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Abstract
Writing loops with tail-recursive function calls is the equivalent of
writing them with goto’s. Given that loop packages forLisp-family
languages have been around for over 20 years, it is striking that
none have had much success in the Scheme world. I suggest the
reason is that Scheme forces us to be precise about the scoping of
the various variables introduced by our loop forms, something pre-
vious attempts to design ambitious loop forms have not managed
to do.

I present the design of a loop package for Scheme with a well-
defined and natural scoping rule, based on a notion of control dom-
inance that generalizes the standard lexical-scope rule of theλ-
calculus. The new construct is powerful, clear, modular and exten-
sible.

The loop language is defined in terms of an underlying language
for expressing control-flow graphs. This language itself has inter-
esting properties as an intermediate representation.

Categories and Subject DescriptorsD.3.3 [Programming lan-
guages]: Language Constructs and Features—control structures,
frameworks, procedures, functions, and subroutines; F.3.3 [Log-
ics and meanings of programs]: Studies of program constructs—
control primitives and functional constructs; D.1.1 [Programming
techniques]: Applicative (Functional) Programming; D.3.1 [Pro-
gramming languages]: Formal Definitions and Theory—semantics
and syntax

General Terms Design, Languages, Performance, Theory

Keywords Functional programming, control structures, iteration,
lambda-calculus, compilers, programming languages, continua-
tions, macros, Scheme

1. The case for loop forms
In call-by-value functional languages such as ML or Scheme, we
typically write loops using tail-recursive function calls. This is
actually a terrible way to express program iteration, and it’s not
hard to see why. As was popularised by Steele [14, 15, 16, 17], a
tail call is essentially a “goto that passes arguments.” So writing
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loops with tail calls is just writing them with gotos. Yet, it has long
been accepted in the programming-language community that goto
is a low-level and obfuscatory control operator, a position stated by
Dijkstra’s “Goto considered harmful” letter [5].

Consider, for example, the loop shown in Figure 1, which has
non-trivial control structure. The version on the left is written
using basic Scheme and tail calls, while the version on the right
is written using a macro-based loop form. We loop over listl,
binding elements of the list to variablex; the loop’s final value is
accumulated inresult in reverse order. The body of the loop has
two “fast path” tests. The first test allows us to skip the presumably
expensive computations producing the intermediate values bound
to y andz. The second test allows us to skip thez computation.

From a software-engineering perspective, this code fragment is
a disaster. The fact that we are iterating over a list is expressed
by code that is spread over the entire loop: the entry point bind-
ing rest, the four distinct calls toloop (including the initial call
providing the beginning valuel for rest), and thenull? termi-
nation test. There’s no clear distinction in the syntax between the
loop parameter thatdrivesthe loop (rest), and the loop parameter
that accumulates the loop’s final value (result). Since both driver
and accumulator are lists, if we slip up and swap the two update
forms in one of our four tail calls, we won’t get a type error (at run
time in Scheme, or at compile time in the analogous SML variant),
so the bug would be tricky to catch. As loop variables proliferate
in more complex loops, and loop size increases, separating looping
calls from the binding sites, this error becomes easier and easier
to make. The interactions between the control structure of the fast-
path tests and the environment structure imposed by lexical scope
cause the loop’s indentation to drift off to the right of the page.

The technology we’ll be developing in this paper allows us to
create cleaner sub-languages that can be embedded within Scheme
that are specifically designed to express iteration. Using a loop form
of this sort, we can write the same loop as shown on the right side
of the figure. Even without going into the details of the various
clauses (a grammar for the loop form is shown in Figure 3), it’s
fairly clear to see the high-level structure of the loop. It’s clear that
we are iterating over a list, that we have two fast-path tests, that
we are bindingy andz to the results of intermediate computations,
and that we are accumulating the results into a list. The fact that
the rightward-drifting/nested indentation of the original code has
aligned into a vertical column is a hint that our control and envi-
ronment structuring has been brought more closely into alignment.

The real payoff from specialised loop forms comes when we
decide to alter the code. Suppose we wish to change our example
so that the loop’s input is provided in a vector instead of a list. Al-
though this is conceptually a single element of the loop’s structure,
the relevant code that must be altered in the low-level tail-call ver-
sion of the loop is spread across the entire loop, interwoven with
the rest of the code. Figure 2 shows the new loop; you are invited



(letrec
((loop (λ (rest result)

(if (null? rest)
(reverse result)
(let ((x (car rest)))
(if (p? x)

(let ((y <verbose code using x>))
(if (q? <verbose code using y>)

(let ((z <verbose expression>))
(loop (cdr rest)

(cons <z expression>
result)))

(loop (cdr rest) result)))
(loop (cdr rest) result)))))))

(loop l ’()))

(loop (for x in l)
(when (p? x))
(bind (y <verbose code using x>))
(when (q? <verbose code using y>))
(bind (z <verbose expression>))
(save <z expression>))

Figure 1. A loop expressed directly with tail calls and by means of a loop form. The loop form disentangles the distinct conceptual elements
of the iteration.

(let ((len (vector-length v)))
(letrec ((loop (λ (i result)

(if (= i len)
(reverse result)
(let ((x (vector-ref v i)))

(if (p? x)
(let ((y <verbose code using x>))
(if (q? <verbose code using y>)

(let ((z <verbose expression>))
(loop (+ i 1)

(cons <z expression>
result)))

(loop (+ i 1) result)))
(loop (+ i 1) result)))))))

(loop 0 ’())))

(loop (for x in-vector v)
(when (p? x))
(bind (y <verbose code using x>))
(when (q? <verbose code using y>))
(bind (z <verbose expression>))
(save <z expression>))

Figure 2. Using tail calls, small design changes induce large code changes; with loop forms, small design changes require small code
changes.

to hunt for the eight distinct changes scattered across the fifteen
lines of code. If, however, we use a dedicated loop form, the sin-
gle change to the loop’s spec requires a single change to the loop’s
code. The loop-form version allows us to modularly construct the
loop by separately specifying its conceptual elements.

When we increase the complexity of our loops, the problems
associated with using direct tail calls to express iteration get worse.
Multiple nested loops, “Knuth-style” exits occurring in the middle
of an iteration, multiple iteration drivers or accumulators, and other
real-world coding demands all increase the confusing complexity
of this approach.

In short, tail calls andλ forms make great “machine code” for
expressing a computation at a low level. But they are not good
software-engineering tools for programmers to express an iteration.

Additionally, the problem is not handled by the use of higher-
order functions such asmap andfold to capture patterns of itera-
tion. While these functional control abstractions can capture simple
loops, they don’t scale gracefully as loop complexity grows. For ex-
ample,map is fine if we wish to accumulate a list. . . but not if some
elements of the iteration don’t add elements to the result (as is the
case in our example above). We can usefold to iterate across a
list. . . but what do we use when we wish to iterate across a list,
and increment an index counter,andsequence through a compan-
ion vector in reverse order? Loop forms let us compose these loops
easily by adding driver clauses in a modular fashion; functional ab-
stractions do not compose in this way.

For these reasons, programmers in the Lisp family of languages
have long resorted to loop-specific forms of the kind employed on

the right-hand side of the examples above. Common Lisp, Zetalisp,
and Maclisp all had loop forms more or less along the lines of the
one we showed. Common Lisp’s form is a particularly powerful
and baroque example of the genre. It’s notable, however, that this
style of loop macro has never made much headway in the Scheme
community.

