
9

Inorporating Sheme-based Web Programming

in Computer Literay Courses

Timothy J. Hikey

�

Department of Computer Siene

Brandeis University

Waltham, MA 02254, USA

Abstrat

We desribe an approah to introduing non-siene ma-

jors to omputers and omputation in part by teah-

ing them to write applets, servlets, and groupware ap-

pliations using a dialet of Sheme implemented in

Java. The delarative nature of our approah allows

non-siene majors with no programming bakground to

develop surprisingly omplex web appliations in about

half a semester. This level of programming provides a

ontext for a deeper understanding of omputation than

is usually feasible in a Computer Literay ourse. The

ourse does not require the students to download any

software as all programming an be done with Sheme

applets. The instrutor however must provide a Sheme

server whih will run the students' servlets.

1 Introdution

There are two general approahes to teahing a Com-

puter Literay lass. The most ommon approah is

a broad overview of Computer Siene inluding hard-

ware, software, history, ethis, and an exposure to in-

dustry standard oÆe and internet software. On the

other end of the spetrum is the lass that fouses on

programming in some partiular general purpose lan-

guage, (e.g. Javasript [12℄, Sheme[5℄, MiniJava[11℄).

The primary disadvantage of the breadth-�rst approah

is that it tends to o�er a super�ial view of omputing.

�

This work was supported by the National Siene Founda-

tion under Grant No. EIA-0082393.

Permission to make digital or hard opies, to republish, to post

on servers or to redistribute to lists all or part of this work is

granted without fee provided that opies are not made or dis-

tributed for pro�t or ommerial advantage and that opies

bear this notie and the full itation on the �rst page. To oth-

erwise opy or redistribute requires prior spei� permission.

Third Workshop on Sheme and Funtional Programming. O-

tober 3, 2002, Pittsburgh, Pennsylvania, USA.

Copyright 2002 Timothy J. Hikey.

The depth-�rst programming approah on the other hand

often requires a substantial e�ort just to learn the syn-

tax of the language and the semantis of the underly-

ing abstrat model of omputation, leaving little time

to look at other aspets of omputing suh as internet

tehnology or omputer arhiteture.

Several authors have reently proposed merging these

two approahes by using a simpler programming lan-

guage (e.g. Sheme[5℄, [6℄, [7℄) or by using an internet-

based language (e.g. Javasript[12℄, MiniJava[11℄).

In this paper we desribe a �ve year experiment in om-

bining these two approahes in a Computer Literay

ourse at Brandeis University (CS2a: Introdution to

Computers). We deviate from many Computer Liter-

ay ourses in that we spend very little time disussing

the standard appliation programs (e.g. word proes-

sors, spreadsheets, email, instant messaging, �le shar-

ing, image proessing et.) It has been our experiene

that students are able to learn how to use most of these

programs on their own and that use of these applia-

tions does not generally require a deep understanding

of omputation. In a phrase, we don't teah them what

they are going to learn by themselves anyway.

The CS2a:Introdution to Computers ourse teahes pro-

gramming onepts and uses a small (but powerful) sub-

set of Jsheme[2℄ { a Java-based dialet of Sheme. The

tight integration of Java with Jsheme allows it to be

easily embedded in Java programs and hene makes it

easy for students to implement servlets, applets, and

other web-deliverable appliations. Jsheme is an im-

plementation of Sheme in Java (meeting almost all of

the requirements of the R4RS [4℄ Sheme standard). It

also inludes two simple syntati extensions:

� javadot notation: this provides full aess to

Java lasses, methods, and �elds

� quasi-string notation: this simpli�es the pro-

ess of generating HTML.

The javadot notation provides a transparent aess to

Java and the quasi-string notation provides a gentle

10

path from HTML to Sheme for novies. It also pro-

vides a onvenient syntax for generating omplex strings

of other sorts (suh as SQL queries). These two exten-

sions will be disussed at length below.

Jsheme an be aessed as an interpreter applet (run-

ning on all Java-enabled browsers) or as a Java Network

Launhing Protool (JNLP) appliation. Both of these

provide one lik aess to the Jsheme IDE from stan-

dard browsers. It an also be downloaded as a jar �le

and run from the ommand line as a standard read-eval-

print-loop program.

Jsheme has been built into a Jakarta Tomat webserver

as a webapp whih allows students to write servlets

and JNLP appliations diretly in Jsheme. This web-

server typially runs on the instrutor's mahine, but

students an easily download and install the server on

their home/dorm PCs as well.

In the sequel, we explain, in detail, how Jsheme an be

used to teah non-siene majors in a large leture lass

how to build servlets and applets in a six week setion

of a Computer Literay ourse. The approah desribed

here is very similar to the approah used in the Autumn

2001, \Introdution to Computers" ourse at Brandeis

University, but it reets hanges that will be inor-

porated in the next year's version of the ourse. The

ourse and the underlying language have been evolving

steadily over the past �ve years and will likely ontinue

to do so.

This approah to teahing Computer Literay is feasible

beause of the delarative style of programming that is

possible in Sheme, together with the extremely simple

syntax and semantis of Sheme.

