ")

it)

(loop (
dr s) m f)))))

The fun
tion make-row is:

(define (make-row m s f)

(list (string-append m "+--")

(f (s
ribe-get-title s))

"\n"))

The library fun
tion s
ribe-get-
hildren returns the el-

ements
ontained in a se
tion or a subse
tion. The library

fun
tion s
ribe-get-title returns the title of a se
tion or

a subse
tion.

In addition to illustrating S
ribe introspe
tion, this exam-

ple also shows how suitable fun
tional programming lan-

guages are to
ompute over texts: the whole implementa-

tion of Figure 3 is a simple re
ursive traversal of the tree

representing the do
ument (fun
tion make-tree).

3.3 Conditional execution

Conditional exe
ution is required when the text to be pro-

du
ed depends on some properties of the target format. The

s
ribe-format? predi
ate
he
ks whi
h target format is to

be produ
ed. It is used several times in the paper. For in-

stan
e, in Se
tion 3.1 we have presented the de�nition of the

S
ribe.tex ma
ro. The a
tual ma
ro used in the sour
es

of this paper is slightly more
omplex. Instead of rendering

the word \S
ribe", when targeting HTML, it introdu
es a

referen
e to the S
ribe home page. Moreover, be
ause of

our poor English style, we have also de
ided to introdu
e

an URL link only on
e per se
tion. So, the a
tual fun
tion

used in the paper sour
e is de�ned as:

(define S
ribe

(let ((se
 #f))

(lambda ()

(if (s
ribe-format? 'html)

(hook :after

(lambda ()

(let ((s (
urrent-se
tion)))

(if (eq? s se
)

(S
ribe.tex)

(begin

(set! se
 s)

(ref :url (s
ribe-url)

"S
ribe")))))

:pro
ess #t)

(S
ribe.tex)))))

4. CUSTOMIZATION

A real and pra
ti
al programming language is useful when

onsidering
ustomizations (in S
ribe they usually take pla
e

in style �les). S
ribe
ustomizations enable users to
hange

the way do
uments are rendered. They are ubiquitous in the

standard S
ribe API. For instan
e, one may setup the way

a bold text is rendered,
on�gure the header and the footer

of the do
ument, or even de�ne margins. One may also spe
-

ify the stru
ture of the produ
ed do
uments. In this se
tion

we illustrate how one may bene�t from the expressiveness

of S
ribe in order to a
hieve
omplex
ustomizations. In

parti
ular, we will show how
omputers program
an be ren-

dered.

Depending of the spe
i�ed language, S
ribe uses di�erent

olors and fonts when rendering
omputer programs. The

standard implementation supports several languages su
h as

S
ribe, S
heme, C, or XML. Computer programs are spe
-

i�ed by the prgm markup (see Se
tion 2.2.3) whi
h a

epts

one optional argument whi
h is a fun
tion implementing the

rendering of the program. This fun
tion is
alled a pretty-

printer. One may de�ne its own pretty-printers.

For the sake of the example, let us implement a pretty-

printer for rendering make�les whi
h uses some
olors for

make targets, variables, and
omments. In addition, for

ba
k-ends supporting hyper links (su
h as HTML) a ref-

eren
e to its de�nition is added to the text when a variable

is used. For other ba
k-ends, variable referen
es are under-

lined.

SCRIBE= s
ribe

SFLAGS= -J style

MASTER= main.s
r

INPUT= abstra
t.s
r intro.s
r what.s
r why.s
r this.s
r

EXAMPLE= ex0 ex1 ex2 ex3 ex4 makefile

STYLE= style/lo
al.s
r

main entry

all: s
ribe.tex

s
ribe.tex: $(MASTER) $(INPUT) $(STYLE) $(EXAMPLE)

$(SCRIBE) $(SFLAGS) $(MASTER) -o s
ribe.tex

37

A pretty-printer fun
tion is a S
ribe fun
tion a

epting one

parameter. This formal parameter is bound to a string rep-

resenting the text to be pretty-printed. A pretty-printer

returns a S
-expression representing the pretty-printed pro-

gram that must be in
luded in the target do
ument. The

de�nition of the makefile pretty-printer is:

(define (makefile obj)

(parse-makefile (open-input-string obj)))

In order to implement the pretty-printer we are using Bigloo

regular parser [16℄. This me
hanism enables a lexi
al anal-

ysis of
hara
ter strings.