2. The problem with loop macros
The critical problem with loop macros is the difficulty of providing
a clear, well-defined definition of scope for the variables and ex-
pressions introduced by the clauses. A careful reading of the Com-
mon Lisp documentation for its loop form [18, paragraph 6.1.1.4]
reveals the following somewhat embarrassing non-specification
(bold-face emphasis added):

Implementations can interleave the setting of initial val-
ues with the bindings. . . . One implication of this interleav-
ing is that it isimplementation-dependentwhether thelex-
ical environmentin which the initial value forms . . . are
evaluated includes only the loop variables preceding that
form or includes more or all of the loop variables

In the commentary that accompanies the specification, Pitman’s
discussion [12] makes the ambiguity explicit (again, bold-face em-
phasis added):

Theseextremely vague phrasesdon’t really say much
about the environment, and since they don’t say what goes
into the let or the lambda, or even how manylet or
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loop ::= (loop lclause ...)

lclause ::=
(initial (vars init [step [test]]) ...)

| (before exp ...)

| (incr i from init [to final] [by step])
| (decr i from init [to final] [by step])

| (previous pvar var init1 ... initn)
| (repeat n)

| (for x in list [by step-fn])
| (for l on list [by step-fn])
| (for c in-string s [option ...])
| (for x in-vector v [option ...])
| (for i in-string-index s [option ...])
| (for i in-vector-index v [option ...])
| (for x in-file fname [reader reader])
| (for x from-port exp [reader reader])
| (for x input [reader])

(continued)
| bclause

| (after exp ...)
| (result exp1 ... expn)
| (save exp)

bclause ::= ; Body clause:
| (while exp) ; Controls loop
| (until exp) ; termination
| (when exp) ; Controls single
| (unless exp) ; iteration
| (do exp1 ...) ; For side effect
| (bind (vars1 exp1) ...)
| (subloop lclause ...) ; Nested loop
| (if exp bclause [bclause])

options ::= incr | decr | index i
| from init | to final | by step

Figure 3. Partial grammar for the loop form—necessarily partial, as the clause set is extensible by means of the Scheme macro system.

lambda forms are involved, theydon’t really say much
at all.

Further, thevague statementon p8–85 about how
let+setq might be used to implement binding leaves an
unusually large amount of latitude to implementations.

The source of the problem is that a single clause in a loop form
can cause parts of the clause to be inserted into multiple places in
the resulting code. For example, theinitial clause in the loop
form

(loop ...
(initial (i 0 (+ i 1)))
...)

initialises loop variablei to 0, and then increments it on each fol-
lowing iteration. Thus, it introduces the expression0 into the loop’s
prologue and the expression(+ i 1) into the loop’s update sec-
tion, which occurs at an entirely distinct position in the expanded
code. This makes it problematic to define scope in terms of the
order in which clauses occur in the loop form. If clausea occurs
before clauseb, a ’s late code fragment may come afterb’s early
code fragment, but beforeb’s late code fragment. Thus clause or-
der cannot be used to establish some kind of scope order. Lack of
a coherent, unambiguous scoping principle is not acceptable for a
programming-language construct.

This difficulty in providing a clear specification for variable
scope is, I believe, the primary reason Lisp-style loop forms have
not been provided in Scheme. When we wish to make our loop form
extensible, by allowing programmers to define their own clauses
using Scheme’s macro system, the problem becomes even more
difficult.

3. The essence of lexical scope
The lexical-scoping rule of theλ-calculus provides two important
properties for programmers. First, it allows a programmer to select
a variable name for a local piece of code without needing global
knowledge of the program. For example, if a programmer wishes
to write a three-line loop somewhere in a program, he can selecti
as an iteration variable without having first to scan the entire pro-
gram to ensure thati is used nowhere else. We can have multiple
variables with the same name, locally disambiguating references to
the shared name using the rule of lexical scope.

While important for humans, this property is not a “deep” prop-
erty. Suppose we dispensed with it by defining a variant of theλ-
calculus that required every variable declared in the program to
be unique. This would cause no reduction in the computational
power of the language; it would still be Turing-complete. A com-
piler or other program-manipulation system would have no prob-
lems analysing or otherwise operating on programs written in such
a language.

The second property provided by classical lexical scoping,
however, is a more generally useful one: definitions (or bindings)
control-dominate uses (or references). That is, in a functional lan-
guage based on theλ-calculus, we are assured that the only way
program control can reach a variable reference is first to go through
that variable’s binding site. We have a simple static guarantee that
program execution will never reference an unbound variable. If
this seems simple and obvious, note that it is not true of assem-
bler or Fortran: one can declare a variable in a Fortran program,
then branch around the initialising assignment to the variable, and
proceed to a reference to the variable. Further, if we are casting
about for a general principle on which to base a language design,
the simpler and more obvious, the better.

4. BDR scope
In the previous section, we established that the lexical-scope rule
of the classicλ-calculus, which we’ll call “LC scope,” implies an
important property: it ensures that binders dominate references.
The key design idea that serves as the foundation for our extensible
loop form is to invert cause and effect, taking the desired property
as our definition of scope. This gives us a new scoping rule, which
we call “BDR scope.”

The BDR scoping principle can be informally defined in a
graphical context. Suppose we have a control-flow graph. Each
vertex represents a unit of computation, or “basic block;” there is
a designated start vertexv0; edges in the graph connect a vertex
to its possible control successors. We additionally decorate each
edgee with a set of identifiersvse. The total set of all identifiers
occurring on the edges of the entire control-flow graph are called its
loop variables. The execution model is that when control reaches
a vertex, we perform the computation associated with that vertex.
This computation culminates by (1) selecting one of the vertex’s
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cfg ::= (let* ((l1 cfg1) ...) cfg)
| (letrec ((l1 cfg1) ...) cfg)
| (go l)
| (do proc (vars1 cfg1) ...)
| (indep ((vars1 exp1) ...) cfg)
| (permute ((l1 cfg1) ...) cfg)
| (permute/tail ((l1 cfg1) ...) cfg)

l ::= ident
vars ::= (ident ...)
proc,exp ::= Scheme expression

Figure 4. The CFG language

out edgese, and (2) providing new values for the loop variables
vse on edgee. We update these variables to the new values, and
control proceeds along edgee to the next vertex. Note that this is a
model that permits variable updating—that is, the value associated
with a variable can change over time.

In our graphical model, the BDR scoping rule is this: vertexv
is in the scope of loop variablex if every path from start vertexv0

to v has some edge that definesx . If there is some way to get tov
without definingx , thenx is not visible at nodev .

As we’ll see, BDR scope is purpose driven for its intended
application:

• It is chosen for application in an iterative, first-order context.
• It permits multiple updates to a given variable.
• It integrates with classic LC scope. That is, it allows us to

specify the individual computations in the CFG’s vertices with
fragments of a standard, LC-scoped language, and then embed
the entire CFG itself as a fragment within a larger program
written in that LC-scoped language. This is precisely what we
want for our intended use as an embedded Scheme macro.

• Scope is now an ensemble property of the entire control-flow
graph. Thus we can stitch together fragments of a CFG from
multiple sources (in our case, multiple clauses of a loop form),
and then get a coherent scope story from the resulting graph.

