
JFP 18 (5& 6): 821–864, 2008. c© 2008 Cambridge University Press

doi:10.1017/S0956796808006941 First published online 12 August 2008 Printed in the United Kingdom

821

Exploiting reachability and cardinality
in higher-order flow analysis

MATTHEW MIGHT

Diagis, LLC, Atlanta, GA, USA

(e-mail: matt@diagis.com)

OL IN SHIVERS

Northeastern University, Boston, MA, USA

(e-mail: shivers@ccs.neu.edu)

Abstract

We present two complementary improvements for abstract-interpretation-based flow analysis

of higher-order languages: (1) abstract garbage collection and (2) abstract counting.1 ,2 Abstract

garbage collection is an analog to its concrete counterpart: the analysis determines when an

abstract resource has become unreachable, and then, re-allocates it as fresh. This prevents

flow sets from joining during abstract interpretation, which has two immediate effects:

(1) the precision of the interpretation increases and (2) its running time often falls. In abstract

counting, the analysis tracks how many times an abstract resource has been allocated. A

count of one implies that the abstract resource momentarily represents only one concrete

resource. This knowledge, in turn, drives environment analysis, expanding the kind (rather

than just the degree) of optimization available to the compiler.

1 Introduction

Two complementary ideas lie at the core of this work:

1. An abstract interpretation can make more efficient use of the finitized resources

available by using the abstract analog to garbage collection.

2. By counting the number of concrete counterparts to an abstract resource,

equality in the abstract state-space can imply equality in the concrete state-

space.

In an abstract interpretation (Cousot & Cousot 1977), a smaller, often finite set of

abstract elements represents an infinite set of concrete elements. In both the concrete

space and the abstract space, some of these elements are addressed. When a concrete

machine runs out of fresh addresses to allocate, it can either abort execution or

attempt to garbage collect. However, when an abstract machine runs out of fresh

1 A preliminary version of this work is appeared in the 2006 Proceedings of the International Conference
on Functional Programming.

2 This material is based upon work supported by the National Science Foundation under Grants
No. 0638060 and 0438871.

822 M. Might and O. Shivers

addresses, the standard behaviour is to re-allocate an address already in use, thereby

forcing multiple abstract values to reside at the same slot in an abstract store. (In

fact, the analysis will frequently re-allocate an in-use abstract address even though

free addresses are still available.) By garbage collecting these abstract addresses –

setting the values associated with them back to empty sets – this merging is frequently

avoidable.

Abstract counting exploits the fact that each abstract address represents a set of

concrete addresses. By conservatively counting the number of elements in such a

set, a simple yet effective principle often applies when dealing with sets of size one:

if {x} = {y}, then x = y. Or, rephrased for our purposes, if two abstract addresses

â1 and â2 are equal and each represents only a single concrete address, then the

concrete addresses they represent must also be equal.

In an imperative setting, this principle yields a must-alias analysis. In a higher-

order setting, which is the focus of this paper, this principle yields an environment

analysis.

Let us review briefly the results of a flow analysis. A typical flow-analysis problem

is to associate each expression in a programme with a conservative set of the values

to which it may evaluate at run time. For example, on the following fragment,

(f i 0 a)

a flow analysis might produce:

• f is a closure over λ42 or λ314,

• i is an integer,

• 0 is the constant 0,

• a is an array which was allocated either on line 13 or line 217 of the programme.

Inherent in a flow analysis is the possibility of false positives, e.g. it may actually be

that the expression f never evaluates to a closure over λ314 at execution time.

Under variants of the standard 0CFA algorithm, these false positives happen

because flow sets for return values and parameters merge. The monotonicity that

irreversibly commits a traditional flow analysis to an expression-value association

once that association is made compounds such merging. For instance, consider the

following code:

(map f list-1)

(map g list-2)

Due to merging, 0CFA will conclude that the values flowing from (map g list-1)

might also flow from (map f list-2). As we will see, abstract garbage collection’s

strength comes, in part, from its ability to violate this monotonicity in a sound

fashion.

Abstract counting approximates, for each abstract state, how many concrete

resources each abstract address (which, in the coming model, includes both bindings

and store locations) represents. When an abstract binding or location has an upper

bound of one concrete counterpart, then the equality of this resource in the abstract

space implies the equality of whatever it represents in the concrete space. In addition,

Exploiting reachability and cardinality in higher-order flow analysis 823

counting can also answer less abstract questions, such as: ‘Given a variable, how

many instances of this variable can be live at the same time?’ Even in a first-order

language, this information could justify the globalization of otherwise stack-allocated

data, such as the variable n, and then, the parameter x in the following C code:

int foo(int x) {

int n = x*x;

foo(n);

}

=⇒
int n;

int foo(int x) {

n = x*x;

foo(n);

}

=⇒
int n, x;

int foo() {

n = x*x;

x = n;

foo();

}

In this example, the variable n is dead once the function foo is called, so the

same slot in memory can be used for all instances of the variable n. The same

argument applies to the parameter x, except that callers to foo must also place the

first argument in the global variable x.

In a higher-order language, this information opens up optimizations such as

super-β inlining. For example, suppose a flow analysis reports that at the call site

(f x) only closures over the λ term (λ (y) z) are invoked. Is it safe to inline this

λ term directly at this call site, turning it into ((λ (y) z) x)? The answer depends

on whether or not the value of the variable z captured in the closure will always

be the same as when the call is made. If abstract counting reports that only one

instance of the variable z exists at the time of the call, then clearly the binding of

the variable z captured in the closure and the binding of the variable z at the call

site are the same value, thereby making the inlining safe.

Before we begin, it is worth emphasizing the abstract-interpretive nature of the

forthcoming analysis, ΓCFA. Readers familiar with the constraint-based formulation

of k-CFA may be seeing this abstract-interpretive formulation for the first time, and

are advised to pay careful attention to the differences.

In this work, we use both the terms garbage collection and collecting semantics.

To avoid confusion, we will avoid using the term collecting or collection in an

unqualified context. We will use the term ‘GC’ when we mean something related to

garbage collection.

2 Conventions

For all of the domains used in this work, we assume the ‘natural’ meaning for the

lattice operator � as well as the relation �; that is, a point-wise lifting (for functions),

or an index-wise lifting (for vectors and tuples). We also assume an implicit and

appropriate top � and bottom ⊥ element for domains that need them. For a power

domain A = P(B), we define ⊥A = ∅ and �A = B; the order relation and join

operator are then

X �A Y iff ∀x ∈ X : ∃y ∈ Y : x �B y

X �A Y = X ∪ Y

The vertical bar ‘|’ operator denotes function restriction, i.e. f|X is the function

f defined at most over elements in the set X. When a function is applied to

824 M. Might and O. Shivers

Abstract Space

{x,y,z}

w

z

y
x

{w}

Concrete Space

Fig. 1. Collisions in the concrete-to-abstract map.

an element outside of its domain, it yields the bottom element, ⊥; thus, we get

dom(f) = {x : f(x) = ⊥}. The function free returns the set of free variables for a

given piece of syntax. We use boldface to denote vectors, i.e. d = 〈d1, . . . , dn〉. The

‘absolute value’ notation |x| should be read and interpreted as ‘the abstraction of x’.

The function f[x1 �→ y1, . . . , xn �→ yn] is the function f except that when applied to

xi, it yields yi. Operators are implicitly lifted point-wise over ranges for functions;

that is: if ⊕ : Y × Y → Y and f, g : X → Y , then f ⊕ g = λx.f(x)⊕ g(x).

3 The problem: Too many pigeons

During an analysis performed through abstract interpretation, it is typically the case

that an infinite, concrete space in which computation occurs is compressed into some

finite, abstract space. It is inevitable, then, that some elements of the abstract space

represent multiple elements of the concrete space (Figure 1). It is this overlapping

in the abstract that leads to imprecision in reasoning.

Example: Abstract integers To get a better feel for the problem, consider an

abstraction of the integers to their signs. The concrete set is the integers, �. The

abstract set is the power set of signs, �̂ = P({−, 0,+}). The abstraction map

| · | : �→ �̂ in this case is:

|z| =

⎧⎪⎪⎨⎪⎪⎩
{−} z < 0

{0} z = 0

{+} z > 0

The addition operator, + : � × � → �, abstracts naturally to the operator ⊕ :

�̂× �̂→ �̂. For example:

{0} ⊕ {0,+} = {0,+}
{+} ⊕ {+} = {+}
{+} ⊕ {−} = {−, 0,+}

{+,−} ⊕ {0} = {−,+}

Exploiting reachability and cardinality in higher-order flow analysis 825

Suppose we wish to analyse the expression 4 + −4 with an abstract interpretation.

To do so, we evaluate |4| ⊕ |−4| and get back {−, 0,+}. At this point, it is worth

noting several things:

• Had we simply evaluated 4 + −4 and then abstracted, we would have |4 +
−4| = {0}. That is, abstract interpretation strictly over-approximated, even

though a tighter answer was possible.

• The set {0} has only one concrete counterpart: 0. So, if we can find a tighter

way to do abstract interpretation, then the abstract interpretation may, in

some cases, yield the exact concrete result.

• Because {0} has only one concrete counterpart, it may act as if it were concrete.

That is,

{0} ⊕ ẑ = ẑ ⊕ {0} = ẑ

in which case, no precision is lost.

• When comparing abstract values, we cannot ordinarily infer the equality of

their concrete counterparts. That is,

|z1| ⊆ ẑ1 and |z2| ⊆ ẑ2 and ẑ1 = ẑ2 =⇒ z1 = z2

unless the abstract values correspond to one concrete element:

|z1| ⊆ ẑ1 and |z2| ⊆ ẑ2 and ẑ1 = ẑ2 = {0} =⇒ z1 = z2

This is the role of abstract counting: to determine when such an inference is

valid, chiefly by determining when the abstract resource under consideration

represents a singleton set – just as abstract 0 represents the set {0}.

Example: A traditional flow analysis This example looks at 0CFA (Shivers 1988;

1991) to highlight how overlap in the concrete-to-abstract mapping damages preci-

sion. The purpose of abstract garbage collection, presented later, is to opportunis-

tically alleviate such merging. Consider a traditional, constraint-based control-flow

analysis (Palsberg 1995) for the pure, call-by-value λ-calculus:

e, f ∈ EXP = VAR + LAM + APP (expression)

v ∈ VAR = a set of identifiers (variable)

lam ∈ LAM ::= (λ (v) e) (λ term)

APP ::= (f e) (application)

Starting with the concrete, environment-based semantics given in the left-hand

side of Figure 2, we can drop the environment component ρ and reformulate the

semantics to arrive at the control-flow constraints given in the right-hand side of

Figure 2. In this formulation, the expression a ≈> b reads as ‘b flows to a’, or more

precisely, ‘a may evaluate to a closure over b’.

For the control-flow constraints, the [apply] rule states: ‘If a λ term flows to the

procedural position of an application, and a value flows to the body of that λ term,

then that same value also flows out of the application’; the [eval-lambda] rule states:

‘A λ term flows to itself’; and the [eval-var] rule states: ‘If a λ term with formal v

flows to a call site, then whatever flows to the argument of the call site also flows to

the variable v’.

826 M. Might and O. Shivers

(f, ρ)⇒ ([[(λ (v) eb)]], ρ
′)

(e, ρ)⇒ d

(eb, ρ
′[v �→ d])⇒ (lam , ρ′′)

([[(f e)]], ρ)⇒ (lam , ρ′′)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ [apply]

⎧⎨⎩
f ≈> [[(λ (v) eb)]] eb ≈> lam

[[(f e)]] ≈> lam

(lam , ρ)⇒ (lam , ρ) [eval-lambda] lam ≈> lam

(v, ρ)⇒ ρ(v) [eval-var]

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
For every application term (f e):

f ≈> [[(λ (v) eb)]] e ≈> lam

v ≈> lam

Fig. 2. A concrete big-step semantics for call-by-value λ-calculus (left), and its control-flow

constraints for 0CFA (right). The variable ρ represents a variable-to-value environment.