We posit that this web-programming based approah

would work with other delarative languages (e.g. Haskell

or Prolog), but would be infeasible with imperative lan-

guages suh as Java or Perl. Sheme however is ideally

suited to this appliation beause of the relative sim-

pliity of its syntax and semantis, both of whih an

be stumbling bloks for novie programmers.

Although the partiular languages and tehniques that

we use may not be the best math at other institutions,

we feel that the general approah ould be easily repli-

ated using other languages provided are is taken to

make the syntax and semantis that must be learned as

simple as possible.

2 Related Work

The need for a simple, but powerful, language for teah-

ing introdutory CS ourses has been disussed reently

by Roberts [11℄ who argues for a new language, Mini-

java, that provides both a simpler omputing model

(e.g. no inner lasses, use of wrapper lass for all salar

values, optional exeption throwing) and a simpler run-

time environment (e.g. a read-eval-print loop is pro-

vided).

Jsheme an be viewed as an even more radial simpli�-

ation of Java in that it replaes the syntax of Java with

the muh simpler syntax of Sheme while maintaining

aess to all of the lasses and objets of Java.

Another reent approah for introdutory ourses is to

use Javasript to both teah programming onepts and

to provide a vehile for disussing other aspets of om-

puting suh as the internet and web tehnology. For

example, David Reed proposes teahing a ourse [12℄

in whih about 15% of lass time is devoted to HTML,

50% to Javasript, and 35% to other topis in omputer

siene. Our approah follows a similar breakdown but

also allows the students to build servlets, applets, and

GUI-based appliations.

A third related approah is to teah Sheme diretly as

a �rst ourse. The MIT approah, pioneered by Abelson

and Sussman [1℄, is not suitable for non-siene majors

as it requires a mathematially sophistiated audiene.

The approah being developed by the PLT group [5℄,

[6℄,[7℄, on the other hand, provides a rigorous introdu-

tion to Sheme programming but is designed to be a-

essible to students from all disiplines.

In our aproah, we provide an introdution to only a

subset of the language (for example, introduing lists

only toward the end). We start by introduing some

high-level delarative libraries for teahing an event-

driven model of GUI onstrution. The Sheme setion

of the ourse requires only about 6 weeks. This leaves

half of the ourse for standard Computer Literay top-

is.

3 Goals, Syllabus, and Rationale

Our main goal in teahing a Computer Literay ourse

is to help the students gain a broad understanding of

digital omputation. It is our feeling that Computer

Literay ourses are most e�etive if they fous on the

fundamental mehanisms of omputing at all levels and

if they ground this theoretial material by requiring

the students to build programs using these fundamental

onepts.

The syllabus overs the mehanisms underlying CMOS

gates and VLSI, the struture and interpretation of as-

sembly language, the design of simple GUI-based ap-

pliations, the mehanisms underlying servlets (inlud-

ing ounters, logs, and auto-generated email), the basi

design and struture of the internet, and the limits of

omputers (e.g. the Halting problem and the Turing

test).

11

We test their understanding of this material using weekly

quizzes, biweekly homework assignments, and a �nal

exam in whih they must write and/or trae programs

at these various levels (from semiondutors to servlets).

Before delving into a detailed desription of the urriu-

lum we �rst explain what we do not over and provide

some justi�ation for these hoies.

This ourse also does not delve very deep into the soft

aspets of Computing. These topis are overed in a

ompanion ourse (CS33b: Internet and Soiety), whih

is foused primarily on the soial, ethial, legal, eo-

nomi, politial and aestheti aspets of omputers. It

is our opinion that these issues are best taught in an in-

terdisiplinary ontext. Indeed, the CS33b ourse is ur-

rently taught by a dozen instrutors from half a dozen

di�erent departments.

The ourse does not teah algorithms and data stru-

tures. Although the students do learn to trae through

the exeution of fast-exponential proedures, gd alu-

lators, and the "map" funtion, we do not teah them to

use omputers for problem solving. Thus we do not ask

them to write sorting proedures or programs to �nd

average grade sores, et.

We do teah "reative" programming in this ourse,

i.e. programs that interat with the user (through GUIs

or HTML forms) and use the user-supplied information

to generate responses and perform simple ations (log-

ging, sending email, updating ounters, performing sim-

ple alulations and tests). We also teah the students

to understand how to trae reursive programs whih

is a far easier task than learning how to write reursive

programs. More preisely,the students are required to

be able to write applets and servlets in three languages

(HTML, CSS, Sheme) and to trae programs in two

additional "languages" (pode assembly language, and

CMOS iruit diagrams).

The goal in teahing them to write "reative" programs

and to trae reursive programs is to help them under-

stand the deeper issues of omputation more learly.

For instane, one of the applet programs we present is a

simple "Psyhiatrist" simulator whih they are enour-

aged to modify. This provides a ontext for a deeper

disussion of arti�ial intelligene, ethis, and the Tur-

ing problem. For another example, when we disuss

the substitution model of Sheme the students are re-

quired to trae reursive programs with funtion param-

eters (e.g. map). This paves the way for a disussion of

the Halting problem. We onsider the onsequenes of

extending the Sheme language by adding a primitive

proedure (halts? F X) whih returns true if (F X)

eventually returns an answer and false if it throws an

exeption or does not return. In partiular, we look at

the following program:

(define (skepti Q)

(if (halts? Q Q) (skepti Q) 'ha))

(skepti skepti)

The trae of (skepti skepti) yields the expeted

ontradition whih then leads to a disussion of the lim-

its of omputation. It is true that the skepti example

only makes sense in the ontext of a Sheme whih pro-

vides soure ode aess to all proedures and losures,

but the impossibility of adding a reursive "halts?" pro-

edure still illustrates well the limits of omputation.

