
To appear in J. Functional Programming 1

Multi-return Function Call

OLIN SHIVERS and DAVID FISHER
College of Computing

Georgia Institute of Technology
(e-mail:{shivers,dfisher}@cc.gatech.edu)

Abstract

It is possible to extend the basic notion of “function call” to allow functions to have multiple re-
turn points. This turns out to be a surprisingly useful mechanism. This article conducts a fairly
wide-ranging tour of such a feature: a formal semantics for a minimalλ-calculus capturing the
mechanism; motivating examples; monomorphic and parametrically polymorphic static type sys-
tems; useful transformations; implementation concerns and experience with an implementation; and
comparison to related mechanisms, such as exceptions, sum-types and explicit continuations. We
conclude that multiple-return function call is not only a useful and expressive mechanism, at both the
source-code and intermediate-representation levels, but also quite inexpensive to implement.

Capsule Review

Interesting new control-flow constructs don’t come along every day. Shivers and Fisher’s multi-
return function call offers intriguing possibilities—but unlike delimited control operators or first-
class continuations, it won’t make your head hurt or break the bank. It might even make you smile
when you see the well-known tail call generalized to a “semi-tail call” and a “super-tail call.” What
I enjoyed the most was the chance to reimagine several of my favorite little hacks using the new
mechanism, but this unusually broad paper offers something for everyone: the language designer, the
theorist, the implementor, and the programmer.

1 Introduction

The purpose of this article is to explore in depth a particular programming-language mech-
anism: the ability to specify multiple return points when calling a function. Let’s begin by
introducing this feature in a minimalist, “essential” core language, which we will callλMR,
the “multi-returnλ-calculus.”λMR looks just like the standardλ-calculus (Church, 1941;
Barendregt, 1984), with the addition of a single form:

l ∈ Lam ::= λx.e

e ∈ Exp ::= x | n | l | e1 e2 | /e r1. . .rm. | (e)
r ∈ RP ::= l | #i

An expression is either a variable reference (x), a numeral (n), a λ-expression (l, of the
form λx.e), an application (e1 e2), or our new addition, a “multi-return form,” which we

2 Olin Shivers and David Fisher

write as/e r1 . . . rm..1 Additionally, our expression syntax allows for parenthesisation to
disambiguate the concrete syntax. From here on out, however, we’ll ignore parentheses,
and speak entirely of the implied, unambiguous abstract syntax.

We’ll develop a formal semantics forλMR in a following section, but let’s first define
the language informally. An expression is always evaluated in a context of a number of
waiting “return points” (or “ret-pts”). Return points are established with theri elements of
multi-return forms, and are specified in our grammar by the RP productions: they are either
λ expressions, or elements of the form “#i” for positive numeralsi, e.g., “#1”, “#2”, etc.
Here are the rules for evaluating the various kinds of expressions inλMR:

• x, n, λx.e

Evaluating a variable reference, a numeral, or aλ-expression simply returns the vari-
able’s, numeral’s, orλ’s value, respectively, to the context’sfirst return point.

• e1 e2

Evaluating an application first causes the function forme1 to be evaluated to produce
a function value. In a call-by-name (CBN) semantics, we then pass the expression
e2 off to the function. In a call-by-value (CBV) semantics, we instead evaluatee2

to a value, which we then pass off to the function. In either case, the application of
the function to the argument is performed in the context of the entire form’s return
points.
Note that the evaluation ofe1 and, in call-by-value,e2 do not happen in the outer
return-point context. These inner evaluations happen in distinct, single return-point
contexts. So, if we evaluate the expression

(f 6) (g 3)

in a context with five return points, then thef 6 and theg 3 applications themselves
are conducted in single ret-pt contexts. The application off ’s return value tog’s
return value, however, happens in the outer, five ret-pt context.

• /e r1 . . . rm.

The multi-return form is how we establish contexts with multiple return points. Eval-
uating such a form evaluates the inner expressione in a return-point context withm
ret-pts, given by theri.
If e eventually returns a valuev to a return point of the formλx.e′, then we bindx
to valuev, and evaluate expressione′ in the original form’s outer ret-pt context.If,
however,e returnsv to a ret-pt of the form “#i,” thenv is, instead, passed straight
back to theith ret-pt of the outer context.

Consider, for example, evaluating the expression

/(f 6) (λx . x+5) (λy . y∗y).,

where we have extended the syntax with the introduction of infix notation for standard
arithmetic operators. The functionf is called with two return points. Shouldf return an

1 Strictly speaking, the addition of numerals means our language isn’t as primitive as it could be, but we’ll allow
these so that we’ll have something a little simpler thanλ expressions to use for arbitrary constants in our
concrete examples.

Multi-return Function Call 3

integerj to the first, then the entire form will, in turn, returnj+5 to its first ret-pt (whatever
it may turn out to be—it’s part of the form’s evaluation context). But iff returns to its
second ret-pt, then the square ofj will be returned to the whole expression’s first ret-pt.

On the other hand, consider the expression

/(f 6) (λx . x+5) #7..

Shouldf return j to its first ret-pt, all will be as before:j + 5 will be returned to the
entire form’s first ret-pt. But shouldf return to its second ret-pt, the returned value will be
passed on to the entire form’s seventh ret-pt. Thus, “#i” notation gives a kind of tail-call
mechanism to the language.

One final question may remain: with the/e r1 . . . rm. multi-ret form, we have a nota-
tion for introducing multiple return points. Don’t we need a primitive form for selecting
and invoking a chosen return point? The answer is that we already have the necessary ma-
chinery on hand. For example, if we wish to write an expression that returns42 to its third
ret-pt, we simply write

/42 #3.,

which means “evaluate the expression ‘42’ in a ret-pt context with a single return point,
that being the third return point of the outer context.” The ability of the#i notation to
select return points is sufficient.

2 Examples

To get a better understanding of the multi-return mechanism, let’s work out an extended
example that will also serve to demonstrate its utility. Consider the common list utility
filter: (α→bool) → α list → α list which filters a list with a given element-
predicate. Here is ML code for this simple function:

fun filter f lis =

let fun recur nil = nil

| recur (x::xs) =

if f x then x :: (recur xs)

else recur xs

in recur lis

end

Now the challenge: let us rewritefilter to be “parsimonious,” that is, to allocate as few
new list cells as possible in the construction of the answer list by sharing as many cells as
possible between the input list and the result. In other words, we want to share the longest
possible tail between input and output. We can do this by changing the inner recursion so
that it takes two return points. Our function-call protocol will be:

• Ret-pt #1: α list
output list is shorter than input list
If some element of the input list does not satisfy the testf, the filtered result is
returned to the first return point.

4 Olin Shivers and David Fisher

fun filter f lis =

let fun recur nil = multi () #2

| recur (x::xs) =

if f x

then multi (recur xs)

(fn ans => x::ans)

#2

else multi (recur xs)

#1

(fn () => xs)

in multi (recur lis)

#1

fn () => lis

end

Fig. 1: The parsimonious filter function, written with a multi-return recursion.

• Ret-pt #2: unit
output list = input list
The call returns the unit value to its second return point if every element of the input
list satisfies the testf.

We recommend that you stop at this point and write the function, given the recurrence
specification above; it is an illuminating exercise. We’ll embed the/e r1 . . . rm. multi-
return form into ML with the concrete syntax “multi e r1...rm.” The result function is
shown in Figure 1. Note the interesting property of this function: both recursive calls are
“semi-tail recursive,” in the sense that one return point requires a stack frame to be pushed,
while the other is just a pre-existing pointer to some older frame found deeper in the call
stack. However, the two calls differ in which ret-pt is which. In the first recursion, the first
ret-pt requires a new stack frame and the second ret-pt is tail-recursive. In the second, it is
the other way around.

Suppose we were using our parsimoniousfilter function to select the even numbers
from a list. What would the call/return pattern be for a million-element list of even num-
bers? The recursion would perform a million-and-one calls. . . but only two returns! Every
call torecur would pass along the same pointer tofilter’s original stack frame as ret-pt
two. The “recur nil” base case would return through this pointer, jumping over all in-
termediate frames straight back to the initial call frame, where the “fn () => lis” code
would return the original list as the final answer tofilter’s caller.

Similarly, selecting even numbers from a list containing only odd elements would per-
form n calls but only two returns, this time driven by the tail-recursion through the second
recursive call’s first return point.

Filtering mixed lists gives us the minimal-allocation property we sought. Also, contigu-
ous stretches of elements not in the list are returned over in a single return. This is possible
because multiple return points allow us to distribute codeafter the call over a conditional
test containedinsidethe call. This combines with the tail-recursive properties of the “#i”
notation to give us the code improvement.

Multi-return Function Call 5

There’s an alternate version of this function that uses three return points, with the fol-
lowing protocol: return a list to ret-pt #1 if the output is a proper tail of the input; return
unit to ret-pt #2 if output= input; and return a list to ret-pt #3 if the output is neither. We
leave this variant as an (entertaining) exercise for the reader.

3 Formal semantics

Having gained a reasonably intuitive feeling for the multi-return mechanism, it is fairly
straightforward to return now to the minimalistλMR and develop a formal semantics for it.
We can define a small-step operational semantics as a binary relation; on Exp. We’ll first
designate integers andλ-expressions as “values” in our semantics:v ∈ Val = Z + Lam.
Then our core set of transition rules are defined as follows:

[funapp]
(λx.e) e2 ; [x 7→ e2]e

[rpsel]
/v r1 . . . rm. ; /v r1.

m > 1

[retlam]
/v l. ; l v

[ret1]
/v #1. ; v

[rettail]
//v #i. r1 . . . rm. ; /v ri.

1 < i ≤ m,

to which we add standard progress rules to allow reduction in any term context:

[funprog]
e1 ; e′1

e1 e2 ; e′1 e2

[argprog]
e2 ; e′2

e1 e2 ; e1 e′2

[retprog]
e ; e′

/e r1 . . . rm. ; /e′ r1 . . . rm.
[bodyprog]

e ; e′

λx.e ; λx.e′

[rpprog]
l ; l′

/e r1 . . . l . . . rm. ; /e r1 . . . l′ . . . rm.
.

funapp The funapp schema is the usual “function application”β rule that actually applies
aλ term to the argument.

rpsel The rpsel schema describes how a value being returned selects the context’s first
return point.

retlam The retlam schema describes how a value is returned to aλ return point—theλ
expression is simply applied to the returned value.

rettail The rettail schema describes how a value is returned through a#i return point. We
simply select theith return point from the surrounding context, collapsing the pair of
nested multi-return contexts together.

ret1 The rettail rule does not apply to all#i returns: it only applies wheni > 1, which, in
turn, requires that the expression be returning to a context established by a multi-return
form. However, return context can be established in other ways. Consider the expression
/(λx.e) #1. 17. Even if we allowed rettail to fire when the ret-pt is#1, in this case,
there is no surrounding multi-ret form providing ret-pts for/λx.e #1. to index. The
ret1 rule handles this case, which allows our example to progress to(λx.e) 17.

6 Olin Shivers and David Fisher

Part of the point ofλMR is to provide language-level access to the different continua-
tions that underly the evaluation of the program—albeit in a way that still manages to
keep these continuations firmly under control. (We’ll return to this theme later.) Con-
sidered from the continuation perspective, evaluation of an application expression hides
an implicit continuation, the one passed to the evaluation of the application’s function
subexpression. For call-by-value, this continuation would be rendered in English as,
“Collect the final value for this expression; this value must be a function. Then evaluate
the application’s argument, and pass its value to this function, along with the applica-
tion’s continuation(s).” This implicit continuation is the one indexed by the “#1” in
/(λx.e) #1. 17.