In short, with the BDR rule, scope proceeds naturally from control.

5. The CFG language
The larger design picture is that we define our loop form by fixing
a general iteration template; for our loop form, this template will
have eight blocks (e.g., an initialisation block, a per-iteration condi-
tional top-guard block, a body block, an update block, a finalisation
block,etc.). Each clause in a loop form will be a Scheme macro that
expands into a small set of graph fragments, with each fragment tar-
geted to one of the eight blocks in the general loop template. The
loop form will collect the fragments from all the loop clauses, and
insert them into the template, stitching them together into a com-
plete loop, whose control and environment structure are given by
its explicit control structure and its associated, control-determined
BDR scoping rule. This graph is then translated by the macro into
Scheme code.

The first step in this design is to make concrete a language for
specifying control-flow graphs in composable fragments. We do
this with the CFG language, shown in Figure 4. The CFG language
has two independent name spaces, for bindingcode labelsandloop
variables:

• Code labels

name graph vertices;
are bound withlet* andletrec,
referenced with(go l),
and scoped with standard LC scope.

{z}

cfg1 cfg2

{x,y}

proc

Figure 5. Individual vertex encoded as CFGdo form.

• Loop variables

name data values;
are defined on edge transitions,
referenced by the internal computations of the graph ver-
tices,
and scoped using BDR scope.

Note that labels are not first-class, expressible values.

5.1 Specifying individual vertices withdo forms

The basics of loop-variable handling are specified with the CFG
do form, which is used to define a single vertex in the CFG and
its outgoing edges. If the vertex hasn outgoing edges, then edgei
has attached loop-variable setvarsi and leads tocfgi. For example,
Figure 5 shows, in graphical form, ado form that specifies a vertex
with two exit edges. If the vertex’s computationproc chooses to
exit along its first edge, it must provide two values which are used
to update loop variablesx andy before proceeding tocfg1. If it
exits along its second edge, it must provide a single value, which is
used to updatez before proceeding tocfg2. The vertex’s computa-
tion is expressed as a Scheme expressionproc (typically alambda
expression). When control transfers to this vertex, theproc expres-
sion is evaluated in a Scheme lexical scope that “sees” the current
bindings of all loop variables in the BDR scope of this vertex. This
evaluation produces a Scheme procedure, which is applied ton pro-
cedures, each representing one of the vertex’sn exit edges. When
the computation represented byproc is finished, it proceeds by tail-
calling one of these exit-edge procedures, passing as parameters the
new values for that edge’s associated loop variables. It is an error to
call an exit procedure in a non-tail position relative toproc’s appli-
cation.1 So, for example, if we want to encode a fragment of graph
structure that updatesx to be its absolute value and then jumps to
the vertex named by graph labelnext, we can write the following
CFG form:

(do (λ (e1 e2) (if (< x 0)
(e1 (- x))
(e2)))

((x) (go next)) ; Edge 1
(( ) (go next))) ; Edge 2

This assumes that thedo form executes in a loop-variable scope
that includesx, and a label scope that includes labelnext.

1 We could eliminate this errorful possibility simply by specifying the exit
procedures to be real Scheme continuations produced bycall-with-
current-continuation. Conceptually, that is what they are: continua-
tions. As a matter of engineering pragmatics, however, we can usually rely
on a compiler to handle functional tail calls efficiently, while continuation
creation and invocation remains a significantly heavier weight operation for
many Scheme compilers. Since all this control structure happens behind the
scenes, hidden by the surface syntax of loop-clause macros, it isn’t visible
to the application programmer in any event—it is solely the province of the
meta-programmer who designs and implements the loop clauses.
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cfg

(g x)(f y)

(odd? x)

y:=x*x

y:=x+1

(let* ((lj cfg) ; Join point
(la (do (λ (e1) (f y) (e1))

(() (go lj))))
(lb (do (λ (e1) (g x) (e1 (* x x)))

((y) (go lj)))))

(do (λ (e1 e2) (if (odd? x)
(e1 (+ x 1))
(e2)))

((y) (go la))
(() (go lb))))

Figure 6. A diamond control structure, rendered as a control-flow graph and as a term in the CFG language.

We specify a final or halting vertex in the control-flow graph
simply by means of ado form that has no successor edges. In this
case, the Scheme procedure halts the computation by returning in-
stead of ending in a tail call. For example, if control ever reaches
the vertex(do (λ () 42)), the CFG computation finishes, pro-
ducing a final value of 42.

5.2 Composition: snapping together CFG fragments with
label capture

The CFGlet* form provides sequential lexical scoping for loop
labels analogously to the Schemelet* form; this permits us to
construct DAGs in our control-flow graph. Similarly, theletrec
form allows circular binding of labels, so that we can construct
graphs containing cycles. What’s important about the particulars
of this syntax is that we can use the LC scoping rule for loop labels
to “wire up” fragments of graph structure. That is, if a CFG term
represents a chunk of graph structure, then a free label—referred to
by some internalgo form but not bound by the term—expresses a
“dangling” edge for the subgraph. If we embed the term within an
outer CFG term that binds the free label, we provide a connection
for the dangling edge.

For example, suppose we construct three arbitrary CFG terms,
using the convention that each term jumps to a free labelp (for
“proceed”) when it is done. Some CFG processor would like to
wire the three terms together in series, so that whencfg1 jumps to
p with a (go p) sub-form, we transfer control tocfg2; likewise,
whencfg2 jumps top, we transfer tocfg3. We do this by inserting
the three fragments into the label-capturing template

(let* ((p cfg3)
(p cfg2))

cfg1)

As we’ll see, this is how the fragments of control structure pro-
duced by the individual clauses of a loop form are snapped together
into a complete loop.

5.3 Dominance trees and LC label scope

As a slightly more ambitious example, suppose we have a “dia-
mond” control structure, as shown in Figure 6. The program tests
loop variablex. If it is odd, we branch to the left child vertex (la-
belled la in the textual form), updating variabley to x+1. That
vertex performs the Scheme call(f y), presumably for side-effect,
then jumps to the join point, labelledlj. If, however,x is even, then
control branches to the right child (labelledlb), doing no variable
update. This vertex performs the Scheme call(g x) for side-effect,
then branches to the join point, bindingy to the square ofx at the

lj jump. Note that the join point is in the scope of loop variabley,
since all paths to it definey.

Consider the control-dominator tree for the graph in Figure 6.
The immediate dominator of verticesla, lb andlj is the initial
(odd? x) vertex. Note that this dominator tree is expressed di-
rectly by thelet* structure of the CFG term; this is ensured by
the LC scoping used for code labels. If two vertices wish to jump
to a common successor (such as thelj join point in our example),
that successor must be bound to a label by alet* outside/above
the two vertices. It is a general property of the CFG language
that the binding structure of the labels provides a conservative ap-
proximation to the control-dominator tree—which means that al-
gorithms that process CFG terms don’t need to bother performing
complex dominance-frontier calculations to determine the control-
dominance relation. This is an intriguing contrast with other first-
order, “flat” control representations, such as SSA.

