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Algorithms that convert direct-style λ-calculus terms to their equivalent terms in continuation-passing

style (CPS) typically introduce so-called “administrative redexes:” useless artifacts of the conversion that must

be cleaned up by a subsequent pass over the result to reduce them away. We present a simple, linear-time

algorithm for CPS conversion that introduces no administrative redexes. In fact, the output term is a normal

form in a reduction system that generalizes the notion of “administrative redexes” to what we call “no-brainer

redexes,” that is, redexes whose reduction shrinks the size of the term. We state the theorems which establish

the algorithm’s desireable properties, along with sketches of the full proofs.
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1 INTRODUCTION
Continuation-Passing Style (CPS) is a restricted form of the λ-calculus that has many pleasant

properties for both theoretical and practical use [Appel 2006; Fischer 1993; Kelsey 1989, 1995; Kelsey

and Hudak 1989; Kennedy 2007; Kranz et al. 1986; Kranz 1988; Plotkin 1975; Reynolds 1972, 1993;

Sabry and Felleisen 1993; Steele Jr. 1976, 1978]. However, despite all the positive traits one might

associate with the form, not many would assert it is pleasant to write: CPS is a low-level form more

suited as a kind of intermediate representation than as something directly written by a human.

Typically, we write terms in plain, old “direct-style” λ-calculus, and then run the term through a

“CPS converter” algorithm or function that does the translation for us.

One of the undesirable traits of CPS-conversion algorithms is that they can introduce unwanted

“administrative reductions” that have to be cleaned up afterward by a post-pass over the result. These

redexes are called “administrative” because they are introduced during the transformation and are

not present in the original program. These redexes are ones that are conservatively introduced by

the algorithm in its efforts to provide every intermediate quantity computed by the original term

with a name—even terms that are already named (that is, variable references), or terms that don’t

really need to be named (such as λ-terms that are only going to be used in one place).
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23:2 Milo Davis, William Meehan, and Olin Shivers

This issue can be seen when converting a simple direct-style (DS) term using the classic Fis-

cher/Reynolds algorithm [Fischer 1993; Reynolds 1972]. If we start with the direct-style

(λx .x ) (λx .x ),

the Fischer/Reynolds algorithm gives us

λk1.(λk2.k2 (λx .λk3.k3x ))
(λm.(λk4.k4 (λx .λk5.k5x ))

λn.m n k1).

Compare this messy output with the simpler result produced by the later Danvy/Filinski algo-

rithm [1992] or the equivalent Sabry/Felleisen algorithm [1993]:

λk1.(λx .λk3.k3x )
(λx .λk5.k5x )
k1.

The history of CPS conversion has seen a mini arms-race in the production of conversion

algorithms that produce terms with fewer and fewer of these annoying and useless redexes. But

there is still room for improvement.

With this pearl, we’d like to get away from the very concept of “administrative redexes,” and

simply consider, more generally, the idea of “redexes we obviously don’t want.” That is, redexes

whose reduction is a “no brainer.”

In this pearl, we’ll define precisely what we mean by “no brainer” redexes, and then develop

a simple CPS-conversion algorithm that produces a result that does not contain, at all, three of

the four kinds of these redexes. We stay within the classical rules of the game for previous CPS-

conversion algorithms: the converter runs in linear time, and works by means of simple, recursive

tree-walks of the original term. Our algorithm produces a result that is smaller and simpler than

any alternative, linear-time algorithm of which we know. A complete implementation, shown in an

appendix, is 101 lines of OCaml code (not counting blank lines and comments), of which 22 lines

are type definitions, and the remaining 79 lines, actual code.

To return to our running example, if we convert the direct-style term above using our algorithm,

we get

λk1.k1 (λx .λk5.k5x ).

2 NOTATION
We use “Scott brackets” J·K in order to write down abstract-syntax elements using concrete-syntax

form [Rabern 2016]. For example, when we write “(if x 3 (+ 2 5)),” we mean the literal string

whose first few characters are left-parenthesis, i, f, and so on. However, when we enclose this

string in doubled brackets, J(if x 3 (+ 2 5))K, we mean a mathematical element of a domain

of abstract syntax. This domain is an inductively defined set of syntax trees; we are now in the

realm of structure (trees), not concrete syntax (strings of characters). In our example, the particular

element we are describing is a conditional expression that has three child expressions: a reference

to the variable x, the numeric constant three, and an application of the addition function to the

constants two and five. Again, double brackets lets us write down the abstract value using the

concrete, surface notation for the element.

We extend this notation by permitting ourselves to insert subterms of abstract syntax, written

in italicised, math notation, in the midst of one of these strings of concrete syntax. For example,

if we let v = Jx3K, then J(if (< v 0) (- v) v)K is the Lisp expression computing the absolute

value of the number stored in the Lisp variable x3, all represented as a tree of abstract syntax. In
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y ∈ DSVAR DS Variable

fun ∈ FUN ::= (fun y e) λ-term

e ∈ DS ::= y Var reference
| fun Abstraction
| (e e) Application
| (if e e e) Conditional

(a) Direct-style syntax

x ∈ UVAR User variable
k ∈ CVAR Cont variable

lam ∈ LAM ::= (lam (x k) p) User λ-term
clam ∈ CLAM ::= (cont x p) Cont λ-term

triv ∈ TRIV ::= x | lam User argument
cont ∈ CONT ::= k | clam | halt Cont argument

p ∈ CPS ::= CPS program
(call triv triv cont) Function app

| (ret cont triv) Cont app
| (if triv p p) Conditional
| (letc (k cont) p) Cont binding

(b) CPS syntax

Fig. 1. Syntax of the source and target languages

particular, note that the variablev is ametasyntactic,math variable, whose value is the Lisp variable
x3. We will sometimes omit these brackets in top-level cases when there is danger of no confusion.

(Readers comfortable with the Lisp “backquote” notation will not go far wrong by interpreting

double-brackets as backquote and italicised mathematical material as being comma-prefixed.)

3 LANGUAGES
We use an s-expression syntax for our terms; and we’ve made the direct-style source language

(Figure 1(a)) syntactically distinct from the CPS target language (Figure 1(b)). Using s-expressions

makes a clear distinction between meta-syntactic, mathematical expressions and the actual terms

we are processing.

We’ve included a primitive conditional if form to exercise the conversion algorithm in cases

where a continuation is shared by both arms of the conditional—CPS algorithms have to be careful

not to duplicate code when they do this sharing, else they could induce exponential blowup in the

size of the result term.

We’ve also taken the trouble to use a “factored” CPS language, where continuation functions,

applications, and variable references are syntactically distinct from “user” terms that are non-

continuations. So, for example, a “user” function is written (lam (x k) p); it binds user parameter

x and continuation parameter k , and is applied with a call form. A continuation function is written

(cont x p), and is applied with a ret form.

User arguments triv are traditionally referred to as “trivial” arguments because they are limited to

variable references and λ terms. This means that, unlike argument expressions e in the direct-style
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language, they can always be trivially evaluated to a value in constant time, with no side effects,

control or otherwise. A pleasant consequence of this property is that β-reduction is always sound
in CPS.

The letc form is for let-binding a continuation form to a continuation variable. In our simple,

core language, we can’t use a β-redex to do this, since the only other form that binds a continuation

variable is the lam form, which also binds a user variable. (We discuss more practical engineering

alternatives in Section 7. Going with letc lets us keep things simple for expository purposes.)

