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Abstract
In a rank-polymorphic programming language, all functions
automatically lift to operate on arbitrarily high-dimensional
aggregate data. By adding records to such a language, we can
support computation on data frames, a tabular data struc-
ture containing heterogeneous data but in which individual
columns are homogeneous. In such a setting, a data frame
is a vector of records, subject to both ordinary array op-
erations (e.g., filtering, reducing, sorting) and lifted record
operations—projecting a field lifts to projecting a column.
Data frames have become a popular tool for exploratory data
analysis, but fluidity of interacting with data frames via lifted
record operations depends on how the language’s records
are designed.
We investigate three languages with different notions of

record data: Racket, Standard ML, and Python. For each,
we examine several common tasks for working with data
frames and how the language’s records make these tasks easy
or hard. Based on their advantages and disadvantages, we
synthesize their ideas to produce a design for record types
which is flexible for both scalar and lifted computation.

CCS Concepts • Software and its engineering→ Poly-
morphism; Control structures; Data types and struc-
tures; • Mathematics of computing → Exploratory data
analysis.

Keywords array-oriented languages, rank polymorphism,
data frames, records
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1 Introduction
In a rank-polymorphic programming language, the primary
control-flow mechanism is implicitly lifting functions to op-
erate on array arguments of arbitrarily many dimensions.
Instead of having the programmer write out a loop nest,
the programmer effectively writes only the loop body, and
the iteration structure is determined automatically based
on the data being consumed. With iteration over the frame
included in the semantics of function application, extracting
an individual element is not the common way to consume
aggregate data. Instead, the language favors uniform treat-
ment of each element. This encourages the programmer to
write in a style that depends less on the exact shape of the
data, makes opportunities for parallelism more apparent to
a compiler, and facilitates exploratory coding due to a lack
of loop-nest boilerplate.

Record types are also aggregate data, but it is expected that
different fields in a single record may have different types.
Heterogeneity calls for the elements of a record to be treated
individually rather than consuming such data through an
analog of rank-polymorphic function lifting. Even when
record fields have the same type, it is not generally appropri-
ate to treat them uniformly—e.g., temperature and latitude
may both be stored as a number of degrees, but only one
should be convertible between Fahrenheit and Celsius.
Libraries and even languages focused on “data frames,”

tabular data structures which are homogeneous within any
column but potentially heterogeneous along a row, have
arisen as popular tools for exploratory data analysis. We
claim that data frames are the natural result of combining
rank polymorphism with records.
Even with concise theoretical intuition about computing

with data frames, ease of use often depends on things a the-
oretician might dismiss as uninteresting details. Our goal is
to examine several designs for heterogeneous record data
and how those designs fare when lifted up to data frames.
In this work, we explore the interaction of records and rank
polymorphism in settings where they are independent fea-
tures We investigate what we get for free simply for doing
record computation using rank polymorphism as it already
exists without extra design work targeted at integrating the
two features.

https://doi.org/10.1145/3315454.3329961
https://doi.org/10.1145/3315454.3329961
https://doi.org/10.1145/3315454.3329961
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We demonstrate several common tasks using three pro-
gramming systems’ notions of records:

1. Racket’s structs within #lang remora/dynamic, a
rank-polymorphic DSL

2. Standard ML’s records, with aggregate lifting provided
by explicit use of map-like functions

3. Python’s dictionaries, with a purpose-built library for
working with data frames

After consideration of how each version of records helps
or hinders exploratory analysis, we sketch a design for het-
erogeneous record data which combines their respective
advantages for data frame manipulation but also serves as a
sane design independent of our focus on data frames as an
application domain.

2 Rank Polymorphism
In the rank-polymorphic programming model, the universe
of data consists of regular arrays, whose “shape” is a se-
quence of natural-number dimensions. A function’s defini-
tion includes the “ranks” of its arguments, i.e., the number of
dimensions each argument is expected to have. A polynomial
evaluation function poly-eval would take a rank-1 argu-
ment containing the polynomial’s coefficients and a rank-0
(i.e., scalar) argument for the number at which to evaluate
the polynomial. For a matrix inversion function minv, there
would be a single argument of rank 2.

When a function is applied to arguments of higher rank,
those arguments are viewed like nested arrays. Applying
minv to an array with shape 3× 4× 4 treats that argument as
a 3-vector whose elements are 4 × 4 matrices. That 3-vector
forms the implicit iteration space: we must invert each of
the three matrices, producing a 3-vector of result matrices
which we then reassemble into a 3× 4× 4 result. The individ-
ual matrices in this scenario are called the “cells;” they are
the fundamental unit on which the function operates. The
“frame” is the sequence of leading dimensions in an argu-
ment’s shape which drives the implicit iteration—appending
the frame and cell shape gives the entire argument shape.
Here, our 4 × 4-matrix cells are laid out in a 3-vector frame.
We could also use this 3 × 4 × 4 array as the coefficient ar-
gument to poly-eval, in which case it would be viewed as
4-vector cells in a 3 × 4-matrix frame.

Frames are compatible if and only if one is a prefix of the
other. During function application, each argument’s frame
is extended to match the longest argument’s frame, by repli-
cating the argument cells. Continuing with poly-eval and
the 3 × 4 × 4 coefficient array, a 3-vector of values [5 6 7]
would have to be grown to the 3 × 4 matrix

[[5 5 5 5]
[6 6 6 6]
[7 7 7 7]]

Recall that the cell rank poly-eval expects for this argument
is 0. So each scalar must be replicated on its own 4 times.