The constraints for [apply] and [eval-var] help to illustrate why and where merging

happens. The constraint for [apply] merges all values flowing out of the body of a

λ term together, regardless of context, while the constraint for [eval-var] merges all

values flowing to the formal v together, regardless of context.

By finding the least relation ≈> such that the constraints in Figure 2 are satisfied,

the relation ≈> represents the flow-insensitive results of 0CFA (Shivers 1991).

Consider the following fragment of Scheme code:

(let* ((id (λ (x) x))

(unused (id lam)))

(id lam ′))

While analysing this fragment, 0CFA picks up the flow x ≈> lam from the call site

(id lam). Next, it picks up the flow x ≈> lam ′ from the body of the let*. Because

the variable x is the body of the identity function id, 0CFA thinks that the term

lam and the term lam ′ could be returned anywhere that the function id is called.

As a result, 0CFA tells us that the above fragment could yield a closure over either

the term lam or the term lam ′, when, in fact, only a closure over the term lam ′ is

possible.

The root cause of this loss in precision is the way in which 0CFA handles

environments under abstraction: all bindings to a given variable are merged together.

To alleviate this over-approximation, more sophisticated flow analyses arrange for

bindings made in different contexts (frequently called contours (Shivers 1988; 1991;

Wright & Jagannathan 1998; Jagannathan et al. 1998)) to be distinguishable from

one another. Shivers’ 1CFA (1991), for instance, uses a distinct abstract context

for each call site. That is, when a λ term is invoked at a call site, the context for

the binding made there is the call site itself. Agesen’s CPA (1995), on the other

hand, utilizes the types of the arguments for a contour. The main idea behind these

solutions is to create a finite set of abstract contexts in which bindings may occur.

As a result, only bindings sharing the same abstract context merge.

Exploiting reachability and cardinality in higher-order flow analysis 827

In the end, all of these approaches still suffer the same problem: the set of abstract

contours is finite, so some merging is inevitable for any nontrivial programme. Given

one of these finite sets, the purpose of abstract garbage collection is to make more

efficient use of it. It turns out that abstract garbage collection then generalizes to

other resources allocated during an abstract interpretation, including store locations,

closures, list cells and time-stamps.

4 Abstract garbage collection and counting

In abstract interpretation, the state-space of the computation, and everything

comprising it, is finite. Because addresses in the heap are members of that state-space,

they too are finite. Consequently, allocations during abstract interpretation draw on

that finite set of addresses, and, at some point (for any non-trivial programme), an

abstract address that is already in use will be re-allocated.

Abstract garbage collection tackles the issue of scarcity by trying to make more

efficient use of the abstract address space. As abstract addresses become unreachable,

the analysis discards them along with the resources or values which are reachable only

via the these newly discarded addresses. More precisely, when an address becomes

unreachable, the set of values associated with it is reset to the empty set. Such

behaviour is sound due to the principle that if an abstract binding has become

unreachable within a state, then so must have all of the concrete bindings that it

represents.

To help illustrate the concept, we will walk through several steps of execution

for a three-address concrete machine and its two-address abstract counterpart. We

use the more general term address to refer to entities such as bindings and store

locations.

The diagram below encodes the initial state of the configuration for these two

machines:

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

a3 â3

a2 â1,2

���������������

�� ���� �	val1 a1�� �� ���� �	cval1

Square-edged boxes represent addresses: a1, a2 and a3 in the concrete; â1,2 and

â3 in the abstract heap. In this particular example, address a1 and address a2

828 M. Might and O. Shivers

abstract to address â1,2, while only address a3 abstracts to address â3. Double boxes

represent addresses in the root set from the perspective of garbage collection; that

is, these are the addresses which are immediately touched by a machine state. For

the purposes of this example, assume that there is a single register r (and its abstract

equivalent r̂) whose contents decide the root set – that is, for these machines, the

root set is always a singleton. (One could view the register as pointing to the current

environment record.) Rounded boxes represent values. In this case, the value val1
is at address a1, and its abstract counterpart cval1 is at the abstract counterpart

of address a1: â1,2. The machine could wind up in this state after the following

pseudo-instructions:

*a1 ← val1

r ← a1

At present, the abstract heap is a simulation of the concrete heap: for every

concrete address to which a value is assigned, the abstract counterpart of that

address has an abstraction of that value assigned to it. Because the abstract heap is

a simulation of the concrete heap, this diagram is sound. It would be unsound if, for

instance, the value cval1 were not present at address â1,2 in the abstract heap.

For the first step of execution, assign the value val3 to address a3; that is, execute

the pseudo-instruction:

*a3 ← val3

In order to preserve soundness, we must assign its abstract counterpart cval3 to

address â3. Directly thereafter, shift the root pointer to address a3 in the concrete

heap (and, hence, to address â3 in the abstract heap), as a result of the following

pseudo-instruction:

r ← a3

This results in the following diagram:

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�� ���� �	val3 a3�� â3
���� ���� �	cval3

a2 â1,2

���������������

�� ���� �	val1 a1�� �� ���� �	cval1

Exploiting reachability and cardinality in higher-order flow analysis 829

At this point, if we had a garbage collector available in the concrete, it would remove

value val1 from the configuration. Moving forward, we shall see how garbage

collection (more precisely, abstract garbage collection) can actually improve the

precision of an abstract interpretation.

For the next step of execution, assign the value val2 to address a2. Shortly

thereafter, assign the pointer value a2 to address a3. That is, execute the following

pseudo-instructions:

*a2 ← val2

*a3 ← a2

Once again, for soundness, we mirror the changes in the abstract. This results in the

following diagram:

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

� ��� ��a2

���������������� a3�� â3
���� ���� �	â1,2

���������������

�� ���� �	val2 a2�� â1,2
����

���������������
�� ���� �	cval2

�� ���� �	val1 a1�� �� ���� �	cval1

In this diagram, the damage to precision that results when a concrete address space

is mapped to a smaller abstract address space is now apparent. In the concrete heap,

the address a2 points to value val1. The abstract interpretation that we have been

running simultaneously, however, now reasons that either value val1 or val2 could

be at address a2.

Part of the problem is abstract zombies. A zombie is an abstract value, which used

to be unreachable (dead), that has once again become reachable (undead). In this

diagram, the value cval1 has become a zombie. Zombies block optimisations such as

run-time check removal (e.g. if val1 were a cons cell and val2 were nil). They can

also increase the running time of the analysis. If, for example, the values cval1 and
cval2 were procedures, and the abstract interpretation were to invoke the procedures

sitting at address â1,2, the result would be a fork (Figure 3). Because forks further

damage precision, this degrades into a vicious merge-fork-merge cycle.

830 M. Might and O. Shivers

ς̂2.1
�� · · ·

· · · �� ς̂1

cval 1

����������

cval 2 ���
��

��
��

�

ς̂2.2
�� · · ·

Fig. 3. A fork during analysis due to imprecision.

Fortunately, abstract garbage collection kills zombies before they become undead.

Rewinding back to the pre-zombie configurations, we had:

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�� ���� �	val3 a3�� â3
���� ���� �	cval3

a2 â1,2

���������������

�� ���� �	val1 a1�� �� ���� �	cval1

Garbage collecting both the concrete heap and the abstract heap leads to:

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�� ���� �	val3 a3�� â3
���� ���� �	cval3

a2 â1,2

a1

Exploiting reachability and cardinality in higher-order flow analysis 831

Once again repeating the steps in the assignment of value val2 to address a2 and

pointer value a2 to address a3 results in the following configurations:

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

� ��� ��a2

���������������� a3�� â3
���� ���� �	â1,2

���������������

�� ���� �	val2 a2�� â1,2
������ ���� �	cval2

a1

In this final diagram, it is visually apparent that the abstract heap does not over-

approximate the concrete heap. That is, due to the garbage collection of abstract

zombies, no precision is lost. Before closing this example, note that in order for

abstract garbage collection to be sound, we must also perform concrete garbage

collection. If we garbage collect the abstract heap but not the concrete heap, there

will exist values in the concrete with no abstract counterparts – a technical violation

of soundness even if the concrete values are dead.

This exercise also suggests a way to improve the power3 of the analysis: abstract

counting. Re-run the example in this section, but with a count associated with each

abstract address, starting at 0. (The address â1,2 starts off at a count of 1.) Each

time an address is allocated (first used) in the concrete, increment the count of its

corresponding abstract address. When an address gets garbage collected, reset its

count to 0.

When an abstract address is freshly allocated, it corresponds to only one concrete

address. As a result, from the time in which an abstract address is freshly allocated

to the time in which it is re-allocated, we can treat the address and whatever it points

to as ‘concrete’. Moreover, in the interim, equality for the address in the abstract

heap implies equality for the corresponding address in the concrete heap.

By tracking the number of times an abstract address has been allocated and

re-setting the count to zero if it gets garbage collected, we have a mechanism

for performing environment analysis. We briefly review the utility of environment

analysis in Section 9.

3 We rank analyses on three axes: speed, precision and power. Speed refers to the running time of
an analysis. Precision, for a fixed class of questions, refers to both (1) the frequency with which an
analysis gives a definitive answer (‘yes’ or ‘no’ v. ‘maybe’) and (2) how tightly it constrains the set
of possible programme behaviours. For example, the flow set {lam42} is more precise than the flow
set {lam42, lam314}. Power refers to the class of questions which an analysis can answer. For example,
many algorithms can answer may-alias questions, but it takes a more powerful analysis to answer
must-alias questions.

832 M. Might and O. Shivers

5 Concrete semantics

In this section, we present a concrete, garbage-collecting semantics. Garbage col-

lection trims the internal structure of intermediate states of execution; this allows

its abstract interpretation (Cousot & Cousot 1977, 1979) to be similarly narrowed.

We point out that if all we cared about was the return value of a programme (e.g.

314), we would not add garbage collection to a semantics – a semantics maps a

programme to external observables; removing dead values via garbage collection

does not change these. The reward for adding garbage collection to a semantics is

entirely in the precision of the abstract interpretation.

Critical to our focus on higher-order languages, we extend the concept of garbage

collection beyond its traditional realm of the store, as our garbage collector operates

over environment structure.

5.1 Continuation-passing style

We define our analysis in terms of a continuation-passing style (CPS) representation.

Using CPS simplifies the mathematics we develop, reducing the analysis to no more

than its most essential ingredients. It is entirely possible to develop the analysis for

a direct-style language, but this requires extra machinery that distracts from the

presentation. As a side benefit, CPS will make handling control constructs such as

call/cc and exceptions simpler.

CPS is λ-calculus with a simple restriction: function calls do not return – they are

one-way control transfers. Instead of returning, each procedure p takes an additional

argument, another procedure known as p’s continuation. The contract for p is that it

will invoke the continuation supplied by the caller, passing it the ‘return’ value that

p computed. Thus, instead of writing

(* (+ w x) (- y z))

which would require the + and - procedures to return values to their calling context,

we write

(+ w x (λ (a) (- y z (λ (b) (* a b k)))))

where k is the continuation for the top-level multiplication. So, the new contract

for the - procedure is, ‘The procedure - takes three arguments: two numbers,

i and j, and a continuation k. It computes the difference i − j, and passes this

value to procedure k’. Thus, the continuation k passed to a procedure p encodes,

as a procedure, p’s calling context; the continuation represents ‘the rest of the

computation’ to be performed after p is done.

The procedures-do-not-return stricture is reflected in the grammar for CPS, which

differs from the traditional, or ‘direct-style’ λ-calculus in that:

• call forms may only appear as the body of a λ expression;

• λ expressions can only have call forms as their body; and

• the arguments to a call form must be variable references or λ expressions.