We use the function nref (x , e ) to mean the number of references to variable x that occur free in

expression e , and the function FV (e ) to mean the set of variables occurring free in expression e .

4 THE NO-BRAINER REDUCTION SYSTEM
When we set about simplifying a large, complex term written out in the λ-calculus, it’s just obvious
that some redexes should be simplified away—it’s a “no-brainer” decision to reduce them. What

constitutes such a redex? It is a redex whose contraction will immediately reduce the size of the
program.
Note the condition that the size reduction be immediate: there may be other redexes whose

contraction may locally expand the program, but this expansion will introduce new reduction

opportunities that will eventually lead to an overall, global decrease in the size of the program. We

aren’t considering these reductions, which require search and complex analysis to find. Rather,

we conservatively restrict ourselves to greedy, hill-climbing optimisations. The charm of such

improvements is that they are easily detected from local context, and they are always a good

idea—that’s what makes the decision to perform them a no-brainer.

Here are four kinds of redex that are all guaranteed to shrink the size of the program in which

they occur:

(1) A β-redex where the bound variable has multiple references, but the substituend (the value

being substituted for the bound variable) is of unit size and hence can be swapped in for

the multiple references without increasing term size. A “unit-size” substituend is either a

variable or a small constant, such as an integer (as opposed to a large constant that we don’t

want to replicate, such as a large constant list structure or other aggregate data structure).

For example:

(ret (cont x
. . . x . . . x . . . )

y)
→ . . . y . . . y . . .

(2) A β-redex where the bound variable being substituted away has exactly one reference in the

body of its binding λ-term. For example:

(ret (cont x
. . . x . . . )

triv)
→ . . . triv . . .

(3) A β-redex where the bound variable being substituted away has no references at all in the

body of its binding λ-term, e.g.,

(ret (cont x body)
triv)

→ body

(4) An η-redex, e.g., (lam (x k) (call triv x k)) → triv.
Note that these reductions might not be semantics-preserving in a direct-style term with call-

by-value semantics, but they are always legal in a CPS term, due to the fact that substituends are

effect-free trivial arguments.
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Our algorithm handles three of these four reductions; the one we cannot handle is #3, where the

bound variable has zero references. Reduction #3 is problematic because it causes the reference

counts of other variables to be lowered. Doing such a reduction essentially deletes the substituend,

which might be a large term containing many free-variable references. Deleting the term means

deleting these references, which has an “action at a distance” effect: by lowering the reference

counts of other variables, we might make other redexes suddenly become redexes of types #2 or #3.

We could not find a way to manage this sort of cascading of reduction opportunity in a simple tree

walk.

If we take the remaining three kinds of no-brainer redexes and apply them to any subterm of

some large CPS program, we get a rewrite system we call the “No-brainer Reduction” (NBR) system.

The NBR system is the specification of what we are trying to accomplish when we set out to clean

up the output of a CPS conversion.

The point of the NBR system is that we don’t care about the source of No-Brainer redexes; we
just want them gone—all of them. Attributing some of these redexes to the conversion algorithm,

which is what we do when we label them “administrative,” is just a distraction. Furthermore, it’s a

questionable attribution. All redexes in the output of a CPS conversion were introduced by the

converter—the ones we want to keep, and the ones we want to eliminate! So, in this sense, our

goal is more ambitious than eliminating so-called “administrative” redexes: our goal is a clean,

simplified result term.

4.1 Formalising NBR
We define NBR to consist of the following reductions:

Definition 4.1 (βcv ). β-reduction where the substituend is a variable, or a unit-sized constant:

(call (lam (x1 k) p) x2 cont) −−−→
βcv

(letc (k cont) p[x1 7→x2])

(call (lam (x k1) p) triv k2) −−−→
βcv

(ret (cont x p[k1 7→k2]) triv)

(call (lam (x k) p) triv halt) −−−→
βcv

(ret (cont x p[k 7→halt]) triv)

(ret (cont x1 p) x2) −−−→
βcv

p[x1 7→x2]

(letc (k1 k2) p) −−−→
βcv

p[k1 7→k2]

(letc (k halt) p) −−−→
βcv

p[k 7→halt]

Clearly, replacing one variable with another will not change the term’s size. We also can inline

constants with unit size, such as the top-level halt continuation.

Definition 4.2 (βλ1). β-reduction where the substituend is a λ-term (i.e., a lam or cont form) and

the bound variable is referenced exactly once in the redex:

(call (lam (x1 k) p) lam cont) −−−→
βλ1

(letc (k cont) p[x1 7→ lam])

(call (lam (x k1) p) triv clam) −−−→
βλ1

(ret (cont x p[k1 7→clam]) triv)

(ret (cont x1 p) lam) −−−→
βλ1

p[x1 7→ lam]

(letc (k1 clam) p) −−−→
βλ1

p[k1 7→clam]

where nref (k1,p) = 1 and nref (x1,p) = 1.
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Cp ::= □p

| (call Ct triv cont) | (call triv Ct cont)
| (call triv triv Cc)
| (ret Cc triv) | (ret cont Ct)
| (if Ct p1 p2)
| (if triv Cp p) | (if triv p Cp)
| (letc (k Cc) p) | (letc (k cont) Cp)

Ct ::= □t | (lam (x k) Cp)

Cc ::= □c | (cont x Cp)

(a) CPS reduction-context grammar

p1 → p2

C
p
p [p1]→ C

p
p [p2]

triv1 → triv2
Ct
p [triv1]→ Ct

p [triv2]

cont1 → cont2
Cc
p [cont1]→ Cc

p [cont2]

(b) Reduction inference

rules

Fig. 2. This context grammar captures the idea that we want to permit No-Brainer reductions anywhere they
occur in a program.

We also want to inline lam and cont function abstractions. In the best case, this can create more

potential redexes, leading to cascades of inlining. However, to prevent code growth, we restrict the

βλ1 redex, requiring that the variable being substituted has only one reference in the body of the

binding λ-term.
1

Definition 4.3 (η). Classic η-reduction:

(lam (x k) (call triv x k)) −→
η

triv (x, k < FV (triv))

(cont x (ret cont x)) −→
η

cont (x < FV (cont))

Finally, η-reduction always decreases term size. Note that, unlike βcv and βλ1, η is not a reduction

on programs, but rather on function abstractions.

Figure 2 shows a context grammar spelling out that we want to permit No-Brainer reductions

anywhere they occur. A context can have one of three different kinds of hole, reflecting that

we can plug in three different kinds of term: “program” terms (□p
), trivial user values (□t

), and

continuation values (□c
). We use a subscript on a context to indicate what type of term results

from plugging the hole. All top-level contexts must be program contexts, but because β-redexes
are programs and η-redexes are either trivial arguments or continuations, we allow holes for any

type of term. We can plug any p into a C
p
p , any triv into a Ct

p , and any cont into a Cc
p ; all three of

these will produce a “program” term.

If we permit βcv , βλ1, and η reductions to occur anywhere the redexes occur as subterms of a

CPS program, as expressed by the context grammar of Figure 2, we get the NBR system.

4.2 Properties of the NBR System
The NBR system has two nice properties. First, it is strongly normalising. It is easy to see that every

No-Brainer reduction sequence on a CPS term must eventually terminate in a normal form, since

every reduction step we take decreases the size of the term.