Suppose instead we gave [5 6 7] as an argument to a
dot-prod function which expects two rank-1 arguments.
We would then have a scalar frame containing a single cell.
If the other argument’s shape is 2 × 3, we must grow our
scalar frame into a 2-vector frame by replicating the entire
vector—the cell rank here is 1 instead of 0 in the previous
case. So the replicated form is [[5 6 7] [5 6 7]].
The rank which a function expects for that argument

effectively determines whether thematrix produced by frame
expansion has the original vector as a column or as a row
because the decomposition of the argument shape into its
frame and cell portions determines where new dimensions
are added. Viewing an n-vector as a vector frame containing
scalar cells means it can be grown to an n × m . . . array,
whereas viewing it as a scalar frame containing a vector cell
means it can be grown to anm . . . × n array.
A common way of manipulating the iteration space is

choosing where in an argument shape new dimensions can
be added. Consider a simple vector-matrix addition:

(+ [10 20]
[[1 2]
[3 4]])

The function + expects scalar arguments. When we split the
actual arguments’ shapes—[2] and [2 2] respectively—into
frame and cell portions, they are frame = [2] and cell = []
for the first argument and frame = [2 2] and cell = [] for
the second. We must extend the first argument’s [2] frame
to [2 2] by replicating scalar cells. So the 10 cell expands to
[10 10] and 20 to [20 20]. The first argument is therefore
treated like [[10 10] [20 20]]. If we instead used a vec+
function which expects vector arguments, the frame shapes
would be [] and [2]. Expanding [] to [2] would replicate
the vector cell [10 20] rather than each scalar cell. So we
treat the first argument as [[10 20] [10 20]].
The behavior of vec+ could be described as breaking its

arguments into vector cells and then applying + to those vec-
tors (which internally breaks the vectors into scalar cells to
add pointwise). So vec+ is a “reranked” version of +. Rerank-
ing is a common enough technique in rank-polymorphic
programming to warrant some language-level support, such
as J’s " operator.

2.1 A Rank-Polymorphic Language
In order to demonstrate use of rank polymorphism we will
use a Racket-based DSL called #lang remora/dynamic. It is
a prototype implementation of a dynamically typed variant
of Remora [11], a higher-order, rank-polymorphic program-
ming language. The syntax for this DSL is largely inherited
from Racket. The two major differences are nested bracket
notation for array construction and rank annotations on
formal parameters.

An array literal can be written out with an explicit shape,
such as this 2 × 3 matrix:
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> (define arr1 (alit (2 3) 3 4 5 6 7 8))

It can also be written using nested brackets. Brackets around
a sequence of expressions builds an array with one more
dimension than those expressions’ results. If xs, ys, and
zs are each 4 × 2 arrays, then [xs ys zs] is a 3 × 4 × 2
array. Since a bracketed list is itself an expression, it can ap-
pear inside another bracketed list. While there is still a con-
ceptual distinction between expressions and atoms, #lang
remora/dynamic implicitly promotes any syntactic atom ap-
pearing where an expression is expected to a scalar array
with that as its sole atom. So even though numerals are syn-
tactically atoms, they can be used as function arguments,
returned values, or bracketed-array components. Combining
these notational conveniences, we have another way to write
out the same matrix shown above as a literal:

> (define arr2 [[3 4 5] [6 7 8]])
> (equal arr1 arr2)
#t

When writing out a function, whether with define or λ,
each formal parameter is marked with the rank of the cells
into which its argument should be divided during function
application. Within the function body, that variable is bound
to an array of that rank. Applying this polynomial evaluation
function will treat the first argument as containing vector
cells and the second argument as containing scalar cells.
The use of the variable coeffs can only mean a vector, but
a single application of poly-eval might repeat this many
times with coeffs referring to different vectors.

> (define (poly-eval (coeffs 1) (x 0))
(reduce + 0

(* coeffs
(expt x

(iota [(length coeffs)])))))

Any natural number is a valid cell-rank specifier, but a formal
parameter can also be given the rank all, indicating that
the entire argument should be treated as a single cell. The
all rank is typically used in layout-manipulating operations,
like rotate and reverse, as well as reduction and scan op-
erations operating along an array’s major axis. For example,
this sum function computes the sum along its argument’s
major axis, turning an array with shape [m n ...] into one
with shape [n ...].

> (define (sum (x all))
(reduce + 0 x))

If we want to sum an array along some other axis, we
could do so with a reranked version of sum. There is syntactic
sugar for reranking in #lang remora/dynamic: Preceding
a function with a ~ and a parenthesized list of argument
ranks produces the corresponding η-expansion. So ~(2)sum
expands (with a fresh variable a) to

(λ ((a 2)) (sum a))

Using sum along the major axis of the 2 × 3 array arr1 pro-
duces a 3-vector result. Asking for the sum along the “rank-2
axis” changes nothing, since that is already arr1’s major
axis. With ~(1)sum, reranking sum to use the rank-1 axis,
we apply the sum function to each individual vector within
arr1 and get two result cells, assembled in a vector frame.

> (sum arr1)
[9 11 13]
> (~(2)sum arr1)
[9 11 13]
> (~(1)sum arr1)
[12 21]

It is necessary to have an escape hatch from working
entirely with regular data. This necessity may arise from
raw input data itself, such as a collection of strings of non-
uniform length. Another potential cause is that certain array
operations produce output whose shape depends on input
values (not just the input shape). Lifting such an operation
can produce result cells of differing shape, which must some-
how be assembled into the same frame. Since cells of differing
shape cannot coexist on their own, we use a “box” as a wrap-
per. A box is an atom, but it contains an arbitrary array. So
we can produce ragged data when necessary:

> (define ragged
[(box [1 2])
(box [3 4 5])])

Consuming boxed data requires unpacking the box’s con-
tents, which is done like let-binding. The let-bound contents
can then be consumed like an ordinary array.

> ((λ ((some-box 0))
(unbox contents some-box

(sum contents)))
ragged)

[3 12]

However, if the computation we intend to perform on the
box’s contents has a result shape dependent on input shape,
it is safest to produce boxed output, in case we happen to be
lifting over an array of many boxes.