(define (parse-makefile port::input-port)

(read/rp

(regular-grammar ()

((: #\# (+ all))

;; makefile
omment

(let ((
mt (the-string)))

(
ons (it
mt) (ignore))))

((bol (: (+ (out " \t\n:")) #\:))

;; target

(let ((prompt (the-string)))

(
ons (bold prompt) (ignore))))

((bol (: (+ alpha) #\=))

;; variable definitions

(let* ((len (- (the-length) 1))

(var (the-substring 0 len)))

(
ons `(list ,(mark var)

(
olor :fg "#bb0000" (bold ,var))

,"=") (ignore))))

((+ (out " \t\n:=$"))

;; plain strings

(let ((str (the-string)))

(
ons str (ignore))))

((: #\$ #\((+ (out ")\n")) #\))

;; variable referen
es

(let ((str (the-string))

(var (the-substring 2 (- (the-length) 1))))

(
ons (ref :mark var (underline str))

(ignore))))

((+ (in " \t\n:"))

;; separators

(let ((nl (the-string)))

(
ons nl (ignore))))

(else

;; default

(let ((
 (the-failure)))

(if (eof-obje
t?
)

'()

(error "prgm(makefile)"

"Unexpe
ted
hara
ter"

)))))

port))

5. RELATED WORK

In this se
tion we
ompare S
ribe and other markup lan-

guages. We also
ompare it with other e�orts for handling

texts in fun
tional programming languages.

5.1 SGML and XML

As stated in [3℄ \XML, the Extensible Markup Language, is

W3C-endorsed standard for do
ument markup. It de�nes a

generi
 syntax used to mark up data with simple, human-

readable tags. It provides a standard format for
omputer

do
uments". In other words, XML is a mean to spe
ify

external representations for data stru
tures. It is a mere

formalism for spe
ifying grammars. It
an be used to repre-

sent texts but this is not its main purpose. The most pop-

ular XML appli
ation used for representing texts (hen
e-

forth XML texts) is XHTML (a reformulation of HTML

4.0). XML
an be thought as a simpli�
ation of SGML.

They both share the same goals and syntax.

The fundamental di�eren
e between XML and S
ribe is

that the �rst one is de�nitely not a programming language.

In
onsequen
e, any pro
essing (formating, rendering, ex-

tra
ting) over XML texts requires one or several external

tools using di�erent programming languages whi
h appear

to be, most of the time, Java, T
l, and C. A vast e�ort has

been made to provide most of the fun
tional programming

languages with tools for handling XML texts. It exists XML

parsers for mostly all fun
tional programming languages.

Haskell has HaXml [19℄, Caml has Px and Tony, and S
heme

has SSax [7℄.

In addition to parsers, S
heme has also SXML [6℄ whi
h is

either an abstra
t syntax tree of an XML do
ument or a
on-

rete representation using S-expressions. SXML is suitable

for S
heme-based XML authoring. It is a term implementa-

tion of the XML do
ument.

The do
ument style semanti
s and spe
i�
ation language

(aka DSSSL [4℄) de�nes several programming languages for

handling SGML appli
ations. The DSSSL suite plays ap-

proximatively the same role as XML XSLT, DOM and SSAX

do: it enables parsing and
omputing over SGML do
u-

ments. The DSSSL languages are based on a simpli�ed ver-

sion of S
heme.

XEXPR [21℄ is a s
ripting language that uses XML as its

primary syntax. It has been de�ned to easily embed s
ripts

inside XML do
uments and over
omes the usage of an ex-

ternal s
ripting language in order to pro
ess a do
ument.

The language de�nes itself to be very
lose to a typi
al Lisp

or
ombinator-based language where the primary means of

programming is through fun
tional
omposition. XEXPR al-

lows the de�nition of fun
tions using the<define> element.

Hereafter is a de�nition of the fa
torial fun
tion expressed

in XEXPR:

<define name="fa
torial" args="n">

<if>

<lt><n/>2</lt>

<n/>

<multiply>

<n/>

<fa
torial>

<substra
t><n/>1</substra
t>

</fa
torial>

</multiply>

</if>

</define>

whi
h must be
ompared with the S
heme version given in

Se
tion 3.1. Obviously, writing by hand large s
ripts seems

hardly a
hievable in XEXPR. Furthermore, a
areful reading

38

of the report de�ning this language seems to indi
ate that

there is no way to manipulate the do
ument itself inside

an XEXPR expression. The language seems then limited

to simple text generations inside an XML do
ument, as the

ones presented Se
tion 3.1

Besides deploying one unique formalism and syntax for au-

thoring do
uments we have found that S
ribe enables more

ompa
t sour
es than XML (see Se
tion 2.1). The S
ribe

syntax is less verbose than the XML one mainly be
ause the

losing parenthesis of a S
-expression is exa
tly one
hara
-

ter long when it is usually mu
h more in XML.