1
We can easily extend this rule also to permit reduction when the substituend is a “large,” non-unit-sized constant, such

as constant list structure, that should not be replicated. We haven’t shown this, as our simple source language doesn’t

have such constants. The key idea of this rule, in any event, is to express substitutions of large things for single-referenced

variables.
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F e cont ≜




J(ret cont e)K e ∈ DSVAR

J(ret cont (lam (y k) (F e ′ k )))K e = J(fun y e ′)K

F ef

s
(cont xf

(F ea
q
(cont xa (call xf xa cont))

y
))

{
e =

q
(ef ea)

y

F e1

r
(cont xb (letc (j cont)

(if xb (F e2 j ) (F e3 j ))))

z
e = J(if e1 e2 e3)K

Fig. 3. The Fischer/Reynolds algorithm

It’s less obvious, but also true, that the system is confluent. Thus, if a term has multiple possible

rewrites, we can do them in any order we like: we will always arrive at the same normal form. So

we can speak of the NB normal form of a term, rather than a NB normal form; we call this the

“No-Brainer normal form” (NBNF) of the term.

In Subsection 6.1, we present sketches of proofs for both of these properties; the full proofs exist

and are being included in a technical report under preparation.

4.3 The NBR System as a Specification
The real purpose of laying out the details of the No-Brainer reduction system is that it serves as a

formal specification for the algorithm we’d like to develop. If we can show that some linear-time

CPS-conversion algorithm produces a No-Brainer normal form, then we have reason to believe that

we’ve gotten all the easy simplifications. The only ones we might have missed are the zero-reference

reductions that require us to hop around the term as reference counts decrement due to other

reductions, something that rules out a simple, linear-time, tree-walk traversal of the term.

5 THE ALGORITHM
Figure 3 gives our starting point, the Fischer/Reynolds algorithm [Fischer 1993; Reynolds 1972].

We’ll adopt the convention here, and in later algorithms, that variables otherwise unspecified in

result terms are taken to be fresh. The goal for our final, “smart” algorithm is to produce the term

we would get if we first CPS converted a source term with the Fischer/Reynolds algorithm, then

reduced it to a No-Brainer normal form—but we want to directly produce the final normal form,

without ever creating any redexes which must be contracted away:

DS

CPS CPS/NBNF

F/R
Smart

NBR

5.1 Symbol Tables and Abstract-Syntax Domains
We will get from the Fischer/Reynolds algorithm to our final algorithm in two steps, first presenting

a “dumb” algorithm as an intermediate waypoint. The Dumb algorithm produces the same output

(up to α equivalence) as the Fischer/Reynolds algorithm, but has the structural elements we’ll need

for the smart algorithm. It has three principal distinctions from the Fischer/Reynolds algorithm.

The first is that we introduce a symbol table, or static environment, which we need if we are

taking our source/target language distinction seriously. After all, source-language variables come
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c ∈ ABS-CONT ::= halt
| k
| FCont (e,E, c ) (cont xf . . . )
| ACont (a, c ) (cont xa . . . )
| ICont (e1, e2,E, c ) (cont xb (letc (j cont) (if xb . . . )))
|

a ∈ ABS-ARG ::= x
|
〈
J(fun y e)K,E

〉
Fig. 4. The Abstract Continuation data structure lets us delay the decision about whether we should directly
produce a term for a continuation, or reduce it away. The three constructors correspond to continuations intro-
duced by the conversion algorithm itself; the right column gives the syntactic term from the Fischer/Reynolds
algorithm to which these items correspond (see Figure 3). Each constructor packages up enough informa-
tion to produce the continuation it represents. Similarly, the Abstract Argument data structure represents
CPS triv arguments, and lets us delay the convert-or-reduce decision for fun terms. We refer to

〈
fun,E

〉
code/environment pairs as “static closures.”

from a different syntactic domain (DSVAR) than target-language variables (UVAR). Whenever

we translate a source (fun y e) term, the converter picks a fresh target-language variable x for

the corresponding parameter in the result CPS (lam (x k) . . . ) term, and then CPS-converts

the body e with a static environment that includes a y 7→ x mapping. Whenever we translate a

source-language variable reference y, we look it up in the current static environment to find its

corresponding target-language entry.

The second change is that we introduce abstract continuations and abstract arguments, defined
in Figure 4. Let’s consider abstract continuations first. There are five kinds: the primitive halt
continuation, continuation terms that are variables, and the ones built with the three constructors,

FCont, ACont, and ICont, which represent explicit continuation terms introduced by the converter

algorithm. Here is an informal, English description of each of these three kinds of continuation:

• FCont (ea ,E, c )
This continuation arises when we translate a direct-style function-application term (ef ea).
It is the continuation that is awaiting the value produced by the evaluation of (the CPS

translation of) the application’s function part, ef . Thus, its mission in life could be stated

as follows: “We have just received some function value. Now evaluate the application’s

argument part ea , then apply the function value to the argument value, with the result of the

function call going to continuation c .” This is the continuation (cont xf . . . ) we see in
the third case of the Fischer/Reynolds algorithm.

It’s important to note that this abstract continuation is constructed from the source term ea ,
so we must package up a static environment E along with this term—when we eventually

get around to rendering this abstract continuation into concrete syntax, we’ll have to CPS

convert ea , and so will need E to tell us how to translate the free-variable references occuring

in ea .
• ACont (af , c )
This is the continuation that is awaiting the result of evaluating the argument part of a direct-
style function application; af is an abstract trivial-argument term representing the value that

was produced when we earlier evaluated the application’s function term. Thus, this continu-

ation’s mission in life is: “apply af to the value we have just received, with the result of the

application going to continuation c .” This is the continuation (cont xa (call xf xa cont))
we see in the third case of the Fischer/Reynolds algorithm, represented as ACont (xf , cont).
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• ICont (e1, e2,E, c )
This is the continuation that is awaiting the result of evaluating the “test” sub-expression of

an if form. Its mission is: “If the value we receive is true, do the e1 computation, delivering its

value to continuation c; if it is false, do the e2 computation instead.” This is the continuation

(cont xb . . . ) that appears in the fourth case of the Fischer/Reynolds algorithm.

Again, note that this abstract continuation is constructed from source terms e1 and e2, so we

also need a static environment E to assist the CPS translation of these two terms, when we

decide to render this continuation into an actual CPS term.

Analogous to abstract continuations, there are two kinds of abstract arguments. The first kind

is a variable x , from the CPS target language. The second kind

〈
J(fun y e)K,E

〉
represents the

CPS (lam (x k) . . . ) term we will get when we translate source-language term (fun y e).
Because we are representing a CPS term with its direct-style source, we must package that source

term up with a static environment E to tell us how to translate the free variables of the source term.

The point of introducing these abstract syntactic domains is that they will let the (eventual,

smart) algorithm delay rendering their elements. As we’ll see, the smart algorithm will have the

flexibility to decide, based on context, to render an abstract element into its concrete syntax, or

instead to reduce it away.

The final change wemake to produce the Dumb algorithm from the Fischer/Reynolds algorithm is

that we must render our abstract elements into the concrete syntactic terms they represent. We call

this “blessing” an abstract-syntax value. Given some abstract value a, we write its correspondingly
blessed concrete syntax term a.

5.2 Syntax Constructors and the Dumb Algorithm
Figure 5 shows the Dumb algorithm. The central, top-level function is Cd . It has the same four

cases as the F function, but with some differences:

• It now takes an extra static-environment argument E; when we call the function on the

top-level source term, we pass in an empty initial environment, which is extended as the

algorithm recurs down into nested fun source terms.