> ((λ ((some-box 0))
(unbox contents some-box

(reverse contents)))
ragged)

Result cells have mismatched shapes
> ((λ((some-box 0))

(unbox contents some-box
(box (reverse contents))))

ragged)
[(box [2 1])
(box [5 4 3])]
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2.2 Heterogeneous Data
Rank polymorphism facilitates uniform treatment of homo-
geneous data, but not heterogeneous data such as tuples or
records. Converting a series of temperature readings from
Fahrenheit to Celsius makes sense, but not a log entry con-
taining a city name, temperature, and time of day. Although
heterogeneous data calls for heterogeneous treatment, it is
still common to work with regular arrays whose elements
themselves are all of one particular type of heterogeneous
data. Our hypothetical weather report may be a single item
in a large table. Such use cases are common enough to have
spawned several popular programming systems—such as R
[10] and Pandas [8]—for working with “data frames,” rectan-
gular tables which are heterogeneous along the row axis but
homogeneous within any single column. Typical operations
on a data frame include:

1. Constructing a data frame from a collection of rows
or columns

2. Extracting an individual column
3. Transforming data in a column
4. Selecting the subset of rows which fit some predicate,

such as certain column values
5. Grouping rows into separate tables by partitioning a

column’s values
6. Summarizing grouped rows

Although we have settled on a fixed notion of how to op-
erate on array data, when we envision data frames as arrays
of records (treating records as atoms from rank polymor-
phism’s perspective) ergonomic convenience of the above
operations depends heavily on how records themselves are
consumed and produced. Since Remora is statically typed,
we would like to keep an eye towards typability in sketching
a design for records.

3 Candidate 1: Racket-style Structure
In #lang remora/dynamic, we have access to quite a lot
of Racket’s built-in machinery, including structs, the pre-
ferred form of record data. We can define individual table
rows as structs, but we must first define the struct type
we intend to use:

> (struct weather (loc day month year hi lo))

This structure-type declaration defines weather as a function
which produces a structure when given the field values:

> (define dallas-temp
(weather "Dallas" 28 3 2019 74 57))

It also defines functions weather-loc, weather-day, etc.,
which we can use to access individual struct fields.

> (weather-loc dallas-temp)
"Dallas"
> (weather-year dallas-temp)
2019
> (weather-lo dallas-temp)
57

3.1 Table Creation
We can build a data frame as a vector containing several
weather structs.

> (define temp-readings
[dallas-temp
(weather "Dublin" 1 4 2019 11 5)
(weather "Nome" 31 3 2019 31 26)
(weather "Tunis" 31 3 2019 21 12)])

This table could also have been built from columns instead
of rows. Since weather is a function expecting six scalar
arguments, it can be applied to vector arguments to get a
vector of structs.

> (define temp-readings
(weather
["Dallas" "Dublin" "Nome" "Tunis"]
[28 1 31 31]
[3 4 3 3]
2019
[74 11 31 21]
[57 5 26 12]))

Note that the year argument we gave is still scalar, meaning
all of our temperature readings are from the same year.When
function application lifts all arguments to have the same
frame shape, the scalar 2019 is promoted to a vector with
2019 for every atom.

3.2 Column Extraction
In the same way that the constructor function weather lifts
over arrays of field values, field-accessor functions lift over
arrays of structs:

> (weather-loc temp-readings)
["Dallas" "Dublin" "Nome" "Tunis"]
> (weather-lo temp-readings)
[57 5 26 12]

Although we constructed this data frame with a scalar as
one of the column arguments, we still have a vector result
when we extract that column.

> (weather-year temp-readings)
[2019 2019 2019 2019]

This method of column extraction gives the same result for
either definition of temp-readings. Whether the data frame
was constructed as a vector of row values or by lifting the
constructor over the intended columns, the resulting array
value is the same.
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If we decide to focus our investigation on recorded high
temperatures, it might be convenient to have a table which
elides the lows. Here we hit a snag. By reranking a vector of
field accessors, we can build an array—but not a proper data
frame—containing the information we want.

> (~(0)[weather-loc weather-day
weather-month weather-hi]

temp-readings)
[["Dallas" 28 3 74]
["Dublin" 1 4 11]
["Nome" 31 3 31]
["Tunis" 31 3 21]]

Here we have a rank-2 array, a table whose rows are hetero-
geneous vectors. A design which requires vectors to support
differing atom types is undesirable for performance reasons
and difficult to build a suitable type system for.

Producing a vector of structs—which must have a differ-
ent number of fields since we are eliding some of weather’s
fields—requires defining a new struct type.

> (struct (weather-v2 loc day month hi))

We then have a more awkward transformation function.

> (define hi-readings
((λ ((w 0))

(weather-v2 (weather-loc w)
(weather-day w)
(weather-month w)
(weather-hi w))

temp-readings))

This could be more convenient with a composition form
which preprocesses each argument with a unary function
before passing them all along to a final higher-arity function.
We will use the notation

(comp* f g ...)

as syntactic sugar for

(λ ((x all) ...) (f (g x) ...))

with a fresh x for each g.

> (define hi-readings
((comp* weather-v2
weather-loc weather-day
weather-month weather-hi)
temp-readings))

3.3 Column Update
A Racket struct type definition does not automatically cre-
ate field-update functions (except for fields designated as
mutable), though such functions could be defined:

> (define (weather-lo-set w l)
(weather (weather-loc w)

(weather-day w)
(weather-month w)
(weather-year w)
l
(weather-hi w)))

If we plan to eventually integrate this data into a larger multi-
year dataset, with a year column indexed from the start date
of data collection, we may need to replace 2019 with some
particular offset from the start year.
> (define year-adjusted

(weather-year-set temp-readings offset))

Looking over our reported temperatures, something seems
off: Why is Tunis colder than Nome? Then it dawns on us
that our reporting stations in the USA must have given tem-
peratures in Fahrenheit. As long as we can recognize which
locations are in the USA, presumably using an in-usa? predi-
cate, we can write a function to normalize temperature data1.

> (define (f->c (t 0))
(/ (- t 32) 1.8))

> (define (normalize-temps (w 0))
(select (in-usa? (weather-loc w))

(weather
(weather-loc w)
(weather-day w)
(weather-month w)
(weather-year w)
(f->c (weather-hi w))
(f->c (weather-lo w)))
w))

Updating a column conditionally according to values in other
columns can then use the same implicit control flow.