5.4 Scope independence and control nondeterminance

The core CFG formslet*, letrec, go anddo capture the idea
of textually expressing a control-flow graph that can be com-
posed in a structured way. The remainingindep, permute and
permute/tail forms are included in the language to allow us to
compose graph structure in ways that insulates the parts from one
another. Theindep form allows us to do parallel updates to loop
variables. Each Scheme expressionexpi is evaluated in the loop-
var scope of theindep form. Theexpi expression must produce as
many return values as there are loop variables in thevarsi binding
list. After all the expi expressions have been evaluated, we bind
the values to the variables in thevarsi binding lists. The different
binding lists must be disjoint. Thus noexpi “sees” the variable
updates made by any otherexpj .

The permute forms allow for non-deterministic control permu-
tation (Figure 7). When control reaches a

(permute ((l1 cfg1) ...) cfg)

form, the machine may arbitrarily permute the sequence ofcfg i

terms. Then these terms are wired together in the permuted se-
quence; incfgi, a reference to labelli is connected to the next
clause in the sequence; the final clause has itsli label connected
to the body of thepermute form, cfg .

Since variable scope in the CFG language is a function of
control structure, the relaxed control spec for apermute form
has a corresponding effect on its environment structure. Since any
clause can come first in the dynamic execution order of the form,
the updates performed by the other clauses do not contribute to
the scope ofcfg i—but theydo contribute to the scope of the final
cfg clause. However, note that if the entirepermute form is in the
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(let* ((join (permute ((l1 cfg1)
...
(lk cfgk))

cfg))
(left (permute/tail ((l1 cfg1)

...
(li cfg i))

(go join)))
(right (permute/tail ((l1 cfg1)

...
(lj cfgj))

(go join))))
...)

...

l1

cfg1

...

l1

cfg1

...

l1

cfg1

cfgn

li

cfgj

lj

cfgk

lk

Figure 8. Tail-permute allows interpermuting across join points.

(permute ((l1 cfg1)
...
(ln cfgn))

cfg)
...

l1

cfg1

cfg

cfgn

ln

Shuffle
cfg i

on entry

Figure 7. Thepermute form allows its constituentcfgi terms to
be executed in a non-deterministically permuted order before pro-
ceeding to the finalcfg term. Eachcfgi term is threaded forwards
to the following terms by means of the associatedli exit label.

scope of loop variablex, then all the clauses are in the scope ofx,
and so an update tox performed by sub-graphcfgi will be visible to
all clauses that dynamically come after its execution. (This can be
useful when two permutable updates to the same variable commute
with one another, such as adding two elements to a common set.)

Finally, the permute/tail form allows for permutable se-
quences to extend across join points (Figure 8). The bodycfg
of a permute/tail form is restricted to be (1) apermute or
permute/tail form, (2) a (go l) form that references a le-
gal permute/tail body, or (3) alet* or letrec form whose
body is a legalpermute/tail body. When control reaches a
permute/tail form, we chase down the chain ofpermute/tail
forms that begin with this one until we reach the terminating
permute form. The clauses of all of these forms are then permuted
together to assemble the sequence to be executed.

The semantic specification ofpermute and permute/tail
does not mean that an implementation is required to flip coins
and shuffle blocks of control structure at run time. A typical im-
plementation will freeze the sequence order of the relevant sub-
terms at compile time. However, even if the order of execution is
so frozen, the variable scoping retains its permutation-restricted se-
mantics. The reasons for the permutable semantics are (1) isolating
sub-terms from each other’s scope contributions and (2) allowing
the higher-level macros that produce the components to be given

an order-independent control and scope semantics. We’ll see how
permute andpermute/tail forms contribute to loop construction
in following examples.

6. The LTK language and the loop template
Recall the point of the CFG language: it allows separate clauses
in the loop form we are designing to provide pieces of control
structure that can be plugged into a master template to assemble
a complete loop. The general loop template is shown in Figure 9,
along with the corresponding grammar for the “Loop Toolkit”
(LTK) language we use to specify pieces of control-flow graph
tagged with their destination in the template.

By design contract, the macros that produce component pieces
of CFG structure to be inserted into the loop template specify
control linkages by generating CFG terms that have up to three
free labels:p, s andf. Jumping to ap label is used to “proceed”
with normal execution of the loop; jumping to ans label is used
to “skip” to the next iteration of the loop; jumping to anf label is
used to “finish” or terminate the loop.

The semantics of the distinct components of the loop template
are as follows:

• Init
The init block contains the parts of the loop prologue that
should execute unconditionally. Each such CFG form should
have a single free label,p, used to string multipleinit compo-
nents together; jumps tos andf labels are not allowed.

• init-guard
The init-guard block contains loop-initialisation code which
may cause the loop to terminate with no iterations at all. An init-
guard CFG term may have references to free labelsp or f (but
not s). Thef references in the init-guard CFGs are connected
to the finish block, while thep labels are used to continue
executing the other init-guard terms before proceeding to the
top-guard block.

• Top-guard
The top-guard block contains fragments that perform the per-
iteration termination tests that should occur at the beginning of
each iteration. The individual cfg terms are allowed to refer to
freep andf labels, with thef labels jumping to the finish block,
and thep labels being used to string together the various top-
guard cfgs.
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init

init−guard

top−guard

body

update

bottom−guard

finish

result

ltk ::= (init cfg)

| (init-guard cfg)

| (top-guard cfg)

| (body cfg)

| (update vars exp)

| (bottom-guard cfg)

| (finish cfg)

| (result exp)

Figure 9. The loop template and its corresponding LTK language. Dotted lines indicate permutable sequences.

• Body
The body block contains the fragments that are intended to
comprise the per-iteration body of the loop. Besidesp andf
labels, these fragments are also allowed to refer tos labels,
which are connected to short-cut transfers to the update block,
causing execution to skip the rest of the body block.

• Update
The update block is for performing loop-variable updates.
These independent update components are composed together
using anindep CFG term, thus causing updates to be done in
parallel.

• Bottom-guard
The bottom-guard block is the location for bottom-of-the-loop
per-iteration termination tests and conditional updates. Bottom-
guard cfgs are connected into the template using theirp andf
labels.

• Finish & result
The finish block is for wrap-up code, and the result block is
for the Scheme expression that provides the final value of the
loop to its containing Scheme expression. Finish cfgs may only
refer to freep labels. There can be only oneresult form in a
complete LTK program.

The three guard blocks—init-guard, top-guard and bottom-
guard—are constructed usingpermute andpermute/tail to as-
semble the block from its respective LTK components. This means
that scope-introducing guard clauses are order-independent, which
is important to allow loop clauses to have position-independent
scoping properties.

To give an idea for how we can use the LTK language to define
loop clauses, consider the loop form’sfor andincr clauses. The
loop clause

(loop ...
(for x in exp)
...)

causes variablex to sequence through the elements of the listexp.