Note a pleasing control/value anti-symmetry between function call and return in this
calculus: application is strict in thefunction(i.e., we need to knowwherewe are going),
while return is strict in thevaluebeing passed back (i.e., we need to knowwhat we are
returning). We cannot have a sort of “normal-order” return semantics allowing general
non-value expressions to be returned: the non-determinancy introduced would destroy the
confluence of the calculus, giving us an inconsistent semantics. To see this, suppose we
added a “call-by-name return” rule of the form

/e l r2 . . . rm. ; l e,

allowing an arbitrary expressione rather than a valuev to be returned through a multi-
return form. This would introduce semantically divergent non-determinism, as shown by
the use of our new, bogus rule and the rettail rule to take the same expression in two very
different directions:

//7 #2. l1 l2. ; l1 /7 #2. (by bad rule)
//7 #2. l1 l2. ; /7 l2.. (by rettail rule)

Restricting the progress rules to just funprog and retprog gives us the call-by-name tran-
sition relation;n. The normal-orderλMR has some interesting and exotic behaviours, but
exploring them is beyond the scope of this article, so we will press on to the applicative-
order semantics. For call-by-value, our progress rules are funprog, retprog and a modified
form of argprog that forces the function part of an application to be evaluated first:

[argprogv]
e2 ; e′2

l e2 ; l e′2
.

We must also modify the function-application rule to require the argument to be a value:

[funappv]
(λx.e) v ; [x 7→ v]e

.

4 Confluence

Let us write→∗ for the transitive, reflexive closure of→. We say that a relation→ is
confluentiff wheneverx →∗ a andx →∗ b, there is ajoin term j such thata →∗ j and
b →∗ j. When such aj exists, we say thata andb arejoinable.

It is a standard issue, when defining a semantics by means of a transition relation that
permits non-determinism, to want confluence for the relation. Confluence tells us that if

Multi-return Function Call 7

⇒ M;2M
M;2M

′ ⇒ λx.M ;2 λx.M ′

M;2M
′, N;2N

′ ⇒ M N ;2 M ′ N ′

M;2M
′, N;2N

′ ⇒ λx.M N ;2 [x 7→ N ′]M ′

M;2M
′ ⇒ /M r1 . . . rn. ;2 /M ′ r1 . . . rn.

M;2M
′ ⇒ /e r1 . . . M . . . rn. ;2 /e r1 . . . M ′ . . . rn.

(M, M ′ ∈ Lam)
⇒ /v λx.M. ;2 λx.M v
⇒ //v #i. r1 . . . rn. ;2 /v ri. (1 < i ≤ n)
⇒ /v r1 . . . rn. ;2 /v r1. (n > 1)
⇒ /v #1. ;2 v

Fig. 2: Schemata defining the;2 relation, presented in a compact form.

one execution path terminates at some answer, then all other terminating execution paths
must produce the same final answer: final values are normal forms, and so two distinct
answers would be unjoinable.

The CBV and CBN semantics are clearly confluent, since their transition relations are
just partial functions and do not permit branching. To see this, note that the defining rules
partition the terms—no two rules apply to the same term and no rule can match a given
term two ways.

However, the general systemis non-deterministic, as it allows progress in any reducible
subterm. To establishλMR as a reasonable linguistic mechanism, we need to show that the
ability to step a term in two different ways doesn’t allow the semantics to produce two
different final values: we need to show that; is confluent.

We establish the confluence of the general system by showing the confluence of a second
relation, which has the same reflexive, transitive closure as the general system. It’s easy to
see that, since they share closure, if our second relation is confluent, our first one will be,
as well.2 We define the new transition relation;2 in Figure 2.

We show the confluence of this system by showing that is satisfies thediamond prop-
erty (Baader and Nipkow, 1998). We say that a relation→ has the diamond property iff
e → ea ande → eb implies thatea → ej andeb → ej for someej . Clearly, a relation→
is confluent iff its reflexive, transitive closure→∗ has the diamond property. (The diamond
property will also come in handy when we reason about program transformations inλMR in
Section 6, as well.)

Lemma 1
The;2 relation satisfies the diamond property.

Proof
We prove this by structural induction on the source term. Suppose source terme0 transi-
tions to two terms:e0 ;2 ea ande0 ;2 eb. Consider the rule justifying thea transition.
Most cases are immediate (e.g., M;2M

′) or follow by induction (e.g., λx.M ;2 λx.M ′).
If e0 is an application, the only other possible case arises from reducing(λx.M) N when

2 This construction is based on a proof Barendregt attributes to Tait and Martin-Löf (Proposition 3.2.1, Baren-
dregt, 1984).

8 Olin Shivers and David Fisher

both M andN can be stepped (rule four). In this case, it is a straightforward structural
induction to show that the rules of;2 give us joinable terms (lemma 3.2.4, Barendregt,
1984).

Otherwise,e0 is a multi-ret form/e r1 . . . rn.. If the a transition is an in-place rewrite
of e or aλ ret-pt, it is simple to see that it commutes with all possibleb transitions. The
only remaining transitions possible are the;2 variants of retlam, rettail, rpsel and ret1,
the last four rules of its definition. Again, in each of these cases, it is simple to commute
thea step with any of the possibleb transitions.

Lemma 2
The reflexive, transitive closure of; is the transitive closure of;2.

Proof
We merely note that these two transition relations are closely related: any step in; can be
done through a number of steps in;2, andvice versa. In fact, every transition in; can
be made in one step by;2.

Theorem 1
The general multi-returnλ-calculus is confluent.

Proof
Since;2 has the diamond property, its transitive closure does, as well. Hence;∗ has the
diamond property, and so; is confluent.

5 Types

Our basic untyped semantics in place, we can proceed to consideration of type systems and
static safety. The type system we’ll develop first is a monomorphic one. The key feature
of this system is that expressions have, not a single typeτ , but, rather, avectorof types
〈τ1, . . . , τn〉—one for each return point. Further, we allow a small degree of subtyping
by allowing “holes” (written⊥) in the vector of result types, meaning the expression will
never return to the corresponding return point. So, if we extendedλMR to have if/then/else
forms, along with boolean and string values, then, assuming thatb is a boolean expression,
the expression

if b then/3 #2. else/“three” #4.

would have principal type vector〈⊥, int,⊥, string〉, meaning, “this expression either re-
turns an integer to its second ret-pt, or a string to its fourth ret-pt; it never returns to any
other ret-pt.” For that matter, the expression has any type vector of the form

〈τ1, int, τ3, string, . . . , τn〉 ,
for any typesτi. We lift this base form of subtyping toλMR functions with the usual con-
travariant/covariant subtyping rule on function types.

Let us write
⇀
τ to mean a finite vector of types with holes allowed for some of the

elements. More precisely,
⇀
τ is a finite partial map from the naturals to types, where we

write
⇀
τ [i] = ⊥ to mean thati is not in the domain of

⇀
τ . Then our domain of types is

τ ∈ T ::= int | τ → ⇀
τ .

Notice that⊥ is not a type itself.

Multi-return Function Call 9

Types and type vectors are ordered by the inductively-definedv and~v subtype relations,
respectively:

int v int
τb v τa

⇀
τa ~v ⇀

τb

τa→⇀
τa v τb→⇀

τb

.

We define
⇀
τsub ~v ⇀

τsup to hold when

∀i ∈ Dom(
⇀
τsub) . i ∈ Dom(

⇀
τsup) ∧ ⇀

τsub[i] v ⇀
τsup[i].

In other words, type vector
⇀
τa is consistent with (is a sub-type-vector of) type vector

⇀
τb if

⇀
τa is pointwise consistent with

⇀
τb.

We now have the machinery in place to define a basic type system, given by the judge-
mentΓ ` e :

⇀
τ , meaning “expressione has type vector

⇀
τ in type environmentΓ.” Type

environments are simply finite partial maps from variables to types. The type-judgment
relation is defined by the following schemata:

Γ ` n : 〈int〉
Γ ` x : 〈Γx〉 x ∈ Dom(Γ)

Γ[x 7→ τ] ` e :
⇀
τ

Γ ` λx.e :
〈
τ → ⇀

τ
〉

Γ ` e1 :
〈
τ → ⇀

τ
〉

Γ ` e2 :
⇀
τ2

Γ ` e1 e2 :
⇀
τapp

⇀
τ2

~v 〈τ〉
⇀
τ ~v ⇀

τapp

Γ ` e :
⇀
τe

Γ ` rj :
〈
τj → ⇀

τj

〉
(∀rj ∈Lam)

Γ ` /e r1 . . . rm. :
⇀
τ

⇀
τec[j] =

{
τj rj ∈Lam
⇀
τ [i] rj = #i

⇀
τe

~v ⇀
τec

⇀
τj

~v ⇀
τ .

These rules are minor variations of the standard rules for the simply-typedλ calculus,
with the exception of the rule for the multi-return form. This rule first type-checks all the
λ ret-pts in the outer context; ifrj is aλ-expression, then we assign it the typeτj → ⇀

τj .

The return type vector
⇀
τj produced by any such ret-pt must be consistent with the return

type vector of the entire expression:
⇀
τj

~v ⇀
τ . This ensures that ife transfers control toλ

ret-pt rj , thatrj will return through the outer form’s ret-pts in a legal way. Then we use

the rj to construct a type vector
⇀
τec that constrains the return context ofe. If ret-pt rj is

a λ expression, the type ofrj ’s input or domain is whate must return toe’s jth ret-pt; if
rj is of the form#i, thene must return to itsjth ret-pt whatever is required of the entire

expression’sith ret-pt. After constructing
⇀
τec, we constraine’s actual type vector

⇀
τe to be

consistent with this requirement,
⇀
τec ~v ⇀

τe, and we are done.
The type system, as we’ve defined it, is designed for the call-by-value semantics, and

is overly restrictive for the call-by-name semantics. Development of a call-by-name type
system is beyond the scope of this article; we simply remark that it requires function types
to take a type vector on theleft side of the arrow, as well as the right side.

With the basic structure of our CBV type system established, we can now proceed to
consider its properties and how we might extend it. The key property we want of a type

10 Olin Shivers and David Fisher

system is that it guarantee that a program that has been statically determined to be well
typed will never, at run time, generate a type error: the classic guarantee that “well-typed
programs never go wrong.” Once we’ve done this, we can next turn to the possibility of
introducing parametric let-polymorphism into the type system, along with the task of au-
tomatically inferring these types in the Hindley-Milner style, as we do in languages such
as SML. This is our agenda for the rest of this section.

As a final remark before moving ahead, it’s amusing to pause and note that one of the
charms of theλMR type system is that it provides a type for expressions whose evaluation
never terminates: the empty type vector〈〉.3

5.1 Basic type safety: progress and preservation

To show the type-safety of the multi-returnλ-calculus, we prove the progress and preser-
vation theorems.

Theorem 2(Progress)
If e ∈ λMR is well typed, then eithere is a value,e is a multi-return form/v #i. for some
i > 1 and valuev, or e has a CBV transitione ;v e′.

Proof
We prove this by induction on the language structure. For each kind of non-value expres-
sion, we show that when such an expression is well-typed, there must be a transition, given
that the theorem holds for the subexpressions of the term.

Consider function-application expressions of the forme1 e2. The rule that determines
the type of the application requires bothe1 ande2 to be well-typed themselves. Suppose
e1 ande2 are both values. In order to be well-typed,e1 must be of a function type, and
therefore aλ expression; the function-application rule would then apply. Supposee1 is not
a value; it is either a function application or a multi-ret form. Sincee1 is well-typed, we
can inductively assume our hypothesis fore1. We knowe1 isn’t a value, so either it is of
the form/v #i. for i > 1, or it can be advanced. But the first possibility would violate the
typing rule for the applicatione1 e2 (sincee1’s syntactic context constrains it to only one
ret-pt), so this cannot be the case. The latter possibility provides us with a transition for the
entire application.