> (normalize-temps temp-readings)
[(weather "Dallas" 28 3 2019 23.33 13.89)
(weather "Dublin" 1 4 2019 11 5)
(weather "Nome" 31 3 2019 -0.56 -3.33)
(weather "Tunis" 31 3 2019 21 12)]

3.4 Row Filter
The filter function takes two arguments: a boolean vector
to use as a mask and an array whose leading axis has the
same length as that boolean vector. The result array includes
the sub-arrays from the second argument in positions cor-
responding to the boolean vector’s true entries. This is in
contrast to the usual functional filter, which takes a predi-
cate function as its first argument; it is rather a specialization
of the “replicate”/“compress” function from APL tradition.

1In the interest of keeping control flow regular, conditionals in Remora use
a boolean value to select between two possible result values, which are both
computed eagerly.
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Suppose we want to look at only the temperature reports
from Dublin.

> (define (from-dublin? (w 0))
(string=? "Dublin" (weather-loc w)))

> (define d (from-dublin? temp-readings))
> d
[#f #t #f #f]
> (filter d temp-readings)
[(weather "Dublin" 1 4 2019 11 5)]

If the order of entries in the table is unimportant, we
now have an alternative strategy for fixing our temperature
scale disparity. Since the temp-readings table is a vector of
structs, we can isolate the rows with USA locations:

> ((compose in-usa? weather-loc) temp-readings)
[#t #f #t #f]
> (filter ((compose in-usa? weather-loc)

temp-readings)
temp-readings)

[(weather "Dallas" 28 3 2019 74 57)
(weather "Nome" 31 3 2019 31 26)]

> (filter (not ((compose in-usa? weather-loc)
temp-readings))

temp-readings)
[(weather "Dublin" 1 4 2019 11 5)
(weather "Tunis" 31 3 2019 21 12)]

Using the boolean mask which selects reports from sources
in the USA, we can put their Celsius-converted temperatures
into a new table with the unaltered non-USA reports.

> (append
(normalize-temps
(filter ((compose in-usa? weather-loc)

temp-readings)
temp-readings))

(filter (not ((compose in-usa? weather-loc)
temp-readings))
temp-readings))

[(weather "Dallas" 28 3 2019 23.33 13.89)
(weather "Nome" 31 3 2019 -0.56 -3.33)
(weather "Dublin" 1 4 2019 11 5)
(weather "Tunis" 31 3 2019 21 12)]

3.5 Row Partition
Generalizing from the previous example, it is useful to have a
suite of ways to break up a table according to the values in its
rows. A function for splitting a table into rows that match a
predicate and rows that don’t will often produce ragged data,
so the individual partitions of the table must be wrapped as
boxes. We have a filter* function, meant to be a version of
filterwhich is safe for lifting over several different boolean
vectors. While applying filter will raise a dynamic error if
it is lifted over boolean vectors with different numbers of #t
elements, filter* keeps each result cell in a box.

> (filter [#t #f #t] [1 2 3])
[1 3]
> (filter [[#t #f #t] [#f #t #f]] [1 2 3])
Result cells have mismatched shapes
> (filter* [[#t #f #t] [#f #t #f]] [1 2 3])
[(box [1 3]) (box [2])]

We can construct our two boolean vectors for identifying
USA and non-USA temperature reports. Note that [id not]
is a vector of scalar functions. If it appears in function po-
sition, it contributes its own frame, [2], to the function
application’s overall frame. This is our desired frame, but
it is incompatible with the frame of the temperature read-
ings table (which is some vector of length much more than
2). We need this to-all function as an adapter. It converts
each individual function to a function which consumes its
entire argument as one cell (before then passing it to the
underlying function).

> (define (to-all (f 0))
(λ ((a all)) (f a)))

When we apply (to-all [id not]), we have a vector of
all-ranked functions, so the argument is considered to have
a scalar frame. That means the argument will be passed in
its entirety to each of id and not.

> (define in-or-out
((to-all [id not])
((compose in-usa? weather-loc)
temp-readings)))

> in-or-out
[[#t #f #t #f]
[#f #t #f #t]]

So a general split function can be written as

> (define (split (pred 0) (tbl all))
(filter* ((to-all [id not]) (pred tbl))

tbl))
> (split (compose in-usa? weather-loc)

temp-readings)
[(box [(weather "Dallas" 28 3 2019 74 57)

(weather "Nome" 31 3 2019 31 26)])
(box [(weather "Dublin" 28 3 2019 74 57)

(weather "Tunis" 31 3 2019 31 26)])]

With filter* able to lift over multiple boolean vectors,
we can consider otherways to generate collections of boolean
vectors to partition the table. The core of the task is to gen-
erate the vector of predicates, which can then be applied to
each element in the table.
A numeric column might be partitioned into ranges. We

can build each range’s predicate by combining the upper-
and lower-bound predicates:2

2Here we borrow Racket’s and/c combinator, which works like and, but
lifted to operate on predicates.
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> (define (bins (bounds 1))
(and/c (append [(const #t)]

((curry <) bounds))
(append ((curry >=) bounds)

[(const #t)])))

Then filtering the vector [1 3 5 7 9 2 4 6 8] accord-
ing to the result from (bins [5 10]) gives the following
partitioned results:

[(rem-box [1 3 5 2 4])
(rem-box [7 9 6 8])
(rem-box [])]

We might also want to partition our table so as to group
temperature readings from the same location. This requires
identifying the set of unique locations mentioned in the table
and then constructing an equality predicate matching each
of them.

> (define (uniques (v 1))
(to-all
((curry equal?) (nub v))))

The nub function condenses a vector down to a vector of its
unique elements. So the result from uniques is a vector of
predicates, each of which checks whether its argument is
equal to the corresponding element of the original vector.
If we generate this collection of predicates from our table’s
location column and then apply them to that column, we
get a collection of boolean vectors each of which indicates
which rows have a particular location. So filter* will then
build a list of tables, with the rows grouped according to
their location fields.

3.6 Ergonomics
We get quite a lot of flexibility in data manipulation by com-
bining orthogonal features: rank polymorphism and tradi-
tional array-manipulation operators with Racket’s built-in
functional composition combinators and struct types. Con-
structing tables from columns and computing on specific
columns both fall out ofmaking Racket’s pre-existing struct
constructors and field accessors rank-polymorphic. Filtering
rows according to a predicate lifts to grouping rows by using
several non-overlapping predicates.