We implement this by having thefor clause expand into the pair
of LTK forms:

;;; TMP fresh / X from FOR clause.
(init (do (λ (e) (e exp))

((tmp) (go p))))
(top-guard (do (λ (e1 e2) (if (pair? tmp)

(e1 (car tmp)
(cdr tmp))

(e2)))
((x tmp) (go p))
(() (go f))))

where the loop variabletmp is a fresh variable generated using
Scheme’s hygienic macro system. This use of hygiene illustrates
a general principle behind the definition of loop clauses. Private,
intra-clause state, that must be communicated between, for exam-
ple, theinit andtop-guard blocks of code produced by a single
clause is managed by having the macro producing the LTK forms
create a fresh variable (such astmp) and insert it into both LTK
forms. Because this variable is fresh, it cannot clash with or be ref-
erenced by code produced by any other loop clause. The same is
true of the exit-edge Scheme variables bound by theproc subform
in a do CFG term (e, e1 ande2 in the example)—these variables
are typically fresh variables created by the macro that constructs
thedo term around code taken from a loop-clause term, which was
written by the original author. Thus these exit-edge variable bind-
ings can’t accidentally capture variable references in the user code.
In contrast, the loop variablex is inter-clause state—presumably
the reason it is being defined in the loop’sfor clause is so that
some other clause can refer to it. We manage this kind of state,
linking the producerfor clause with a consumer clause, by means
of common reference to the same variable—in this case,x.

Notice that thefor clauseconditionallybindsx. Since it only
has a defined value if the source list is non-empty, its definition
happens below a conditional split in the clause’s CFG.

Similarly, consider a loop clause that steps a variable across an
arithmetic sequence, such as

(loop ...
(incr i from (* j j) to (- k 3))
...)
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(: ini1 ...
(let* ((f (: fin1 ... (do (λ () res)))))
(permute/tail ((p ig1) ...)

(letrec ((p (permute ((p tg1) ...)
(let* ((s (indep ((upvars1 upexp1) ...)

(permute/tail ((p bg1) ...)
(go p)))))

(: body1 ... (go s))))))
(go p)))))

; init
; finish & result
; init-guard
; top-guard
; update
; bottom-guard

; body

Figure 10. Putting it all together: inserting the LTK clauses into the master loop template to assemble a complete CFG. Comments on right
side indicate the LTK clauses providing the CFG terms inserted on each line. The(: cfg1 ...) form is syntactic sugar for thep-serialising
form (let* ((p cfgn) ... (p cfg2)) cfg1). Note how label scope for each individual form is restricted to the allowed linkages for the
LTK element.

Theincr clause creates a fresh identifierhi and then expands into
the trio of LTK forms

(init (do (λ (e) (e (* j j) (- k 3)))
((i hi) (go p))))

(top-guard (do (λ (e1 e2)
(if (< i hi) (e1) (e2)))

(() (go p))
(() (go f))))

(update (i) (+ i 1))

As with thefor clause above, theincr clause’s three LTK forms
are stitched into the loop template by means of their references to
freep andf labels.

7. Rotating loop tests and permutable loop blocks
We saw one possible definition of the(for var in list-exp)
loop clause in the pair ofinit andtop-guard LTK terms shown
above. But there is another completely reasonable definition we
could use, which rotates the conditional test back along the loop
template from the top-guard block into the init-guard and bottom-
guard blocks, replicating the code:

;;; (for var in list-exp)
(init (do (λ (e) (e list-exp))

((tmp) (go p))))
(init-guard (do (λ (e1 e2) (if (pair? tmp)

(e1 (car tmp)
(cdr tmp))

(e2)))
((var tmp) (go p))
(() (go f))))

(bottom-guard (do (λ (e1 e2) (if (pair? tmp)
(e1 (car tmp)

(cdr tmp))
(e2)))

((var tmp) (go p))
(() (go f))))

We might wish to definefor clauses this way to put the per-
iteration test at the bottom of loop, thus allowing the compiler to
save one branch instruction when generating assembler code for
the loop by combining the termination test’s conditional branch
with the branch that jumps back to the top of the loop. This is a
common compiler trick.

The problem is that we’ve changed the control-flow graph. Con-
trol structure, in our CFG model, determines environment structure.
So our CFG change induces a change in scoping. In the rotated def-
inition, var ’s definition is pulled up to the init-guard block, which
places top-guard code in the scope ofvar .

It’s a design problem that these two implementations of thefor
clause provide different variable scope—we’d like the meaning

of the loop to be invariant across the two definitions. We can re-
store semantic invariance by making the init-guard, top-guard and
bottom-guard elements all interpermutable. We do this by insert-
ing the init-guard and bottom-guard elements intopermute/tail
forms; these two blocks transfer control to the top-guard block,
which is constructed as apermute form. That is, suppose the
various clauses of a loop form producen init-guard LTK terms
(init-guard ig1) . . .(init-guard ign). Then the init-guard
block is

(permute/tail ((p ig1) ; permuted
... ; init-guard
(p ign)) ; elements

loop-top) ; top-guard permutes

Note how thep labels are bound by thepermute/tail form
to capture the exit of eachig CFG term. In turn, if the var-
ious top-guard LTK forms produced by the loop clauses are
(top-guard tg1) . . .(top-guard tgn), then the top-guard CFG
block is rendered as

(permute ((p tg1) ; top-guard block
...
(p tgn))

loop-body) ; body/update/bottom-guard blocks

Within the loop body, the bottom-guard elements are assembled
into apermute/tail just as the init-guard terms are; the init-guard
and bottom-guardpermute/tail forms share the same target, the
top-guardpermute form.

This means that when control arrives at the top of the init-guard
block, in principle, all the init-guard and top-guard terms are col-
lected together and permuted; we then execute the permuted se-
quence of tests. So definitions introduced by these terms do not in-
troduce scope visible by the other init-guard and top-guard clauses
(although their definitionsdo introduce scope for the loop body it-
self). Similarly, when control reaches the bottom-guard block, all
the bottom-guard and top-guard LTK terms are collected together
and interpermuted. Thus it doesn’t matter if a conditional test oc-
curs in the shared top-guardpermute block, or is replicated back
into the two init-guard and top-guardpermute/tail prefixes. A
loop-clause implementor can choose either implementation with no
change in the specified scope or control behavior.

If all this interpermuting seems a bit complex, bear in mind that
this is simply the hidden low-level semantics providing the building
blocks we use to construct the higher-level control and environment
fragments—the loop clauses—that the programmer actually uses to
construct a loop. These details ensure that these fragments “fit” to-
gether at the loop-clause level in a clean and modular way. In partic-
ular, allowing for control permutation provides order-independent
scoping that simplifies the semantics at the loop-clause level.

The complete template for the loop form is shown in Figure 10;
this is the graphical template of Figure 9 rendered as a CFG term.
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E, [[(let ((l1 cfg1)) cfg)]] ; E, [l1 7→ cfg1] cfg

E, [[(letrec ((l1 cfg1) . . .) cfg)]] ;

E,
�
li 7→ [[(letrec ((l1 cfg1)...) cfgi)]]

�
cfg

E, prim
prim−−→ (i, 〈v1, . . . , vj〉)

E,

2424(do prim ((x1,1 ... x1,k1) cfg1)
...
((xn,1 ... xn,kn) cfgn))

3535; E[xi,j 7→ vj ], cfgi

1 ≤ i ≤ n
j = ki

E, [[(permute () cfg)]] ; E, cfg

E, [[(permute (b1...bn) cfg)]] ;

E, [[(let ((li (permute (b1...bi−1 bi+1...bn) cfg))) cfgi)]]
wherebi = [[(li cfgi)]]

E, cfg ; E′, cfg ′

E, [[(permute/tail (b1 ...) cfg)]] ;

E, [[(permute/tail (b1 ...) cfg ′)]]

cfg is let
or letrec.