Alternatively, our expression might be a multi-return form/e r1 . . . rn.. The typing rule
for multi-return expressions requires that sub-expressione also be well typed. Thus, by our
induction hypothesis, we can assumee is either a value, a multi-return expression of the
form /e′ #i. for i > 1, or it has a transition. Ife is a value, the nature of the transition
depends on the form of the whole expression, which is either of the form/v #1., /v #j.

for j > 1, /v l., or /v r1 . . . rn. for n 6= 1. In the first case, the ret1 rule applies. The
second case is a base case for the induction. In the third case, the retlam rule applies. In
the fourth case, rpsel applies; in this case, the fact thatv has a type forces the multi-ret
form to have at least one return point, by means of the typing rule for multi-ret forms. If
e is, instead, of the form/e′ #i. for i > 1, then in order to be well-typed,i ≤ n, and

3 Not everysuch expression can be assigned this type, of course.

Multi-return Function Call 11

the rettail rule applies. Finally, ife has a transition, then the progress rule for multi-return
forms gives us a transition for the entire expression.

Theorem 3(Preservation)

If Γ ` e :
⇀
τ ande ;v e′, thenΓ ` e′ :

⇀
τ
′
for some

⇀
τ
′
~v ⇀

τ .

Proof

The proof is by induction on the justification tree for the transition. For the funprog,
argprogv and retprog rules, because of the induction hypothesis and the fact that sub-
expressions are rewritten in place, preservation follows directly.

For the funappv rule, the proof is identical to the preservation proof for the standard
λ-calculus.

For the retlam rule, we have/v l. ;v l v. In the typing of the left-hand side, let
⇀
τv be

the type vector ofv and
〈
τl → ⇀

τl

〉
be the type vector ofl. We can now construct a

⇀
τ typing

of the application on the right-hand side. By the first side condition of the multi-return type
rule,

⇀
τv

~v ⇀
τec = 〈τl〉, which satisfies the first side condition of the application typing.

The second side condition of the multi-ret typing gives us
⇀
τl

~v ⇀
τ , which establishes the

second, remaining side condition for the application.
For the rpsel rule, we have/v r1 . . . rn. ;v /v r1., where the left-hand expression

has type vector
⇀
τ . Let the type vector forv be〈τv〉. We can now construct a

⇀
τ typing of

the right-hand term. The premises of the type rule carry over from the typing of the original
expression; we just need to handle the side conditions. From the original typing’s first side
condition,〈τv〉 =

⇀
τe

~v ⇀
τec, soτv v ⇀

τec[1], which implies〈τv〉 ~v 〈⇀
τec[1]

〉
. If r1 ∈ Lam,

then
⇀
τ
′

ec = 〈τ1〉 is the
⇀
τec value in the new typing. With the previous inequality, we have

〈τv〉 ~v 〈⇀
τec[1]

〉
=

〈
τ1

〉
=

⇀
τ
′

ec, which is the first side condition of the new typing. The

second side condition,
⇀
τ1

~v ⇀
τ , also carries directly over from the first typing. Ifr1 is of

the form#i, then, similarly,〈τv〉 ~v 〈⇀
τec[1]

〉
=

〈⇀
τ [i]

〉
=

⇀
τ
′

ec; the second side condition is
vacuously true.

In the ret1 case, we have/v #1. ;v v, where the left-hand expression has type vector
⇀
τ . In the typing of the left-hand expression,

⇀
τe is the type vector ofv, and the first side

condition gives us
⇀
τe

~v ⇀
τec =

〈⇀
τ [1]

〉
~v ⇀

τ , which establishes the theorem.
For the rettail rule, we have//v #i. r1 . . . rn. ;v /v ri.. Call the inner multi-ret form

a, the outer oneb, and the result onec. Let the type of forma be
⇀
τa, the

⇀
τec type vector

in its typing rule be
⇀
τec,a, and so forth, for the three formsa, b andc. Let

⇀
τv be the type

vector ofv. Then the typing of forma gives us
⇀
τv

~v ⇀
τec,a =

〈⇀
τa[i]

〉
, and the typing of

form b gives us
⇀
τa

~v ⇀
τec,b. We can now construct a

⇀
τ typing for formc.

If ri is of the form#j, the b typing gives us
⇀
τec,b[i] =

⇀
τ [j]. So

⇀
τa

~v ⇀
τec,b implies

⇀
τa[i] v ⇀

τec,b[i] =
⇀
τ [j]. Since

⇀
τv

~v 〈⇀
τa[i]

〉
, we may conclude

⇀
τv

~v 〈⇀
τ [j]

〉
, which is the

⇀
τe

~v ⇀
τec side condition needed for thec typing.

If ri ∈ Lam, then theb typing gives us
⇀
τec,b[i] = τi, where the type vector forri is

τi → ⇀
τi. As in the#j case,

⇀
τa[i] v ⇀

τec,b[i] = τi. Thus
⇀
τv

~v 〈⇀
τa[i]

〉
~v 〈τi〉, which is,

again, the side condition needed for thec typing.

12 Olin Shivers and David Fisher

5.2 Parametric polymorphism

The multi-returnλ-calculus can be extended with polymorphic types, without terrible com-
plication. The key addition is the use of “row variables” to permit the type-reconstruction
algorithm to handle the continuation tuples implied by multi-return calls; with this addi-
tion, all the standard Hindley-Milner machinery goes through. Accordingly, we develop
the let-polymorphicλMR focussing primarily on the necessary row-variable extensions.

5.2.1 Polymorphic types

To add let polymorphism, we first extend the type system forλMR with type variables,
α, β, . . ., andtype schemata, which allow polymorphism at the top-level of the types. This,
in turn, requires us to introduce the notion of asubstitution, a partial function mapping type
variables to types. We lift substitutions to operate on types, type environments,etc., in the
natural way:e.g., applying a substitution to a type walks the type recursively, applying the
substitution to each type variable in the type.

We define types and type schemata as follows:

σ ∈ Tvar ::= α | β | . . .

τ ∈ T ::= int | τ → ⇀
τ | σ

s ∈ TS ::= ∀σ1 . . . σn . τ

Now would be a good time to spell out our conventions for using letters: The symbolτ

is reserved as a mathematical variable representing a type; similarly,
⇀
τ represents a type

vector. We’ll use letters from the beginning of the alphabet (α, β, etc.) for actual type
variables inλMR source terms, and letters from the end of the alphabet (σ, ψ, etc.) for
mathematical meta-variables that represent aλMR type variable. The variables represents a
type schema.

Type environments now map program variables to type schemata. To allow the pro-
grammer to express polymorphism, we add a new term to the language:let x = e in e′. Its
dynamic semantics is equivalent to(λx.e′) e, but its static semantics “splits” uses ofx so
that the typings associated with distinct uses of the variable are not combined together. This
is arranged by new typing rules for the language elements that involve variables: variable
reference, polymorphic let, andλ expressions:

Γx = ∀σ1 . . . σn . τ

Γ ` x : 〈[σi 7→ τi]τ〉
Γ[x 7→ ∀ . τ] ` e :

⇀
τ

Γ ` λx.e :
〈
τ → ⇀

τ
〉

Γ[x 7→ ∀σ1 . . . σn . τe] ` e′ :
⇀
τ Γ ` e : 〈τe〉

Γ ` let x = e in e′ :
⇀
τ

{σi} = gen(Γ, τe),

where the generalisation function gen(Γ, τ) produces the type variables occurring in type
τ , minus the free type variables in the range ofΓ:

gen(Γ, τ) = FV(τ)− FV(Γ).

Note that we handleλ expressions by binding their variables to type schemata that do no

Multi-return Function Call 13

generalisation:∀ . τ . What is noteworthy about this type system is its non-novelty: it is
exactly the classic Hindley-Milner one. Our progress and preservation proofs go through
exactly as before.

5.2.2 Row variables

Reconstructing types for a polymorphic (or even a monomorphic)λMR term requires the
reconstruction algorithm to assign type variables to stand for the types of the various ret-
pts of an expression, before it may even know how many ret-pts that expression might use.
As we stated at the beginning of this section, we can think of this as attempting to find
a type for the tuple of continuations in a given evaluation context when we don’t knowa
priori the arity of the tuple. We can manage this by introducing a “row variable” notation
allowing us to allocate compactly an infinite sequence of type variables for a given return
context, unrolling this sequence on demand as reconstruction proceeds.

We represent an infinite vector of type variables with a variable/start-index pair,σi↑. For
example,α5↑ represents the infinite list of subscripted type variables〈α5, α6, α6, . . .〉. We
call such a vector a “row variable,” after Wand’s use of a similar device for type inference
in an object-oriented setting (Wand, 1987). We also allow infinite type vectors to specify
an explicit finite prefix, in the form〈τ1, . . . , τn; σm↑〉, which simply means the result of
concatenating finite type vector〈τ1, . . . , τn〉 with the infinite type (variable) vectorσm↑.
Thus, we have the following representation for the type vectors manipulated by our type-
reconstruction algorithm:

⇀
τ ∈ ⇀

T ::= σm↑ | 〈
τ?1, . . . , τ?n

〉 | 〈
τ?1, . . . , τ?n; σm↑〉

τ? ∈ T? ::= τ | ⊥

5.2.3 Substitution and unification with row variables

Applying a substitutionS to a type is well understood, once we handle applyingS to the
type vectors that may occur on the right-hand side of function arrows. LiftingS to type
vectors is straightforward: we just apply it to every element in the vector. This ismath-
ematicallywell-defined for infinite vectors, but how can we manage thisalgorithmically,
given our particular representation of infinite type vectors? A substitution is typically spec-
ified by a finite set of mappings from type variables to types. We now extend substitutions
to allow them additionally to include mappings for row variables. Such a mapping takes
the row variable either to another row variable,σn↑ 7→ ψm↑, or to an unbounded vector of
bottom elements, writtenσn↑ 7→ ⊥∗. To be well defined, we require that if a substitution
includes a row-variable mapping forσn↑, then it has no redundant, conflicting mappings
for any “scalar” type variablesσi for i ≥ n, already covered by the entry forσn↑, and it has
no other conflictingσk↑ row-variable mapping. In other words, a given scalar type variable
is handled by at most one mapping in a given substitution; that mapping might be either a
scalar or row-variable mapping. (While⊥ is not a type, it may appear as an element of a
type vector, and so substitutions are allowed to produce⊥ when applied to type variables
appearing as elements of type vectors.)

14 Olin Shivers and David Fisher

We can now apply such a substitution to one of our possibly infinite type vectors with
a bounded amount of computation. To apply a substitution to a scalar type variable, we
simply employ the relevant mapping, if any:

Sσ=τ? when(σ 7→ τ?) ∈ S,
Sσi=ψn+i−m when(σm↑ 7→ ψn↑) ∈ S, i ≥ m,
Sσi=⊥ when(σm↑ 7→ ⊥∗) ∈ S, i ≥ m,
Sσ=σ otherwise.

With scalar-variable application defined, we can lift the application of a substitution to
general types with no difficulty. To apply a substitution to a type vector, we apply the
substitution to the scalar elements in the vector’s finite prefix, and then use the row-variable
mappings to handle any row-variable suffix:

S 〈τ1, . . . , τn〉 = 〈Sτ1, . . . , Sτn〉
S

〈
τ1, . . . , τn; σm↑〉 = S 〈τ1, . . . , τn〉 @Sσm↑

S σn↑ =

〈Sσn, . . . , Sσk−1; ψm↑〉 (σk↑ 7→ ψm↑) ∈ S, n < k

ψ(n−k+m)↑ (σk↑ 7→ ψm↑) ∈ S, k ≤ n

〈Sσn, . . . , Sσk−1〉 (σk↑ 7→ ⊥∗) ∈ S, n < k

⊥∗ (σk↑ 7→ ⊥∗) ∈ S, k ≤ n〈
Sσn, . . . , Sσj ; σ(j+1)↑

〉
σk↑ 6∈ Dom(S), n ≤ j,

j = Max{i | σi ∈ Dom(S)}
σn↑ otherwise,

where we write “v1 @v2” to append vectorv1 with vectorv2.
A final issue in our representation of substitutions is composing substitutions with this

representation. This is simply a matter of proper bookkeeping in tracing through the inter-
actions of the map entries in the two substitutions being composed.