We usually ouple this leture with a lassroom exer-

ise in whih the students must prove that the instru-

tor an not tell the future. The proof onsists of asking

the instrutor to predit the student's behavior using

the same strategy as the "skepti" proedure.

A rough outline of the syllabus, whih shows the ontext

of the web-programming part of the ourse is shown

below.

� 1 week HTTP and the struture of the Inter-

net: IP addresses, ports, sokets, servies, routers,

gateways. Use of telnet, dig, traeroute, ping,

portsan to illustrate these issues.

� 2 weeksHTML/CSS { the thirty non-style HTML

tags and 10 basi CSS properties. Copyright is-

sues.

� 3 weeks Sheme Servlets { quasi-string nota-

tion, abstration, onditional exeution, lists, �le

I/O, email, database aess. Seurity, privay,

ookies, ethis.

� 3 weeks Sheme Applets/Groupware { GUI

omponents, layout, allbaks, animation, network-

ing primitives, groupware omponents. Dotor ap-

plet, Turing Test. Halting problem. Substitution

model. Software lienses.

� 1 week Assembly Language/Pode - von Neu-

mann arhiteture, memory-mapped peripherals,

memory, speed, bandwidth, aheing, super-salar

arhitetures. Operating Systems, �le systems,

time sharing, ...

� 1 week CMOS/Logi Ciruits - semiondutors

(P/N-type), gates, iruits, adders, lathes and

bits.

Observe that the ourse ontains a sign�ant amount of

non-Sheme material that would be found in most typi-

al Computer Literay ourses (suh as opyright issues

and ethial questions dealing with servers), but with

this programming-based approah these issues are more

meaningful as the students are able to write servers that

reate logs and must deal with the resulting ethial ques-

tions.

4 Courseware

The main language used in the ourse is Jsheme

1

[2, 3,

8℄, an open soure implementation of Sheme in Java.

1

http://jsheme.soureforge.net

12

SYNTACTIC CONSTRUCT JAVA MEMBER EXAMPLE

"." at the end onstrutor (Font. NAME STYLE SIZE)

"." at the beginning instane method (.setFont COMP FONT)

"." at beginning, "$" at end instane field (.first$ '(1 2))

"." only in the middle stati method (Math.round 123.456)

".lass" suffix Java lass Font.lass

"$" at end, no "." at beg. stati field Font.BOLD$

"$" in the middle inner lass java.awt.geom.Point2D$Double.lass

"$" at the beginning pakageless lass $ParseDemo.lass

"#" at the end aess private data Symbol.#

Figure 1: Java reetors in Jsheme

It is almost ompletely ompliant with the R4RS stan-

dard

2

[4℄ and also provides full aess to Java using the

Java Reetor syntax shown in Figure 1. Jsheme also

provides full aess to Java thread and exeption han-

dling. The following example illustrates the ease with

whih one an aess Java libraries in Jsheme. It im-

plements a simple multi-threaded \eho servie" on a

spei�ed port and athes/reports any errors that may

arise in eah thread:

(define (ehoserver N)

(let ((SS (java.net.ServerSoket. N)))

(let loop ()

(let ((S (.aept SS)))

(.start

(java.lang.Thread.

(lambda()

(tryCath

(let*

((in (java.io.BufferedReader.

(java.io.InputStreamReader.

(.getInputStream S))))

(out (java.io.PrintStream.

(.getOutputStream S))))

(.println out (.readLine in))

(.lose S))

(lambda(e)

(.println java.lang.System.out$

(.toString e))))))))

(loop))))

The ourse uses a small but powerful subset of Sheme

and also relies on only a few seleted Java reetors and

a small GUI-building library. For ontrol ow and ab-

stration it uses define, set!, lambda, if,ond, ase,

let*. For primitives, it uses arithmeti operators and

omparisons, a simple GUI-building library (providing

delarative aess to Swing omponents, events, and

layout managers).

2

strings are not mutable, and all/ is only implemented for

try/ath like appliations

4.1 Sheme Servlets

Files whih appear in the Jsheme webserver student

diretory with the extension ".servlet" are treated as

Jsheme expressions whih are evaluated to generate the

html to send bak to the lient. After working with this

model for a while, we found that the need to ombine

sheme and text resulted in programs ontaining large

numbers of string-append's and quoted strings (with

many quoted quotes). In response to this somewhat

onfusing syntax, we introdued a slight syntati ex-

tension to Sheme whih allows urly braes fg to be

used in plae of double quotes for strings. Moreover,

inside a fg string, any sheme expressions appearing

within square brakets [℄, are evaluated and appended

into the string. These two devies make use of the unas-

signed out�x operators [℄ and fg, and allow for a more

onise method for onstruting strings in Sheme. We

all this quasi-string notation

3

For example, using quasi-string notation we an write

(define (my-li NAME IMAGEFILE COST)

{<div style="bakground:rgb(0,150,150)">

<table width="100%">

<tr><td>

<img sr="[IMAGEFILE℄"

alt="[NAME℄" width="150">

</td><td> <h1 style="bakground:lightgreen;

olor:blak">[NAME℄</h1>

</td><td style="text-align:right">

Cost: $[COST℄ </td></tr></table>

</div>

})

whih is equivalent to the following (less elegant) stan-

dard Sheme expression. Note in partiular the onfu-

sion that arises from the need to quote double quotes.