5.2 Scheme vs. other functional languages

We have
hosen to base S
ribe on S
heme mainly be
ause

its syntax is genuinely
lose to traditional markup languages.

Su
h as XML, the S
heme syntax is based on the represen-

tation of trees. The modi�
ations to apply to the S
heme

grammar are very limited and simple. This makes this lan-

guage suitable for text representation. The other fun
tional

languages su
h as, Caml and Haskell, rely on LALR syntaxes

that do not �t the markup look-and-feel.

In addition, we think that the S
heme type system is an

advantage for S
ribe programs. It is
onvenient to dispose

of fully polymorphi
 data types. As presented in Se
tion 2.1,

an S
-expression
an be a list whose elements are of di�erent

types. For instan
e, the �rst element of su
h a list
ould be

a
hara
ter string and the next one a number. This enables

ompa
t representation of texts. If the underlying language

imposes a stronger typing system, the sour
e program, that

is the user text, will be polluted with
ast operations that

transform all the values into strings.

We have
onsidered using a
all-by-name semanti
s for S
ri-

be fun
tion appli
ation in order to implement the nesting

of S
-expressions. As presented in Se
tion 3.2 the S
ribe

library proposes introspe
tion fun
tions. For instan
e, the

do
ument-se
tions* returns the list of se
tions
ontained

in a do
ument stru
tured su
h as:

(do
ument ...

(
hapter ...)

(
hapter

...

(se
tion ...)

...)

...)

The
ontainer nodes (representing do
uments,
hapters, se
-

tions, ...) of the S
-ast are provided with pointers to the

hildren they
ontain and vi
e versa. Sin
e laziness enables

to postpone the
omputation of expressions until they are

required, it
an be used to delay the evaluation of inner ele-

ments of a do
ument until the whole do
ument is de
lared.

We have obtained the same e�e
t by adding a se
ond traver-

sal of the S
-ast (see 3.2).

5.3 LAML

LAML (Lisp as a Markup Language) [13℄ is an attempt to

use S
heme as a markup language. It mirrors the HTML

markups in S
heme. That is, for ea
h HTML markup there

is a
orresponding S
heme fun
tion in LAML. The HTML

do
ument:

<html>

<head><title>An example</title></head>

<body>

This is an HTMLexample.

</body>

</html>

is mirrored in LAML as:

(html

(head (title "An example"))

(body (br)

"This is an" (em "HTML") "example."

(br)))

So, LAML and S
ribe are very
lose. They rely on the

natural S
heme syntax and they both
onsider a do
ument

as a program. However, there is two important di�eren
es

between them:

� The syntax: S
ribe uses an extended S
heme syntax.

As presented Se
tion 2.1, it introdu
es the [...℄ no-

tation that, as we have shown, enables
ompa
t sour
e

texts.

� The S
-ast: The evaluation of a LAML fun
tion
all

dire
tly produ
es an HTML expression. For instan
e,

the de�nition of the LAML em fun
tion of the previous

example is:

(define (em str)

(string-append "" str ""))

Contrarily to S
ribe, LAML does not build a tree rep-

resenting the text to be generated. This dire
t map-

ping has three drawba
ks:

1. LAML sour
es
annot produ
e other formats than

HTML.

2. It is
omplex to implement eÆ
iently a LAML in-

terpreter. As reported in [12℄, the LAML evalua-

tion pro
ess allo
ates a lot of strings of
hara
ters.

This exer
ises intensively the memory manager

(garbage
olle
tion and memory
opies). These

string manipulations are totally avoided by S
ri-

be. One S
ribemarkup allo
ates one obje
t that

is a node of the S
-ast. This node is used until

the ba
k-end has
ompleted the �le generation.

It never happens that a node nor the
hara
ters

is
ontains are dupli
ated.