Some of the awkward code here arises from Racket’s some-
what clumsy point-free programming. Code for manipulat-
ing data frames often calls for unary predicates and trans-
formation functions, which we build by partially applying
and adding plumbing between already-existing functions. Id-
iomatic Racket code mostly avoids point-free programming,
in contrast to Haskell or J. In principle, fixing this should
only require a combinator library better suited for concise
point-free code.
The more persistent problem with using Racket structs

as data-frame rows is in tying each struct operation to
a particular declared type. Every combination of column

names must be declared and named before use, and every
column selection must give that combination’s name as well.

4 Candidate 2: Standard ML-style Record
One alternative design for labeled heterogeneous data which
avoids some of the shortcomings of Racket’s structs is Stan-
dard ML’s records [9]. In Standard ML, a record type consists
of a (statically specified) set of field names and a required type
for each field. In contrast to Racket’s struct types, Standard
ML does not require record types themselves to be named.
However, Standard ML lacks Remora’s automatic lifting over
argument frames, so producing working code requires sprin-
kling explicit map and replication operations throughout. In
the interest of keeping the focus on records, rather than on
ad hoc implementations of rank polymorphism, we will elide
the definitions of most of these utility functions. Past work
has considered automatically generating the required map
and replication operations for a substantial subset of cases
handled by rank polymorphism [12].

4.1 Table Creation
Our example row from Section 3 can be written as

- val dallas_temp = {loc="Dallas", day=28,
month=3, year=2019, hi=74, lo=57}

As in Racket, several rows can be packed into a list, but we
do not have a direct way to construct a table from columns.
Record creation in Standard ML is special syntax rather than
a function, so we cannot map it over lists of column values
without explicitly defining a record-creation function and a
map variant of appropriate arity.
- fun weather(lc,d,m,y,h,l) =

loc=lc, day=d, month=m, year=y, hi=h, lo=l;
- val temp_readings = map6 weather

(["Dallas","Dublin","Nome","Tunis"],
[28, 1, 31, 31],
[3, 4, 3, 3]
[2019, 2019, 2019, 2019]
[74, 11, 31, 21]
[57, 5, 26, 12])

The list repeating 2019 is due to the rank-monomorphic
nature of an explicit map. If we were to name our columns
before assembling them into a table, we could instead (ex-
plicitly) construct the repeated list:

- fun rep n x = if (n <= 0) then []
else x::(rep (n - 1) x);

val rep = fn : int -> 'a -> 'a list
- val cities = ["Dallas", "Dublin",

"Nome", "Tunis"];
...
- val years = rep (length cities) 2019;

Or alternatively
- val years = map (fn _ => 2019) cities;
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4.2 Column Extraction
We still have easy access to an individual column in Standard
ML because record accessors are first-class functions.

- map #hi temp_readings;
val it = [74,11,31,21] : int list

However, assembling a subset of columns still requires writ-
ing a row constructor for the new field set because it is
another case of constructing a table from columns.

- fun hi_temp (c,h) = loc=c,hi=h;
val hi_temp = fn : 'a * 'b -> hi:'b, loc:'a
- map2 hi_temp (map #loc temp_readings,

map #hi temp_readings);
val it =

[hi=74,loc="Dallas",
hi=11,loc="Dublin",
hi=31,loc="Nome",
hi=21,loc="Tunis"]

: hi:int, loc:string list

A slight awkward point is that field access functions can-
not be typed in isolation. If a field access function does not
appear in a context which constrains the particular field
set of the record it will be applied to, the function does not
have a single most general Standard ML type. This might
impede a user who prefers to build up a collection of defined
data-manipulation gadgets for later reuse.

4.3 Column Update
As in Racket, we lack pre-existing functions for updating in-
dividual fields, and when we write our own, they are specific
to the set of fields in the resulting record. For example, this
adaptation of the previous section’s temperature normaliza-
tion function only works on records with the same set of
field names as our temp_reports table.3

- fun normalize_temps w =
if in_usa (#loc w) then
{loc = #loc w,
day = #day w,
month = #month w,
year = #year w,
hi = ((#hi w) - 32.0)/1.8,
lo = ((#lo w) - 32.0)/1.8}

else w;

4.4 Row Filter
Standard ML includes a filter function, so we can still
easily select rows which match a predicate. The difficulty
introduced by Standard ML’s type system is that predicates
must specify which fields they ignore, not just the fields they
inspect, in order to be typable.
3It also does not work on temp_reports itself due to numeric type incom-
patibility, but this is not to be blamed on Standard ML’s record types.

- fun from_dublin w = #loc w = "Dublin";
Error: unresolved flex record

(can't tell what fields there are
besides #loc)

- fun from_dublin
{loc = l, day = _, month = _, year = _,
hi = _, lo = _} =
l = "Dublin";

val from_dublin = fn
: {day:'a, hi:'b, lo:'c, loc:string,
month:'d, year:'e} -> bool

- List.filter from_dublin temp_readings;
val it = [{day=1,hi=11,lo=5,loc="Dublin",

month=4,year=2019}]
: {day:int, hi:int, lo:int, loc:string,

month:int, year:int} list

In principle, this restriction exists with Racket-style structs
as well: each field accessor is tied to a particular struct type.

4.5 Row Partition
As in filtering, partitioning is as straightforward as is allowed
by Standard ML’s field-set monomorphism. Again, Standard
ML’s lack of rank polymorphism requires extra code to adapt
the filter function to an aggregate first argument and sin-
gular second argument, but once that adapter is available,
the table can be partitioned using a list of disjoint predicates.