Hindley-Milner type-reconstruction algorithms produce the substitutions they manipu-
late by means of unification on types. In our setting, we will need to extend this to unifica-
tion on our type vectors. When we have simple vectors, this is easy: we simply unify each
element in turn. To unify vectors that involve row variables, we “unroll” the row variables
on demand as the vector unification proceeds across the two vectors. For the purposes of
unification, a finite vector can be considered to be implicitly terminated with⊥∗. As we
discuss later, finite type vectors don’t arise from analysing expressions that only return to
one or two ret points (which would constitute over-constraining such an expression), but
from expression contexts that constrain expressions, forbidding them to return to more than
some number of ret points.

5.2.4 Generalisation with row variables

When the Hindley-Milner algorithm operates on alet x = e in e′ expression, and creates a
type schema for the bound variablex, it must compute the subset of the type variables inx’s
type that should be made generic. That is, it must compute the gen(Γ, τ) function, which
in turn means computing FV(τ), the free type variables ofτ , and similarly forΓ. As with

Multi-return Function Call 15

substitution and unification, computing the gen function in a row-variable setting is just a
matter of proper bookkeeping. Consider FV(τ). After we find all the scalar type variables
and row variables occurring inτ , it is a simple matter to collapse together multiple row
variables with the same symbol but distinct indices: just discard the one with the higher
index. E.g., if we find bothα5↑ and α38↑, we can discard the latter, since all the type
variables it represents are also represented by theα5↑ row variable. Similarly, we absorb
any scalar type variables created by unrolling a row variable back into the row variable,
if the row variable occurs in the type and its start index covers the scalar.E.g., we could
absorbα17 into ourα5↑ row variable, but would have to leaveα2 as a distinct scalar type
variable. (We could combineα4 andα5↑ into α4↑, or not, as we please.)

This all means that row variables can appear in the list of a type schema’s generalised
variables,e.g., ∀α3, β, α17↑ . β → 〈

α3;α19↑
〉

. As a minor note, when we instantiate such
a schema with fresh variables, we can “reset” the start index of any generic row variables.
If, for example, we instantiated the schema above with the substitution

[α3 7→ δ, β 7→ γ, α17↑ 7→ η1↑],

for fresh type variablesδ, γ andη, we would have typeγ → 〈
δ; η3↑

〉
.

5.3 TheW algorithm for let-polymorphicλMR

The primitive operations of the Hindley-Milner algorithmW (Milner, 1978) are substitu-
tion, unification and generalisation. Having defined these, we are almost completely done.
The algorithm itself, shown in Figure 3, is quite close to the originalW. Three elements of
the algorithm depart from the original. First, there are three places in the algorithm where
an expression is restricted to having at most one return point: the function and argument
subexpressions of an application, and the expressione producing the value bound to the
variable in a “let x = e in e′” form. This is managed for the let form by unifying the type
vector

⇀
τe calculated fore with 〈σ〉, for a fresh type variableσ. The implicit⊥∗ tail of

the 〈σ〉 vector will force trailing elements of
⇀
τe to ⊥. The application cases are similar.

Second, the type vector calculated for a “scalar” value (an integer, variable reference, orλ

expression) is not of the form〈τ〉, but
〈
τ ; σ1↑

〉
, for a fresh row variableσ1↑. This is be-

cause such an expression, as we observed in the monomorphic-type introduction, can have
a multi-ret-pt type. This allows such expressions to appear correctly in multi-ret contexts,
and successfully unify with such type vectors. So, for example, the expression “5” can be
given, if needed by context, the type vector〈int, bool〉. Finally, the handling of multi-ret
forms is, of course, an addition to the algorithm. This clause in the algorithm simply col-
lects type constraints from the return points and unifies them together, in the general style
of theW algorithm.

6 Transformations

Besides the usualλ-calculus transformations enabled by theβ andη rules in their various
forms (general, CBN and CBV), the presence of multi-return context as an explicit syntac-
tic element inλMR provides for new useful transformations. For example, the “ret-comp”

16 Olin Shivers and David Fisher

W(Γ, n) =
�
T,

⇀
τ
�

// Integern

1 T = [],
⇀
τ =

int; σ1↑� , σ fresh

W(Γ, x) =
�
T,

⇀
τ
�

// Variable referencex
1 let∀σ1 . . . σn . τ = Γx
2 let τ ′ = [σi 7→ ψi]τ (ψi fresh scalar and row variables)

3 T = [],
⇀
τ =

τ ′; ω1↑� , ω fresh

W(Γ, g h) =
�
T,

⇀
τ
�

// Applicationg h

1 let (R,
⇀
τg) = W(Γ, g)

2 letS =
⇀

U (
⇀
τg, 〈σ〉), σ fresh

3 let (X,
⇀
τh) = W(SRΓ, h)

4 letU =
⇀

U (
⇀
τh, 〈ψ〉), ψ fresh

5 letV = U�UXσ, (Uψ) → ω1↑�, ω fresh

6 T = V UXSR,
⇀
τ = V ω1↑

W(Γ, λx.e) =
�
T,

⇀
τ
�

// λ expression

1 let
�
T,

⇀
τe

�
= W(Γ[x 7→ ∀ . σ], e), σ fresh

2
⇀
τ =

(Tσ) → ⇀

τe; ψ
1↑�, ψ fresh

W(Γ, let x = e in e′) =
�
T,

⇀
τ
�

// let expression

1 let
�
R,

⇀
τe

�
= W(Γ, e)

2 letS =
⇀

U (
⇀
τe, 〈ψ〉), ψ fresh

3 let τe = Sψ
4 let{σi} = gen(RSΓ, τe)

5 let
�
V,

⇀
τ
�

= W(SRΓ[x 7→ ∀σ1 . . . σn . τe], e
′)

6 T = V SR

W(Γ, /e r1 . . . rn.) =
�
T,

⇀
τ
�

// Multi-return form

1 let (R,
⇀
τe) = W(Γ, e)

2 letσ be fresh
3 letS = Wr

�
RΓ, 〈r1, . . . , rn〉 , ⇀

τe

�
4 define Wr

�
Γ, #i.

⇀
rrest, τr.

⇀
τrest
�

5 letV = U(τr, σi)

6 letX = Wr
�
V Γ,

⇀
rrest, V

⇀
τrest
�

7 in XV
8 define Wr

�
Γ, (λx.e′).

⇀
rrest, τr.

⇀
τrest)

9 let
�
U, 〈τl〉

�
= W(Γ, λx.e′)

10 letV = U�τr → Uσ1↑, τl

�
11 letX = Wr

�
V UΓ,

⇀
rrest, U

⇀
τrest
�

12 inXV U
13 define Wr

�
Γ, 〈〉 , 〈〉� = []

14 T = SR,
⇀
τ = Tσ1↑

Fig. 3: TheW algorithm, modified for multi-return forms.

Multi-return Function Call 17

transform allows us to collapse a pair of nested multi-ret forms together:

//e r1 . . . rn. r′1 . . . r′m. = /e r′′1 . . . r′′n. [ret-comp]

where

r′′i =

{
r′j ri = #j,

λx./(ri x) r′1 . . . r′m. (x fresh) ri ∈ Lam.

This equivalence shows how tail-calls collapse out an intermediate stack frame. In par-
ticular, it illustrates how a term of the form/e. eats surrounding context, freeing the entire
pending stack of call frames represented by surrounding multi-return contexts. Thus a func-
tion call that takes no return points and so never returns can eagerly free the entire run-time
stack.

Another useful equivalence is the mirror transform:

l e = /e l.. [mirror]

Note that the mirror transform does not hold for the normal-order semantics—shiftinge

from its non-strict role as an application’s argument to its strict role in a multi-ret form can
change a terminating expression into a non-terminating one. Since both positions are strict
in the call-by-value semantics, the problem does not arise there.

6.1 Correctness and commutation

These equivalences are useful to allow tools such as compilers to manipulate and inte-
grate terms in a fine-grained manner, as we’ll see in the following section. It’s important,
however, to first establish that these basic transforms don’t alter the meaning of a program
term.

In order to demonstrate that the ret-comp and mirror transformations do not change the
CBV meaning of an expression, we show that the relation formed by adding one of the
transformations to the CBV evaluation relation is confluent. This is sufficient to show that
if an expression evaluates to a value, then the transform of the expression will evaluate to
the same value.

Let us start with the notion ofcommuting relations. Two relations→a and→b are said to
commute if, wheneverx →a a andx →b b, there is aj such thata →b j andb →a j. The
Hindley-Rosen lemma (Barendregt, 1984) states that if two relations have the diamond
property (see Section 4), and these two relations commute, then the union of these two
relations has the diamond property. So, if we can show (1) that;∗

v commutes with→∗,
for some transform→, and (2) that both of these relations have the diamond property, then
Hindley-Rosen establishes for us the confluence of their union.

6.2 Correctness of mirror transform

Lemma 3
Let the relatione→m e′ be the mirror transform defined by the two rulesl e→m /e l. and
/e l.→m l e, plus all five general progress rules from Section 3. The relations→∗

m and
;∗

v commute.

18 Olin Shivers and David Fisher

Proof

Let us begin with a start terme0 and transitionse0 ;∗
v ev ande0→∗

m em. Suppose we
mark eachl e or /e l. subterm that is transformed by the mirror steps in thee0→∗

m em

transform: imagine we paint them red, in both the sourcee0 and targetem terms. Note
that the red subterms ine0 andem correspond to one another, since the mirror transform
doesn’t destroy or create new terms; it merely rearranges them. We can now trace along
the individual steps of thee0 ;∗

v ev transition, constructing an equivalent path fromem

to our eventual join term, which we will callej . Consider the firste0 ;v ev1 transition
on thee0 ;∗

v ev path, and its justification tree of recursive CBV rules. Red subterms
not appearing in the root axiom of the justification tree get copied over frome0 to ev1

unchanged. If the root axiom is rpsel, ret1 or rettail, we can trivially construct an equivalent
em ;v em1 transition. If it is retlam and the/v l. subterm is red, then the corresponding
mirrored red subterm inem is already the targetl v, henceev1 = em. That is, no transition
is needed in theem ;∗

v ej path; we merely remove the red paint fromem’s l v subterm
to preserve the 1-1 correspondence of red subterms. On the other hand, if the axiom is
retlam and the/v l. term isnot red, we can make the corresponding retlam transition to
get ourem ;v em1 step. Finally, the active rule axiom in thee0 ;v ev1 step might be
funappv, for redexl v. Either it is red or it isn’t. If red, the corresponding red subterm
in em is a multi-ret form/v′ l′., which we correspondingly step twice, with retlam and
then funappv, destroying a red subterm in both sequences. If not red, we simply contract
the corresponding redex inem. In both the retlam and funappv cases, any red subterms
appearing withinl or v are copied over to the result term in both transitions (the funappv

contraction may replicatev, but this will happen in both sequences as well, keeping red
subterms in 1-1 correspondence.)

In this fashion, we can follow along the intermediate termse0 ;v ev1 ;v ev2 ;v

. . . ;v ev of thee0 ;∗
v ev path, constructing an equivalent pathem ;v em1 ;v em2 ;v

. . . ;v ej from em to ej . The terms of thisem ;∗
v ej sequence stay in lock-step with

the e0 ;∗
v ev sequence (allowing, as we’ve seen, for a bit of local “stuttering,” where a

single step on the original path may correspond to a couple of steps, or zero steps, in the
constructed one), with the red subterms staying in correspondence. This means that the
two terms at the ends of the two sequences,ev andej , are structurally equivalent, modulo
the red subterms. So we can get fromev to ej by applying→m steps to “re-mirror” any
remaining red subterms inev, joining em andev. Thus;∗

v and→∗
m commute.