3. Introspe
tion over a LAML do
ument is
omplex.

In parti
ular, it has to take pla
e before the string

representing an HTML expression is built. That

is, it has to take pla
e before LAML fun
tions are

alled. In other words, LAML is of no help for

omputing on do
uments. LAML users have to

implement their own data representation before

using LAML fun
tions.

39

5.4 BRL

The Beautiful Report Language BRL [10℄ de�nes itself as a

database-oriented language to embed in HTML and other

markups. In some extent BRL approa
h is very similar to

the PHP one: it proposes to mix the text and the program

whi
h form the do
ument in the same sour
e �le. For BRL,

a do
ument is a sequen
e of either strings or S
heme ex-

pressions. BRL displays strings as is and evaluates S
heme

expressions. To alleviate do
ument typesetting using this

onventions, BRL has introdu
ed a new syntax for
hara
-

ter strings: there is no need to put a quote for a string

starting a �le or terminating a �le. Furthermore, \℄" and

\["
an be used to respe
tively open and
lose a string. So,

℄a string[

is a valid string in BRL. The interest of this notation seems

more evident in a
onstru
tion su
h as

The value of pi is [(* 4 (atan 1))℄.

where we have a S
heme expression en
losed between two

strings (\The value of pi is" and \."). However, this

syntax
an be sometimes
omplex as it is shown in the fol-

lowing ex
erpt from the referen
e manual.

[(define row
ount (sql-repeat ...)

(brl ℄

<a href="p2.brl?[

(brl-url-args brl-blank?
olor)

℄">(brl-html-es
ape
olor)℄

[)))℄

As we
an see, BRL is just a sort of prepro
essor and as su
h

it
annot be used to do introspe
tive work on a do
ument.

5.5 Wash

Wash [18℄ is a family of embedded domain spe
i�
 languages

for programming Web appli
ations. Ea
h language is em-

bedded in the fun
tional language Haskell, whi
h means that

it is implemented as a
ombinator library. The basi
 idea

of Wash is to build a data stru
ture that
an be rendered

to HTML text. Be
ause of the type system of the Haskell

type
he
ker, Wash guarantees the well-formedness of the

generated HTML pages. Using a Haskell interpreter it is

possible with Wash to intera
tively
reate and manipulate

web pages.

If Wash shares with S
ribe the
onstru
tion of a data stru
-

ture representing the text to be rendered, no e�ort is made

to provide it with a
on
ise syntax. A \hello, word" page

whi
h is in HTML:

<html>

<head>

<title>Hello, World</title>

</head>

<body>

This is the traditional "Hello, World!" page.

<hr>

</body>

</html>

and that
an be implemented in S
ribe as:

(define *title* "Hello, World!")

(do
ument :title "Hello, World" [

This is the traditional ,(begin *title*) page.

,(hrule)℄)

would be written in Wash as:

do
 head :: HEAD

do
 head =

make head

`add` (make title `add` "Hello, World")

do
 body :: BODY

do
 body =

make body

`add` (make heading 1 `add` title)

`add` ("This is the traditional \""

++ title ++

"\" page.")

`add` make hr

where title = "Hello, World!"

do
 :: HTML

do
 = make html `add` do
 head `add` do
 body

putStr (show html do
)

It is obvious that Wash is designed for programmers. Un-

like S
ribe it
annot be as easily used in repla
ement of

traditional markup languages.

6. CONCLUSION

S
ribe is a fun
tional programming language for authoring

various kind of ele
troni
 do
uments. It
an be used to

produ
e target formats su
h as HTML and PostS
ript. It

relies on an original syntax that makes it looking familiar to

anyone used to markup languages su
h as HTML.

We have shown that the evaluation of a S
ribe program

involves two separate stages. During the �rst one the sour
e

expressions are read using the S
ribe reader. These expres-

sions are then evaluated using a
lassi
al S
heme interpreter.

This stage produ
es an internal representation of the sour
e

program. The se
ond evaluation stage uses that represen-

tation and, as a
onsequen
e, enables
omputations on the

representation itself. That is, during the se
ond stage a

S
ribe program may
ompute properties about itself.

S
ribe is used on daily basis to produ
e large do
uments.

For instan
e, the whole web page http://www.inria.fr-

/mimosa/fp/Bigloo and the do
umentations it
ontains are

implemented in S
ribe. Obviously, the
urrent paper is

a S
ribe program. An HTML version
an be browsed at

http://www.inria.fr/mimosa/fp/S
ribe/do
/s
ribe.html.