Exploiting reachability and cardinality in higher-order flow analysis 833

ς ∈ State = Eval + Apply

Eval = CALL× BEnv × VEnv × Time

Apply = Proc × D∗ × VEnv × Time

β ∈ BEnv = VAR ⇀ Time

b ∈ Bind = VAR × Time

ve ∈ VEnv = Bind ⇀ D

proc ∈ Proc = Clo + {halt}
clo ∈ Clo = LAM × BEnv

val ∈ Val = Proc

d ∈ D = Val

t ∈ Time = an infinite set of times (contours)

Fig. 4. Semantic domains.

A side-by-side view of their grammars highlights these differences:

Direct-Style λ-calculus︷ ︸︸ ︷
v ∈VAR ::= identifier

e, f ∈EXP ::= v

| (λ (v1 · · · vn) e)

| (f e1 · · · en)

CPS λ-calculus︷ ︸︸ ︷
v ∈VAR ::= identifier

e, f ∈EXP ::= v | lam

lam ∈LAM ::= (λ (v1 · · · vn) call)

call ∈CALL ::= (f e1 · · · en)
where v is a variable, a member of the syntactic set VAR.

5.2 An environment-based CPS semantics

Even though we could use an ordinary λ-calculus semantics to interpret CPS, its

syntactic restrictions permit a much simpler interpretation, one in which ‘function

call’ is explicitly modelled as a one-way control transfer.

The configurations of the small-step, environment-based semantics (Figure 5)

range over the state-space described by the domains in Figure 4. Two kinds of states

exist at the top level:

• Eval states. In Eval states, execution has reached a call site call in the context of

a local environment β and some value environment ve at time t . Computations

in this state await the evaluation of the function f into a procedure and the

evaluation of the arguments e1, . . . , en into values.

• Apply states. In Apply states, execution has reached the application of a closure

(lam , β), or the halt continuation, to arguments d1, . . . , dn. Execution proceeds

by extending the closure’s environment β with bindings for the formals in the

λ term lam , and making an update into the variable environment.

The semantics given in Figure 5 have been simplified and factored in several ways

to make reasoning about or abstracting the semantics simpler:

• Time-stamps. Each state contains a unique time-stamp. Making a transition

increments this time-stamp via the function succ : State → Time. The naturals

834 M. Might and O. Shivers

([[(f e1 · · · en)]], β, ve, t)⇒ (proc, d, ve, t′), where

proc =A(f, β, ve)

di =A(ei, β, ve)

t ′ = succ(ς)

(([[(λ (v1 · · · vn) call)]], β), d, ve, t)⇒ (call , β′, ve ′, t ′), where

β′ = β[vi �→ t]|free(call)

ve ′ = ve[(vi, t) �→ di]

t ′ = succ(ς)

Fig. 5. A small-step transition rule ς⇒ ς′ for CPS, with a factored environment.

suffice for the set Time for the purpose of defining the meaning of a programme.

For the purpose of proving the soundness of a particular analysis, it may be

convenient to use ordered sets other than the naturals. This is why the function

succ consumes the entire state and not merely the current time-stamp. The

orderedness of time permits chronological reasoning in proofs, and time itself

acts as a reliable source of ‘freshness’. That is, for some strict partial order <,

we require that:

t < succ(. . . , t)

• Factored environment. The environment within each state is binding factored,

which means that variables are mapped to values in two stages:

1. A local binding-time environment, β, maps a variable to the time in which

it was bound in this environment.

2. A global binding-to-value environment, ve, maps a variable plus any time

at which it was bound to its value at that time.4

Factoring the environment removes recursion from the semantic domains,

and enables reasoning about environment structure at the granularity of an

individual binding – a variable/time pair. This also makes it clear that multiple

bindings to the same variable can be simultaneously live: x can be bound at

time 3 to 42, then bound again at time 94 to 217; both bindings can be

captured in different closures. Mechanically, bindings behave exactly like the

concrete addresses used in the previous section, with the value environment ve

playing the role of heap. Consequently, bindings are the resource over which

our garbage-collection algorithm will operate.5

• Eval/apply factored transition. The transition from state to state happens in

two stages:

1. Argument evaluation. The procedure and the arguments are evaluated.

2. Procedure application. Evaluated arguments are bound to procedure for-

mals.

4 Note how this component ve increases monotonically over time. We call it ‘global’ because if we were
coding an interpreter, the value environment ve would be pulled out of the state ς and implemented
as a side-effected global table.

5 The set Time is equivalent to the concrete contour set CN in Shivers’ work (1991).

Exploiting reachability and cardinality in higher-order flow analysis 835

A : EXP × BEnv × VEnv ⇀ D

A(v, β, ve) = ve(v, β(v))

A(lam , β, ve) = (lam , β|free(lam))

Fig. 6. The function A evaluates arguments given a factored BEnv/VEnv environment.

Factoring the transition in this fashion makes the addition of features such as

letrec, primitive operations and conditionals simpler.

The argument-evaluation functionA is shown in Figure 6. This function takes an

argument and a factored-environment pair (β, ve) to a denotable value. Note how,

when constructing a closure (lam , β|free(lam)), we trim the closure’s environment by

restricting its domain to those variables referenced by the closure’s λ term, lam .

5.3 CPS as a state machine

Figures 4 and 5 show the semantic domains and the transition rules for our CPS

semantics; these definitions, together with the ones for the function A in Figure 6,

comprise a complete concrete semantics. For convenience, given some state ς, we

will frequently refer to its components by subscripting the representative symbol

with ς; that is, ς = (. . . , veς, tς). A primitive continuation halt has been added to the

set of values; execution terminates when the halt continuation is applied.

Note that the small-step semantics for CPS defines a simple state machine, one

which alternates, tick-tock, between (call , β, ve, t) eval states, and (proc, dargs, ve, t)

apply states. The machine-like nature of the system is captured by the fact that the

transition system is defined by a pair of axiom rules – there are no recursive inference

rules. The time counter is clearly a ‘machine clock’ that assigns a unique, ordered

time-stamp to each kind of state, and our semantic domains are not recursively

defined.

Defining the meaning of our language as a small-step operational semantics

exposes the intermediate states of the computation, including the environment

structure we made explicit with our factored VEnv/BEnv representation. This sets

us up to use abstract interpretation to reason statically about these states. All we

need to do now is add garbage collection.

5.4 Adding GC transitions to the semantics

Before we can define garbage collection, we need to define more basic notions such

as the touchability of a value by a binding, the adjacency of bindings and the bindings

reachable from a state. For our framework, garbage collection means finding the set

of reachable bindings and restricting the domain of the global value environment

ve to solely these bindings.

First, we define the set of bindings T(d) that value d immediately touches:

T(lam , β) = {(v, β(v)) : v ∈ dom(β)}
T(halt) = {}

836 M. Might and O. Shivers

A closure (lam , β) could potentially touch a binding (v, t) if the variable v is free in

the term lam , and β(v) = t. In our semantics, we ensure that the domain of the local

environment β is equal to the set of free variables in the term lam . We can extend

the function T to objects such as states:

T(call , β, ve, t) = {(v, β(v)) : v ∈ dom(β)}
T(proc, d, ve, t) =T(proc) ∪T(d1) ∪ · · · ∪T(dn)

In essence, a binding is touched by an entity if the binding is directly reachable by

that entity.

With this notion of touch, we can define the adjacency relation over bindings:

btoucher �ve btouched ⇐⇒ btouched ∈ T(ve(btoucher))

The set of bindings R(ς) reachable from the state ς is simply all the bindings we

can reach from the state ς with chains of �ve links:

R(ς) = {breached : broot ∈ T(ς) and broot �∗
veς

breached}

Now, we can define the GC function, Γ : State → State:6

Γ(ς) =

{
(proc, d, ve|R(ς), t) ς = (proc, d, ve, t)

(call , β, ve|R(ς), t) ς = (call , β, ve, t)

The function Γ removes unreachable bindings from the domain of the global value

environment ve.

Using this, we can define the GC transition rule, ⇒Γ:

Γ(ς)⇒ ς′

ς⇒Γ ς′

That is, the relation ⇒Γ first performs a collection, and then, steps the execution

forward. Our task in the next section will be to prove that this GC semantics is

equivalent to the original semantics.

Before proceeding, we need to tidy up loose ends such as the injection of a

programme into an initial state, and the concept of a final state. The injection

function I : LAM → State injects a λ term accepting the halt continuation into an

initial state:

I(lam) = ((lam ,⊥BEnv), 〈halt〉,⊥VEnv , t0)

A final state is one applying the halt continuation to a singleton argument vector

containing the final result: (halt , 〈dresult〉, ve, t).
Execution may also end by arriving at a stuck state, of which we distinguish three

kinds:

Mismatch A mismatch stuck state is an apply state in which the number of

arguments supplied does not match the number of arguments required. This

is a result of programmer error.

6 Recall that f|X means ‘the function f but only over the domain X’.

Exploiting reachability and cardinality in higher-order flow analysis 837

Undefined variable An undefined-variable stuck state is an Eval state in which a

variable argument is not in the domain of the lexical contour environment β. This

can happen only if the top-level programme has a free variable, also a programmer

error.

Corrupted environment A corrupted-environment stuck state is an Eval state in

which a required binding is not in the domain of the global value environment

ve. As part of showing correctness, we demonstrate that this can never happen.

We call a state terminal if it is final or stuck.

6 Correctness of the garbage-collecting semantics

We have two concrete operational semantics: an ordinary CPS semantics and a

garbage-collecting CPS semantics. Our next task is a theory of correctness for

relating these two machines. Ultimately, this means proving that the GC machine

is a complete simulation of the original machine. Diagrammatically, this simulation

looks like the following:7

I(lam) ��
		

≡

ς1 ��
		

≡

ς2 ��
		

≡

ς3 ��
		

≡

ς4 ��
		

≡

· · ·

I(lam)
Γ

�� ς′1 Γ
�� ς′2 Γ

�� ς′3 Γ
�� ς′4 Γ

�� · · ·

On the path to this theorem, we will pull out lemmas that support the simulation and

nurture intuition. On a first pass through this section, we recommend skipping the

proofs while convincing yourself that the theorems and lemmas are intuitively correct.

Equivalence is the simulation relation between states that we need to preserve

across transitions. We say that two states are equivalent if they have the same image

under the function Γ:

Definition 6.1 (Equivalent states)

States ς1 and ς2 are equivalent iff Γ(ς1) = Γ(ς2).

As required, this notion of equivalence preserves the value returned by the pro-

gramme when the halt continuation is applied. Clearly, however, more than just

the return value is preserved by this relation. Call sites, binding environments,

procedures, arguments and time-stamps are also unchanged.

The first property that we define on a single state is compactness. A state is

compact if environments found within it contain entries for exactly the variables

required:

Definition 6.2 (Compact state)

A state ς is compact iff for each closure (lam , β) ∈ range(veς), free(lam) = dom(β),

and:

• if ς = (call , β, ve, t), then free(call) = dom(β), and

7 Shortly, we will define equivalence (≡ in the diagram) as equality under garbage collection.

838 M. Might and O. Shivers

• if ς = (proc, d, ve, t), then for each closure (lam , β) ∈ {proc, d1, . . . , dn},
free(lam) = dom(β).

The next property that we define on states is well formedness.

Definition 6.3 (Well-formed state)

A state ς is well formed iff

1. the state is compact,

2. every reachable binding has an entry, i.e. R(ς) ⊆ dom(veς), and

3. no binding time found in the set dom(veς) is higher than the current, tς.

The first requirement ensures that the programme has no free variables, and that

all environments are minimal. The second requirement ensures that every reachable

binding has a corresponding entry in the global value environment. The third

requirement removes the possibility that a live slot in the global value environment

will be smashed by a future binding step, and it lets us know that a binding created

in the current time is fresh, i.e. distinct from all others.