In the quasi-string syntax, it is muh easier to verify the

syntati orretness of the resulting ode.

3

The quasi-string notation is a syntati variant on Brue R

Lewis' Beautiful Report Language (BRL) Syntax. Our approah

is based on the quasiquote/unquote approah for onstruting

lists in Sheme.

13

(define (my-li NAME IMAGEFILE COST)

(string-append

"<div style=\"bakground:rgb(0,150,150)\">

<table width=\"100%\">

<tr><td>

<a href=\""

IMAGEFILE

"\">

<img sr=\""

IMAGEFILE

"\"

alt=\""

NAME

"\" width=\"150\">

</td><td> <h1 style=\"bakground:lightgreen;

olor:blak\">"

NAME

"</h1>

</td><td style=\"text-align:right\">

Cost: $"

COST

" </td></tr></table>

</div>

"))

The quasi-string notation is similar to the quasiquote

syntax used to onstrut s-expressions in Sheme.

4.1.1 Dynami ontent

The �rst non-trivial examples of servlets that we provide

are servlets that inlude runtime generated data (suh

as the urrent date, or information from the HTML

headers, like the lient operating system). For exam-

ple, by enlosing their HTML in urly braes, hang-

ing the extension from html to servlet, they an add

this dynami ontent to their page just by inluding the

[(java.util.Date.)℄ expression into their HTML.

{<html>

<head><title>Date/Time</title></head>

<body>

Current loal time is

[(java.util.Date.)℄

</body>

</html>}

Evaluating this expression yields

<html>

<head><title>Date/Time</title></head>

<body>

Current loal time is

Fri Sep 07 09:33:30 EDT 2001

</body>

</html>

These small syntati hanges provide a gentle intro-

dution to servlets that, as we will show below, leads

naturally to abstration, onditional exeution, and ex-

pression evaluation.

4.1.2 Introduing Abstration

One the idea of dynami ontent is learly established,

we move on to abstration and show how to use the

"de�ne" form to reate "sheme tags." This simple and

powerful idea only requires an understanding of the sub-

stitution model of sheme evaluation, and yet allows

students to start writing and sharing new HTML tag li-

braries, written in Sheme. For example, Figure 2 shows

a typial and simple library that inludes a generi web-

page proedure and a aptioned image proedure.

;; loadmylib.servlet

(define (img C I) ;; aptioned images

{<table border=5>

<tr><td>

</td></tr>

<tr><td>[C℄

</td></tr> </table>})

(define (generi-page Title CSS Body)

{<html>

<head><title> [Title℄</title>

<style type="text/ss" media="sreen">

<!-- [CSS℄ --></style></head>

<body> [Body℄</body>

</html>})

Figure 2: An HTML abstration library

An example of the use of this simple library is shown

in Figure 3. The bene�ts of this sort of abstration be-

ome even greater when the abstrations start using so-

phistiated inline-CSS style attributes to reate a highly

stylized HTML omponents.

(begin

(generi-page "Pets"

"body {bakground:blak;olor:white}

h1{border: thik solid red}"

{<h1>Pets</h1>

[(list

(img "Snappy" "snappy.jpg")

(img "Pepper" "pepper.jpg")

(img "Missy" "missy.jpg")

(img "Kitty" "kitty.jpg")

(img "Tarzan" "dog17.jpg"))℄

})

Figure 3: Using HTML abstration libraries

14

This tehnique for abstrating HTML is well-known is

Lisp/Sheme web programming (e.g. LAML[10℄, BRL

4

)

and is similar to Server-Side Inludes in JSP

5

or the

publishing model of the Zope environment

6

.

4.1.3 Introduing User Interation

The next pedagogial step is to introdue the notion of

using HTML forms to send data from the user to the

servlet.

To simplify the omputational model for novie stu-

dents, Jsheme provides easy aess to form parameters

using the (servlet (p1 p2 ...)) maro whih

binds the variables p1,... to the strings assoiated

with the form parameters of the same names. This al-

lows one to easily write servlets that proess form data

from webpages. This also proves to be a good time to

introdue the notion of onditional exeution (using if,

ond, and ase):

(servlet (password bg fg words)

(ase password

((#null) ; first visit to page, make form

(generi-page {olor viewer form} {}

{<h1>pw-proteted olor viewer</h1>

<form method=post ation="demo1.servlet">

pw <input type=text name="pw"><p>

bg <input type=text name="bg"><p>

fg <input type=text name="fg"><p>

text<textarea name="words">

Enter text to view here</textarea>

<input type=submit>

</form>}))

(("ool!") ;; orret pw, proess data

(generi-page "olor viewer"

"body {bakground:[bg℄;olor:[fg℄}"

words))

(else ;; inorret password, omplain!