40

7. REFERENCES

[1℄ Adobe System In
. { PostS
ript Language Referen
e

Manual { Addison-Wesley, Readings, Massa
husetts,

1985.

[2℄ Goldfarb, C. { The SGML Handbook { Oxford

University Press, 1991.

[3℄ Harold, E.R. and Means W.S. { XML in a nutshell {

O'Reilly , Jan, 2001.

[4℄ ISO/IEC { Information te
hnology, Pro
essing

Languages, Do
ument Style Semanti
s and

Spe
i�
ation Languages (DSSSL) { 10179:1996(E),

ISO, 1996.

[5℄ Kelsey, R. and Clinger, W. and Rees, J. { The Revised(5)

Report on the Algorithmi
 Language S
heme {

Higher-Order and Symboli
 Computation, 11(1), Sep, 1998.

[6℄ Kiselyov, O. { Implementing Met
ast in S
heme {

S
heme workshop, Montr�eal, Canada, Sep, 2000.

[7℄ Kiselyov, O. { A better XML parser through

fun
tional programming. { Pra
ti
al Aspe
ts of

De
larative Languages, Portland, Oregon, USA, Jan, 2002.

[8℄ Knuth, D. { The TEXbook, { Addison-Wesley, Readings,

Massa
husetts, 1986.

[9℄ Lerdorf, R. { PHP Po
ket Referen
e { O'Reilly &

Asso
iates, Jan, 2000.

[10℄ Lewis, B { BRL Referen
e Manual {

http://brl.sour
eforge.net/2002.

[11℄ M
Carthy, J. { Re
ursive fun
tions of symboli

expressions and their
omputation by ma
hine { I {

Communi
ations of the ACM , 3(1), 1960, pp. 184{195.

[12℄ N�rmark, K. { Programming World Wide Web Pages

in S
heme { Sigplan Noti
es, 34(12), 1999.

[13℄ N�rmark, K. { Programmati
 WWW authoring using

S
heme and LAML { The Eleventh International World

Wide Web Conferen
e, Honolulu, Hawaii, USA, May, 2002.

[14℄ Ossana, J. { UNIX Programmer's manual:

Supplementary Do
uments { 1982.

[15℄ Queinne
, C. { Literate programming from S
heme

to TeX { LIX RR 93.05, Laboratoire d'Informatique de l'

Polyte
hnique, 91128 Palaiseau Cedex, Fran
e, Nov, 1993.

[16℄ Serrano, M. { Bigloo user's manual { 0169,

INRIA-Ro
quen
ourt , Fran
e, De
, 1994.

[17℄ Sitaram, D. { SLaTeX { http://www.

s.neu.edu/home-

/dorai/slatex/slatxdo
.html.

[18℄ Thiemann, P. { Modeling HTML in Haskell { Pra
ti
al

Aspe
ts of De
larative Languages, 2000, pp. 263{277.

[19℄ Walla
e, M. and Run
iman, C. { Haskell and XML:

Generi
 Combinators or Type-Based Translation? {

Int'l Conf. on Fun
tional Programming , Paris, Fran
e,

1999.

[20℄ World Wide Web Consortium { Do
ument Obje
t

Model (DOM) Level 1 Spe
i�
ation { W3C

Re
ommendation, O
t, 1998.

[21℄ World Wide Web Consortium { XEXPR - A S
ripting

Language for XML { W3C Note, Nov, 2000.

APPENDIX

For the sake of the example, we present in this Annex, the

whole S
ribe sour
e
ode for the abstra
t of this paper:

(paragraph [

This paper presents ,(S
ribe), a fun
tional programming

language for authoring do
uments. Even if it is a general

purpose tool, it best suits the writing of te
hni
al

do
uments su
h as web pages or te
hni
al reports, API

do
umentations, et
. Exe
uting ,(S
ribe) programs
an

produ
e do
uments of various formats su
h as PostS
ript,

PDF, HTML, Texinfo or Unix man pages. That is, the very

same program
an be used to produ
e do
uments in different

formats. ,(S
ribe) is a full featured programming language

but it ,(emph "looks") like a markup language ,(emph "�a la")

HTML.

℄))

This paper has been generated by S
ribe (http://www-sop.inria.fr-

/mimosa/fp/S
ribe) (via L

A

T

E

X and the ACMpro

lass.)