Our first theorem rules out a corrupted-environment error for well-formed states.

Theorem 6.4

Well-formed states are not corrupt. That is, if a state ς is well formed, then either

• the transition ς⇒ ς′ is legal,

• the state ς is a final state, or

• the state ς is stuck, but not corrupt.

Proof

By the definitions. �

Critically, if two states are well formed and equivalent, then either they transition

together, or neither transitions.

With preliminaries taken care of, the first part of the simulation proof comes in

two phases:

1. Prove that every well-formed state transitions to a well-formed state, or else,

is final.

2. Prove that well formedness is preserved under garbage collection.

Combined, these demonstrate that garbage collection cannot introduce corruption.

Theorem 6.5

If a state ς is well formed and the transition ς ⇒ ς′ holds, then the new state ς′ is

well formed.

Proof

We consider only the reachable bindings property for well formedness. The other

two properties are trivial. Assume that the state ς is well formed and the transition

ς⇒ ς′ holds. We divide into cases on ς.

Exploiting reachability and cardinality in higher-order flow analysis 839

• Case ς = ([[(f e1 · · · en)]], β, ve, t): Let the new state ς′ = (proc, d, ve, t′). We

must show that:

R(ς′) ⊆ dom(ve)

By the well formedness of the state ς, this reduces to showing thatR(ς′) ⊆ R(ς).

Choose a binding b∗ in the set R(ς′); we will prove that this binding is also in

the set R(ς).

Let 〈b0, b1, . . . , bn〉 be a path through the relation �∗
ve such that b0 ∈ T(ς′)

and bn = b∗. The new state ς′ can touch the binding b0 in one of two ways

– as a member of the set T(proc), or as a member of the set T(di) for some

i. Without loss of generality, assume that it was through the closure proc.

We know that proc = A(f, β, ve) = (lam , β′). We branch into the sub-cases

induced by the definition of the evaluator A.

— Subcase f is a variable: In this case, the variable f is in free(call),

and hence, the binding (f, β(f)) is in the set of touched bindings T(ς).

From b0 ∈ T(ve(f, β(f))), we have that (f, β(f)) �ve b0, and hence, that

〈(f, β(f)), b0, . . . , bn〉 is a valid path which puts b∗ in R(ς).

— Subcase f is a λ term: Let b0 = (v0, t0). We know that the variable v0 is in

the set free(lam). Because free(lam) ⊆ free(call), the binding (v0, t0) must

also be in T(ς). Hence, 〈b0, . . . , bn〉 is a valid path which puts b∗ in R(ς).

• Case ς = (([[(λ (v1 · · · vn) call)]], β), d, ve, t): In this case, let the new state

ς′ = (call , β′, ve′, t′). We must show that:

R(ς′) ⊆ dom(ve′)

Choose a binding b∗ in the set R(ς′); we will show that this binding is also in

the set dom(ve ′). We divide into cases on the freshness of b∗.

— Subcase The binding b∗ is fresh: Then, the binding time in b∗ is the new

time, t′. From the definition of the transition ⇒, it is clearly in the domain

of the new global environment ve′.

— Subcase The binding b∗ is not fresh: We will show that this binding was

also in the domain of the old environment ve by finding that the binding

was also reachable from the old state ς. The rest of this case then follows

from the fact that dom(ve) ⊆ dom(ve′). Let 〈b0, . . . , bn〉 be a path through

the relation �ve′ , which puts b∗ in the set R(ς′).

1. First, we will show that either b0 or b1 is in T(ς). Let b0 = (v0, t0).

– Suppose v0 ∈ free(call) and this variable v0 is not a bound formal.

Then, v0 was also free in the λ term, which means (v0, t0) ∈
T(proc) ⊆ T(ς).

– Suppose alternately that v0 ∈ free(call) and that v0 is a bound

formal. Thus, for some argument i, ve′(v0, t0) = di, which means

that b1 ∈ T(di) ⊆ T(ς).

2. Next, suppose 〈b1, . . . , bn〉 did not form a valid path through �ve as

well. Let i be the first index such that ve(bi) = ve′(bi). By the definition

of the transition relation ⇒, it must be the case that the binding time

840 M. Might and O. Shivers

associated with bi is the new time t′. This implies that either b∗ = b0,

which is a contradiction, or that some time in the middle of the path

is the fresh time t′, which is also a contradiction. Hence, the path must

have been valid through the relation �ve as well. Consequently, the

binding b∗ is in the set R(ς), which, by well formedness, puts it in the

domain of the old environment ve.

�

Next, we must show that performing a GC does not degrade well formedness.

Theorem 6.6

If the state ς is well formed, then the state Γ(ς) is well formed.

Proof

Assume that the state ς is well formed. By the definition of the reachability function

R, all paths starting from the setT(ς) through the relation �ve are over the elements

in the set R(ς). Hence, any of these paths is also valid through the relation �ve|R(ς).

As a result, R(Γ(ς)) = R(ς) ⊆ dom(veς). Consequently, R(Γ(ς)) = dom(veς|R(ς)).

�

From the previous two theorems, we know that every state visited in both the GC

and the non-GC semantics is well formed.

The following lemmas formalize intuition regarding garbage collection and reach-

ability; first, if two states are equivalent, the bindings they reach are the same as well.

Lemma 6.7

If Γ(ς1) = Γ(ς2), then R(ς1) = R(ς2).

Note that the collection function Γ is idempotent:

Lemma 6.8

Γ(ς) = Γ(Γ(ς)).

We can also relate reachable bindings before and after transition:

Lemma 6.9 (Containment)

If ς is well formed and ς⇒ ς′, then (v, t) ∈ veς and (v, t) ∈ veς′ implies that t = tς′ .

Or, in different words:

Corollary 6.10 (Containment)

If a state ς is well-formed and the transition ς⇒ ς′ holds, then

• R(ς′) ⊆ R(ς) if ς is an eval state.

• R(ς′)− {b : b is bound in this transition} ⊆ R(ς) if ς is an apply state.

The key inductive step in the simulation theorem is demonstrating that equivalence

is preserved under transition:

Theorem 6.11 (Complete simulation)

If states ς1 and ς2 are well formed, and Γ(ς1) = Γ(ς2), then either both states are

terminal or ς1 ⇒Γ ς′1 and ς2 ⇒ ς′2 and Γ(ς′1) = Γ(ς′2).

Exploiting reachability and cardinality in higher-order flow analysis 841

Proof

Assume that states ς1 and ς2 are well formed, and Γ(ς1) = Γ(ς2). By the definition

of the GC function Γ and well formedness, if one state is terminal, then so is the

other. To avoid triple subscripts, let ςi = (. . . , vei, . . .).

We consider only the case where the states are non-terminal. We must show

that the subsequent states, ς′1 and ς′2, are equal under the GC function Γ; this

reduces to showing the equality ve′1|R(ς′1) = ve′2|R(ς′2), where the environment

functions ve′1 and ve′2 are the global environments for the subsequent states; or,

expanded:

ve1|R(ς1)[bi �→ di]|R(ς′1) = ve2[bi �→ di]|R(ς′2)

By the Containment Lemma, this reduces to showing:

ve1|R(ς′1) = ve2|R(ς′2)

which, by ve1|R(ς1) = ve2|R(ς2), reduces to showing:

R(ς′1) = R(ς′2)

We show this by contradiction. Suppose we could find a binding b∗ that was in

either the set R(ς′1) or the set R(ς′2) but not in both. Let the vector 〈b0, . . . , bn〉 be

the path justifying its membership. Let the index i be the lowest index such that the

following does not hold:

ve1|R(ς1)[bi �→ di](bi) = ve2[bi �→ di](bi)

Clearly, the binding bi cannot be a fresh binding, so the condition must really be:

ve1|R(ς1)(bi) = ve2(bi)

By the equivalence of states ς1 and ς2, this implies that the following does not

hold:

ve2|R(ς2)(bi) = ve2(bi)

And, this implies that bi ∈ R(ς2), which implies that bi ∈ R(ς1). But, if this were so,

then the binding bi could not be a member of the path justifying the membership

of the binding b∗ in either the set R(ς′1) or R(ς′2). �

7 Abstract semantics: ΓCFA

Thus far, we have developed a concrete, garbage-collecting semantics for CPS

and proved its fidelity to the original semantics. Now, we shift gears and build a

computable abstract semantics – our analysis – which approximates the concrete

semantics. While it is possible to separate abstract GC and abstract counting, we add

them both at the same time to avoid duplicating work. The machinery for abstract

counting is encoded in a measure component: μ̂. The machinery for abstract garbage

collection comes in the form of a state-to-state compaction function: Γ̂. It is simple

enough to tune parameters within this framework so that either feature is effectively

‘turned off’. We term this combined framework ΓCFA a garbage-collecting and

counting flow analysis.

842 M. Might and O. Shivers

The major components of this abstraction will be:

• An abstract domain for each concrete domain in Figure 4. The abstract

counterpart for a given domain will be written with a hat on it, e.g. D̂ is the

abstraction of D . Figure 7 provides these domains.

• A family of abstraction functions – all written with the absolute-value-style

notation | · | – which map elements from concrete domains (such as State,

D , and Clo) into their corresponding abstract domains (such as 1State, D̂ and
bClo).

• An abstract garbage-collection function, Γ̂ : 1State →1State.

• Abstract transition rules ≈> and ≈>Γ which approximate the concrete transi-

tion rules ⇒ and ⇒Γ.8

To abstract the semantics, we begin by making the set of times finite, giving us

the set 1Time. We also need an abstract time-stamp incrementing function, bsucc :
1State →1Time, which is constrained so that:

|ς| � ς̂ =⇒ |succ(ς)| = bsucc(ς̂)

By passing the state in as a parameter for abstract contour/time selection, changing

the function bsucc can alter the context sensitivity of the analysis. By leaving the

exact structure and size of the set 1Time unspecified, we allow the precision of the

analysis, e.g. 0CFA, 1CFA, CPA, to be controlled externally.

The next significant change is the addition of an abstract binding counter, μ̂ ∈
3Measure, to each state. The value μ̂(v, t̂) approximates how many concrete bindings

are currently represented by the abstract binding (v, t̂). For our work, we use three

possible approximations – 0, 1 and ∞; that is, an abstract binding may represent

no concrete bindings, at most a single concrete binding or an arbitrary number of

concrete bindings.9 An abstraction of the naturals, �̂ = {0, 1,∞}, represents these

possibilities. We define the lattice operations for �̂ as: ⊥�̂ = 0, ��̂ = ∞, � = max,

� = min and � = �.

Because � = �, an abstract count is technically an upper bound on the number

of concrete counterparts. That is, an abstract count of 1 means that there are either

zero or one concrete counterparts. Over-approximations of a count result when a

concrete binding is not reachable, but the abstract binding representing it still is.

For most applications, an upper bound of 1 is just as good as knowing that there is

exactly one counterpart, for when we are dealing with an abstract resource that has

zero possible concrete counterparts, we have entered into strictly over-approximating

state-space.

Percolating these changes through the rest of the domains leads to the abstract

domains in Figure 7. The compression of the infinite set Time into the finite set 1Time

causes each abstract binding to represent multiple concrete bindings. As a result,

the entry in an abstract global value environment bve for a given abstract binding

8 The symbol for the abstract transition relation ≈> reads as ‘makes an approximating transition to’.
9 We are abusing our notation a bit here: the element ∞ does not mean an infinite number of bindings;

it means an arbitrary (finite) number of bindings – 0 and 1 included.