(generi-page "ERROR"

" body {olor:red;bakground:blak}"

{<h1>WRONG PASSWORD<h1>

Go bak and try again!}))))

Figure 4: A password proteted page

For example, after a week of HTML instrution we have

found that beginning students easily reate HTML forms

and it is then a small step to the servlet in Figure 4

whih either generates a form or generates a response

to the form, depending on whether the form parameter

has been given a value by the browser.

4

http://brl.soureforge.net

5

http://java.sun.om/produts/jsp

6

http://www.zope.org

4.1.4 Expression Evaluation

The next step is to introdue numerial omputation

into servlets. An example, of the type of program the

students are able to onstrut at this level is shown in

Figure 5 below.

(servlet (inhes pounds)

(if (equal? inhes #null)

;; first visit to page, reate form

(generi-page {olor viewer form} {}

{<h1>BMI Calulator</h1>

<form method=post ation="bmi.servlet">

height:

<input type=text name="inhes"> inhes

weight:

<input type=text name="weight">pounds

<input type=submit>

</form>})

;; else ompute BMI, display results

(let*((h-in-m (* inhes 0.0254))

(w-in-kg (/ pounds 2.2))

(bmi (/ w-in-kg (* h-in-m h-in-m))))

(generi-page "Body Mass Index"

" body {bakground:rgb(255,235,215)}"

{<h1>Body Mass Index<h1>

With a height of [inhes℄ inhes and

a weight of [pounds℄ pounds, your

Body Mass Index is [bmi℄

Note: a BMI over 25 indiates you may be

overweight, while a BMI over 30 indiates

that your weight may ause signifiant health

problems!}))))

Figure 5: A sample quasi-string servlet

This requires two new ideas:

� evaluation of arithmeti s-expressions

7

� introdution of intermediate variables using let*

This is admittedly a big step. At this point we review

the substitution model to explain how expression evalu-

ation proeeds, and we introdue an environment model

to explain the semantis of the let* expression.

For students to be able to write this type of servlet

they need to learn to use pre�x Sheme arithmeti ex-

pressions and to use the servlet and ase maros.

4.1.5 System Interation

We have also added a few additional primitives for writ-

ing or appending sheme terms to a �le, and for reading

7

The servlet maro automatially onverts numerals to Java

numbers, thus pounds and inhes are numbers

15

a �le either as a string or as a list of sheme terms. These

allow students to easily write logs and ounters as in

Figure 6. This example also shows the send-mail pro-

edure whih allows the students to speify the "from",

"to", "subjet" �elds and give a quasi-string for the

body.

(servlet()

(let* (((read-from-file "ounter" 0))

(d (list (Date.)

(.getRemoteHost request))))

(write-to-file "ounter" (+ 1))

(append-to-file "log" d)

(send-mail

"tjhikey�brandeis" "nobody�brandeis"

"ounter" {You got a hit: [d℄!})

{<html><body>

This list has been visited by <xmp>

[(read-string-from-file "log" "")</xmp>

and you are visitor number [(+ 1)℄

Figure 6: Logs and Counters in test.servlet

In order to simplify the problem of assoiating log and

ounter �les to servlets, these primitives read and write

from �les whose pre�x is the name of the servlet. Thus,

for the log and ounters example, the "log" �le would

be named "test.servlet log" and the ounter would be

"test.servlet ounter". The students an also use library

proedures that allow absolute addresses for �les, but

this is disouraged.

4.1.6 Data Strutures and map

Students naturally want to handle list-style data (e.g.

multiple hekboxes in form data). This leads naturally

into a desription of "map" and also to table abstra-

tions. We �nd it useful to introdue map before ar,

dr, ons, sine it provides a powerful and intuitively

lear operation and does not require an understanding

of reursion. Moreover, as the examples in Figure 7

below illustrate, the map proedure gives the students

most of what they need to handle lists of data values.

There is also a map* proedure whih uses a generalized

map that onverts Java olletion objets into lists, and

hene an be used with arrays, hashtables, et.

(define (li x) {[x℄})

(define (lis L) (map li L))

(define (ul L) {[(lis L)℄})

(define (ol L) {[(lis L)℄})

(define (td X) {<td>[X℄</td>})

(define (tds Ts) (map td Ts))

(define (tr Ts) {<tr> [(tds Ts)℄ </tr>})

(define (trs Rs) (map tr Rs))

(define (table Rs) {<table> [(trs Rs)℄ </table>})

Figure 7: Generating lists and tables

4.2 Sheme Applets

After spending about three weeks studying servlets, we

turn to lient-side omputing. The tomat server has

been on�gured so that any sheme program that ends

with ".applet" is transformed into a Jsheme applet

and runs on the lient's browser. Likewise, Jsheme

programs that end in "snlp" are onverted into Java

Network Protool format whih will be automatially

downloaded and run in the Java Web Start plugin.

8

.