E,

2424(permute/tail (b1 . . .)
(permute/tail (b′1 . . .)

cfg))

3535; E, [[(permute/tail (b1 . . . b′1 . . .) cfg)]]

E,

2424(permute/tail (b1 . . .)
(permute (b′1 . . .)

cfg))

3535; E, [[(permute (b1 . . . b′1 . . .) cfg)]]

Figure 11. The transition relation for the dynamic semantics of the CFG language.

8. Formal semantics
By this point, we’ve had enough informal description and seen
enough examples to define a simple small-step operational seman-
tics, giving a precise meaning to the CFG language. We can rep-
resent a machine configuration as a term in the language plus an
environmentE giving the current values of the defined variables.
Note that the environment gives the values ofall variables defined
by prior execution, not just the ones in scope at the current control
point—we are not yet defining any notion of “loop-variable scope.”
We don’t need to define the language in terms of an actual graph,
because joins and cycles in the graph structure are defined by means
of labels, which are managed using the standard scoping mecha-
nisms of theλ-calculus. Thus a simple substitution model suffices
to “unroll” the term on demand as execution proceeds through the
control-flow graph. Unrolling is managed by means oflabel substi-
tutions: a substitution[l1 7→ cfg1, . . . , ln 7→ cfgn] is a map from
labels to CFG terms that is the identity function at all but a finite
number of elements in its domain. Label substitution is lifted to
CFG terms in the usual capture-avoiding way.

We also need a set of rules to model the primitive computa-
tions sited at the graph nodes (which is provided by the Scheme
code in thedo andindep forms of the concrete CFG language).
In our formal semantics, we model these computations with a
prim−−→ relation that relates an environment/primitive pairE, prim
to an edge-index/value-vector pair(i, 〈v1, . . . , vj〉). Such a rela-
tion means that if primitive computationprim is performed start-
ing with variable contextE, it finishes by producing the vector of
values〈v1, . . . , vj〉, and electing to proceed along exit edge #i. We
only modeldo in this semantics;indep is a trivial variant.

With these pieces in place, we can define our transition re-
lation ; with the schema shown in Figure 11. The relation is
fairly simple. The first two rules handlelet and letrec terms
by completely standard substitution steps, with the latter unrolling
the recursion once. Thedo rule simply fires the primitive com-
putation, then traverses the indicated edge, while making the in-
dicated loop-variable updates. The only rules of any real interest
are the remaining rules, forpermute andpermute/tail. These
assemble permutable items frompermute/tail chains, and non-
deterministically execute the elements.

The rules make it clear how completely the language is focussed
on control and environment manipulation. All the real computation

is left to the
prim−−→ relation; the CFG terms provide the control and

environment “glue” that connects the primitive computations. The
rules also show how closely the CFG language is related to CPS;
one indicator is their lack of recursion—note that the premise of
the first permute/tail rule is not truly recursive, but simply a
device for compactly writing down what would otherwise be a pair
of more verbose axiom schema (forpermute/tail terms withlet
andletrec bodies, respectively).

9. Types for scope
Something is missing from our dynamic semantics: scope. It ap-
pears nowhere in the schema for the; relation. The semantics, as
defined by these schema, simply runs each primitive computation
in the context of whatever definitions happen to have dynamically
occurred during the execution that led to that primitive’s particular
do form.
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Σ, ∆ ` ��(go l)
��

: σ

Σl = 〈σ′, δ′〉
σ′ ⊆σ
∆l⊆ δ′

Σ′, ∆′ ` cfg : σ Σ, ∆′′ ` cfg1 : σ1

Σ, ∆ ` ��(let ((l1 δ1 σ1 cfg1)) cfg)
��

: σ

Σ′ = Σ[l1 7→ 〈δ1, σ1〉]
∆′ = ∆[l1 7→ ∅]
∆′′= ∆ ∪ λ .δ1

δ1 ⊆ σ1

Σ, ∆1 ` cfg1 : σ1, . . .

Σ, ∆ ` ��(do σ′ proc (vars1 cfg1) ...)
��

: σ

∆i =∆ ∪ λ .varsi

σi = σ′ ∪ varsi

σ′⊂σ

Σ′, ∆′ ` cfg : σ Σ′, ∆′′ ` cfg1 : σ1

Σ, ∆ ` ��(letrec ((l1 δ1 σ1 cfg1)) cfg)
��

: σ

Σ′ =Σ[l1 7→ 〈δ1, σ1〉]
∆′ =∆[l1 7→ ∅]
∆′′=∆ ∪ λ .δ1

δ1 ⊆σ1

Figure 13. Scope-establishing type-judgement schema for core of type-annotated CFG language

tcfg ::= (let* ((l1 σ1 δ1 tcfg1) ...) tcfg)
| (letrec ((l1 σ1 δ1 tcfg1) ...) tcfg)
| (go l)
| (do σ proc (vars1 tcfg1) ...)

σ, δ ::= (ident ...)

Figure 12. Syntax of core type-annotated CFG language.

Recall our fundamental scoping principle: scope proceeds from
control. The semantics we’ve defined provides a control story; thus
it implies one for scope, as well. The scope of a givendo subterm
in a CFG is simply the set of loop variables that are defined on
every execution path to that subterm. With this definition, suitably
formalised, we can then restrict the premise of thedo rule so that a
prim−−→ computation is only provided the statically-guaranteed subset
of the dynamic variable environment at that point. That is, we can
run the primitive computation in its proper scope.

Once a complete CFG has been constructed, the task of trans-
lating it into Scheme is mediated by an analysis step that deter-
mines the scope of each program point. The results of this analysis
are used to annotate the CFG; these annotations guide the subse-
quent compilation step into final Scheme code. We can think of
this step as a type-inference step, where our types express the en-
vironment structure of CFG terms. However, the calculation does
not have the structure of standard control-dominance algorithms,
because we can use the lexically explicit label-scoping structure to
conservatively approximate the dominance tree.

To simplify the presentation, we first present the type system
for the core CFG language, without thepermute, permute/tail
andindep forms. The grammar of the type-annotated language is
shown in Figure 12. Essentially, we tag each label anddo form in
the language withσ andδ identifier sets:

σ: Varsdefinitelydefined (all paths) at this control point.
δ: Vars thatmight bedefined (some path) between labell’s binder

(i.e., l’s immediate dominator) and the labelled control point.

The basic type judgement depends on two type environments:

Σ : Lab → Scope ×Defs

∆ : Lab → Defs

Scope = P(Ident)

Defs = P(Ident)

Σ maps a label to the type information to which it is statically
bound. For a given control point,∆ maps a free label to the set
of variables that may have been defined onsomepath between that
label’s binding point and the given control point.

The basic type judgement establishing the scope of an annotated
term is

Σ, ∆ ` tcfg : σ.

The type judgement is defined with the schemas of Figure 13; the
let* and letrec rules are simplified to handle a single bound
label, but the generalisation to the full form is straightforward.

We extend the type system to handle permutable sequences by
extending theσ scope types to permit apair of loop-variable sets
(σpre σperm) to specify the type of apermute or permute/tail
context. When a term has such a type, it means that the term is
an element of apermute/tail chain. Theσpre set specifies the
scope that was visible at the start of the chain (and, hence, at each
sub-term of allpermute andpermute/tail forms in the chain),
while theσperm set specifies the extra scope being accumulated by
preceding elements of the chain to be eventually made visible to
the term at the end of the chain.