Exploiting reachability and cardinality in higher-order flow analysis 843

ς̂ ∈ bState = bEval + 1Apply

bEval = CALL×1BEnv ×1VEnv × 2Measure × bTime

1Apply = bProc × D̂∗ ×1VEnv × 2Measure × bTime

β̂ ∈1BEnv = VAR ⇀ bTime

b̂ ∈ bBind = VAR × bTime

bve ∈1VEnv = bBind → D̂

μ̂ ∈ 2Measure = bBind → �̂
bn ∈ �̂ = {0, 1,∞}

bproc ∈ bProc = cClo + {halt}
cclo ∈ cClo = LAM ×1BEnv
cval ∈ cVal = bProc

d̂ ∈ D̂ = P(cVal)

t̂ ∈ bTime = a finite set of abstract times

Fig. 7. Abstract domains.

may need to represent multiple concrete values. This causes the domain of abstract

denotable values D̂ to become a power domain.

Combining the above leads to a natural definition for the abstract transition

ς̂ ≈> ς̂′:

([[(f e1 · · · en)]], β̂, bve, μ̂, t̂) ≈> (bproc, d̂, bve, μ̂, t̂′), where

bproc ∈ Â(f, β̂, bve)

d̂i = Â(ei, β̂, bve)

t̂′ = bsucc(ς̂, t̂)

(([[(λ (v1 · · · vn) call)]], β̂), d̂, bve, μ̂, t̂) ≈> (call , β̂′, bve ′, μ̂′, t̂′), where

β̂′ = β̂[vi �→ t̂]|free(call)
bve′ = bve � [(vi, t̂) �→ d̂i]

μ̂′ = μ̂⊕ [(vi, t̂) �→ 1]

t̂′ = bsucc(ς̂, t̂)

Note that the bEval -to-1Apply rule branches for each procedure. Here, the operator ⊕
is the natural abstraction of addition over �̂. The argument evaluator A abstracts

directly to the abstract argument evaluator Â:

Â(v, β̂, bve) = bve(v, β̂(v))

Â(lam , β̂, bve) = {(lam , β̂|free(lam))}

It is worth taking a moment to point out where precision is lost. Putting the

definitions of the transition relations ⇒ and ≈> side-by-side and looking at the

844 M. Might and O. Shivers

definitions of ve′ and bve′, we notice a join (�) operation present in the abstract

semantics that does not exist in the concrete semantics. (Recall that a value in the

abstract space is a set of procedures, i.e. D̂ = P(Proc).) When the concrete semantics

extend the environment ve, the new bindings are guaranteed to be fresh, because

the current time has just increased. The abstract semantics, however, cannot extend

the environment bve to get bve′, because the bindings may not be fresh. If the analysis

overwrote the value residing at (v, t̂), then the analysis would no longer be sound,

so instead, the analysis must merge the old and new values.

We add garbage collection to the abstract semantics with the same steps we used

for the concrete semantics. First, we define what it means for an abstract value to

touch an abstract binding, with the function bT:

bT(lam , β̂) = {(v, β̂(v)) : v ∈ dom(β̂)}
bT(halt) = {}

bT{bproc1, . . . , bprocn} = bT(bproc1) ∪ · · · ∪ bT(bprocn)

As before, we can extend the notion of touching to abstract states:

bT(call , β̂, bve, μ̂, t̂) = {(v, β̂(v)) : v ∈ dom(β̂)}
bT(bproc, d̂, bve, μ̂, t̂) = bT(bproc) ∪ bT(d̂1) ∪ · · · ∪ bT(d̂n)

The abstraction of the binding-to-binding adjacency relation looks nearly the

same:

b̂toucher �
bve b̂touched ⇐⇒ b̂touched ∈ bT(bve(b̂toucher))

The abstract reachable-bindings function, bR : 1State → P(bBind), looks nearly

identical to its concrete counterpart R, as well:

bR(ς̂) = {b̂reached : b̂root ∈ bT(ς̂) and b̂root �∗
bve ς̂

b̂reached}

Now we can define the abstract GC function, Γ̂ : 1State →1State:

Γ̂(ς̂) =

{
(bproc, d̂, bve|bR(ς̂), μ̂|bR(ς̂), t̂) ς̂ = (bproc, d̂, bve, μ̂, t̂)

(call , β̂, bve|bR(ς̂), μ̂|bR(ς̂), t̂) ς̂ = (call , β̂, bve, μ̂, t̂)

The chief difference between the abstract GC function Γ̂ and the concrete collector

Γ is that we also restrict the domain of the binding counter μ̂, effectively re-setting

any unreachable bindings back to a count of 0.

With this, the abstract GC transition becomes

Γ̂(ς̂) ≈> ς̂′

ς̂ ≈>Γ ς̂′

To run the analysis, we first inject a programme lam into an abstract state using the

injector Î : LAM →1State:

Î(lam) = |I(lam)|

Exploiting reachability and cardinality in higher-order flow analysis 845

We will define the abstraction operator | · | in the next section.

Now that we have integrated abstract garbage collection, we can discuss its role

in improving precision. Suppose the abstract interpretation is on the verge of adding

a new binding for (v, t̂) in bve. Either bve(v, t̂) = ⊥, in which case this binding has been

collected since its last allocation (or never allocated at all), or some value is already

sitting at (v, t̂) in bve. Note that if nothing is at (v, t̂), then:

bve � [(v, t̂) �→ d̂] = bve[(v, t̂) �→ d̂]

That is, we are not merging abstract bindings.

Peeking back at the id example in Section 3, we can motivate how ΓCFA (with

a 0CFA-level contour set) yields the more precise answer: that only lam ′ is in the

flow set for the return value. After the first call to id, x is {lam}. Directly after

this call, however, that binding to x is unreachable, and x can be reset to ⊥. Thus,

when interpretation reaches the second call to id, there is no merging of {lam} and

{lam ′}.
We need no notion of a final state for the abstract semantics, as we are not

particularly interested in the actual value produced by the computation. To run the

analysis then consists of collecting (in the sense of a collecting semantics rather than

GC) all of the states reachable from the initial state on any path. In practice, we

can stop collecting on any given path if (1) the current state is stuck or (2) we have

already visited a state that approximates (via �) the current state. We refer to the

set of abstract states reached by a programme pr as V̂(pr). Eventual termination

of the analysis is guaranteed because the space through which it roams, 1State, is

finite.

Example: Abstract garbage collection This examples serves to illustrate abstract

garbage collection of a single state in light of the heap diagrams from earlier.

Consider the abstract state:

([[(f f halt)]], β̂, bve, t̂now)

where the binding environment β̂ is:

β̂ = [[[f]] �→ t̂′, [[halt]] �→ t̂0]

and the value environment bve is:

([[halt]], t̂0) �→ {halt}
([[id]], t̂) �→ {([[(λ (v c) (c v))]], [])}
([[f]], t̂′) �→ {([[(λ (x k) (id x k))]], [[[id]] �→ t̂])}
([[g]], t̂′′) �→ {([[(λ (x k) (id x k))]], [[[id]] �→ t̂])}

846 M. Might and O. Shivers

Using the same schema as before, this value environment is visualized as:

([[halt]], t̂0) ��
� ��� ��halt

([[f]], t̂′) ���� ���� �	([[(λ (x k) (id x k))]], [[[id]] �→ t̂])

��������������������

([[id]], t̂) ���� ���� �	([[(λ (v c) (c v))]], [])

([[g]], t̂′′) ���� ���� �	([[(λ (x k) (id x k))]], [[[id]] �→ t̂])

��������������������

After garbage collection, this value environment looks like:

([[halt]], t̂0) ��
� ��� ��halt

([[f]], t̂′) ���� ���� �	([[(λ (x k) (id x k))]], [[[id]] �→ t̂])

��������������������

([[id]], t̂) ���� ���� �	([[(λ (v c) (c v))]], [])

([[g]], t̂′′)

7.1 Choices impacting precision

We left the set of abstract times constrained but unspecified, so that we can vary

precision externally. If we use a singleton set for 1Time, we end up with 0CFA. We

can instead let 1Time be the set of call sites, and then, have the successor function

bsucc choose the current call site as the next ‘time’. This gives us 1CFA. Generalizing

further, it is not hard to set up k-CFA for any k. It is also straightforward to set up

Wright and Jagannathan’s polymorphic splitting (1998) or Agesen’s CPA (1995). By

varying the set 1Time and the next-time function bsucc, we can instantiate almost any

conceivable variation on existing contour-selection strategies and have it ‘GCified’.

There are a number of policy choices available for deciding when to perform a

GC transition, each with a different impact on speed and precision. The simplest

policy, ‘never GC’, just gives us a counting flow analysis by abstract interpretation.

The other extreme, which is to GC on every step, is simply not necessary: not every

state is in danger of producing a zombie.

There are, however, still some benefits to GCing aggressively. For instance, there

is a higher chance that the branch-termination check Γ̂(ς̂) � ς̂visited will succeed

Exploiting reachability and cardinality in higher-order flow analysis 847

than the check ς̂ � ς̂visited. Moreover, the time cost of a GC does not appear to

be significant, and implementation results suggest that GC costs are outweighed

by the savings that we get from searching a smaller state space. (We will examine

measurements to support this shortly.)

A sensible middle-ground policy when deciding whether or not to make a GC

is: ‘perform a GC transition if and only if zombie creation would be imminent

otherwise’. Zombie creation is possible if we are about to add a binding for (v, t̂),

but μ̂(v, t̂) � 1, or alternatively, bve(v, t̂) = ∅.
Note that if desired, we can turn abstract counting off by setting �̂ = {∞}.

Example: 0CFA v. ΓCFA Consider the direct-style code fragment:

(define (id x) x)

(id v1)

(id v2)

Clearly, the result of this programme is the value of v2. ΓCFA detects this fact.

0CFA, however, says it could be either the value of v1 or v2. To see why these

analyses diverge, let us desugar and CPS convert:

((λ (id)

(id v1 (λ () (id v2 halt))))

(λ (x k) (k x)))

Call this code fragment call .

To see the effect of GC, we will trace through abstract interpretation of this

code for 0CFA context sensitivity, i.e. where the set 1Time is a singleton. Simplifying

matters, in 0CFA, binding environments (1BEnv) disappear, value environments

degenerate to 1VEnv : VAR → P(LAM), and states no longer need time-stamps.

(For this exercise, we also ignore the measure component μ̂.)

Suppose that call is evaluated (without abstract GC) in the abstract state (call , bve),

where:

bve[[halt]] = {halt}
bve[[v1]] = {λ1}
bve[[v2]] = {λ2}

In the subsequent Apply state, ([[(λ (id) ...)]], 〈{λid}〉, bve), we have:

λid = [[(λ (x k) (k x))]]

This leads to the Eval state ([[(id v1 ...)]], bve1), where

bve1[[halt]] = {halt}
bve1[[v1]] = {λ1}
bve1[[v2]] = {λ2}
bve1[[id]] = {λid}

848 M. Might and O. Shivers

Next, 0CFA enters an Apply state (λid, 〈{λ1}, {λcont1}〉, bve1), where:

λcont1 = [[(λ () (id v2 halt))]]

The subsequent Eval state ([[(k x)]], bve2) is now in the body of the identity function,

where:

bve2[[halt]] = {halt}
bve2[[v1]] = {λ1}
bve2[[v2]] = {λ2}
bve2[[id]] = {λid}
bve2[[x]] = {λ1}
bve2[[k]] = {λcont1}

Next, control returns from the identity function to the continuation λcont1, leading to

state (λcont1, 〈{λ1}〉, bve2). This leads to the Eval state ([[(id v2 halt)]], bve3), where:

bve3[[halt]] = {halt}
bve3[[v1]] = {λ1}
bve3[[v2]] = {λ2}
bve3[[id]] = {λid}
bve3[[x]] = {λ1}
bve3[[k]] = {λcont1}
bve3[[]] = {λ1}

Next, 0CFA applies the identity function in state (λid, 〈{λ2}, {halt}〉, bve3). Afterwards,

0CFA again evaluates the body of the identity function in the state ([[(k x)]], bve4),

where:

bve4[[halt]] = {halt}
bve4[[v1]] = {λ1}
bve4[[v2]] = {λ2}
bve4[[id]] = {λid}
bve4[[x]] = {λ1, λ2}
bve4[[k]] = {λcont1, halt}
bve4[[]] = {λ1}

At this point, the flow set for x has merged, and the flow set for k has merged.