"John Doe"

"http://www.johndoe.om"

"years->ses alulator"

"Convert age in years to age in seonds"

"http://www.johndoe.om/jd.gif"

(jlib.JLIB.load)

(define t (maketagger))

(define w (window "years->ses"

(menubar

(menu "File"

(menuitem "quit"

(ation (lambda(e) (.hide w))))))

(border

(north (label "Years->Seonds Calulator"

(HelvetiaBold 60)))

(enter

(table 3 2

(label "Years:")

(t "years" (textfield "" 20))

(label "Seonds:")

(t "ses" (label ""))

(button "Compute" (ation(lambda(e)

(let*

((y (readexpr (t "years")))

(s (* 365.25 24 60 60 y)))

(writeexpr (t "ses") s))))))))))

(.pak w)

(.show w)

Figure 8: A sample SNLP program

Jsheme has also been extended to allow students to

learn to implement simple programs with Graphial User

Interfaes. We have written a library, JLIB, that pro-

vides delarative aess to the AWT pakage (There is

also a version for the Swing pakage). An example of a

simple Sheme program using this library is shown be-

low in Figure 8. The �rst �ve lines of the program listed

above are strings that provide doumentation about this

program whih is required by the Java Network Launh-

ing Protool (JNLP).

8

http://java.sun.om/produts/javawebstart

16

4.2.1 JLIB

The JLIB model is based on �ve fundamental onepts:

� COMPONENTS { there are a small number of

ways to onstrut basi omponents (buttons, win-

dows, ...)

� LAYOUTS { there are a small number of ways to

layout basi omponents (row, ol, table, grid, ...)

� ACTIONS { there is a simple mehanisms for as-

soiating an ation to a omponent

� PROPERTIES { there are easy ways for setting

the font and olor of omponents

� TAGS { this is a mehanism for giving names to

omponents while they are being laid out.

Another key idea is that operations on all omponents

should be as uniform as possible. For example, there are

proedures "readstring" and "writestring" whih allow

one to read a "string" from a omponent, and write

a string onto a omponent. Thus "writestring" an

hange the string on a label, a button, a text�eld, a

textarea. It an also hange the title of a window or add

an item to a hoie omponent. Likewise, readstring re-

turns the label of a button, the text in a textarea or

text�eld, the text of the urrently seleted item in a

hoie, the title of a window, and the text of a label.

The readexpr and writeexpr proedures are similar, but

they allow reading and writing of Sheme expressions

on GUI omponents. For example, the following snip-

pet of ode de�nes a button whih hanges state when

pushed:

(define (flip x)

(ase x

(("on") "off")

(("off") "on")))

(define B

(button "off" (ation (lambda(e)

(writestring B (flip (readstring B)))))))

JLIB provides proedures for eah of the main GUI wid-

gets (window, button, menubar, label) and it also pro-

vides proedures for speifying layouts (e.g. border, en-

ter, row, ol, table). The �rst few arguments of these

proedures are mandatory (e.g. window must have a

string argument, text�eld requires a string and a inte-

ger number of olumns). The remaining arguments are

optional and an appear in any order. Examples are

fonts, bakground olors, and ations.

The JLIB pakage provides a \tagger" proedure whih

allows one to give names to omponents in situ

� (define t (maketagger)) reates a tagger,

� (t NAME OBJ) assigns the NAME to the OBJ and

� (t NAME) looks up the OBJ with that NAME.

This makes the ode more delarative beause the name

for a text�eld appears with its onstrutor in the expres-

sion that reates the GUI.

4.2.2 Graphis and Animation

We also provide a simple graphis library providing a-

ess to a anvas with an o�sreen bu�er. The draw-

ing primitives are the Java instane methods of the

java.awt.Graphis lass. The "anvas" proedure is a

JLIB proedure that reates a anvas with an o�sreen

bu�er aessed by (.bufferg$) and whih an be

drawn to the sreen using (.repaint). The program

in Figure 9 shows a simple example drawing a red ball

moving aross a blue bakground.

(jlib.JLIB.load)

(define (anvas 400 400))

(define w (window "graphis1"

(border

(enter)

(south

(button "draw"

(ation (lambda(e)

(run-it drawballs))))))))

(define (run-it F) (.start (Thread. F)))

(define (drawballs) (drawball 200))

(define (drawball N)

(define g (.bufferg$)) ;get graphis objet

(.setColor g blue)

(.fillRet g 0 0 1000 1000) ;; lear bakground

(.setColor g red)

(.fillOval g N N 100 100) ;draw red disk

(.repaint) ; opy buffer to sreen

(Thread.sleep 100L) ;; pause 0.1 se

(if (> N 0) (drawball (- N 1))) ;; loop

)

(.resize w 400 400)

(.show w)

Figure 9: Graphis programming

The run-it proedure is used when the students write

animations. They seem to understand the notion of

multi-threaded programming in the ontext of having

several animations eah running in their own thread

9

9

We also have a version of run-it that looks for errors and

reports them in a debugging window.

17

4.3 Networking Abstrations

After spending two weeks mastering the JLIB library we

introdue network programming using a simple model

where applets ommuniate by sending sheme terms to

eah other through a group-server. Sine applets are

only able to open sokets on their host server, we must

run the group-server on the same mahine that man-

ages the students' applets. The students onnet to this

group-server using the make-group-lient proedure:

(define S

(make-group-lient Name Group Host Port))

This reates an objet, S, that an ommuniate with

the group-server. To send the sheme terms key b

... to the server, one evaluates the expression

(S 'send key b ...)