• Instead of directly constructing continuation terms, it creates abstract continuations using

the FCont, ACont, and ICont constructors, e.g., in the third and fourth cases of the function.

Likewise, the new algorithm creates a static closure ⟨e,E⟩ instead of a concrete lam term, in

the second case of the function.

• As the converter now traffics in abstract syntactic items, they must be rendered into concrete

syntax by the two bless functions: one for continuations; the other, for arguments.

• Where the F function directly produces ret, call and if terms, this algorithm instead uses

“constructor” functions Retd , Calld , and Ifd ; they are trivial helper functions.

Inspection of the Dumb algorithm will show that inlining the auxiliary functions into the top-

level Cd function will produce the Fischer/Reynolds algorithm—a minor variant that uses a symbol

table to distinguish source variables from target variables.

Note that blessing abstract syntactic elements kicks off recursive bouts of CPS translation, as the

various source-language elements packaged up by the abstract constructors must be translated into

their final form. For example, blessing the function-value-awaiting continuation FCont (ea ,E, c ′)
involves using Cd recursively to convert the argument term ea . We can also see where the symbol

table is extended: when blessing a static closure, as the algorithm prepares recursively to convert

the body e of the closure’s (fun y e) term.
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Cd e E c ≜




Retd c (Ee ) e ∈ DSVAR

Retd c ⟨e,E⟩ e ∈ FUN

Cd ef E FCont (ea ,E, c ) e =
q
(ef ea)

y

Cd e1 E ICont (e2, e3,E, c ) e = J(if e1 e2 e3)K

Retd c a ≜ J(ret c a)K

Calld f a c ≜
r
(call f a c)

z

Ifd a e1 e2 E c ≜ J(letc (j c) (if a (Cd e1 E j ) (Cd e2 E j )))K

c ≜




c c = JhaltK ∨ c ∈ CVARq
(cont xf (Cd ea E ACont (xf , c ′)))

y
c = FCont (ea ,E, c ′)q

(cont xa (Calld af xa c
′))

y
c = ACont (af , c ′)

J(cont x (Ifd x e1 e2 E c ′))K c = ICont (e1, e2,E, c ′)

a ≜



a a ∈ UVAR

J(lam (x k) (Cd e E[y 7→x] k ))K a =
〈
J(fun y e)K,E

〉
Fig. 5. The dumb algorithm

5.3 The Smart Algorithm
The smart algorithm, shown in Figure 6, is a natural extension of the dumb one: we simply exploit

the machinery we’ve put into place. Our first extension is to enrich the domain of the symbol table

E, so that we can bind source-language variables either to target-language variables or to static

closures. This is the key step that permits us to perform reductions on the fly: to substitute a term

a for a variable x , we simply enter the mapping in the symbol table and proceed with the CPS

conversion. We write the smart bless functions as
−→c and

−→a , to visually distinguish them from their

dumb counterparts.

Secondly, while the top-level function remains the same, our helper functions are now “smart”

constructors. That is, Ret c a doesn’t simply produce the CPS term returning a to continuation

c , that is, (ret −→c −→a ). Instead, it produces the reduced, No-Brainer normal form of that term.

Likewise for the other helper-function constructors.

One such reduction opportunity arises when theCall function is constructing a call term whose

function part f is a static closure

〈
J(fun y e)K,E

〉
. In this case, the call term is a β-redex. If y is

a single-reference variable, then we have a βλ1 opportunity, so we don’t want to produce the redex.

Instead, we make a y 7→a entry in the symbol table and CPS convert the body e of the function.
On the other hand, if y is multiply referenced in the body of the fun, we might still have a βcv

opportunity, if the substituend a will be rendered by the converter as a (replicatable) CPS variable.

Note that a could be something complex, that is, a static closure over a large fun term, and still

get rendered as a single CPS variable, if the result lam term η-reduces to a single variable. For

example, if a =
〈
J(fun q (((fun s s) r) q))K,E

〉
, it will be blessed to its No-Brainer normal

form r (well, to its equivalent CPS variable, that is), in which case the algorithm will be able to use

it as the substituend in a βcv reduction. Again, this reduction is performed simply by making a

[y 7→ triv] addition to the symbol table, where triv is the CPS variable produced by blessing a, and
then recursively translating the body of the function.
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C e E c ≜




Ret c (Ee ) e ∈ DSVAR

Ret c ⟨e,E⟩ e ∈ FUN

C ef E FCont (ea ,E, c ) e =
q
(ef ea)

y

C e1 E ICont (e2, e3,E, c ) e = J(if e1 e2 e3)K

Ret c a ≜




q
(ret c −→a )

y
c ∈ CVAR ∨ c = JhaltK

C e E ACont (a, c ′) c = FCont (e,E, c ′)

Call f a c ′ c = ACont ( f, c ′)

If a e1 e2 E c ′ c = ICont (e1, e2, c ′, E)

Call f a c ≜




q
(call f −→a −→c )

y
f ∈ UVAR

if nref (y, e ) = 1 then C e E[y 7→a] c

else let triv = −→a
if triv ∈ UVAR then C e E[y 7→ triv] c
else let body = C e E[y 7→x] c

J(ret (cont x body) triv)K

f =
〈
J(fun y e)K,E

〉

If a e1 e2 E c ≜



q
(if −→a (C e1 E c ) (C e2 E c ))

y
c = JhaltK ∨ c ∈ CVAR

q
(letc (j −→c ) (If a e1 e2 E j ))

y
otherwise

−→c ≜



c c = JhaltK ∨ c ∈ CVAR

J(cont x (Ret c x ))K otherwise

−→a ≜




a a ∈ UVAR

let b = C e E[y 7→x] k

if nref (x ,b) = 1 and b = J(call triv x k)K
then triv (* η-reduction *)
else J(lam (x k) b)K

a =
〈
J(fun y e)K,E

〉

Fig. 6. The smart algorithm

The last two lines of the Call function handle the case ((fun y e) (fun . . . )) where y’s
multiple references in e block No-Brainer reduction. This is rendered with a “let” binding encoded

as a ret/cont redex: (ret (cont x body) (lam (x ′ k ′) . . . )), where x is the CPS variable

chosen for source-variable y, body is the result of CPS-converting e , and (lam (x ′ k ′) . . . ) is

the CPS rendering of the un-substitutable (fun . . . ) term.
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The final reduction opportunity comes when we bless a static closure

〈
J(fun y e)K,E

〉
. This

is where we have the possibility of an η-reduction. These are detected by first CPS converting

the body e of the fun, and then checking to see if the result body has the form we require of an

η-redex, that is, (call triv x k), where x and k are the two fresh CPS parameters introduced

for the lam term we are constructing. If that call’s reference to x is the only reference x has, then

instead of producing the term (lam (x k) (call triv x k)), we simply produce its contraction

triv. We do not need to check to see if the k parameter occurs in triv, because continuation variables

obey a linear discipline [Sabry and Felleisen 1993]; thus, if k is used as the continuation parameter

in (call triv x k), we know it cannot also be referenced within triv. (However, if our source
language included first-class control operators, such as call/cc, the linearity constraint would no

longer hold, and the algorithm would need to count references to continuation variables as well as

user variables.)

The η-reducer’s nref (x ,b) = 1 check means that the smart algorithm needs to keep track of

variable-reference counts in the target term as it is constructed. To keep the presentation simple,

we have not shown this machinery in the algorithm, but it is straightforward: the various recursive

functions pass around a second symbol table, one that maps CPS variables to numeric reference

counts. Recurring into the new scope of a lam term adds a new [x 7→0] entry to this table; when we

bless an abstract argument and produce a variable reference x , we increment its reference count in

the table. (The implementation in the appendix includes this code.)