Examining the rules for the type system, it’s not hard to see that
it captures the notion of “variables that are defined on all paths to a
term.” To express this formally, we first extend the type judgement
to machine configurations, where the semantics is altered to operate
upon typed terms. We say that a machine configuration is valid,
written `E, tcfg , if [ ], [ ] ` tcfg : dom(E). That is, a machine
configuration is valid if its type—that is, its scope—is satisfied by
the current dynamic environment. The key theorem, then, is a kind
of preservation theorem:

THEOREM 1. `E, tcfg ∧ E, tcfg ; E′, tcfg ′ ⇒ `E′, tcfg ′.

The proof of the theorem is by induction on the justification
tree for the typing of thetcfg term, in the standard form for type-
preservation proofs. It relies on another straightforward lemma,
that label substitutions preserve type; again, this can be shown by
induction.

From our theorem, and the typing rule fordo forms, it follows
that if we execute a well-typed term in an initial empty environ-
ment, that whenever execution reaches ado form, every variable in
the form’s scope will have a definition in the current environment.
Thus we have a solid definition of static variable scope in terms of
our original BDR principle.
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While beyond the scope of this paper, we can perform a similar
formalisation to capture the meaning of theδ declarations.

10. Type-inference and type-directed translation
We infer the type annotations for a complete CFG term by assign-
ing a type variable to each position in the syntax where aσ or δ
should be, then recursing once over the tree to collect set-inclusion
constraints generated by the type schema, then propagating infor-
mation around the constraints to find maximal types.

Once we have performed the type inference, it is fairly straight-
forward to translate the annotated term to Scheme code. The com-
piler (a Scheme macro) is guided by theσ andδ annotations. A
labelled CFG point is translated to a Scheme variable let-bound to
a procedure, using the following conventions:

• We assume the procedure’s body is closed in a Scheme scope
that sees all loop variables in the term’s scope.

• The procedure has for its parameters all variables that might
have been defined/updated between the time the procedure was
evaluated and the time it is applied. This is exactly theδ set for
the label.

• A (go l) form is translated to a call tol’s Scheme procedure,
passing the current values ofl’s δ set as parameters.

To prevent variable capture, the Scheme variables used to name
control points in the generated code are fresh names.

Permutable sequences are compiled by means of maintaining a
parallel set of fresh Scheme variables for the loop variables, called
“shadow” variables. If variablex is in theσperm scope of a permute
chain, then a definition ofx that happens during execution of a
component of the chain is bound tox’s shadow variable, so that
subsequent elements of the chain do not see this binding. At the end
of the chain, all the newly introduced scope is exposed by binding
the newly introduced variables to their shadow-variable values.

The translation from a typed CFG to pure-functional Scheme
code is really just a kind of SSA conversion [9]. However, it’s much
simpler than standard SSA-conversion algorithms—a few dozen
lines of code suffice. One reason the translation is so simple is be-
cause, as we noted earlier, there is no need to compute dominance
trees. The dominance information directly encoded in the syntac-
tic structure and the type annotations provide all the information
needed for the translation. These properties of the CFG language
make it an interesting possibility for a compiler intermediate repre-
sentation in other settings.

11. Implementation
The current implementation is a fairly ambitious Scheme macro,
implemented using a mix of high-level R5RS macros [10] and low-
level Clinger-Rees “explicit renaming” macros [3]. It is comprised
of about 4500 lines of highly-commented code (about 2800 lines
excluding blank lines and comments). This breaks down, very
roughly, as follows:

1000 definitions of individual loop clauses
350 loop→ltk macro core
115 ltk→cfg macro
280 CFG AST, sexp/AST parsing & unparsing
320 CFG simplifier
890 type inference
420 tcfg→scheme compiler2

500 general utilities

2 I actually wrote three such compilers, of varying properties. The most
complex version is 420 lines; the simplest, 136. Again, about half these
lines counts are comments or blank lines.

Somewhat unusually for a Scheme macro, the CFG-processing
code does not operate on raw s-expressions. Instead, it parses the
incoming s-expression into an AST comprised of records, then op-
erates on the AST. This is just reasonable software engineering:
compilers of a certain complexity need real data structures for their
intermediate representations. The entire system is strongly modu-
larised by using the various languages as “hinge points.” As most
of the system is concerned with translating expressions in one non-
Scheme language to another non-Scheme language (e.g., between
loop clauses and LTK forms), the system makes tremendous use of
“CPS macros” [8], a style of macro useage which permits a Scheme
macro to target a non-Scheme language. Of the 83 macros defined
in the source, 75 are CPS macros.

I expect the line count to increase 50-100% before the pack-
age is released, for two reasons. First, the system works well when
the programmer makes no errors. But static semantics and espe-
cially syntax errors produce incomprehensible error messages. This
is due to the fact that little syntax checking is actuallyprogrammed
into the system; it mostly comes from the pattern-matching machin-
ery of the various CPS macros that process the language. Worse,
some errors won’t manifest themselves until multiple transforma-
tions have happened to the original form. This can be handled,
again, by reasonable software engineering common to any com-
piler: error checking must be performed as early as possible, and
as high in the language tower as possible. It is frequently the case
with robust, industrial-strength software systems for error-handling
code to dominate the line counts; the loop package is no different.
Adding the code to provide careful syntax checking and clear er-
ror messages is tedious but straightforward implementation work;
it will be required to turn the initial version into a tool that is gen-
erally useable.

Second, I have designed but not implemented a facility for de-
scribing general accumulators. These are provided by means of
BDR-scoped macros, allowing loop-clause writers to implement
“object-oriented” macros that obey a standard object protocol for
accumulators. The state of each accumulator is private to the defin-
ing loop clause, but can be tightly integrated with the rest of the
CFG loop state all the same, providing abstraction and modularity
without sacrificing performance.

12. Quicksort example
We’ve focussed on the CFG language in this paper, primarily be-
cause the underlying framework provided by the CFG language is
the chief intellectual contribution of the design. However, before
finishing, we should present at least one real example of the top-
level loop language in use. Here is in-place vector quicksort, writ-
ten in Scheme with the loop package:

(let recur ((l 0) (r (vector-length v)))
(if (> (- r l) 1)

(loop (initial (p (pick-pivot l r))
(i (- l 1))
(j r))

(subloop (incr i from i)
(bind (vi (vector-ref v i)))
(while (< vi p)))

(subloop (decr j from j)
(bind (vj (vector-ref v j)))
(while (> vj p)))

(until (<= j i))
(do (vector-set! v i vj)

(vector-set! v j vi))

(after (recur l i)
(recur (+ j 1) r)))))
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This example manages to pack a fair amount of control structure
into a few lines of code, containing one recursive function and
three distinct loops. Theloop form begins by initially binding three
variables: the pivot valuep, and the left and right indices of the
partition step,i andj. (The pivot selection is performed off-stage
by apick-pivot function.)