The �rst term, key, is used as a �lter. Indeed, the group-

server bounes bak every message it reeives to all the

members of the group. A member an speify how to

handle a message using the add-listener method

(S 'add-listener key

(lambda (key . restargs) ...))

This method indiates that the indiated proedure should

be alled on eah message that arrives from the server

with the spei�ed key.

This model builds on the student's experiene with all-

baks in GUI's and with reading/writing on GUI om-

ponents. The analogy is that "send" is like writing to a

omponent and "add-listener" is like adding an ation.

An example of the kind of applet that is explained in

lass is the hat applet shown in Figure 10. In the most

reent semester we did not require students to write an

applet using networked ommuniation, but several stu-

dents hose to write suh applets for their �nal projet.

The best example was a pitionary program whih al-

lowed any number of students to join in a game of pi-

tionary using a shared whiteboard as well as private and

group hats. This program was written by a student

with no previous programming experiene and made use

of almost all of the examples we had given previously in

the ourse.

In the oming year we plan on introduing networked

ommuniation using the notion of groupware ompo-

nents. These are textareas and anvases whih are shared

among several users on the network. This approah may

provide an even simpler model of network programming

that builds more diretly on their understanding of GUI

programs.

(jlib.JLIB.load)

(jlib.Networking.load)

(define (hatwin

UserName ChatGroup Host Port)

(define t (maketagger))

(define S (make-group-lient

UserName ChatGroup Host Port))

(define w (window "test"

(ol

(button "quit" (ation (lambda (e)

(S 'logout) (.hide w))))

(t "hatarea" (textarea 20 50))

(t "hatline" (textfield "" 50

(ation (lambda(e)

(S 'send "hat" (string-append

UserName ": "

(readstring (t "hatline"))))

(writeexpr (t "hatline") "")

)))))))

(S 'add-listener "hat" (lambda R

(appendlnexpr (t "hatarea") R)))

(.pak w) (.show w)

w)

(define (rand N)

(Math.round (* N (Math.random))))

(hatwin

(string-append "user-" (rand 1000))

"hat"

(.getHost (.getDoumentBase thisApplet))

23456)

Figure 10: A multi-room hat program

5 Student Evaluation Strategies

We have used several tehniques to aommodate the

non-siene students that are a majority in this lass.

The homework assignments allow students to exerise

their reativity in reating a web artifat (webpage,

servlet, applet, appliation) whih must meet some gen-

eral riteria. For example, in one assignment they are

required to reate a servlet that uses several spei�

form tags (in HTML) and generates a webpage in whih

some arithmeti omputation is performed. This en-

ourages a briolage approah to learning programming

onepts whih seems to appeal to non-siene majors.

The ourse features weekly quizzes whih take an oppo-

site approah. The students are shown a simple web ar-

tifat and asked to write the ode for it during a twenty

minute in-lass quiz. This pratie helps keep the stu-

dents from falling behind in the lass and also helps

ounterbalane the openness of the homework assign-

ments.

The �nal exam is based on the weekly quizzes so the

quizzes also prepare students for the exam. The ourse

provides a high level of teahing assistant support and

uses peers who have ompleted the ourse in a previous

year. The students post their homework assignments on

18

the web and are thereby able to learn from eah other,

while the reativity requirement and the sheer joy of

reating keeps opying to a minimum.

In the most reent lass the three hour open-notes �nal

exam required students to write a webpage, a Sheme

servlet, a Sheme applet, and to trae through Sheme

ode, a logi iruit, and a CMOS iruit. The goal of

the exam was to test their ability to synthesize solutions

to problems using the tools they had learned.

5.1 Pitfalls

The ourse requires a substantial investment in TA re-

soures and in lass preparation time as there is no text-

book for the ourse. Indeed the ourse has been heavily

revised eah year to inlude more web programming.

We are urrently working on a textbook whih should

lessen the lass preparation time.

The fat that the ourse is taught as a large leture

ourse makes it diÆult to keep trak of the students

who are doing poorly. This is partly ameliorated by

weekly quizzes whih help trak student performane.

Smaller lass sizes or setionals might make it easier to

trak students, but would require a greater ommitment

of staÆng resoures.

The urrent version of software tools used in the ourse

(debuggers, help systems, et.) are not as well-suited for

novie programmers as are other more mature systems

(e.g. DrSheme), but they are available as applets so

there is a tradeo� between ease of aess and ease of

use. We are strongly onsidering porting the lass to

DrSheme and/or other Sheme systems.

Although the ourse overs a great deal of material and

requires the students to demonstrate their mastery of it

in timed quizzes and exams as well as substantial home-

work projets, the grades are always highly skewed to-

ward the top. This suggests that the lass should be

taught in two or more setions as the very best stu-

dents are learly not being suÆiently hallenged. For

these students a modi�ed version of the ourse whih in-

luded more "algorithmi" omputer siene would be

ideal. This would, again, require a greater ommitment

of department resoures to the non-major ourse o�er-

ings.