The key to the smart algorithm is our use of abstract continuations and arguments to delay the

render-or-reduce decision until a value has flowed to its final resting place. If that place occurs in a

No-Brainer redex, we can do the reduction on-the-fly simply by adding an entry to our symbol

table. The symbol table is the key enabler of the fused conversion/normalising algorithm, in that it

is the means by which we do reductions as we CPS convert.

Besides the two uses of a symbol table to (1) perform reductions and (2) track variable reference

counts in the target term, there is a third use of a symbol table that we’ve glossed over due to its

simplicity. Before CPS converting a source term, we must first walk the term counting variable

references for each source variable, marking the singly-referenced variables as candidates for βλ1
reductions. This is a simple, linear-time pre-pass. Thus, the entire CPS conversion requires two,

linear-time tree-walks of the source term.

6 PROOFS OF PROPERTIES
Up to this point, we have asserted that the No-Brainer reduction system and our algorithm have

various favorable properties. In this section, we formally support those claims.

6.1 Properties of NBR
No-Brainer reduction is designed to be a greedy optimizer of term size, which we inductively define

for our CPS language in Figure 7. Note that the size of a lam term is defined to agree with its

corresponding λ-calculus equivalent, which is made of a curried λ-term.

The following proofs are modeled after those in Barendregt’s standard text [1985]. Similar

modified versions of the Barendregt proofs can be found in Appel and Jim’s “Shrinking lambda

expressions in linear time” [1997].

Theorem 6.1 (Term-size Reduction).

∀p1, p2 ∈ CPS, p1 −−−→
NB

p2 =⇒ size(p1) > size(p2).

Proof Sketch: By case analysis on the definition of NBR, where size is defined as in Figure 7. □
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size(x ) ≜ 1

sizeJ(lam (x k) p)K ≜ size(p) + 2

sizeJ(call t1 t2 c)K ≜ size(t1) + size(t2) + size(c ) + 1

sizeJ(ret c t)K ≜ size(c ) + size(t ) + 1

sizeJ(if t p1 p2)K ≜ size(t ) + size(p1) + size(p2) + 1

sizeJ(letc (k c) p)K ≜ size(c ) + size(p) + 1

size(k ) ≜ 1

sizeJ(cont x p)K ≜ size(p) + 1

sizeJhaltK ≜ 1

Fig. 7. The size of a CPS term

This property is essential to the notion of No-Brainer reductions. The reductions are “no-brainer”

precisely because they cause an immediate and obvious reduction in term size while preserving

semantics.

Theorem 6.2 (Strong Normalisation).

∀p ∈ CPS, ∄ an infinite reduction sequence p −−−→
NB

p ′ −−−→
NB

p ′′ −−−→
NB
. . .

Proof Sketch: By Theorem 6.1 and structural induction on the term, using term size as a

measure to ensure termination. □
We now have a guarantee that there are no infinite reduction paths in NBR. Thus, we can

implement the system algorithmically without having to worry whether the optimisations will fail

to terminate. If this were not the case, attempts to reduce a term might never reach a normal form.

While classic βη-reduction is known to be confluent, we must prove this property for NBR. We

will accomplish this by proving each individual reduction of the system is confluent, and then

demonstrating that they commute.

Lemma 6.3 (Local Confluence of βcv and βλ1). ∀p ∈ CPS,

p p′

p′′ p′′′

βcv

βcv βcv∗

βcv∗

p p′

p′′ p′′′

βλ1

βλ1 βλ1∗

βλ1∗

Proof Sketch: For each reduction, we inductively define a relation with the intention that the

reduction is its transitive closure. So we prove both βcv and βλ1 are locally confluent by proving

that the corresponding relations are both locally confluent. □
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Lemma 6.4 (Commutativity of βcv and βλ1). ∀p ∈ CPS,

p p′

p′′ p′′′

βcv

βλ1 βλ1∗

βcv∗

Proof Sketch: By case analysis on the definition of βcv . We accomplish this using context

grammars, considering a particular βcv redex within a term. We present three of these cases

diagrammatically in Figure 8; the remaining three cases are similarly structured. □
For the remainder of the section, we use β to refer to βcv and βλ1 combined.

Lemma 6.5 (Confluence of No-Brainer β-reduction). ∀p ∈ CPS,

p p′

p′′ p′′′

β

β β ∗

β ∗

Proof Sketch: By Lemma 6.3, Lemma 6.4, and Proposition 3.3.5 in Barendregt [1985]. □
Classical η-reduction is known to be confluent [Barendregt 1985], so to show that the No-Brainer

reduction system is also confluent, it suffices to show that η-reduction commutes with our restricted

β-reduction.

Lemma 6.6 (Commutativity of β and η). ∀p ∈ CPS,

p p′

p′′ p′′′

β

η η∗

β ∗

Proof Sketch: Diagrammatically using reduction context, as in our proof of Lemma 6.4. We

consider every possible η-redex, performing β-reduction in context and subexpressions. □

Theorem 6.7 (Global Confluence of NBR). ∀p ∈ CPS,

p p′

p′′ p′′′

NBR

NBR NBR∗

NBR∗

Proof Sketch: By Lemma 6.5, confluence of η-reduction, and Lemma 6.6. □
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C [(call (lam (x1 k) p) x2 cont)]

C ′


(call (lam (x1 k) p)
x2
cont)



C



(call (lam (x1 k) p ′)
x2
cont)



C
[
(letc (k cont)
p[x1 7→x2])

]

C



(call (lam (x1 k) p)
x2
cont ′)



C
[
(ret (cont x1 p[k 7→cont])

x2)

]

C ′
[
(letc (k cont)
p[x1 7→x2])

]

C
[
(letc (k cont)
p ′[x1 7→x2])

]
C
[
(letc (k cont ′)
p[x1 7→x2])

]
C [p[k 7→cont][x1 7→x2]]

βλ1

βλ1

βcv

βλ1

βλ1

βcv

βcv βcv

βcv

βλ1
βλ1 βλ1

βλ1

(a) Commutativity of βλ1 with the first βcv rule

C [(ret (cont x1 p) x2)]

C ′ [(ret (cont x1 p) x2)]

C [p[x1 7→x2]]

C [(ret (cont x1 p ′) x2)]

C ′ [p[x1 7→x2]] C [p ′[x1 7→x2]]

βλ1
βcv

βλ1

βcv βλ1 βλ1
βcv

(b) Commutativity of βλ1 with the fourth βcv rule

C [(letc (k1 k2) p)]

C ′ [(letc (k1 k2) p)]

C [p[k1 7→k2]]

C [(letc (k1 k2) p ′)]

C ′ [p[k1 7→k2]] C [p ′[k1 7→k2]]

βλ1
βcv

βλ1

βcv βλ1 βλ1
βcv

(c) Commutativity of βλ1 with the fifth βcv rule

Fig. 8. Commutativity of βcv and βλ1
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Now that we have proven the No-Brainer system normalising and confluent, we can refer to “the

normal form” of a given term and be guaranteed that it is unique, no matter which reductions we

take locally. This allows us to implement our CPS-conversion algorithm deterministically, as we

can make reductions everywhere we find a redex and not worry whether it will lead to a different

translated term.