Theorem 4(Mirror safety)

The union of the;∗
v and the→∗

m relations is confluent.

Proof

The mirror-transform relation→m clearly has the diamond property: two distinct redexes
can be mirrored in either order to produce the same final term. Thus→∗

m also has the
diamond property. We know;∗

v has the diamond property, as well, because the CBV
transition system is confluent. So Hindley-Rosen applies to→∗

m and;∗
v, and we have

established that invoking→m to transform a program won’t alter its final result.

Multi-return Function Call 19

6.3 Correctness of ret-comp transform

We demonstrate the correctness of the ret-comp transform in the same way we handled the
mirror transform. We define a ret-comp relation→rc by a rule that maps the left side of
the ret-comp transform to the right side, plus the five progress rules allowing the transform
anywhere in a term.

Lemma 4
The→rc relation is confluent.

Proof
Suppose we apply the ret-comp transform to two distinct subterms in start terme0, yield-
ing e0→rc ea ande0→rc eb. What we will show is that there is a join termej , such that
ea→∗

rc ej andeb→∗
rc ej . This is sufficient to conclude confluence.

If the two subterms ofe0 on which we performed our two ret-comp transforms are
completely distinct, then we can do the transforms in either order and arrive at the same
final term. What we must consider more carefully are the cases where the two transforms
overlap.

Consider the justification tree for thee0→rc ea step. The axiom rule at the root of the
tree is a ret-comp transform of some subterme′a of e0, where

e′a = //e′′a r1a . . . rna. r′1a . . . r′ma.,

and

//e′′a r1a . . . rna. r′1a . . . r′ma. →rc /e′′ r′′1a . . . r′′na..

Similarly, lete′b be the transformed subterm ofeb:

e′b = //e′′b r1b . . . rjb. r′1b . . . r′kb..

The overlap cases we must consider occur whene′b is one of the pieces ofe′a manipulated
by thee′a transform. (The case whene′b containse′a is symmetric.)

The first way this might happen is if one of the inner return pointsria of e′a is a λ

expression containing thee′b term, so thatria→rc ria′ is part of theeb justification tree. In
this case, the corresponding post-a-transform return pointr′′ia is λx./(ria x) r′1a . . . r′ma..
This, in turn, allows us to stepria just as in theb step, producing a final return point
λx./(ria′ x) r′1a . . . r′ma.. This is exactly what we would have gotten if we had done theb

transform first and then thea transform.
If one of theouter return pointsr′ia of e′a contains theb transform, the operations com-

mute in a similar way. Since thea transform might replicate multiple copies ofr′ia into
inner return points that areλ expressions, we need multiple→rc steps to transform the
multiple copies ofe′b; otherwise, this case is identical to the previous case.

If e′b occurs entirely withine′′a, the operations again commute with no difficulty.
Finally, we have a true case of overlap: ife′′a is itself a multi-ret form, then we could take

e′b to be the inner multi-ret form ofe′a. That is, ife′a is a triply-nested multi-ret form

e′a = ///e′′b r1b . . . rjb. r1a . . . rna. r′1a . . . r′ma.,

then we can take the inner pair ase′b and the outer pair ase′a, with theria serving double
duty as ther′ib. However, working out the transforms in either order produces the same
result.

20 Olin Shivers and David Fisher

Lemma 5
The→∗

rc and;∗
v relations commute.

Proof
Suppose we have some start terme0 which we can transition under both base relations,
e0 →rc erc ande0 ;v ev. We will show that there is a join termej such thaterc ;∗

v ej and
ev →∗

rc ej . Commutativity of→∗
rc and;∗

v follows.
As before, let us isolate the subterme′rc of e0 that is transformed by the ret-comp step to

e′′rc. Thee′rc subterm must be a doubly-nested multi-ret form:

e′rc = //e r1 . . . rn. r′1 . . . r′m..

If the ;v step involvese ;v e′, then we have no trouble commuting the CBV and ret-
comp steps. The only real case we have to consider is when the root axiom of the;v

step involvese′rc as well. This can only occur whene is a value and the rule is one of
ret1, rettail, rpsel or retlam. If the ret1 rule applies, thene′rc = //e #1. r′1 . . . r′m., and so
e′rc ;v /e r′1 . . . r′m.. The ret-comp transform, on the other hand, gives use′rc→rc /e r′1..
We can join these two with rpsel, which allows us to construct a justification tree for a
erc ; ev transition rooted at this application of rpsel.

If the rettail rule applies, thenr1 = #i. Soe′rc ;v /e r′i. ande′rc→rc /e r′i r′′2 . . . r′′n.;
we can join the latter to the former by rpsel, which again allows us to construct a justifica-
tion tree for aerc ; ev transition rooted at this application of rpsel.

If the retlam rule applies, thenr1 is aλ expression, and we have

e′rc ;v /(r1 e) r′1 . . . r′m.

e′rc→rc /e (λx./(r1 x) r′1 . . . r′m.) r′′2 . . . r′′n..

We can join the latter to the former in three CBV steps: rpsel, retlam, then funappv.
In a similar fashion, we can joinerc andev if we arrived atev by rpsel.

Theorem 5(Ret-comp safety)
The relations→∗

rc and;∗
v commute.

The proof is by the previous two lemmas, as for the proof of mirror safety.

7 Anchor pointing and encoding in the pc

Consider compiling the programming-language expression “x<5” in the two contexts
“f(x<5)” and “if x<5 then ... else ...” In the first context, we want to evaluate
the expression, leaving a true/false value in one of the machine’s registers. In the second
context, we want to evaluate the inequality, branching to one or another location in the
program based on the outcome—in other words, rather than encode the boolean result as
one of a pair of possible values in a general-purpose register, we wish to encode it as a pair
of possible addresses in the program counter. Compiler writers refer to this distinction as
“eval-for-value” and “eval-for-control” (Fisher and LeBlanc, 1988).

Not only do programs have these two ways ofconsumingbooleans, they also have cor-
responding means ofproducingthem. On many processors, the conditional “x<5” will be
produced by a conditional-branch instruction—thus encoded in the pc—while the boolean

Multi-return Function Call 21

function call “isLeapYear(y)” will compute a boolean value to be left in one of the
general-purpose machine registers—thus encoded as a value.

Matching up and optimally interconverting between the different kinds of boolean pro-
ducers and consumers is one of the standard tasks of good compilers. In the functional
world, the technique for doing so relies on a transformation called “anchor pointing,”
(Steele, 1978; Kranzet al., 1986) defined for nested conditional expressions—sometimes
called “if-of-an-if.” The transformation is

if (if a then b else c)

then d

else e

⇒
if a

then (if b then d else e)

else (if c then d else e)

although we usually also replace the expressionsd ande with calls to let-bound thunksλ .d

andλ .e to avoid replicating large chunks of code (where we write “” to suggest a fresh,
unreferenced “don’t-care” variable for the thunk, in the style of SML). In the original
form, theb andc expressions are evaluated for value; in the transformed result,b andc are
evaluated for control.

In λMR, we can get this effect by introducing primitive “control” functions. The%if func-
tion consumes a boolean, and returns to a pair of unit return points:/(%if b) rthen relse.. In
other words, it is the primitive operator that converts booleans from a value encoding to a
pc encoding. This allows us to desugar if/then/else forms into applications of%if:

if e1 then e2 else e3 ≡ /(%if e1) λ .e2 λ .e3..

The anchor-pointing transformation translates to this setting:

/(%if /(%if a) λ .b λ .c.) d e. ⇒ /(%if a) λ ./(%if b) d e.

λ ./(%if c) d e...

This transform, in fact, can be derived from the basic ret-comp and mirror transforms,
plus some simpleβ andη steps. Among other things, this provides us with a simple reason
to believe the transform is a sound one that won’t change the meaning of a program. The
derivation appears in Appendix A, though you may enjoy working it out for yourself—it
makes a nice puzzle. We can also definen-way case branches with multi-return functions;
for an intermediate representation of a language such as SML, we would probably want to
provide one such function for each sum-of-products datatype declaration, to case-split and
disassemble elements of the introduced type.

Recall that some boolean functions are primitively implemented on the processor with
instructions that encode the result in the pc (integer-comparison operations are an exam-
ple). We can express this at the language level by arranging for the primitive definitions
of these functions similarly to provide their results encoded in the pc. For example, the
exported< function can be defined in terms of an underlying primitive%< function that
encodes its result in the pc using multiple return points:

< = λx y. /(%< x y) (λ .true) (λ .false)..

With similar control-oriented definitions for the short-circuiting boolean syntax forms

x and y ≡ /(%if x) λ .y λ .false.

x or y ≡ /(%if x) λ .true λ .y .

not = λx. /(%if x) λ .false λ .true.,

22 Olin Shivers and David Fisher

the anchor-pointing transform is capable of optimising the transitions from encoded-as-
value to encoded-as-pc.

For example, suppose we start out with a conditional expression that uses a short-circuit
conjunction:

if (0 <= i) and (i < n) then e1 else e2.

First, we expand the “and” into its underlying form, and rewrite our infix comparisons into
canonical application syntax:

if /(%if (<= 0 i)) λ .(< i n) λ .false.

then e1

else e2.

Already we see a tell-tale if-of-an-if that signals an opportunity to shift to evaluation for
control. Next, we translate the if/then/else syntax into its functional multi-return equivalent:

/(%if /(%if (<= 0 i))

λ .(< i n)

λ .false.)

λ .e1

λ .e2.,

andβ-reduce the comparison-function applications to produce their control-oriented defi-
nitions:

/(%if /(%if /(%<= 0 i) λ .true λ .false.)

λ ./(%< i n) λ .true λ .false.

λ .false.)

λ .e1

λ .e2..

Now we have atriply-nested conditional expression. Apply the anchor-pointing transform
to the second%if and the%<= conditional. This, plus a bit of constant folding, leads to:

/(%if /(%<= 0 i) λ ./(%< i n) λ .true

λ .false.

λ .false.

λ .e1

λ .e2..

Now we apply anchor-pointing to the first%if and the%<= application, leading to:

/(%<= 0 i) λ ./(%if /(%< i n) λ .true

λ .false.)

λ .e1

λ .e2.

λ ./(%if false)

λ .e1

λ .e2...

Multi-return Function Call 23

Applying anchor-pointing to the first arm of the%<= conditional, and constant-folding to
the second arm gives us:

/(%<= 0 i) λ ./(%< i n)

λ ./(%if true) λ .e1 λ .e2.

λ ./(%if false) λ .e1 λ .e2..

λ .e2..

Some simple constant folding reduces this to the final simplified form that expresses ex-
actly the control paths we wanted:

/(%<= 0 i) λ ./(%< i n) λ .e1 λ .e2.

λ .e2..

Note one of the nice effects of handling conditionals this way: we no longer need a
special syntactic form in our language to handle conditionals; function calls suffice. CPS
representations can also manage this feat, but at the cost of significantly more powerful
machinery: they expose continuations as denotable, expressible, first-class values in the
language. The multi-return extension is a more controlled, limited linguistic mechanism.
The ability of multi-return function call to handle conditional control flow in a general
function-call paradigm, yet without requiring first-class continuations, suggests it would
be a useful mechanism to have in a low-level intermediate representation.

8 Compilation issues

Compiling a programming language that has the multi-return feature raises no real diffi-
culties. Standard techniques work well with only small modifications required to exploit
some of the opportunities provided by the new mechanism.