6 Lessons learned

Overall the most surprising aspet of the ourse is that

these non-siene students have been able to learn how

to write servlets, applets, and appliations in Sheme,

all within a 6 week unit of a 13 week semester. Al-

though they have not delved deeply into "algorithmi"

omputer siene, most of the students do thoroughly

understand the mehanism by whih a omputer pro-

gram an speify the appearane and funtionality of

simple applets and servlets. They also understand the

notion of a formal semantis (the substitution model)

for a omputer language and the idea of the evolution

of a proess as a model of omputation as in SICP [1℄.

The primary reasons for the suess of this approah

seems to be two-fold:

� Sheme redues ognitive overload. By us-

ing a subset of Sheme we eliminate the problem

of learning ompliated syntax (as one must only

math parens (of various sorts) and quotes and

the Jsheme IDEs help one do this) and also min-

imize the problem of learning the underlying ab-

strat mahine due to the delarative nature of the

language. They an understand the Sheme pro-

grams they write using a ombination of the sub-

stitution model with an intuitive notion of objets

(window, buttons, label, menus), events (button

pushes, hoie seletions), and simple operations

on these objets (reading/writing data from GUI

omponents or HTML �elds). If we were to use

Java for this lass they would be exposed to a

muh more ompliated model with di�erent kinds

of methods (stati/instane/onstrutor), variables

(stati/instane �elds, loal variables, parameters),

types (lasses, interfaes, salars), and a dizzying

array of pakages. The use of Jsheme redues all

of the Java libraries to a set of primitive proe-

dures and greatly redues ognitive overload.

� JSheme makes applets and servlets easily

aessible to non-majors. By using a Sheme

implemented in Java we are able to maintain strong

student interest by embedding Sheme in applets,

servlets, and JNLP appliations and thereby al-

lowing the students to develop web artifats that

are usually only aessible to upper level Com-

puter Siene majors. Most of these types of ap-

pliations ould be made aessible through other

Sheme implementations. Applets would require a

plug-in, but students would probably be just as ex-

ited (if not more exited) about reating double-

likable GUI appliations in Sheme, whih would

not require a plug-in.

Aknowledgment

I would like to aknowledge the support of the steadily

growing Jsheme ommunity, inluding my o-developers

Ken Anderson and Peter Norvig. I would also like to

thank the referees of Sheme2002 for their detailed om-

ments as well as the referees from the ICFP02 onfer-

ene, who provided some exellent suggestions for im-

proving the paper, even though it was not aepted to

ICFP02. Finally, I'd like to thank the 1000+ students

who have explored the possibilities of Sheme applets

19

and servlets with me in various introdutory lasses over

the past �ve years.

Referenes

[1℄ H. Abelson and J. Sussman. Struture and Inter-

pretation of Computer Programs MIT Press.

[2℄ Kenneth R. Anderson, Timothy J. Hikey, Peter

Norvig \Silk: A Playful Combination of Sheme

and Java" Proeedings of the Workshop on Sheme

and Funtion Programming Rie University, CS

Dept. Tehnial Report 00-368, September 2000.

[3℄ Ken Anderson and Timothy J. Hikey, \Reeting

Java into Sheme" Proeedings of Reetion 99,

Springer-Verlag, Leture Notes in Computer Si-

ene, v. 1616, 1999.

[4℄ William Clinger and Jonathan Rees, editors.

\The revised

4

report on the algorithmi language

Sheme." In ACM Lisp Pointers 4(3), pp. 1-55,

1991

[5℄ Robert Brue Findler, John Clements, Corma

Flanagan, Matthew Flatt, Shriram Krishnamurthi,

Paul Stekler, Matthias Felleisen. DrSheme: a

programming environment for Sheme. Journal of

Funtional Programming 12(2): 159-182 (2002)

[6℄ Robert Brue Findler, Corma Flanagan, Matthew

Flatt, Shriram Krishnamurthi, and Matthias

Felleisen. DrSheme: a pedagogi programming en-

vironment for Sheme. Pro. 1997 Symposium on

Programming Languages: Implementations, Log-

is, and Programs, 1997.

[7℄ Matthias Felleisen, Robert Brue Findler, Matthew

Flatt, Shriram Krishnamurthi. How to Design Pro-

grams. MIT Press, 2001.

[8℄ Timothy J. Hikey, Peter Norvig, and Ken Ander-

son \LISP - a Language for Internet Sripting and

Programming", (.ps.gz 130K) in LUGM'98: Pro-

eedings of Lisp in the Mainstream, Nov. 1998,

Berkeley, CA.

[9℄ Timothy J. Hikey, Rihard Alterman, John Lang-

ton. \TA Groupware" Teh. Rep. CS-02-222, CS

Dept. Brandeis University, 2002.

[10℄ Kurt Normark, \Programming World Wide Web

pages in Sheme" Sigplan Noties, vol. 34, no. 12,

1999.

[11℄ Eri Roberts. An overview of MiniJava. in

SIGCSE'00 ACM Digital Library, 2000.

[12℄ David Reed. Rethinking CS0 with Javasript. in

SIGCSE'00 ACM Digital Library, 2000.

20