6.2 Properties of the Algorithm
For our algorithm to match our specification, we must prove two key properties: that it preserves

the semantics of the original term and that its output is in No-Brainer normal form.

One issue we must address first, however, is the fact that the environment argument passed

around by the converter will always be sufficient to the needs of the variable lookups performed on

it. This is a little subtle, because an environment contains other environments, packaged up inside

the static closures in the first environment’s range. Ensuring the algorithm always “hits” when

it indexes into an environment on some lookup amounts to a precondition on the environment

argument passed to any of the converter functions, one which is preserved as environments are

manipulated during the execution of the converter.

We define a well-formedness property W for term-environment pairs and an analogous property

WC for continuations, so that when we convert a term with this property, variable lookups will

always be well defined. Theorem 6.10 guarantees that this property is preserved on all recursions

of all algorithms we define that use the environment.

Definition 6.8 (Environment well-formedness property). An environment E is well-formed with

respect to a direct-style term e (written ⟨e,E⟩ ∈ W ) if every free variable in e is in the domain

of the environment, and every static closure ⟨lam,E ′⟩ in the range of E is itself a well-formed

term/environment pair:

⟨e,E⟩ ∈ W iff FV (e ) ⊂ domain(E) ∧ range(E) − UVAR ⊂ W.

Definition 6.9 (Well-formed continuation). An abstract continuation c is well formed (written

c ∈ WC) if all environments packaged up inside the continuation are well formed with respect to

their associated syntax elements, and all abstract continuations within c are also well formed:

c ∈ WC iff




true c ∈ CVAR

⟨e,E⟩ ∈ W ∧ c ∈ WC c = FCont (e,E, c )
(a ∈ W ∨ a ∈ UVAR) ∧ c ∈ WC c = ACont (a, c )
⟨e1,E⟩, ⟨e2,E⟩ ∈ W ∧ c ∈ WC c = ICont (e1, e2,E, c ).

Theorem 6.10 (Preservation of well-formedness).

(1) Cd e E c preserves ⟨e,E⟩ ∈ W and c ∈ WC on all recursions.
(2) C e E c preserves ⟨e,E⟩ ∈ W and c ∈ WC on all recursions.

Proof Sketch: Induction on the structure of the term and mutual induction on the various

smart constructors. □
The next two lemmas are necessary for us to prove that the Smart algorithm produces a No-

Brainer reduction of the Dumb algorithm’s output. Our goal is to formalise the notion that when

we recur with an extended environment, we are β-reducing the term. To prove this equivalence,

we must extend variable substitution to operate on unblessed, abstract continuations (Figure 9),

and prove its equivalence to substitution on concrete, syntactic continuations in our first lemma.
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halt[k 7→c] ≜ halt

k ′[k 7→c] ≜



c k = k ′

k ′ k , k ′

ACont (a, c ′)[k 7→c] ≜ ACont (a, c ′[k 7→c])

FCont (e,E, c ′)[k 7→c] ≜ FCont (e,E, c ′[k 7→c])

ICont (e1, e2,E, c ′)[k 7→c] ≜ ICont (e1, e2,E, c ′[k 7→c])

Fig. 9. The substitution [k 7→ c] is extended to operate on the elements of the abstract ABS-CONT domain,
respecting their interpretation as concrete CPS terms.

Lemma 6.11 (Abstract continuation substitution). Substitution on an abstract continuation
respects its reification as concrete syntax:

∀c, c ′, k ∈ WC, ∀ ⟨e,E⟩ ∈ W,

(1) c[k 7→c ′] = c[k 7→c ′], and
(2) Cd e E c[k 7→c ′] =

(
Cd e E c

)
[k 7→c ′].

Proof Sketch: By mutual induction across Cd and the blessing functions, the structure of the

continuation, and the structure of the e term. The proof of the first half of the theorem stands

alone through the k and ACont (a, c ) cases, but the FCont (e,E, c ) case requires the algorithm to

step through Cd . To solve this issue, we add the second half of this theorem which is proven by

induction on the structure of the term and continuation. This property allows us to use our inductive

hypothesis to move nested continuations out of the data structure, reify them, and perform the

outer substitution before reversing the process to recreate the data structure post-substitution. □
Now that we have a well-understood definition of continuation substitution, we can prove that

β-reduction is equivalent to environment extension.

Lemma 6.12 (Environment extension is β-reduction).

∀
〈
e,E[y 7→a]

〉
∈ W, ∀c ∈ WC,

Cd e E[y 7→a] c =
(
Cd e E[y 7→x] c

)
[x 7→a]

where x is fresh.

Proof Sketch: By induction on the structure of the direct-style term with additional cases for

variables not equal toy. We use the continuation substitution property established in Lemma 6.11 to

substitute into the continuation data structure. This lets us perform substitutions on continuations

by partially reifying them. First, we replace a continuation data structure with a continuation

variable and a substitution. Then we will swap the inner and outer substitutions using the fact

that parallel λ-calculus substitutions compose. Finally, we substitute into the blessed continuation

and then convert it back into a data structure by running the continuation-blessing operation c
backwards. This allows us to propagate environment extensions into continuation data structures.

□
With these lemmas in hand, we can prove that the Smart algorithm produces the NBNF of the

Dumb algorithm’s output.
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Theorem 6.13 (Dumb algorithm −−−→
NB

∗
Smart algorithm). The output of the Dumb algorithm

reduces to the output of the Smart algorithm:

∀ ⟨e,E⟩, ⟨e1,E⟩, ⟨e2,E⟩ ∈ W, ∀a,a′ ∈ W, ∀c ∈ WC :

Cd e E c −−−→
NB

∗ C e E c ,

Retd c a −−−→
NB

∗ Ret c a,

Calld a a′ c −−−→
NB

∗ Call a a′ c ,

Ifd a e1 e2 E c −−−→
NB

∗ If a e1 e2 E c ,

a −−−→
NB

∗ −→a , and

c −−−→
NB

∗ −→c .

Proof Sketch: By double induction on the structure of the source term and continuation data

structure and mutual induction between the various smart constructors. Lemma 6.12 is used to

relate the two algorithms through β-reduction. □
As a consequence, we can conclude that converting a top-level, closed term with the Smart

algorithm produces a CPS term that is just a simplified version of the output produced by the simple

Dumb algorithm:

Corollary 6.14. FV (e ) = ∅ =⇒ Cd e [·] halt −−−→
NB

∗ C e [·] halt.

So we now know the Smart algorithm is correct, in that it respects the Dumb algorithm; and it

might even produce a term that is simpler. But is it optimal? That is, does it produce a No-Brainer
normal form? This is established with the following theorem.

Theorem 6.15 (The Smart-algorithm output is in NBNF). ∀a ∈ W, ∀c ∈ WC,
∀ ⟨e,E⟩, ⟨e1,E⟩, ⟨e2,E⟩ ∈ W, the following terms are in No-Brainer normal form:

• C e E c • If a e1 e2 E c

• Ret c a •
−→a

• Call a1 a2 c •
−→c

Proof Sketch: As Lemma 6.12 formalises the notion that environment extension is equivalent

to β-reduction, proving that we generate a No-Brainer normal form is simply a matter of verifying

that we extend the environment in the correct places. We also need to consider the η-reduction
case, which can be done by inspecting the argument-blessing function

−→a . Finally, we must ensure

that we have reduced continuations whenever possible. This requires us to examine the cases of

Ret , which shows that we do indeed delegate to smart constructors that perform these reductions

where appropriate. □
With slight modifications, Theorem 6.12 and Theorem 6.15 can be combined by verifying that

the reductions that transform the Dumb algorithm into the Smart algorithm are the No-Brainer

reductions and that the Smart algorithm is in NBNF. We separate these results into two theorems

for clarity.