- fun many2one f xs y = map (fn x => f x y) xs;
val many2one = fn
: ('a -> 'b -> 'c) -> 'a list -> 'b -> 'c list

- many2one List.filter
[in_usa o #loc, not o in_usa o #loc]
temp_readings;

val it =
[[{day=28,hi=74,lo=57,loc="Dallas",

month=3,year=2019},
{day=31,hi=31,lo=26,loc="Nome",
month=3,year=2019}],

[{day=1,hi=11,lo=5,loc="Dublin",
month=4,year=2019},

{day=31,hi=21,lo=12,loc="Tunis",
month=3,year=2019}]]

: {day:int, hi:int, lo:int, loc:string,
month:int, year:int} list list

Standard ML’s ubiquitous currying makes the predicate-
list construction functions more syntactically lightweight,
for example:
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- fun split pred table =
many2one List.filter
[pred, not o pred] table;

val split = fn
: ('a -> bool) -> 'a list -> 'a list list

- split from_dublin temp_readings;

val it =
[[day=1,hi=11,lo=5,loc="Dublin",

month=4,year=2019],
[day=28,hi=74,lo=57,loc="Dallas",

month=3,year=2019,
day=31,hi=31,lo=26,loc="Nome",
month=3,year=2019,

day=31,hi=21,lo=12,loc="Tunis",
month=3,year=2019]]

: {day:int, hi:int, lo:int, loc:string,
month:int, year:int} list list

4.6 Ergonomics
With first-class record types, it is not strictly necessary to
declare every set of columns we will use in some table. We do
not have to worry about whether a row we want to add into
a table has its fields in the right order because record type
equality is independent of field ordering. This is in contrast to
Racket-style structs, where all fields are positional (and their
names are only used for projection functions). Functions like
filter and map still work as expected (though with more
needed adapter code than in a rank-polymorphic language)
because these are core functional programming tools, not
something specific to array-oriented languages or libraries.
However, we lose some of the flexibility that might be

expected from the set-of-names style of record. Despite hav-
ing first-class record types, Standard ML echoes many of
the ergonomic faults of Racket’s structs. Record types can
be used without declaration, but we don’t get a liftable con-
structor function without explicitly writing one. It is also
awkward to build up a task-specific toolkit because field
accessor functions cannot be used without somehow speci-
fying the full set of other field names. Exploratory analysis
using only a subset of the original columns would require re-
defining filtering, partitioning, and transformation functions
originally written for the full table. Many of the problems
requiring repetitive per-type solutions could be eliminated
by adding row polymorphism, at the cost of complicating
type inference [13].

5 Candidate 3: Python-style Dictionary
Python’s structure for labeled heterogeneous data is a dictio-
nary mapping strings to field values. Unlike in Racket and
Standard ML, field names themselves are run-time values,
allowing arbitrary string computation to choose which field
to project out. Dictionary construction syntax is similar to
Standard ML’s record construction.

>>> dallas_temp = {'loc': 'Dallas', 'day': 28,
'month': 3, 'year': 2019,
'hi': 74, 'lo': 57}

Typical practice for working with tabular data in Python is
to not build tables directly from the language’s primitive data
structures but to use the Pandas library [8]. Pandas stores a
data frame as a collection of labeled columns, in contrast to
previous sections’ use of collections of rows. While the list-
of-rows representation is also possible in Python, the sort of
helper functions needed for emulating rank polymorphism in
order to work with that representation fluidly are generally
considered non-idiomatic Python.

5.1 Table Creation
As before, several rows can be packed into a list, and that
list can be used to build a Pandas DataFrame object.

>>> temp_list =
[dallas_temp,
{'loc': 'Dublin', 'day': 1, 'month': 4,
'year': 2019, 'hi': 11, 'lo': 5},
{'loc': 'Nome', 'day': 31, 'month': 3,
'year': 2019, 'hi': 31, 'lo': 26},
{'loc': 'Tunis', 'day': 31, 'month': 3,
'year': 2019, 'hi': 21, 'lo': 12}]

>>> by_rows = pd.DataFrame(temp_list)

Alternatively, a DataFrame can be constructed from a dictio-
nary of columns.

>>> by_cols =
pd.DataFrame({'loc': ['Dallas', 'Dublin',

'Nome', 'Tunis'],
'day': [28, 1, 31, 31],
'month': [3,4,3,3],
'year': 2019,
'hi': [74, 11, 31, 21],
'lo': [57,5,26,12]})

5.2 Column Extraction
Since a Pandas DataFrame is kept as a collection of columns,
extracting one column is a simple indexing operation, with
no need for implicit or explicit mapping. Each individual
column is represented as a Series object, which can be con-
sumed using list comprehensions but also has a map method
for unary functions.

>>> by_cols['loc']
0 Dallas
1 Dublin
2 Nome
3 Tunis

The indexing operator can lift to extract multiple columns
by passing a list of column names, producing a DataFrame
rather than a simple list of Series.
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>>> by_cols[['loc','hi']]
loc hi

0 Dallas 74
1 Dublin 11
2 Nome 31
3 Tunis 21

5.3 Column Update
Dropping in a replacement column requires no lifting, for the
same reason as column extraction. A column can also still be
updated by applying a transformation function to each row.
This would be a straightforward list comprehension in a table
represented as a list of rows. Otherwise a DataFrame-specific
method must be used with the axis explicitly specified, rather
than the language’s native machinery (iterating over a data
frame itself steps through its columns).

>>> def f2c(f): return (f - 32)/1.8
>>> def normalize_temp(r):
... if in_usa(r['loc']):
... r['lo'] = f2c(r['lo'])
... r['hi'] = f2c(r['hi'])
... return r
>>> by_cols.apply(normalize_temp, axis=1)

loc day month year hi lo
0 Dallas 28 3 2019 23.33 13.89
1 Dublin 1 4 2019 11.00 5.00
2 Nome 31 3 2019 -0.56 -3.33
3 Tunis 31 3 2019 21.00 12.00

Both the list-of-dictionaries representation and Pandas
also offer horizontal concatenation of DataFrames, which
would have to be reimplemented for each pair of column
sets using Racket structs or Standard ML records.

5.4 Row Filter
A DataFrame’s locmethod can take a boolean mask, similar
to Remora’s filter function. Our first example from Sec-
tion 3 of selecting only readings from Dublin can be written
easily by constructing a Serieswith True in positions corre-
sponding to rows where our table’s ’loc’ field is ’Dublin’.