8.1 Stack management

Calling subroutines involves managing the stack—allocating and deallocating frames. Typ-
ically, modern compilers distinguish between tail calls and non-tail calls in their manage-
ment of the stack resource. The presence of multiple return points, however, introduces
some new and interesting possibilities: semi-tail calls and even super tail calls.

In the multi-return setting, there are three main cases for passing return points to a func-
tion call:

• All ret-pts passed to called function
E.g., /(f 5) #1 #3 #2 #1.

If a function call simply passes along all of its context’s return points, in a tail-
call setting, then this is simply a straight tail call. The current stack frame can be
immediately recycled intof ’s frame, and thus there is no change in the number of
frames on the stack across the call.

• Ret-pts are strict subset of caller’s ret-pts
E.g., /(f 5) #6 #4.

However, we can have a tail call that drops some of the calling context’s return

24 Olin Shivers and David Fisher

points. In this case, the caller can drop frames, collapsing the stack back to the high-
est of the surviving frames. In this way, a call can be “super tail recursive,” with
the stack actually shrinking across a call. This aggressive resource reclamation can
require a small amount of run-time computation: in order to “shrink-wrap” the stack
prior to the call, the caller must compute the minimum of the surviving return points,
since there’s no guaranteed order on their position in the stack.

• Some ret-pts areλ expressions
If any return point is aλ expression, then we must push stack frames to hold the
pending state needed when these return points are resumed. However, we can still
shrink-wrap the stack prior to allocating these return frames, if some of the calling
context’s return points are also going dead at this call. The ability to mix#i andλ

return points in a given call means we can have calls that are semi-tail calls—both
pushing new frames and reclaiming existing ones.

8.2 Procedure-call linkage

λMR makes it clear that multiple return points can be employed as a control construct at
different levels of granularity, from fine-grained conditional branching to coarse-grained
procedure-call transfers. This is analogous to the use ofλ-expressions in functional lan-
guages, which can be used across a wide spectrum of control granularity. Just as withλ-
expressions, a good compiler should be able to efficiently support uses of the multi-return
construct across this entire spectrum.

The most challenging case is the least static and largest-grain one: passing multiple
return points via a general-purpose procedure-call linkage to a procedure. There are three
cases determining the protocol used to pass return points to procedures:

• 1 ret-pt (1 register + sp)
In the normal, non-multi-return case, where we are only passing a single return point
to a procedure, we need one register (or stack slot) for the return pc. Since the pend-
ing frame to which we will return is the one just below the called procedure’s current
frame, the stack pointer does double duty, indicating both the location of the pending
frame as well as the allocation frontier for the current frame.

• > 1 ret-pt (2n registers+ sp)
In general, however, we pass each return point as a frame-pointer/return-pc pair of
values, either in registers or stack slots, just as with parameters (which should come
as no surprise to those accustomed to continuation-based compilers (Steele, 1978;
Kranz et al., 1986; Kranz, 1988; Shivers, 1988; Kelsey, 1989; Kelsey and Hudak,
1989; Shivers, 1991; Appel, 1992), since function-call continuations are just partic-
ular kinds of parameters).
However, if a procedure has more than one return point, we cannot always statically
determine which one will be the topmost pending frame on the stack when the func-
tion is executed—in fact, this could vary from call to call. So we must separate the
rôle of the stack pointer from that of the registers that hold the frame pointers of the
return points. The stack pointer is used forallocation—it indicates the frontier be-
tween allocated storage and unused, available memory. The return frame pointers are
for deallocation—they indicate back to where the stack will be popped on a return.

Multi-return Function Call 25

Registers used by the function-call protocol for return points can be drawn from the
same pool used for parameters, overflowing into stack slots for calls with many re-
turn points or parameters. Thus a call that took many return points might still be
accomplished in the register set, if the call did not take many parameters, andvice
versa. We might wish to give parameters priority over ret-pts when allocating reg-
isters in the call protocol on the grounds that (1) only one of the ret-pt values will
be used and (2) invoking a ret-pt is the last thing the procedure will do, so the ret-pt
will most likely be referenced later than the parameters. (Neither of these observa-
tions is always true; they are merely simple and reasonable heuristics. For example,
a procedure may access multiple ret-pts in order to pass them to a fully or partially
tail-recursive call. If the call is only partially tail-recursive, then the procedure may
subsequently resume after the call, accessing other parameters. These issues can be
addressed by more globally-aware parameter- and register-management techniques.)

• 0 ret-pt (0 registers+ sp)
This singular case has a particularly efficient implementation: not only can we avoid
passing any ret-pc values, we can also reclaim the entire stack, by resetting sp to
point to the original stack base!
Besides being an interesting curiosity, we can actually use this property, in situations
involving the spawning of threads, to indicate to the compiler the independence of
a spawned thread from the spawning thread’s stack. The problem is that languages
which provide thread-based concurrency mechanisms typically have some kind of
“spawn” operation, which takes as its argument a thunk specifying the computa-
tion to be performed by the thread. The spawn procedure creates the new thread,
and immediately returns. However, the new thread can sometimes retain spurious
dependencies on the spawning thread’s dynamic context, such as its exception han-
dlers; this typically shows up as dependencies on the invoking thread’s continua-
tion. These unintended continuation captures can prevent the run-time system from
freeing continuation-based resources, leading to mysterious space leaks and other
problems (Biagioniet al., 1997). A type declaring that a procedure never returns is
a static assertion breaking the false dependency: calling such a function does not
require passing it a continuation, thus resolving the resource-management problem.
We have wished for this feature on multiple occasions when writing systems pro-
grams in functional languages.

Note that ret-pt registers, being no different from parameter registers, are available for
general-purpose use inside the procedure body. Code that doesn’t use multiple return points
can use the registers for other needs. Multi-return function call is a pay-as-you-go feature.

8.3 Static analyses

There are some interesting static-analysis possibilities that could reveal useful information
about resource use in this function-call protocol. For example, it might be possible to do
a sort of live/dead analysis of return points to increase the aggressiveness of the pre-call
“shrink wrapping” of stack frames. An analysis that could order return points by their stack
location could eliminate the min computation used to shrink-wrap the stack over multiple
live return points. We have not, however, done any significant work in this direction.

26 Olin Shivers and David Fisher

8.4 Callee-saves register management

One of the difficulties with the efficient compilation of exceptions is the manner in which
they conflict with callee-saves register use. If a procedureP stores a callee-saves register
away in the stack frame, an exception raised during execution of a dynamically-nested
procedure call cannot throw directly to a handler aboveP ’s frame—the saved register value
would be lost. Either the callee-saves registers must be dumped out to the stack for retrieval
after the handler-protected code finishes, or the control transfer to the exception’s handler
must instead “unwind” its way up from the invoking stack frame, restoring saved-away
callee-saves registers on the way out. The first technique raises the cost of establishing a
handler scope, while the second raises the cost of invoking an exception.

In contrast, it’s fairly simple to manage callee-saves registers in the multi-return set-
ting. As with any function-call protocol (even the traditional single-return one) supporting
constant-stack tail-calls, any tail call must restore the callee-saves registers to their entry
values before transferring control to the called procedure (so tail-calls have some of the
requirements of calls, and some of the requirements of returns). Multi-return procedure
calls allow for a new possibility beyond “tail call” and “non-tail call:” the “semi-tail call,”
which pushes framesandpasses along existing return points,e.g.,

/(f 5) (λx.e) #1..

We must treat this case with the tail-call restriction by restoring all callee-saves registers
to their entry values prior to transferring control tof in order to keep from “stranding”
callee-saves values in a skipped frame shouldf return through its second return point.

So, in short, the simple tail-call rule for managing callee-saves registers applies with no
trouble in the multi-return case. Note, however, that this rule does have a cost in our new,
semi-tail call setting: the presence of the “#1” in the example above means we can’t use
callee-saves registers to pass values between the(f 5) call point and theλx.e return point.

9 Actual use

The multiple-return mechanism is useful for many more programs besides the single filter
function we described in Section 2. Other examples would be:

• compiler tree traversals that might or might not alter the code tree;
• algorithms that insert and delete elements into finite sets represented as search trees;
• search algorithms usually expressed with explicit success and failure continuations—

these can be expressed more succinctly, and run on the stack, without needing to
heap-allocate continuations.

Functional programmers frequently write functions that take multiple continuations as ex-
plicit functional parameters, accepting the awkward notational burden and run-time over-
head of heap-allocated continuations (which are almost always used in a stack-like man-
ner). This longstanding practice also gives some indication of the utility of multiple return
points.

We’ve found that once we’d added the mechanism to our mental “algorithm-design
toolkit,” opportunities to use it tend to pop up with surprising frequency. To pick one exam-
ple, we recently implemented a standard Scheme library for sorting (Shivers, 2003). This

Multi-return Function Call 27

library contains a function for deleting adjacent identical elements in a linked list—which
exactly fits the pattern we exploited in the “parsimonious filter” example. Since Scheme
does not have multi-return function calls, our implementation of this function is more com-
plex and less efficient than it needs to be. Opportunities to use multi-return function calls
also pop up in conjunction with Danvy and Goldberg’s there-and-back-again (TABA) pat-
tern (Danvy and Goldberg, 2005), where the multi-ret mechanism enriches the control
possibilities we can weave into our call and return interactions.

Shao, Reppy and Appel (1994) have shown how to use multiple continuations to unroll
recursions and loops in a manner that allows functions to pack lists into larger allocation
blocks4. The cost of explicit continuations renders this impractical when conditional con-
trol information must be distributed past multiple continuations; the more restricted tool of
λMR’s multiple-return points would make this feasible.

When casting about for a larger example to try out in practice, however, one particular
use took us by storm: LR parser generators (DeRemer and Pennello, 1982). A parser gener-
ator essentially is a compiler that translates a context-free grammar to a program describing
a particular kind of machine, a push-down automaton (PDA), just as a regular-expression
matcher compiles a regular expression into a program describing a finite-state automaton.
This leads us to the idea of a general PDA machine designed to implement various PDAs.
It has a stack, an input source of tokens, and a program store that holds the specification of
the particular PDA to be executed. The programs loaded into the program store are com-
posed of three kinds of instruction: shift, goto and reduce. (We are eliding a few features
of the machines that drive real LR parsers, such as semantic actions and error recovery,
but this is the essential core of the computational structure.) Now, once we have our PDA
program, we have two options for executing it. One path is to implement the PDA machine
in some programming language (say, for example, C), encode the PDA program as a data
structure, and then run the PDA machine on the program. That is, we execute the PDA
program with an interpreter.

The other route, of course, is to compile: translate the PDA program down to the target
language. The attraction of compiling is the transitivity of compilation—we usually have
a compiler on hand that will then map the target language all the way down to machine
language, and so we can run our parser at native-code speeds.

Translating PDA programs to standard programming languages, however, has problems.
Let’s take each of the three PDA instructions in turn. The “shifts” instruction means “save
the current state on the stack, then transfer to states.” This one is easy to represent, en-
coding state in the pc: if we represent each parser state with a different procedure, then
“shift” is just function call. The “gotos” instruction, similarly, is just a tail-recursive func-
tion call. How about reduce? The “reducen” instruction means “popn states off the stack,
and transfer control to thenth (last) state thus popped.” Here is where we run into trouble.
Standard programming languages don’t provide mechanisms for cheaply returning several
frames back in the call stack. Worse, the value ofn used when reducing from a given state
can vary, depending upon the value of the next token in the input stream: a particular state

4 It’s a curious but ultimately coincidental fact that their paper uses the same filter-function example shown in
Section 2—for a completely different purpose.

28 Olin Shivers and David Fisher

might wish to return three frames back if, say, the next token is a right parenthesis, but five
frames back if it is a semicolon.