Consequently, this state has two successors: one applying the halt continuation to

{λ1, λ2}, and one applying the continuation λcont1 to {λ1, λ2}. Clearly, this second

state is a spurious fork, and the merging of the flow sets for the variable x damaged

the precision of the result: 0CFA says that either v1 or v2 could have returned from

this programme.

Now, rewind back to the Eval state associated with environment bve3; this is, the

state ([[(id v2 halt)]], bve3). Diagrammatically, the environment bve3 is represented

Exploiting reachability and cardinality in higher-order flow analysis 849

[[v1]] ��
� ��� ��λ1

[[x]]

														

[[]]

��

[[id]] ��
� ��� ��λid

[[halt]] ��
� ��� ��halt

[[k]] ��
� ��� ��λcont1

��������������

�����������������

���������������

[[v2]] ��
� ��� ��λ2

Fig. 8. Environment bve3.

[[v1]]

[[x]]

[[]]

[[id]] ��
� ��� ��λid

[[halt]] ��
� ��� ��halt

[[k]]

[[v2]] ��
� ��� ��λ2

Fig. 9. Environment bve
′
3.

in Figure 8. Clearly, only the bindings for the variables id, halt and v2 are reachable

from the root set.

Hence, after garbage collection, this environment is represented in Figure 9. Call

this collected environment bve
′
3. Running the abstract interpretation forward with

this collected environment leads to the Apply state (λid, 〈{λ2}, {halt}〉, bve ′3). This, in

turn, leads to the Eval state ([[(k x)]], bve′4), where:

bve
′
4[[k]] = {halt}

bve
′
4[[x]] = {λ2}

Clearly, the next state is terminal, and no precision is lost in the result of {λ2}.

850 M. Might and O. Shivers

|(call , β, ve, t)|Eval = (call , |β|, |ve|, |ve|μ, |t|)
|(proc, d, ve, t)|Apply = (|proc|, |d|, |ve|, |ve|μ, |t|)
|〈d1, . . . , dn〉|D∗ = 〈|d1|D, . . . , |dn|D〉

|d|D = {|d|Proc}
|halt |Proc = halt

|clo|Proc = |clo|Clo

|(lam , β)|Clo = (lam , |β|)
|(v, t)|Bind = (v, |t|)
|β|BEnv = λv.|β(v)|

|ve|VEnv = λ(v, t̂).
⊔
|t|=t̂

|ve(v, t)|D

Fig. 10. Concrete-to-abstract map: | · |α : α→ α̂.

8 Soundness of the abstract semantics

In this section, we demonstrate the soundness of the analysis. We have excised

portions of the proofs that do not differ from an ordinary proof of correctness for

a control-flow analysis. These portions are the same as the ones we have presented

in earlier work (Shivers 1991; Might & Shivers 2006a). To show the correctness of

the abstract semantics, we must show that they simulate the concrete semantics. The

first step in this process is defining the simulation relation, and for that, we need to

define our abstraction map.

The concrete semantics and the abstract semantics are formally connected by the

abstraction operation | · | (Figure 10). Applied to an undefined value, | · |D returns

∅. (An undefined value results if we apply an environment ve to a value outside its

domain.)

The measure-abstraction function, | · |μ : VEnv →3Measure is

|ve|μ = λb̂.bsize{b ∈ dom(ve) : |b| = b̂}

and the abstract set-size function bsize is

bsize{x1, . . . , xn} =

{
n n ∈ {0, 1}
∞ otherwise

For a set S whose elements are abstractable, we define |S | = {|s| : s ∈ S}.
Now we are ready to define the simulation relation, S ⊆1State × State.

Definition 8.1 (Simulates)

An abstract state ς̂ simulates a concrete state ς, written S(ς̂, ς), iff |ς| � ς̂.

Since our abstract semantics can choose to GC or not to GC for any given

transition, we have two obligations:

• Showing that the transition ≈>Γ simulates the transition ⇒Γ.

• Showing that the transition ≈> simulates the transition ⇒Γ.

Exploiting reachability and cardinality in higher-order flow analysis 851

The first theorem on the road to these obligations demonstrates that the abstract

collector Γ̂ is a simulation of the concrete collector Γ:

Theorem 8.2 (Simulation under collection)

If |ς| � ς̂, then |Γ(ς)| � Γ̂(ς̂).

Proof

By Lemmas 8.13, 8.14 and 8.15. �

With this theorem, we can prove the first top-level obligation:

Theorem 8.3 (Simulation under collecting transition)

If |ς| � ς̂ and ς ⇒Γ̂ ς′, then a state ς̂′ exists such that ς̂ ≈>Γ ς̂′ and |ς′| � ς̂′.

Diagrammatically:10

ς̂
≈>Γ ��

S

ς̂′

S

ς ⇒Γ

�� ς′

Proof

The proof of this theorem factors into two obligations:

1. If |ς| � ς̂, then |Γ(ς)| � Γ̂(ς̂).

2. If |ς| � ς̂ and ς⇒ ς′, then a state ς̂′ exists such that ς̂ ≈> ς̂′ and |ς′| � ς̂′.

The first obligation is Theorem 8.2. The second obligation is the standard proof

of correctness for a higher-order flow analysis augmented with Lemma 8.9. �

To prove the second top-level obligation, we will first prove two more general

theorems. The first theorem shows that abstract transition ≈> is monotonic:

Theorem 8.4 (Monotonicity of abstract transition)

If ς̂1 � ς̂2 and ς̂1 ≈> ς̂′1, then a state ς̂2 exists such that ς̂2 ≈> ς̂′2 and ς̂′1 � ς̂′2.

Diagrammatically:

ς̂2
≈> �� ς̂′2

ς̂1 ≈>
��

�

		

ς̂′1

�

		

Proof

By cases on the type of the state ς̂1. �

The monotonicity theorem is also what justifies the early termination test: once the

analysis encounters a state which is weaker than an previously visited state, the

analysis may terminate.

The next theorem states that the GC abstract transition is more precise than the

normal abstract transition:

10 The dotted line here means ‘there exists a transition’.

852 M. Might and O. Shivers

Theorem 8.5

If ς̂ ≈>Γ ς̂′
Γ̂
, then a state ς̂′ exists such that ς̂ ≈> ς̂′ and ς̂′

Γ̂
� ς̂′. Diagrammatically:

ς̂′

ς̂

≈>
��

≈>Γ ���
��

��
��

�

ς̂′
Γ̂

�

		

Proof

By the fact that Γ̂(ς̂) � ς̂ and Theorem 8.4. �

Putting this all together gives us the second top-level obligation:

Theorem 8.6 (Simulation under transition)

If |ς| � ς̂ and ς ⇒Γ ς′, then a state ς̂′ exists such that ς̂ ≈> ς̂′ and |ς′| � ς̂′.

Diagrammatically:

ς̂
≈> ��

S

ς̂′

S

ς ⇒Γ

�� ς′

Proof

By the previous three theorems. �

With these theorems, ΓCFA is sound to collect as few or as many unreachable

bindings as deemed necessary on any given transition.

Given the lack of monotonicity in the configuration across transitions in the ab-

stract semantics, the correctness arguments behind aggressive termination techniques

in ΓCFA are more difficult to support. The aggressive cut-off condition in ΓCFA

states that, during the state-space search, if the current state ς̂’s GC’d version, Γ̂(ς̂), is

more precise than a state already visited, ς∗, i.e. Γ̂(ς̂) � ς∗, then termination is sound.

The soundness of this behaviour relies upon showing that the set of concrete states

represented by the abstract state ς̂ and its collected version Γ̂(ς̂) are, in fact, equal.

The concretization function ConcΓ : 1State → P(State) maps an abstract state to the

set of concrete states that it represents for the garbage-collecting concrete semantics:

Definition 8.7 (GC concretization)

The garbage-collected concretization of the state ς is:

ConcΓ(ς̂) = {Γ(ς) : |ς| � ς̂}

That is, only the garbage-collected states are considered.

This means the soundness theorem for the aggressive cut-off reduces to:

Theorem 8.8

ConcΓ(ς̂) = ConcΓ(Γ̂(ς̂)).

Exploiting reachability and cardinality in higher-order flow analysis 853

Proof

The theorem reduces to showing {Γ(ς) : |ς| � ς̂} = {Γ(ς) : |ς| � Γ̂(ς̂)}. We factor

this into two obligations:

• First, we show ConcΓ(ς̂) ⊆ ConcΓ(Γ̂(ς̂)). Choose a state ς from ConcΓ(ς̂). We

already know that Γ(ς) = ς. To prove the state ς’s membership in ConcΓ(Γ̂(ς̂)),

it suffices to show:

|ς| = |Γ(ς)|
� Γ̂|ς|
� Γ̂(ς̂)

• Next, we must show ConcΓ(Γ̂(ς̂)) ⊆ ConcΓ(ς̂). This holds by Γ̂(ς̂) � ς̂.

�

The Zen of ΓCFA

Γ̂(ς̂) � ς̂

is true, while:

ConcΓ(Γ̂(ς̂)) ⊇ ConcΓ(ς̂)

is also true.

8.1 Supporting lemmas

The first lemma reasons about counters across transitions:

Lemma 8.9

If |ς| � ς̂ and ς⇒ ς′ and ς̂ ≈> ς̂′ then |veς′ |μ � μ̂ς̂′ .

Proof

Suppose |ς| � ς̂, ς ⇒ ς′, and ς̂ ≈> ς̂′. The case where ς is an Eval state is

trivial, so suppose that ς is an Apply state. An abstract 1Apply state has only one

possible subsequent state, i.e. it will not fork. Let ς = (. . . , ve, t), ς′ = (. . . , ve ′, t′), and

ς̂ = (. . . , bve, μ̂, t̂). By the apply-state schema, ve′ = ve[(vi, t) �→ di]. Thus:

|ve ′|μ = λb̂.bsize{b ∈ dom(ve′) : |b| = b̂}

= λb̂.bsize{b ∈ dom(ve) : |b| = b̂} ∪ {b ∈ dom([(vi, t) �→ di]) : |b| = b̂}

= λb̂.bsize{b ∈ dom(ve) : |b| = b̂} ⊕bsize{b ∈ dom([(vi, t) �→ di]) : |b| = b̂}
= |ve|μ ⊕ |[(vi, t) �→ di]|μ

� μ̂⊕ |[(vi, t) �→ di]|μ

= μ̂⊕ [(vi, t̂) �→ 1]

�

The next series of lemmas relates touchable and reachable bindings in both the

concrete state-space and the abstract state-space:

854 M. Might and O. Shivers

Lemma 8.10

If |ς| � ς̂, then |T(ς)| ⊆ bT(ς̂).

Proof

By cases on the structure of the state ς. �

Lemma 8.11

|R(ς)| ⊆ bR(|ς|).

Proof

Choose an abstract binding b̂ ∈ |R(ς)|. Let b be such that |b| � b̂ and b ∈ R(ς).

Let 〈b0, . . . , b〉 be a path that justifies b ∈ R(ς). We can show by Lemma 8.10 and

contradiction that the path 〈|b0|, . . . , |b|〉 must also justify b̂ ∈ bR(|ς|). �

Lemma 8.12

If ς̂1 � ς̂2, then bR(ς̂1) ⊆ bR(ς̂2).

Proof

By path-style reasoning similar to Lemma 8.11. �

The next few lemmas support simulation under GC:

Lemma 8.13

If |ς| � ς̂, then |veς|R(ς)|μ � μ̂ς̂|bR(ς̂).

Proof

Assume |ς| � ς̂. Then, |veς|R(ς)|μ � |veς|μ||R(ς)| � μ̂ς̂|bR(ς̂). �

Lemma 8.14

|ve|R(ς)| � |ve|||R(ς)|.