>>> by_cols['loc'] == 'Dublin'
0 False
1 True
2 False
3 False
>>> by_cols[by_cols['loc'] == 'Dublin']

loc day month year hi lo
1 Dublin 1 4 2019 11 5

However, the implicit lifting we see for == is special treat-
ment given only to certain primitives. A user-written predi-
cate, like our imagined in_usa check, requires explicit lifting.

>>> [in_usa(l) for l in by_cols['loc']]
[True, False, True, False]
>>> by_cols[[in_usa(l) for l in

by_cols['loc']]]
loc day month year hi lo

0 Dallas 28 3 2019 74 57
2 Nome 31 3 2019 31 26

5.5 Row Partition
Rather than mapping a filter function over multiple pred-
icates, Pandas provides a groupby method for splitting up
DataFrames. The value to use for each row’s group selection
can be a tuple containing some of that row’s fields. As more
general options, we can pass a function which computes the
desired group identifier or a list of group identifiers to place
each row in the corresponding group. Similar to the case in
#lang remora/dynamic, the same comprehension we used
for filtering can be used for partitioning as well.

>>> us__non_us =
by_cols.groupby([in_usa(l) for l in

by_cols['loc']])
>>> us__non_us.get_group(True)

loc day month year hi lo
0 Dallas 28 3 2019 74 57
2 Nome 31 3 2019 31 26
>>> us__non_us.get_group(False)

loc day month year hi lo
1 Dublin 1 4 2019 11 5
3 Tunis 31 3 2019 21 12

5.6 Ergonomics
The most noticeable benefit to Pandas, over both other sec-
tions’ representations of data frames as well as the list-of-
dictionaries option, is the user-friendly output formatting.
Annoyingly, using Standard ML records means repeating
the column names in every table row, while using Racket
structs means never showing column names. Standard ML
also tends to silently reorder record fields according to its
own purposes, which may cause related pieces of data to
print quite far apart from each other. Sticklers about the term
“REPL” might find Pandas output unsatisfying, as the printed
result cannot be read back in as the object it represents. In
principle, even that should be fixable by sprinkling delimiters
in the right places.

The primary drawback of following a Pandas-like design
for records in a rank-polymorphic language is its reliance
on a large amount of ad hoc machinery. Functionality de-
signed for too specific a purpose is more difficult to adapt,
even to closely related tasks. For example, groupby bakes
in the assumption that the resulting groups are disjoint and
exhaustive. It is awkward to generalize to tasks like selecting
several incrementally growing subsets of the data. A rank-
polymorphic language should already include a good range
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of general-purpose array-manipulating primitives which can
be used on columnar tables in much the same way as on vec-
tors, matrices, or higher-dimensional tensors.
In the vein of type-system friendliness, Python’s string-

to-anything map structure is not very easy to handle, but
the ability to compute field names via string operations is
probably unneeded flexibility. The ability to concatenate
data frames both vertically and horizontally can help with
gathering data from multiple sources, but Racket structs
and Standard ML records both make merging heterogeneous
operations difficult.

6 Synthesis: Manipulating Records with
Lenses

Now it is time to come upwith a design for record data which
accounts for the advantages and disadvantages discussed in
the preceding sections.
The most important design goal for integrating record

types with rank polymorphism is for construction and pro-
jection to be first-class functions. The use of special syntax
rather than a constructor function means that a Standard
ML programmer must manually define such functions in
order to get lifting over tables. Python partially sidesteps the
problem by emphasizing comprehension syntax, but even
this becomes awkward when lifting over several arguments
with differing frame shapes. Racket’s take on this is far more
notationally heavyweight due to having to declare a struct
type in order to produce its constructor and projection func-
tions. We propose instead a notation for record constructors.
In s-expression syntax, a record constructor is written as

(record fname1 ... fnamen)

The value of a record form is an n-ary function on scalars.
When applied to scalar arguments arg1 through argn , it pro-
duces a record equivalent to Standard ML’s

{fname1 = arg1, ..., fnamen = argn}

or Python’s
{'fname1' : arg1, ..., 'fnamen' : argn}

Similar notation can even be offered as syntactic sugar with
{(fname1 arg1) ... (fnamen argn)}

expanding to
((record fname1 ... fnamen) arg1 ... argn)

We also need corresponding notation for projection func-
tions, and ideally update functions. Lenses, arising from
work by Foster et al [1] and popularized by libraries such
as Haskell’s Control.Lens [7], give a composable way to
access elements of larger structures. Whether used individu-
ally or composed, they are ultimately consumed by functions
corresponding to what to do at the field in question:

• (view L) produces a function which extracts the value
of the field in its argument associated with the lens L

• (set L) produces a function which changes the field’s
value to a passed-in value, constructing a new record

• (over L) produces a function which updates the
field’s value according to a passed-in unary function,
also constructing a new record

Most importantly for our purposes, calling view, set, or over
on a record-field lens produces a record-consuming function,
which we can then lift over structures of records. This also
requires some notation for constructing a lens from a field
name; we will use the syntax (lens fname). While lens is
a keyword rather than a function, its result is a function.
We also propose syntactic sugar for constructing lens-

based operations:
• #_(fname ...) expands to
(view (compose (lens fname) ...))

• #=(fname ...) expands to
(set (compose (lens fname) ...))

• #^(fname ...) expands to
(over (compose (lens fname) ...))

Preserving field order, as opposed to considering a record
as an unordered collection of labeled values, allows Pandas to
give much more readable output than Standard ML. Records
with the same types of field values in different orders are
isomorphic, but the difference between them is observable
by a user within our intended mode of use. So we conclude
that the proper design choice here is to consider records with
different field orders non-equal.
Unlike previous sections, this is a design sketch rather

than an explication of an existing system. It is not backed
up by an implementation at this time, so the code presented
below is not executable.

6.1 Table Creation
> (define dallas-temp

{(loc "Dallas") (day 28) (month 3)
(year 2019) (hi 74) (lo 57)})

> (#_(year) dallas-temp)
2019
> ([#_(hi) #_(lo)] dallas-temp)
[74 57]

Row-based construction of a table works as before.
> (define temp-readings

[dallas-temp
{(loc "Dublin") (day 1) (month 4)
(year 2019) (hi 11) (lo 5)}

{(loc "Nome") (day 31) (month 3)
(year 2019) (hi 31) (lo 26)}

{(loc "Tunis") (day 31) (month 3)
(year 2019) (hi 21) (lo 12)}])

Since the “record literal” syntax is actually sugar for func-
tion application, it can lift over aggregate arguments with
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compatible frames, effectively assembling a data frame from
its columns.