While this is hard to do in Java or SML or other typical programming languages, it can
be done in assembler (Pennello, 1986). The problem with a parser generator that produces
assembler is that it isn’t portable, and, worse, has integration problems—the semantic ac-
tions embedded inside the grammar are usually written in a high-level language. For these
reasons, standard parsers such as Yacc (Johnson, 1979) or Bison usually go the interpreter
route: the “parser tables” that drive the computation are just the PDA program, which is
executed by a fixed PDA machine written in C.

Multi-return calls solve this problem nicely—they give us exactly the extra expressive-
ness we need to return to multiple places back on the stack. When our compiled PDA
program does a shift by calling a procedure, it passes the return points that any reduction
from that state forward might need.

To gain experience with multi-return procedure calls, we started with a student com-
piler for Appel’s Tiger language (Appel, 1999), which one of us (Shivers) uses to teach
the undergraduate compiler course at Georgia Tech. Tiger is a fairly clean Pascal-class lan-
guage. The student compilers are written in SML, produce MIPS assembly, and feature a
coalescing, graph-coloring register allocator. One graduate of the compiler course took his
compiler and modified it to add a multi-return capability to the language. This gave us a
tool for experiments, allowing us to try out completely the notion of adding multiple-return
points to a language, from issues of concrete syntax, through static analysis and transla-
tion, to execution. Designing the syntactic extensions was a trivial exercise, requiring only
the addition of the multi-ret form itself and modification of the declaration form for proce-
dures. We designed the syntax extensions with our “pay-as-you-go” criteria in mind—code
that doesn’t use multiple return points looks just like standard Tiger code.

A second undergraduate modified a LALR parser-generator tool written in Scheme by
Dominique Boucher, adding two Tiger back-ends: one compiling the recogniser to multi-
return Tiger code, and the other producing a standard “table&PDA” implementation. The
only non-obvious part of this task is the analysis to determine which return points must be
passed to a given state procedure. This is a straightforward least fixed-point computation
over the PDA’s state machine. Specifically, a state procedure must be passed return points
for any reduction it might perform, plus return points to satisfy the needs of any state to
which it might, in turn, shift.

We then built two parsers to recognise the Tiger grammar (a reasonably complex gram-
mar which we happened to have convenient to hand). The parser keeps pending state in-
formation, which drives control decisions, on the procedure call stack, and uses a separate,
auxiliary stack to store the values produced and consumed by the semantic actions. We
were pleased to discover that the return-point requirements for our sample grammars were
very limited. Of the 137 states needed to parse the Tiger grammar, 106 needed only one
return point; none needed more than two. Reductions in real grammars, it seems, are sparse.

The compiled parser, of course, ran significantly faster than the interpreted one. The
compiled PDA parsed our sample input 2.5–3.5 times faster than the interpreted PDA (see
Table 1). One source of speedup was the fact that when a state is only shifted into from one
other state, the Tiger compiler saw it as a procedure only called from one site, and would
inline the procedure. This happens quite frequently in real grammars—78% of the Tiger-

Multi-return Function Call 29

Input
input size
(symbols)

non-MR
parser MR parser

MR parser
with inlining

loop 18 78,151 9,336 8,915
matmul 121 114,987 36,025 33,386
8queens 235 164,693 70,797 65,505
merge 409 219,649 99,743 89,486
large 1,868 802,008 366,498 324,459

Table 1. Performance measurement for standard/table-driven and multi-return-based
LALR parsers generated from the Tiger grammar. Timings are instruction counts, measured
on the SPIM SPARC simulator. Input samples are (1) a simple loop, (2) matrix multiply,
(3) eight-queens, (4) mergesort, (5) samples 2–4 replicated multiple times.

grammar states can be inlined. Representing the parser directly in a high-level language
allowed it to be handled by general-purpose optimisations.

These simple experiments provide only the most basic level of evaluation, in the sense
that a real, end-to-end implementation has been successfully constructed with no serious
obstacles cropping up unforeseen, and that it performs roughly as expected.

There is still much we could have done that we have not yet done. We did not, for ex-
ample, arrange for our parsers to execute semantic actions while parsing—they are simply
recognisers. This shows off the efficiency of the actual parsing machinery to best advan-
tage. Our basic intent was simply to exercise the multi-return mechanism, which function
our parsers performed admirably.

10 Variations

We’ve covered a fair amount of ground in our tour of the multi-return mechanism, pro-
viding views of the feature from multiple perspectives. But we’ve left many possibilities
unexplored. We’ve pointed out some of these along the way, such as normal-order seman-
tics or static analyses.

10.1 Return-point syntax

One variation we have not discussed is the syntactic restriction of return points toλ ex-
pressions. This is not a fundamental requirement. The entire course of work we’ve laid
out goes through just as easily if we allow return points to be any expression at all (i.e.,
r ∈ RP ::=e |#i) and generalise the retlam schema in an equally trivial manner:

/v e. ; e v.

However, it doesn’t seem to add much to the expressiveness of the language to allow
return points to be general computations themselves. One can alwaysη-expand a return
point of the forme to λx.(e x). But allowing general expressions for return points does
introduce issues of strictness and non-termination into the semantics of return that were
not there before, and this, in turn, restricts some of the possible transformations.

30 Olin Shivers and David Fisher

A third possibility borrows from SML’s “value restriction:” restrict return points to be
eitherλ expressions or variable references (Milneret al., 1997). Variable references are
useful ret-pts for real programming, as they give the ability to name and then use “join
points” in multiple locations. This is clearer and more succinct than the awkward alternate
of binding the join point to a name, and then referring to it withη-expanded return points
in the desired locations.

Restricting return-point expressions toλ expressions and variable references eliminates
code blowup in transformations, since large ret-pt expressions can be let-bound and re-
placed by a name before replication. It eliminates issues of control effect, since both forms
of expression can be guaranteed to evaluate in a small, finite amount of time. For a real
programming language, this is the syntax we prefer.

10.2 By-name binding

In our design, theith ret-pt of a form is specified by making it theith subformri of the
multi-ret expression/e r1 . . . rm.. This is somewhat analogous to passing arguments to
procedures by position (instead of by name, as is allowed in Modula-3 or Common Lisp).
E.g., when we call a print function, we must know that the first argument is the output
channel and the following argument is the string to be printed, notvice versa.

As a design exercise, one might consider a multi-return form based on some sort of
by-name binding mechanism for return points, rather thanλMR’s positional design, with
its associated numeric “#i” references. This turns out to be trickier and more awkward
than one might initially suppose. By-name binding introduces the issue of requiring a new
and distinct name space for return points. More troubling is the issue of scope and name
capture—such a design would have to require that return-point bindings be dynamically,
rather than lexically, scoped, to prevent lexical capture of a return point by a procedure
passed upward. This would be counter-intuitive to programmers used to lexically-scoped
name binding. Nor would it buy much, we feel. Control is typically a sparer space than
data. It may be useful to bind a few return points at a call-point, but one does not typically
need simultaneously to bind thousands, or even dozens.

There is no shame in positional binding: besides its simplicity, it has been serving the
needs of programmers as a parameter-passing mechanism in the lion’s share of the world’s
programming languages since the inception of the field.

11 Comparisons

There are several linguistic mechanisms that are similar in nature to multi-return function
call. Four are exceptions, explicit continuations, sum types and the weak continuations of
C--.

11.1 Exceptions

Exceptions are an alternate way to implement multiple returns. We can, for example, write
thefilter example using them. This is clear, since exceptions are just a second continu-
ation to the main continuation used to evaluate an expression.

Multi-return Function Call 31

However, exceptions are, in fact, semantically different from multiple return points.
They are a more heavyweight, powerful mechanism, which consequently increases their
implementation overhead and makes them harder to analyze. This is because exceptions
are used to implementnon-local control transfers, something that cannot be done with
multi-ret function calls. For example, consider the expression

sin(1/f(x))

If f raises an exception, the program can abort the entire, pending reciprocal-and-then-sine
computation by transferring control to a handler further back in the control chain.

Multi-ret function calls, in contrast, do not have this kind of global, dynamic scope. They
do not permit non-local control flow—if a function is called, it returns. This makes them
easier to analyze and permits the kind of transformations that encourage us to use them to
represent fine-grained control transfers such as local conditional branches. In short, they
make for a better wide-spectrum, general-purpose control representation, as opposed to a
control mechanism tuned for exceptional transfers.

The difference between exceptions and multi-ret function calls shows up in the formal
semantics, in the transition rule for applications. In an application(e1 e2), the evaluations
of e1, e2, and the actual function call all share the same exception context. InλMR, however,
they each have different ret-pt contexts. This is the key distinction.

Note that we can, by dint of a global program transformation, implement exceptions us-
ing multi-ret constructs. . . just as we can implement exceptions using only regular function
calls, by turning the entire program inside-out with a global CPS transform. This fact of
formal interconvertibility amounts to more of a compilation step than a particularly illumi-
nating observation about practical comparison at the source-code level—which just serves
to underline the distinction between the two control features.

11.2 CPS and explicit continuations

We can also implement examples such as our parsimoniousfilter function by using
explicit continuations. This, however, is applying far too powerful a mechanism to the
problem. Explicit continuations typically require heap allocation, which destroys the ef-
ficiency of the technique. With multi-return function calls, there is never any issue with
the compiler’s ability to stack-allocate call frames. No analysis required; success is guar-
anteed. The multi-ret mechanism is carefully designed to provide much of the benefit of
explicit continuations while still keeping continuations implicit and out of sight. Once con-
tinuations become denotable, expressible elements of our language, the genie is out of the
bottle, and even powerful analyses will have a difficult time reining it back in.

Note, also, thatλMR still allows function calls to be syntactically composable,i.e., we
can nest function calls:f(g(x)). This is the essence of direct style; the essence of CPS is
turning this off, since function calls never return. As a result, CPS is much, much harder
for humans to read. While we remain very enthusiastic about the use of CPS as a low-level
internal representation for programs, it is a terrible notation for humans.

In short, explicit continuations are ugly, heavyweight and powerful, while multi-return
function call is clearer, simpler, lighter weight, and less powerful.

32 Olin Shivers and David Fisher

11.3 Sum types

Providing multiple return points to a function call is essentially providing a tuple of con-
tinuations to a function instead of just one. As Filinski has pointed out (Filinski, 1989), a
product type in continuation space is equivalent to a sum type in value space. For example,
we can regard the%if function as being the converter between these two forms for the
boolean sum type.

So any function we can write with multiple continuations we could also write by having
the function return a value taken from a sum type. For example, ourfilter function’s
recursion could return a value from this SML datatype:

datatype α FilterVal = Identical | Sublist of α list

But this misses the point—without the tail-recursive property of the#i syntax, and the
ability to distribute the post-call conditionally-dependent processing across a branch that
happens inside the recursion, we miss the optimisation that motivated us to write the func-
tion in the first place.

Perhaps we should write programs using sum-type values and hope for a static analysis
to transform the code to use an equivalent product of continuations. Perhaps this might be
made to work in local, simple cases—much is possible if we invoke the mythical “suffi-
ciently optimising compiler.” But even if we had such a compiler, it would still be blocked
by control transfers that occur across compilation/analysis units of code.

The important point is that the power of a notation lies in its ability to allow decisions
to be expressed.5 This is the point of the word “intensional” in the “intensional typing”
movement that swept the programming-language community in the 1990’s (Morrisettet
al., 1996). Having multi-return function calls allows us to choose between value encodings
and pc encodings, as desired. It is a specific instantiation of a very general and powerful
programming trick: anytime we can find a means of encoding information in the pc, we
have new ways to improve the speed of our programs. Run-time code generation, first-class
functions, and first-class continuations can all be similarly viewed as means of encoding
information in the pc.

Filinski’s continuation/value duality underlies our mechanism; but the mechanism is
nonetheless what provides the distinction to the programmer—a desirable and expressive
distinction.