Proof

Choose any abstract binding b̂.

|ve|R(ς)|(b̂) =
⊔
|b|=b̂

|(ve|R(ς))(b)|

=
⊔
|b|=b̂
b∈R(ς)

|ve(b)|

�
⊔
|b|=b̂

b̂∈|R(ς)|

|ve(b)|

= if b̂ ∈ |R(ς)| then
⊔
|b|=b̂

|ve(b)| else ⊥

= (|ve|||R(ς)|)(b̂)

�

Lemma 8.15

If ve1 � ve2 and bB1 ⊆ bB2, then bve1|bB1 � bve2|bB2.

Proof

By reasoning similar to Lemma 8.14. �

Exploiting reachability and cardinality in higher-order flow analysis 855

9 Applications

Now that we have a flow analysis instrumented with counting machinery, we turn

to its application: environment analysis. (Control-flow analysis for which abstract

garbage collection enhances precision offers a number of applications, including

but certainly not limited to constant propagation, useless-variable elimination

and induction-variable elimination (Shivers 1991).) Environment analysis drives

globalization, lightweight closure conversion, super-β lambda propagation, super-β

copy propagation and continuation promotion (Shivers 1991; Wand & Steckler

1944; Might & Shivers 2006a; Shivers & Might 2006).

Abstract counting can be brought to bear on environment analysis by the following

theorem, which links the equality of bindings in the abstract space to the equality

of their counterparts in the concrete space:

Theorem 9.1 (Pinching)

If |ς| � ς̂ and μ̂ς̂(b̂) = 1, then for any two bindings b1, b2 ∈ dom(veς) such that

|b1| = b̂ and |b2| = b̂, b1 = b2.

Proof

Assume |ς| � ς̂ and μ̂ς̂(b̂) = 1. Choose any two bindings b1, b2 ∈ dom(veς) such that

|b1| = b̂ and |b2| = b̂. From μ̂ς̂ � |veς|μ, we have:

1 = μ̂ς̂(b̂)

� |veς|μ(b̂)

= bsize{b ∈ dom(veς) : |b| = b̂}

� bsize
(
{b1} ∪ {b2}

)
which implies that the size of the set {b1} ∪ {b2} is 0 or 1. If the size is 0, then we

cannot choose any such bindings, and the theorem holds vacuously. If the size is 1,

then b1 = b2. �

Our next theorem relates reachable environments directly to one another:

Theorem 9.2 (Environment)

Given a sound state ς and a simulation ς̂ of it, if environments β1 and β2 are

reachable in ς, and |β1|(v) = t̂ = |β2|(v) and μ̂ς̂(v, t̂) = 1, then β1(v) = β2(v).

Proof

Let β1 and β2 be reachable environments in ς. (By reachable, we mean that there

exist bindings b1, b2 ∈ R(ς) such that (lam1, β1) = veς(b1) and (lam2, β2) = veς(b2)).

Assume that |β1|(v) = t̂ = |β2|(v) and μ̂ς̂(v, t̂) = 1. Because these environments are

reachable, the bindings (v, β1(v)) and (v, β2(v)) must be reachable as well. Hence,

these bindings are in the domain of the value environment ve. Thus, by the pinching

theorem, β1(v) = β2(v). �

We have recently shown (Shivers & Might 2006) how these analyses, applied to

CPS representations, permit compilers to fuse together graphs of online transducers.

We hope to apply this technology to programmes such as DSP systems, network

856 M. Might and O. Shivers

protocol stacks and graphics pipelines. The analyses we have presented in this paper

were critical to the transducer-fusing transforms that we have demonstrated in that

setting.

All of this leads to a super-β-inlining theorem:

Theorem 9.3

It is safe to inline the term lam ′ in place of the term f′ in the programme pr if for

each state ([[(f e1 · · · en)]], β̂, bve, μ̂, t̂) in V̂(pr) such that f = f′:

• Â(f, β̂, bve) = {(lam ′, β̂′)},
• and for each v ∈ free(lam ′):

1. β̂(v) = β̂′(v),

2. v ∈ free[[(f e1 · · · en)]], and

3. μ̂(v, β̂(v)) = 1 = μ̂(v, β̂′(v)).

9.1 Globalization

Globalization, as defined by Sestoft (1988), is the conversion of function parameters

to global variables when the bindings to these parameters are known to have non-

self-interfering lifetimes. Environmentally, globalization is effectively asking: would

a globally scoped environment be equivalent to the lexically scoped environment for

the variables in question?

Example: Globalization In the following function:

(define (f g i arr len)

(if (< i len)

(begin (g (array-ref arr i))

(f g (+ i 1) arr len))))

if the procedure g never invokes the array-walking function f either directly or

indirectly, then it is safe to transform this code into:

(define (f)

(if (< i len)

(begin (g (array-ref arr i))

(set! i (+ i 1))

(f))))

and invocations of the form (f g i a l) into:

(begin

(set! g g)

(set! i i)

(set! arr a)

(set! len l)

(f))

Exploiting reachability and cardinality in higher-order flow analysis 857

Detecting when this is legal is straightforward for ΓCFA. A variable v is

globalizable (in program pr) if there is never more than one simultaneously live

binding to the variable in any state:

Globalizable(v, pr) iff 1 �
⊔

ς̂∈V̂(pr)

⊕
t̂

μ̂ς̂(v, t̂)

Globalization via abstract counting offers the additional benefit over Sestoft’s

approach in that re-bindings of a variable to itself need not be counted as self-

interfering bindings to the same variable.

10 Extensions

We can add primops and conditionals to the analysis in the standard way, which is

described in Shivers’ work (1991).

10.1 Explicit recursion

While the Y combinator is adequate for performing recursion, it is not difficult to

modify the semantics and the analysis to handle an explicit construct for recursion

similar to Scheme’s letrec. Assuming appropriate modifications to the syntax, we

can handle letrec with an bEval → bEval transition:

([[(letrec ((v1 lam1) · · · (vn lamn)) call)]], β̂, bve, μ̂, t̂) ≈> (call , β̂′, bve ′, μ̂′, t̂′)

where

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

t̂′ = bsucc(ς̂, t̂)

β̂′ = β̂[vi �→ t̂′]

d̂i = Â(lam i, β̂
′, bve)

bve′ = bve � [(vi, t̂
′) �→ d̂i]

μ̂′ = μ̂⊕ [(vi, t̂
′) �→ 1]

10.2 Stores, must-alias analysis and strong updates

Join is the enemy.

—Tom Reps, speaking at VMCAI 2007

We can add an abstract store to the analysis, and apply both abstract counting

and abstract GC to it. With respect to abstract GC and abstract counting, the store

behaves just like the value environment bve. That is, an abstract address â plays the

role of an abstract binding.

The store itself is merely an extra component within the state, σ̂ : 1Addr → D̂,

accessed by primops. The extended counter μ̂ : (1Addr + bBind)→ �̂ must then map

abstract store addresses into the set �̂ as well. This implies that the reachability

function bR’s range may contain both bindings and addresses. It also means that the

adjacency relation � must be parameterized by both the value environment and the

store.

Consider what the direct analog to the pinching theorem would be for this store:

Theorem 10.1 (Must alias)

If |ς| � ς̂ and μ̂ς̂(â) = 1, then for any two a1, a2 ∈ dom(σς) such that |a1| = â and

|a2| = â, a1 = a2.

858 M. Might and O. Shivers

Ordinarily, if two abstract addresses â1 and â2 are equal, the most we can say is that

their concrete counterparts may alias. (If instead â1 = â2, then we can infer that they

must not alias.) If, however, â1 = â2 and μ̂(â1) = 1, then their concrete counterparts

must alias.

With this theorem, it becomes possible to justify a sound strong update to the

abstract store. A weak update merges values, costing us precision:

σ̂′ = σ̂ � [â �→ · · ·]

In the absence of additional information about the address â, the only sound

behaviour is a weak update. In contrast, a strong update overwrites the value in the

abstract store:

σ̂′ = σ̂[â �→ · · ·]
Clearly, additional information is required to make this sound.

In ΓCFA, if the abstract count of an address is one, and the address is being

mutated, then a strong update is sound. For instance, suppose that at the call site:

(set-cell! loc val k)

the following conditions hold:

â = bve(loc, β̂ loc)

μ̂(â) = 1

Then, instead of performing:

σ̂′ = σ̂ � [â �→ d̂]

ΓCFA can perform:

σ̂′ = σ̂[â �→ d̂]

By identical reasoning, if we add a Scheme-style set! to CPS, then it is also

possible to perform a strong update on a value environment bve when the abstract

count of the binding in question is one. For example, suppose that at the call site:

(set! x val k)

the condition μ̂(x , β̂x) = 1 holds. Then, we may soundly perform a strong update:

bve′ = bve[(x , β̂x) �→ d̂]

Strong updates are particularly useful for preserving the precision of a flow

analysis when variables are initialized to a null value, and then, assigned shortly

thereafter.

11 Implementation and evaluation

Using Haskell, we have implemented ΓCFA for a subset of R5RS Scheme. This

section briefly describes the implementation and presents results from running it

in practice. The implementation uses the Larceny front end to perform macro

Exploiting reachability and cardinality in higher-order flow analysis 859

expansion, and it currently supports primitive operations, set!, letrec, a side-

effecting store, vectors and call/cc. Both abstract GC and abstract counting

operate on the store as well as the value environment.

We caution that the purely functional nature of the implementation means

that timing numbers may be inflated by the O(log n) penalty imposed by such

programming. Thus, while there is some room to improve the absolute timing

numbers for both the control and experimental groups, the ratio of control to

experimental timings provide a basis for comparing performance.

The implementation permits user-defined values of k for k-CFA context sensitivity:

the past k call sites form the current contour/abstract time. For comparison purposes,

only k = 0 was tested.

11.1 1Conf -widening

In the pure-CPS ΓCFA, each abstract state’s machine configuration, hereafter known

as a member of the domain 1Conf , is a pair: the binding-to-value environment bve

and the counter μ̂. In the implementation, this machine configuration includes a

store component σ̂ as well. The two criteria for admitting a component into the

machine configuration are:

1. Both Eval and Apply states have it.

2. It is susceptible to abstract GC and abstract counting.

(In ΔCFA (Might & Shivers 2006a), the log δ̂ qualifies as part of the configuration.)

Unlike an ordinary abstract interpretation’s transfer function, such as the relation

≈>, the GC transition relation ≈>Γ does not increase the configuration monoton-

ically. While the non-monotonicity aids precision, it can also increase the path

sensitivity of ΓCFA to levels not required for flow or environment analysis: that is,

the added sensitivity simply does not improve the result. Sometimes, this increase in

path sensitivity comes at the cost of increased running time.

Widening the configuration mid-analysis discards path sensitivity while retaining

increased precision and lowering analysis run time. Widening, in this case, refers

to deliberately joining the current configuration with another configuration before

making a transition. For other applications of ΓCFA, such as model checking (Might

et al.2007), the increased path sensitivity is useful for verifying temporal correctness

properties.

To 1Conf -widen during the state-space search, if the current state is (call , β̂,bc, t̂)

and this state is not covered by the visited set, then before making the transition,

compute the widening configurationbc
′
(according to criteria below), and replace the

current state with (call , β̂,bc �bc′, t̂).
Our implementation supports three levels of 1Conf -widening:

• Per-point. With a per-point configuration, all states at the same call site share

the same configuration. That is, the algorithm employs a global, side-effected

table τ : CALL →1Conf . If ς̂curr is the current state, the widening algorithm

860 M. Might and O. Shivers

is:

(call , β̂,bccurr, t̂)← ς̂curr

bcpoint ← τ[call]

bcnew ←bcpoint �bccurr

τ[call]←bcnew

ς̂curr ← (call , β̂,bcnew, t̂)

• Per-context. With a per-context configuration, all states with the same (call , β̂, t̂)

triple share a heap. (In a 0CFA setting, per-context and per-point become the

same.)