> (define temp-readings
{(loc ["Dallas" "Dublin" "Nome" "Tunis"])
(day [28 1 31 31])
(month [3 4 3 3])
(year 2019)
(hi [74 11 31 21])
(lo [57 5 26 12])})

6.2 Column Extraction
With rank polymorphism, a lens operation lifts from operat-
ing on a single record’s field to operating on a column in a
data frame—i.e., the corresponding field in every row.

> (#_(loc) temp-readings)
["Dallas" "Dublin" "Nome" "Tunis"]

> {(loc (#_(loc) temp-readings))
(day (#_(day) temp-readings))
(month (#_(month) temp-readings))
(hi (#_(hi) temp-readings))}

[{(loc "Dallas") (day 28) (month 3) (hi 74)}
{(loc "Dublin") (day 1) (month 4) (hi 11)}
{(loc "Nome") (day 31) (month 3) (hi 31)}
{(loc "Tunis") (day 31) (month 3) (hi 21)}]

6.3 Column Update
As with view, the operations set and over generalize from
a single record’s field to a data frame’s column. Because field
updates are functions, they are easily composed.

> (define (normalize-temps (w 0))
(define new-temp
(select (in-usa? (#_(loc) w)) f->c id))

((compose (#^(lo) new-temp)
(#^(hi) new-temp))

w))
> (normalize-temps temp-readings)
[{(loc "Dallas") (day 28) (month 3) (year 2019)
(hi 23.33) (lo 13.89)}
{(loc "Dublin") (day 1) (month 4) (year 2019)
(hi 11) (lo 5)}
{(loc "Nome") (day 31) (month 3) (year 2019)
(hi -0.56) (lo -3.33)}
{(loc "Tunis") (day 31) (month 3) (year 2019)
(hi 21) (lo 12)}]

6.4 Row Filter
We keep the same filter function from Section 3. Defining
a boolean mask differs only slightly. The weather-loc field
accessor we used when working with Racket structs can
be replaced directly with a lens operation #_(loc).
> ((compose in-usa? #_(loc)) temp-readings)
[#t #f #t #f]

6.5 Row Partition
As in Section 3, we construct and then filter with a frame
of several boolean masks. The same ways of building arrays
of masks work in this setting as well, with struct field
accessors replaced by view operations.

6.6 Ergonomics
Record construction syntax allows the scalar-level flexibility
we had in Standard ML and Python: accessing a field depends
only on the field name, with no requirement to define a
type for the particular collection of names. We also gain the
advantage we had with Racket structs by treating record
notation as syntactic sugar for application of a particular
function. That function lifts to higher-rank arguments, such
as table columns. This avoids the need to explicitly declare a
record-construction function for each collection of fields.
Using lenses to access data within records also avoids

the need for Racket’s type-specific field accessor functions.
However, eventual efforts to introduce static types must
allow row polymorphism or run into the same limitations as
Standard ML, where field-manipulating code is tied at the
type level to a particular collection of field names.
Tables with hierarchically nested columns can also be

implemented in all three systems examined above, using a
purpose-specific data structure in Pandas or nested structs
and records for Racket and Standard ML respectively. How-
ever, lenses make record nesting much more palatable be-
cause a lens for a deeply nested subfield is constructible
using function composition—this is much more lightweight
notation than, for example, chaining field update functions
for Racket-style structs. Point-free programming is the tra-
ditionally favored style in rank-polymorphic programming
languages, so the use of composable lenses integrates well.

Beyond the Interaction of Orthogonal Features While
we have been treating heterogeneous record data and rank
polymorphism as independent, orthogonal language features,
there may be something to gain from tighter coupling. For
a fairly mild example, printing a single record requires in-
cluding all of its field names, but when printing a large array
of records, repeating the field names at each array element
clutters the user’s view with redundant information.

A farther-reaching possibility would be allowing records
to appear in function position, with the record structure
forming part of the frame shape. The individual field-cells’
results would then be assembled into a record of results.
This would allow the column-subset example to be written
as something like

> (~(0){#_(loc) #_(day) #_(month) #_(hi)}
temp-readings)
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7 Other Related Work
In our exploration of how rank polymorphism interacts with
heterogeneous records, we have chosen three languages’ no-
tions of record data with the goal of seeing different sets
of advantages and disadvantages. Other rank-polymorphic
languages have also taken their own approaches to hetero-
geneous data.
Futhark [3] is an array-oriented language for GPU pro-

gramming, which includes record types [4]. Record access
is a special syntactic form rather than a function, using the
same notation for referring to both a field within a record
and a name exported by a module.

R [10] is a domain-specific language for statistical analysis,
with a data.frame class as a core piece of the language. This
class and its operations served as the inspiration for Pandas
and several other libraries in a variety of languages.
Gibbons demonstrated an embedding of rank polymor-

phism in Haskell via an Applicative type class instance [2].
However, Haskell’s record system is historically a sore point
in the language’s design, lacking first-class record types and
even prohibiting types with overlapping field names from
coexisting in the same module.

Iverson’s languages APL [5] and J [6] do not include record
types, and this omission is a significant problem in the design
of the language. However, heterogeneous arrays have some
support. APL allows heterogeneous arrays directly, whereas
J requires elements of a heterogeneous array to be boxed.
Either option allows an alist-style implementation of records,
but heterogeneous data is not the typical programming style
in these languages.

8 Conclusion
We have presented a design for producing and consuming
record data aimed at flexibility in scalar computation. Scalar-
level flexibility then leads to easy data frame use when we
combine recordswith rank polymorphism. This investigation
serves as a useful guide for eventual extension of Remora’s

design to include records. Offering a small collection of mutu-
ally composable constructs—in our case, rank polymorphism,
records, and conventional array-manipulation operations—
avoids the need to build and export a large collection of
task-specific tools.
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