11.4 C-- weak continuations

Peyton Jones, Ramsey and others have developed a language, C--, intended to act as a
portable, high-level back-end notation for compilers (Ramsey and Peyton Jones, 2000).
C-- has a control construct called “weak continuations” which has similarities to the multi-
return mechanism we’ve presented. Weak continuations allow the programmer to name
multiple return points within a procedure body, and then pass these as parameters to a
procedure call. However, there are several distinctions between C--’s weak continuations
andλMR’s multi-ret mechanism.

5 It is also true that the power of a notation lies in its ability to allow decisions to be glossed over or left locally
undetermined.

Multi-return Function Call 33

Weak continuations are denotable, expressible values in the language. They can be
named, and produced as the value of expressions. This makes them a dangerous construct—
it is quite possible to write a C-- program that invokes a control-transfer to a procedure
whose activation frame has already been popped from the stack. (C-- also has a labelled
stack-unwinding mechanism, but this does not seem to permit the tail-recursive passing of
unwind points, so it is not eligible as a general-purposeλMR mechanism.)

There is also a difference of granularity. Languages and compilers based onλ-calculus
representations tend to assume thatλ expressions and function-call are very lightweight,
fine-grain mechanisms. Someλ expressions written by the programmer turn into heap-
allocated closures, but others turn into jumps, while still others simply become register-
allocation decisions, and others vanish entirely. Programmers rely on the fact thatλ ex-
pressions are a general-purpose mechanism that is mapped down to machine code in a
variety of ways, some of which express very fine-grain, lightweight control and environ-
ment structure.

λMR is consistent with this design philosophy. While we have discussed at some length
the implementation of multi-return function calls with multiple stack pointers, it should
be clear from the extended “anchor-pointing” example of Section 7 that the multi-return
facility fits into this picture of function call as a general-purpose control construct. The
translation of a multi-ret procedure call into a machine call instruction, passing multiple
stack pointers, lies at the large-granularity, heavyweight end of the implementation spec-
trum, analogous to the implementation of aλ expression as a heap-allocated closure.

We are advocating more than thepragmaticgoal of allowing procedure calls to return
to older frames deeper in the stack. We are advocating extending the general-purpose pro-
gramming construct ofλ expressions to include multiway branching—asemanticexten-
sion. This is an intermediate point between regularλ-calculus forms and full-blown CPS—
a design point that we feel strikes a nice balance between the multiple goals of power,
expressiveness, analysability and readability.

This distinction between C--’s weak continuations andλMR’s multi-ret construct is not
accidental. Both languages were carefully designed to a purpose. C-- is not intended for
human programming; it is intended for programs produced by compilers. Thus C-- pro-
vides a menu of control constructs for the compiler to use, once it has analysed the source
program and committed to a particular choice for every control transfer in the original pro-
gram. Thus, also, C-- is able to export dangerous, unchecked constructs, by pushing the
requirements for safety back to the higher-level language that was used for the original
program. The attraction ofλMR’s general mechanism is the attraction ofλ: it is a general-
purpose construct that allows for a particular, local use to be implemented in a variety of
ways, depending on surrounding context and other global considerations.

C-- would make a great target forλMR, but the compiler targeting C-- would translate uses
of theλMR multi-return mechanism to a wide array of C-- constructs: if/then/else statements,
loops, gotos, simple function calls. . . and weak continuations.

11.5 FORTRAN

Computational archaeologists may find it of interest that the idea of passing multiple return
points to a function goes back at least as far asFORTRAN 77 (American National Standards

34 Olin Shivers and David Fisher

Institute, 1978), which allows subroutines (but not “functions”—the distinction being that
functions return values, while subroutines are called only for effect) to be passed alter-
nate return points. Note, however, that these subroutines are not reentrant, the return points
cannot be passed to subsequent calls in a tail-recursive manner, andFORTRAN’s proce-
dure abstractions—subroutine and function, both—are not general, first-class, expressible
values.

12 Conclusion

The multiple-return function call has several attractions:

• It has wide-spectrum applicability, from fine-grain conditional control flow, to large-
scale interprocedural transfers. This spectrum is supported by the simplicity of the
model, which enables optimising transformations to manipulate the control and data
flow of the computation.

• It is not restricted to a small niche of languages. It is as well suited to Pascal or Java
as it is to SML or Scheme.

• It is expressive, allowing the programmer to clearly and efficiently shift between
control and value encodings of a computation. It enables the expression of algo-
rithms that are difficult to otherwise write with equal efficiency. As we’ve discussed,
thefilter function is not the only such example—functional tree traversals, back-
tracking search, algorithms for persistent data structures, and LR parsers are all al-
gorithms that can be expressed succinctly and efficiently with multiple return points.
Multiple return points bring most uses of the general technique of explicit continua-
tion passing into the realm of the efficient.

• The expressiveness comes with no real implementation cost. The compilation story
for multi-ret function calls has no exotic elements or heavy costs; standard technol-
ogy works well. Procedure call frames can still be allocated on a stack; standard
register-allocation techniques work.

• It is a pay-as-you-go feature in terms of implementation. If a language provides
multi-ret function calls, the feature only consumes run-time resources when it is
used—essentially, a pair of registers are required across procedure transfers for each
extra return point used in the linkage.

• It is a pay-as-you-go feature in terms of syntax. Programmers can still write nested
function calls, and the notation only affects the syntax at the points where the feature
is used.

We feel it is a useful linguistic construct both for source-level, human-written program-
ming languages, and compiler internal representations. In short, it is an expressive new
feature that is surprisingly affordable.

13 Acknowledgements

The Tiger compiler and parser tool we described in Section 9 was implemented, in part, by
Eric Mickley and Shyamsundar Jayaraman, using code written by David Zurow, Lex Spoon
and Dominique Boucher. Matthias Felleisen provided useful discussions on the semantics

Multi-return Function Call 35

and type issues ofλMR, as well as its impact on A-normal form. Peter Lee alerted us to
the impact of exceptions on callee-saves register allocation. Chris Okasaki and Ralf Hinze
pointed out entire classes of algorithms where efficient multi-return function call could
be exploited. Zhong Shao and Simon Peyton Jones provided helpful discussions of weak
continuations. Several anonymous reviewers provided thoughtful and detailed comments
that greatly improved the final version of this article.

A Derivation of the anchor-pointing transform

The challenge, from Section 7, is to use the mirror and ret-comp transforms, along with the
basic transforms ofη andβ reduction we inherit from the standardλ calculus to derive the
anchor-pointing transform that compilers use to optimise their programs.

We start with

/(%if /(%if a) λ .b λ .c.) d e..

First, η-expand the leftmost%if to λx.%if x, then apply the mirror transform to this
λ expression and its argument, converting it into a multi-ret form with theλ expression
appearing as the single ret pt:

///(%if a) λ .b λ .c. (λx.%if x). d e..

Apply ret-comp to collapse the outer two multi-ret forms together, producing (after a bit of
β-reduction):

/(%if a) λ ./b λx./(%if x) d e..

λ ./c λx./(%if x) d e....

Mirror /b λx./(%if x) d e.. andβ-reduce the resulting redex, which collapses the
subterm down to/(%if b) d e.; likewise for thec arm. This gives us the desired final
term:

/(%if a) λ ./(%if b) d e.

λ ./(%if c) d e...

References

American National Standards Institute, Inc.American National Standard Programming Language
FORTRAN.X3.9-1978, April, 1978. Available athttp://www.fortran.com/F77_std/rjcnf.
html

Appel, A. W. Compiling with Continuations.Cambridge University Press, 1992.

Appel, A. W. Modern Compiler Implementation in ML.Cambridge University Press, 1999.

Baader, F. and Nipkow, T.Term Rewriting and All That.Cambridge University Press, 1998.

Barendregt, H.The Lambda Calculus.North Holland, revised edition, 1984.

Biagioni, E., Cline, K., Lee, P., Okasaki, C. and Stone, C. Safe-for-space threads in Standard ML. In
Proceedings of the Second ACM SIGPLAN Workshop on Continuations(CW’97), Paris, January,
1997.

Church, A.The Calculi of Lambda-conversion.Annals of Mathematics Studies, Number 6, Princeton
University Press, 1941.

36 Olin Shivers and David Fisher

Danvy, O. and Goldberg, M. There and back again.Fundamenta Informaticae, vol. 66, no. 4, pages
397–413, 2005.

DeRemer, F. and Pennello, T. Efficient computation of LALR(1) look-ahead sets.ACM Transactions
on Programming Languages and Systems(TOPLAS), vol. 4, no. 4, pages 615–649, October 1982.

Filinksi, A. Declarative Continuations and Categorical Duality.Master’s thesis, Computer Science
Department, University of Copenhagen (August 1989). DIKU Report 89/11.

Fisher, C. and LeBlanc, R.Crafting a Compiler.Benjamin Cummings, 1988.

Johnson, S. C. Yacc: Yet another compiler compiler. Tech report CSTR-32, AT&T Bell Laboratories,
Murray Hill, NJ, 1979.

Kelsey, R.Compilation by Program Transformation.Ph.D. dissertation, Yale University, May 1989.
Research Report 702, Department of Computer Science.

Kelsey, R. and Hudak, P. Realistic compilation by program transformation. InProceedings of the
16th Annual ACM Symposium on Principles of Programming Languages(POPL), January 1989.

Kranz, D.ORBIT: An Optimizing Compiler for Scheme.Ph.D. dissertation, Yale University, February
1988. Research Report 632, Department of Computer Science.

Kranz, D., Adams, N., Kelsey, R., Rees, J, Hudak, P. and Philbin, J.ORBIT: An optimizing compiler
for Scheme. InProceedings of the SIGPLAN ’86 Symposium on Compiler Construction,published
asSIGPLAN Notices21(7), pages 219–233. Association for Computing Machinery, July 1986.

Milner, R. A theory of type polymorphism in programming.Journal of Computer and System
Sciences, 17:348–375, August 1978.

Milner, R., Tofte, M., Harper, R. and MacQueen, D.The Definition of Standard ML (Revised).MIT
Press, 1997.

Morrisett, G., Tarditi, D., Cheng, P., Stone, C., Harper, R. and Lee, P. TIL: A type-directed opti-
mizing compiler for ML. 1996 SIGPLAN Conference on Programming Language Design and
Implementation(PLDI), pages 181–192, Philadelphia, May 1996.

Pennello, T. J. Very fast LR parsing. InProceedings of the SIGPLAN ’86 Symposium on Compiler
Construction, pages 145–151, 1986.

Ramsey, N. and Peyton Jones, S. A single intermediate language that supports multiple imple-
mentations of exceptions.Proceedings of the ACM SIGPLAN 2000 Conference on Programming
Language Design and Implementation(PLDI), in SIGPLAN Notices, 35(5):285–298, June 2000.

Shao, Z., Reppy, J. H. and Appel, A. W. Unrolling lists. InProceedings of the 1994 ACM Conference
on Lisp and Functional Programming(LFP), Orlando, Florida, pages 185–195, June 1994.

Shivers, O. Control-flow analysis in Scheme. InProceedings of the SIGPLAN ’88 Conference on
Programming Language Design and Implementation(PLDI), June 1988.

Shivers, O.Control-Flow Analysis of Higher-Order Languages.Ph.D. dissertation, Carnegie Mellon
University, May 1991. Technical Report CMU-CS-91-145, School of Computer Science.

Shivers, O. SRFI-32: Sort libraries. Scheme Request for Implementation 32, July 2002. Available at
URL http://srfi.schemers.org/.

Steele Jr., G. L. RABBIT: A Compiler for SCHEME.Masters Thesis, MIT AI Lab, May 1978.
Technical Report 474.

Wand, M. Complete type inference for simple objects. InProceedings of the Second Symposium on
Logic in Computer Science,Ithaca, New York, pages 37–44, June 1987.