• Per-programme. With a per-programme configuration, all states share the same

widening configuration.

11.2 Garbage collection frequency and granularity

The implementation supports two policies for garbage collection:

• Eager. Each state is garbage collected every time.

• Never. No state is ever garbage collected.

Other strategies are permissible as well such as garbage collecting only when

zombie creation is imminent. In our experience, however, the time penalty of

garbage collection as reported by profiling was negligible compared with the cost of

termination checking; hence, we opted for a policy of garbage collection on every

transition.

11.3 Measurements

Table 1 provides measurements on a suite of benchmarks. The machine used for

evaluation is a 2 GHz Intel Core Duo with 2 GB RAM running Mac OS X.

Each benchmark was measured both with and without garbage collection enabled.

The #λ’s column indicates the number of functions in the pre-CPS-converted code.

(CPS conversion inflates the number of functions.)

We took three metrics for each run:

• Single: The percentage of variables (that is, 0CFA-level bindings) marked as

never exceeding a count of one. This metric approximates the improvement in

precision and the power of ΓCFA as an environment analysis.11

11 CPS conversion, A-Normalization and other argument-flattening transformations do not necessarily
inflate or deflate the singleness measure since the fresh variables introduced may be live across a
recursive call, causing deflation, or not live, causing inflation. In general, if a transformation can
minimize the number of variables live across a recursive call, e.g. by moving local computations after
it, ΓCFA’s singleness precision will improve. The CPS transformation used in our measurements made
no attempt to perform such optimizations.

Exploiting reachability and cardinality in higher-order flow analysis 861

Without GC With GC

Benchmark #λ’s Single States Time Single States Time

put-double 39 16% 4746 3s 90% 1723 1s

integrate-fringe 49 22% 12549 12s 96% 4012 4s

integrate-stream 45 10% 18556 24s 82% 8067 11s

perm 35 6% 127656 145s 95% 18166 9s

lattice∗ 36 10% 41413 94s 91% 8533 10s

earley∗ 90 – – >30min 94% 43034 138s

sboyer† 44 – – >30min 99% 14846 120s

nboyer† 43 – – >30min 99% 23108 144s

Table 1. Metrics for ΓCFA, k-level 0. A star ∗ denotes per-context

configuration-widening. A dagger † denotes per-programme configuration widening.

• States: The number of states traversed before termination. The reduction in

states approximates the improvement in false-positive-branch reduction.

• Time: The time until termination.

The high single percentages for the GC-enabled runs are explained by the fact that

most variables have short, non-self-interfering lifetimes. The low single percentages

for the non-GC-enabled runs are explained by the fact that, without GC, only

variables bound once for the entire run of the program, e.g. globals, are marked

single.

Analyses taking longer than 30 min were aborted. However, on a quad-Xeon

machine with 16 GB RAM, the nboyer benchmark was re-run with per-context heap

widening and GC turned on: after 6 h and 689,897 states visited, ΓCFA terminated.

This indicates that per-programme configuration widening may be critical in scaling

ΓCFA to larger programs.

12 Related work

The work we have developed in this paper lies at the confluence of three lines of

research: (1) prior work in control-flow analyses; (2) prior work in environment

analyses; and (3) prior work in continuation-passing style representations.

From a control-flow analysis perspective, these techniques descend from the

broader body of work in higher-order control-flow analysis, such as Shivers’

development of the k-CFA hierarchy (1991). By remaining agnostic to the structure

of the abstract contour set, our GC framework is orthogonal to, and synergistic

with, most of the subsequent innovations in CFA, such as Agesen’s CPA (1995)

and Wright and Jagannathan’s polymorphic splitting (1998). That is, the ΓCFA

framework should be able to take nearly any contour-selection strategy and make

it more precise.

Shivers (1991) introduced the term ‘environment analysis’, the higher-order analog

to must-alias analysis for variables and environments. His initial solution, reflow

analysis, operates on the same principle underlying our work: inferring when an

862 M. Might and O. Shivers

abstract object has only one corresponding concrete object. He achieves this by

selectively allocating a single unique abstract contour once at a point of interest

during the analysis. For the remainder of the analysis, this abstract contour is then

effectively equivalent to a concrete contour. This approach, however, suffers from

the drawback that the analysis must be re-run for each point of interest, and it

does not have the benefit of GC to improve precision. The techniques that we

have presented here could be considered as a sort of ‘opportunistic reflow analysis’.

Our work is further differentiated by a proof of correctness. (We suspect that the

proof techniques we employed to show the correctness of abstract counting could

be employed to show the correctness of reflow analysis.)

With regard to must-alias analysis, our GC and counting analyses are related to

the line of work initiated by Hudak’s abstract reference counting (1986), continued

by Chase et al.’s strong update (1990) and generalized by Jagannathan (1998). Our

abstract counter μ̂ and reachability function bR are quite similar to Jagannathan’s

cardinality maps and reachmaps; in fact, Jagannathan described his technique as

‘an abstract form of garbage collection’. Of the work that we know, Jagannathan is

the first to use abstract garbage collection in a higher-order analysis, and also, the

first to perform environment/must-alias analysis through the notion of ‘singleness’.

In these ways, his result is the closest to our own; it differs from our work in that:

• Our analysis supports polyvariance.

• Our analysis is a fundamental shift in granularity from the variable level to

the binding level.

• We operate over CPS rather than direct style, which makes it simple to use

an operational semantics for performing our analysis, instead of constraint-

solving.

• Our reachability function is computed on-the-fly rather than once, and we do

not need to run multiple iterations of the analysis to achieve the best results

possible.

In other work (Might & Shivers 2006a; Might & Shivers 2007), we have developed

a technique, ΔCFA, for performing environment analysis using abstract frame strings.

Like other environment analyses, ΔCFA relies upon the ability to infer concrete

equality from certain abstract conditions. Both abstract GC and counting are

orthogonal to and synergistic with ΔCFA. In practice, we have observed very

significant improvements in speed and precision when we added these techniques to

our ΔCFA trials.

A second line of work regarding environment analysis was initiated by Wand and

Steckler’s use of invariance sets (1994). Their analysis is not (outwardly) rooted in the

notion of determining concrete equality from the abstract, but rather in determining

which variables must remain unchanged – invariant – across machine transitions.

Wand and Steckler also introduced lightweight closure conversion, a cousin of

Shivers’ super-β inlining, to motivate the need for their environment analysis.

Hannan (1995) later translated this technique to a type system. The invariance-

set approach to environment analysis, however, suffers from an inability to handle

certain common cases, such as when a closure escapes its context of creation.

Exploiting reachability and cardinality in higher-order flow analysis 863

Our analysis is based on the body of work that develops the CPS-as-intermediate-

representation thesis. The foundational work here is by Steele (1978). Shivers’

earlier work (1991) in CPS-based analysis has provided the basic framework for

the techniques we have presented in this article. CPS lends itself to analysis based

on a state-collecting abstract interpretation because it corresponds so naturally

to a state machine. In the context of our GC operations, having a simple state

machine means that we can freeze execution at intermediate states, perform a GC,

and then, resume. We could achieve this in a non-CPS setting, with a semantics

based on context grammars or progress-establishing inference rules, but it would

complicate the analysis and its correctness proofs. With CPS, we do not have to

add machinery to our semantics to handle evaluation context, or worry about or

reference subcomputations appearing in a justification tree for a given machine step.

Acknowledgments

Suresh Jagannathan very kindly pointed out some important related work that

helped the development of our ideas. We thank Ben Chambers, Daniel Harvey and

our anonymous reviewers for the conference version of this paper (Might & Shivers

2006b), whose detailed feedback made for a much better paper. We also thank Julia

Lawall and our anonymous reviewers for their extensive and insightful feedback on

this version of the paper. This work was funded by the NSF’s Science of Design

programme; we are grateful for their support.

References

Agesen, O. (1995) The cartesian product algorithm: simple and precise type inference of

parametric polymorphism. In Proceedings of ECOOP 1995, pp. 2–26.

Chase, D. R., Wegman, M., & Zadeck, F. K. 1990 (June) Analysis of pointers and

structures. In Proceedings of ACM SIGPLAN Conference on Programming Language Design

and Implementation, pp. 296–310.

Cousot, P. & Cousot, R. 1977 (January) Abstract interpretation: a unified lattice model for

static analysis of programs by construction or approximation of fixpoints. In Proceedings of

ACM SIGPLAN Symposium on Principles of Programming Languages, vol. 4, pp. 238–252.

Cousot, P. & Cousot, R. 1979 (January) Systematic design of program analysis frameworks.

In Proceedings of ACM SIGPLAN Symposium on Principles of Programming Languages,

vol. 6, pp. 269–282.

Hannan, J. (1995) Type systems for closure conversion. In Proceedings of Workshop on Types

for Program Analysis, pp. 48–62.

Hudak, P. 1986 (August) A semantic model of reference counting and its abstraction

(detailed summary). In Proceedings of the 1986 ACM Conference on LISP and Functional

Programming, pp. 351–363.

Jagannathan, S., Thiemann, P., Weeks, S., & Wright, A. K. 1998 (January) Single and loving

it: must-alias analysis for higher-order languages. In Proceedings of ACM SIGPLAN

Symposium on Principles of Programming Languages, pp. 329–341.

Might, M. & Shivers, O. 2006a (January) Environment analysis via ΔCFA. In Proceedings

of the 33rd Annual ACM Symposium on the Principles of Programming Languages (POPL

2006), pp. 127–140.

864 M. Might and O. Shivers

Might, M. & Shivers, O. 2006b (September) Improving flow analyses via ΓCFA: abstract

garbage collection and counting. In Proceedings of the 11th ACM International Conference

on Functional Programming (ICFP 2006), pp. 13–25.

Might, M. & Shivers, O. (2007) Analyzing environment structure of higher-order languages

using frame strings. Theoretical Computer Science, 375(1–3), 137–168.

Might, M., Chambers, B., & Shivers, O. 2007 (January) Model checking via ΓCFA. In

Proceedings of the 8th International Conference on Verification, Model Checking and Abstract

Interpretation (VMCAI 2007), pp. 59–73.

Palsberg, J. (1995) Closure analysis in constraint form. ACM Trans. Programming Languages

Systems, 17(1), 47–62.

Sestoft, P. 1988 (October) Replacing Function Parameters by Global Variables. M.Phil. thesis,

Copenhagen, Denmark: DIKU, University of Copenhagen.

Shivers, O. 1988 (June) Control-flow analysis in scheme. In Proceedings of the SIGPLAN ’88

Conference on Programming Language Design and Implementation (pldi), pp. 164–174.

Shivers, O. 1991 (May) Control-Flow Analysis of Higher-Order Languages. Ph.D. thesis,

Pittsburgh, PA: School of Computer Science, Carnegie-Mellon University. Technical Report

CMU-CS-91-145.

Shivers, O. & Might, M. 2006 (June) Continuations and transducer composition.

In Proceedings of ACM SIGPLAN Conference on Programming Language Design and

Implementation, 295–307.

Steele, Jr., & Guy L. 1978 (May) RABBIT: A Compiler for SCHEME. M.Phil. thesis,

Cambridge, MA: Artificial Intelligence Laboratory, Massachusetts Institute of Technology.

Technical report AI-TR-474.

Wand, M. & Steckler, P. 1994 (January) Selective and lightweight closure conversion.

In Proceedings of ACM SIGPLAN Symposium on Principles of Programming Languages,

vol. 21, pp. 435–445.

Wright, A. K. & Jagannathan, S. (1998) Polymorphic splitting: an effective polyvariant flow

analysis. ACM Trans. Programming Languages Systems, 20(1), 166–207.