Finally, we should consider the time complexity of the algorithm. The algorithm makes two

passes over the input, once to compute variable reference counts in the source, and once to do the

actual translation to CPS. The time complexity, then, is determined by the cost of the symbol-table

operations. If we assume they are O (logn) (e.g., red-black trees), then the total cost is O (n logn); if
we assume they are constant-time (e.g., imperative hash tables), then the total cost is O (n).
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7 VARIATIONS
We’ve focussed the development of our algorithm, so far, on a core λ-calculus: variables, λ-terms,

applications and a primitive conditional. But once the central ideas of the algorithm are understood,

multiple variations on the basic theme are possible.

7.1 Other Reductions
We can easily extend the algorithm to handle other kinds of simplifying, “no-brainer” local reduc-

tions at translation time. For example, if we extend our source and CPS language to include literal

constants other than halt, we can use our environments to perform constant propagation. This

more or less comes for free by virtue of the fact that the algorithm is built around the use of a symbol

table. Just as when substituting λ-terms, constant-propagating reductions can be disallowed when

the constant substituend is large (e.g., a list rather than an integer or boolean) and the parameter

being reduced away has multiple references in the body of its binding term.

The counts we create in our first pass over the source tree could also be used for dead-variable

elimination, though this can lead to new reduction opportunities which we would not capture

in our current algorithm. This would mean that our term would not be in No-Brainer normal

form, but would be strictly smaller while preserving semantics. Additionally, the occurrence counts

generated during the conversion process can be used to perform another pass over the source tree

to remove more, though not all, dead variables and further reduce away new No-Brainer redexes.

This approach is almost identical to the one used in Appel and Jim’s contract algorithm [1997].

We can also do constant folding when primitive functions are applied to constant arguments

(perhaps by virtue of the constant propagation described above—these simplifications cascade). We

can also fold away conditionals with known tests, e.g., reducing (if false e1 e2) to e2.
It’s probably wise not to jam too much complexity into a CPS-converting front end, unless,

perhaps, we were writing a fast, simple compiler that did no other optimisation at all. In a front-end

for an optimising, multi-pass compiler, the point is to do, judiciously, the easy things—to clear

away the “underbrush”
2
in a simple, linear-time way before proceeding to the more complex, costly

transformation phases of a compiler.

7.2 First-class Control Operators
We can extend the algorithm to handle first-class control operators such as call/cc with three

changes. First, we introduce two new abstract trivial arguments: the constant call/cc, and a con-

structorUCont (c ), which represents a continuation that has been captured by call/cc and exported
to the source program as a user value. The Call function reduces applications Call call/cc a c
to Call a UCont (c ) c , and UCont applications Call UCont (c ) a c ′ to Ret c a. Second, we license
the βcv -reduction code to replicate our two new abstract arguments. Third, since continuation

variables no longer obey a linear discipline, we must extend the η-reduction guard also to check

the reference count of the continuation parameter as well as the user-argument parameter.

7.3 Multiple Parameters and letc
In an implementation of our algorithm that is engineered for translating terms from a real pro-

gramming language, we would likely extend λ-terms to permit both multiple user parameters

and multiple continuation parameters. Even when translating languages such as SML, OCaml,

or Haskell, where functions only take a single argument and return a single value, in the CPS

intermediate representation we can usefully exploit multi-parameter functions and continuations to

represent spreading values out in the register set across calls and returns, or to describe callee-saves

2
“Underbrush” being sort of the negative image of “low-hanging fruit.”
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register-management policies [Appel 2006]. Likewise, multiple continuation parameters can be

used to encode both a main return point and an alternate exception-handler exit, or to encode

functions that can be called with multiple return points [Shivers and Fisher 2006].

This affects the algorithm in that we can now do β-reduction on a piecemeal, per-parameter

basis—something that is not possible when we encode a multi-parameter function by, e.g., currying
(fun (a b c) . . . ) into (fun (a) (fun (b) (fun (c) . . . ))). That is, if the first term

occurs in a β-redex, we can “reach into” the middle of the parameter list and substitute away the b
parameter, even if the first a parameter cannot be substituted. Extending our algorithm to work in

this fashion is straightforward.

Once we admit multi-parameter λ-terms, we also get the ability to have λ-terms that take no
user parameters. This means we no longer need the special (letc (k c) body) form to bind the

join points required for translating conditionals. Instead, we can encode the binding with a redex

that applies a λ-term that binds one continuation but no user parameters:

(call (lam (k) ; 1. Bind join cont k;
(if x (ret k 1) ; 2. do conditional,

(ret k 2) ; then jump to
(cont (y) . . . )) ; 3. ...this join point.

This is more elegant; we elected not to do things this way in our main development so that we

could use a simpler language where a λ term always binds exactly one user parameter and one

continuation parameter.

7.4 ANF
The basic ideas of the algorithm can easily be carried over to one that translates direct-style terms

to Felleisen and Sabry’s ANF [1993].

7.5 Metacontinuations
If we Church-encode the elements of the ABS-CONT set (that is, values constructed by FCont,
ACont, etc.), then we can get an algorithm that uses the clever “metacontinuation” representation

introduced by Danvy and Filinski [1992]. In fact, we did exactly this in the first version of our

algorithm. We shifted to the first-order/defunctionalised variant we have shown in this paper for

simplicity and clarity. In particular, it simplifies the inductive proof to realise the continuations as

elements of an inductive type, rather than elements drawn from a space of functions.

Expressing the algorithm in a first-order language also means it can more easily be directly

translated to a non-functional language, such as C, and also means that it can be directly expressed

in ACL2 [Kaufmann et al. 1990] for purposes of verification.

7.6 Can the Algorithm Be “Calculated”?
Now that we understand the general idea of this CPS algorithm, could we start with a simple

CPS converter and a separate, simple No-Brainer normalisation function, and then derive or

calculate our interleaved algorithm from the serial composition of the two functions, in the style of

Bird [Bird and Wadler 1992] or Danvy [Danvy and Filinski 1992, Section 2]? For example, Danvy

and his students have applied the technique of “program calculation,” exploiting control-flow

analysis, defunctionalisation, refunctionalisation, and other simple transforms, to derive similar

term-processing algorithms for the λ calculus, including CPS converters [Danvy 2008; Millikin

2005]. Such a derivation would comprise an independent and elegant explanation of the algorithm’s

correctness.

We leave this question as a (hopefully fun) puzzle for the reader.
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8 CONCLUSION
Before we summarise the point of this pearl, let’s first state what the point is not. The earlier

algorithms of Sabry, Felleisen, Danvy and Filinski eliminate exactly the redexes needed to bring a

machine executing the CPS result into lock step with a machine executing the direct-style source.

This is a result of theoretical interest, establishing the foundations on which we stand when we

work with CPS—but it does not capture the concerns of compiler writers.

A compiler writer has a more relaxed criterion for a CPS transform: an observational equivalence

that permits the target term’s computation to stutter a bit as the machine executes. Some bits of

the computation can be discharged at compile time; we can reduce the interior of a λ term before it

executes. So the classic “administrative” redexes that are of such interest to the theoretician have

no special status in the eyes of the compiler.