The body of the loop is comprised of four clauses: twosubloop
clauses, ado and anuntil clause. Asubloop clause is used to
perform a nested loop that shares loop variables with its containing
loop (this is easy to arrange, given that our CFG notation handles
general graph structure with no problem). The firstsubloop clause
stepsi from left to right, skipping over indices whose element
is less than the pivot value. On each iteration of the subloop,
we incrementi, then bindvi to the element of vectorv at that
index, then comparevi and the pivotp. (A fine point: thefrom
keyword causes anincr or decr clause to skip the first value; the
more common case of including the initial value is provided by
the alternate keyword:from. A similar variation with theto and
to: keywords that provide the final value allows a programmer
to specify closed, open, or half-open intervals. Thus the simple
mnemonic: including the colon includes the end point; leaving it
off, omits the end point.) Ifvi ≥ p, the subloop is terminated.
(Note one of the features of the loop design: a given loop can have
multiple while/until termination tests; each test is performed
where it occurs in the loop, interleaved with other body clauses.)
Thus, the subloop terminates withi bound to the leftmost index of
v whose element is greater than or equal top. Similarly, the second
subloop stepsj from right to left, terminating whenj reaches an
element ofv that is less than or equal top. The next clause in the
main loop body, theuntil clause, checks to see if the partition
indices have overlapped; if so, the partition loop is done. If not, the
loop continues on to thedo clause. Ado clause is a body element
whose embedded Scheme code is simply executed for side effect.
This particular one swaps the two elements at thei andj indices,
after which the loop proceeds to the next iteration. (Note that the
swap code executes in the scope of thevi andvj bindings, since
they occur before the termination tests of their respective subloops.)
When the partition loop is done, itsafter clause recurs on the two
segments of the partition.

13. Related work
Iteration is one of the fundamental things programmers do; as a
result, there is a wealth of related work on defining language forms
for specifying loops. Haskell’s list comprehensions [19] are one
alternative; Egner’s SRFI-42 [6] provides some of its ideas in a call-
by-value setting as “eager comprehensions.” However, SRFI-42 is
a more limited design than the loop form presented here. It does
not permit the construction of arbitrarily complex control structure
for its iterations. It’s not clear, for example, how one could use
the system to construct more than one result (e.g., a list and some
derived summary integer). On the other hand, limited notations can
frequently be clearer in their restricted domain of applicability.

One of the charms of working with systems based on macros is
their ability to incorporate further elements of specialised syntax.
For example, suppose we wanted to add a newin-table keyword
to thefor clause allowing database queries,e.g.:

(loop ...
(for row-vars in-table sql-query)
...)

We’d like to be able to use some s-expression form of SQL in the
query part of the driver clause, rather than encoding the query as a
string. One benefit is the increased static checking we get for our
uses of the specialised notation [4]; to quote a Perlis aphorism [11],
“The string is a stark data structure and everywhere it is passed

there is much duplication of process. It is a perfect vehicle for
hiding information.” Macros are just little compilers, which makes
them a powerful tool for programmers, allowing them to construct
software systems by the composition of little languages [13]. To
compare, we could not, for example, embed SQL notation into
a Haskell comprehension. Egner’s comprehension system, on the
other hand, does have this property of linguistic composability,
because it is also built with macros in an extensible manner.

Water’s LetS (later renamed OSS, later renamed simply “Se-
ries”) system [20, 21, 22, 18, 23] lets one write loops in an ex-
plicitly data-parallel style, rather like APL. The package attempts
to process the computation in an on-line manner, without allocat-
ing intermediate buffer structures. However, the reasoning required
to ensure on-line processing can be tricky and subtle. This critical
element of the design, in fact, went through a somewhat tortured
evolution in the history of the design, shifting over time from an
initial design that was carefully restricted to guarantee on-line pro-
cessing to a more general one that inserts temporary buffers into
the produced code where the macro is unable to resolve the depen-
dencies. Another issue with LetS/OSS iterations is that they don’t
nest.

APL [7] itself is an interesting model: it essentially replaces
“time-like” loops with “space-like” aggregate operations on multi-
dimensional arrays. This is a beautiful model; the cost of its el-
egance and simplicity, however, is the language’s complete aban-
donment of any attempt to guarantee that computations can be per-
formed on-line, without allocating potentially enormous intermedi-
ate collections.

There have been many designs for loop packages in the general
style of the one presented here. Besides Common Lisp’s official
loop facility [18], there is also theiterate package [1, 2], which
is similar, if somewhat cleaner. The top-level loop design presented
here traces back to the “Yale loop,” designed and implemented for
Maclisp at Yale in the early 1980’s. The Yale loop and the MIT
iterate form are quite similar. These Lisp packages typically are
not pure-functional, that is, they expand into code that side-effects
variables. This renders them unsuitable in language contexts that
do not permit variable assignment (i.e., most modern functional
languages), and is a significant barrier to optimisation even for
those languages that do. One of the contributions of the framework
provided by the CFG language is that it provides a variable-update
mechanism for iteration state that nonetheless still permits a purely
functional connection to the language with which it is mutually
embedded. This is a subtle design point, worth noting. Classic Lisp
loop packages all share the same issues with respect to variable
scope discussed earlier, as well.

14. Conclusion
The loop form presented here is an exercise in design that comes
from following a single foundational idea: describing iteration
structures using control-flow graphs, and letting the control-flow
dictate the scoping. The other novel elements of the system—the
compositional notation for encoding the control-flow graphs, the
concept of permutable sequences, and the use of a type system to
express scope—all flow from this core idea. By hewing consis-
tently to this concept, we obtain a system that enjoys an underlying
conceptual integrity, and this is what enables the framework to be
extensible.

While the implementation is sizeable, programmers do not have
to write multi-thousand line compilers themselves to take advan-
tage of the extensibility provided by the macro-based framework. A
programmer who is implementing, for example, a hash-table pack-
age, can add anin-hash-table keyword for the loopfor clause
to his module with about ten lines of code; clients of the package
can then easily iterate over hash tables with loop forms. By build-
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ing on the foundation provided by the CFG language, loop-clause
designers have a simple notational “interface” to the semantic struc-
tures of control and scope that the notation encodes, as well as the
(multi-thousand line) reasoning engines that process the notation.
This is the power of the “language towers” approach to extensibil-
ity.

Note, also, that programmers typically do not need to be aware
of the low-level scoping details of the CFG terms to which their
loop forms translate. This is a crucial design criterion. It’s not
enough simply to have a scoping principle that is well defined in
some formal sense. If a programmer were required to mentally
construct the full control-flow graph for a given loop and then solve
the associated dominance equations in his head, just to resolve a
scope issue, the system would bewell defined, but it would not be
ausefultool for humans.

Instead, loop programmersdo need to be aware of the general
eight-block loop skeleton, because the scoping of various parts
of loop clauses can be described in terms of this structure. For
example, a variable first defined in the top-guard block of a loop
is visible to the loop’s body block, but not its final block. In short,
the large-grain control structure of the loop skeleton constrains the
scoping of the loop clauses to simple structures. Again (to stress
the design message of this paper), this is no accident: the CFG
semantics was carefully designed to allow loop-clause designers
to provide scope and control semantics for their clauses in terms of
this simple, large-scale structure.
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at the University ofÅarhus for an informal workshop on aspects
of continuations and continuation-passing style representations.
This work was stimulated and refined by discussion with the other
participants: Andrzej Filinski, Mayer Goldberg, Julia Lawall and
Olivier. In Boston, similar discussions with Alan Bawden, Matthias
Felleisen, Greg Morrisett and Mitch Wand over extended periods of
time helped push this work forwards. I am also grateful to Olivier
for the invitation to spend the Fall of 2004 visiting at the University
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