Despite this, the Danvy/Filinski algorithm has become the standard algorithm of choice when

language implementors need a front-end for a CPS-based compiler [Kennedy 2007]. This isn’t

because implementors want to produce a term that stays in exact lock-step with a simple machine

operating on the source program. Implementors are attracted to this algorithm because all “ad-

ministrative” redexes are No-Brainer redexes: there’s no point in producing them if the compiler

definitely wants to subsequently eliminate them.

The point, then, of this pearl is two-fold. First, we want to highlight the idea of the “No-Brainer”
redex. It is similar to but not the same as an “administrative” redex, and it’s the No-Brainer redex

that’s of interest to implementors.

Second, we want to draw the attention of implementors writing CPS and ANF front-ends to the

lovely possibilities that occur when one simply adds a symbol table to the conversion algorithm.

A symbol table, coupled with the idea of abstract closures and smart constructors, enables an

algorithm that is short, simple and fast, yet it produces better results than the existing alternatives.

ACKNOWLEDGMENTS
Shivers worked out the initial version of the conversion algorithm during a very productive and

enjoyable visiting appointment at the University of Aarhus in 2004, hosted by Olivier Danvy. There

can hardly be a more pleasant intellectual experience than to discuss just about anything involving

continuations and CPS with Danvy, whose encyclopedic knowledge of the topic is matched only

by his irresistible enthusiasm for exploring its frontiers.

Earlier drafts of this paper received detailed, thoughtful and insightful reviews from the ICFP

program committee that greatly improved the work and its presentation. Among other things, the

entertaining question of Subsection 7.6 was posed by one of our reviewers. We are grateful for the

time and care lavished on our submission by these anonymous reviewers.

Davis and Meehan received financial support from the Larry Finkelstein Innovation Fund that

permitted them to work full time on this project over the summer of 2015. This fund was established

at Northeastern’s College of Computer Science by a gift from Brian Wenzinger, to enable under-

graduate students to get research experience. All three authors would like to thank Wenzinger and

the College of Computer Science for the opportunity this support made possible.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 23. Publication date: September 2017.



23:22 Milo Davis, William Meehan, and Olin Shivers

A OCAML IMPLEMENTATION
This implementation omits the trivial pre-pass that counts variable references to determine which

source variables are single-reference variables. Instead, it assumes such variables have been marked

with a colon prefix. Note that we could use a monad to hide the single-threading of the count table

used to track the number of references made to user variables in the generated CPS terms. We’ve

chosen to show this machinery to make it explicit.

type var = string

(* Create a unique string on each call. *)
let gensym =

let counter = ref 0 in
fun s -> (counter := 1 + !counter;

Printf.sprintf "%s_%d" s !counter)

module SMap = Map.Make(String) (* String -> alpha dictionary *)

(* Syntax of direct-style source language *)
type ds = Var of var

| Fun of var * ds
| App of ds * ds
| DIf of ds * ds * ds

(* Syntax of CPS target language *)
type p = Call of triv * triv * cont

| Ret of cont * triv
| CIf of triv * p * p
| Letc of var * cont * p

and cont = Cont of var * p
| CVar of var
| HALT

and triv = Lam of var * var * p
| UVar of var

(* Abstract args *)
type a = AVar of var (* A "user" var x, or *)

| AClo of var * ds * env (* a <\y.e,env> static closure *)
and env = a SMap.t (* Env maps source var y to an abstract argument. *)

(* Abstract continuations *)
type c = AHALT

| KVar of var
| FCont of ds * env * c
| ACont of a * c
| ICont of ds * ds * env * c

(* We assume singly-referenced vars are marked with a ":" prefix. *)
let one_ref y = (String.length y) >= 1 && (String.sub y 0 1) = ":"

(* Extend a static environment with a new [y |-> a] entry. *)
let extend y a env = SMap.add y a env
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(* Utilities to maintain reference counts of user vars in CPS term. *)
let new_count x counts = SMap.add x 0 counts
let incr x counts = SMap.add x (1 + (SMap.find x counts)) counts

(* The top-level function *)
let rec cps exp env c counts =

match exp with
| Var y -> ret c (SMap.find y env) counts
| Fun (y, e) -> ret c (AClo(y, e, env)) counts
| App (e1, e2) -> cps e1 env (FCont(e2, env, c)) counts
| DIf (e1, e2, e3) -> cps e1 env (ICont (e2, e3, env, c)) counts

(* Three smart constructors, for RET, CALL & IF forms. *)

and ret c a counts =
match c with
| AHALT
| KVar _ -> let (cont, counts2) = blessc c counts in

let (arg, counts3) = blessa a counts2 in
(Ret (cont, arg), counts3)

| FCont(e, env, c') -> cps e env (ACont(a, c')) counts
| ACont(a', c') -> call a' a c' counts
| ICont(e1, e2, env, c') -> cif a e1 e2 c' env counts

and call f a c counts =
match f with
| AVar _ -> let (func, counts2) = blessa f counts in

let (arg, counts3) = blessa a counts2 in
let (cont, counts4) = blessc c counts3 in
(Call(func, arg, cont), counts4)

| AClo(y, body, env) ->
if one_ref y then cps body (extend y a env) c counts
else let (arg, counts2) = blessa a counts in

match arg with
| UVar x -> cps body (extend y (AVar x) env) c counts2
| Lam _ ->
(* We've got a "let" redex, binding y to a lambda term:
* ((FUN y body) (FUN ...))
* We can't reduce this because y has multiple references
* in body, which would replicate the (FUN ...) term. So
* we produce a CPS "let", encoded as a CONT redex:
* (RET (CONT x body') (LAM ...))
* where body' is body cps-converted with the original
* continuation c, and the (LAM ...) term is the
* cps-conversion of the (FUN ...) argument.
*)
let x = gensym "x" in
let counts3 = new_count x counts2 in
let env' = extend y (AVar x) env in
let (b,counts4) = cps body env' c counts3 in
(Ret(Cont(x,b), arg), counts4)
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and cif a e1 e2 c env counts =
match c with
| AHALT
| KVar _ -> let (test, counts2) = blessa a counts in

let (conseq, counts3) = cps e1 env c counts2 in
let (alt, counts4) = cps e2 env c counts3 in
(CIf(test, conseq, alt), counts4)

| FCont _
| ACont _
| ICont _ ->
let jv = gensym "join" in
let (body, counts2) = cif a e1 e2 (KVar jv) env counts in
let (join, counts3) = blessc c counts2 in
(Letc(jv, join, body), counts3)

(* Two "blessing" functions to render abstract continuations
and abstract arguments into actual syntax. *)

and blessc c counts =
match c with
| AHALT -> (HALT, counts)
| KVar kv -> (CVar kv, counts)
| FCont _
| ACont _
| ICont _ -> let x = gensym "x" in

let counts2 = new_count x counts in
let (body, counts3) = ret c (AVar x) counts2 in
(Cont (x, body), counts3)

and blessa a counts =
match a with
| AVar x -> (UVar x, incr x counts)
| AClo(y, body, env) ->
let x = gensym y in
let k = gensym "k" in
let env' = extend y (AVar x) env in
let (b, counts') = cps body env' (KVar k) (new_count x counts) in

(* The eta-reduction check. Note that we don't have to check
reference counts on k, as continuation variables are linear. *)

match b with
| Call(f, UVar x', CVar k') ->
if x = x' && k = k' && (SMap.find x counts') = 1
then (f, counts')
else (Lam (x, k, b), counts')

| _ -> (Lam (x, k, b), counts')
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