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Abstract
Tracing just-in-time (JIT) compilers record and optimize the instruc-
tion sequences they observe at runtime. With some modifications, a
tracing JIT can perform well even when the executed program is it-
self an interpreter, an approach called meta-tracing. The advantage
of meta-tracing is that it separates the concern of JIT compilation
from language implementation, enabling the same JIT compiler to
be used with many different languages. The RPython meta-tracing
JIT compiler has enabled the efficient interpretation of several dy-
namic languages including Python (PyPy), Prolog, and Smalltalk.
In this paper we present initial findings in applying the RPython
JIT to Racket. Racket comes from the Scheme family of program-
ming languages for which there are mature static optimizing compil-
ers. We present the result of spending just a couple person-months
implementing and tuning an implementation of Racket written in
RPython. The results are promising, with a geometric mean equal
to Racket’s performance andwithin a factor of 2 slower thanGambit
and Larceny on a collection of standard Scheme benchmarks. The
results on individual benchmarks vary widely. On the positive side,
our interpreter is sometimes up to two to six times faster than Gam-
bit, an order of magnitude faster than Larceny, and two orders of
magnitude faster than the Racket JIT compiler when making heavy
use of continuations. On the negative side, our interpreter is some-
times three times slower than Racket, nine times slower than Gam-
bit, and five times slower than Larceny.

Categories and Subject Descriptors D.3.4 [Processors]: Code
generation, Compilers; D.3.2 [Software Engineering]: Applica-
tive (functional) languages

General Terms Languages, Design, Performance

Keywords Meta-tracing, JIT, Scheme, Racket, CEK

1. Introduction
Just-in-time (JIT) compilation has been applied to a wide variety
of languages, with early examples including Lisp, APL, Basic, For-
tran, Smalltalk, and Self (Aycock 2003). These days, JIT compi-
lation is mainstream; it is responsible for running both server-side
Java applications (Paleczny et al. 2001) and client-side JavaScript
applications in web browsers (Hölttä 2013).

Mitchell (1970) observed that one could obtain an instruction se-
quence from an interpreter by recording its actions. The interpreter
can then jump to this instruction sequence, this trace, when it returns
to interpret the same part of the program. For if-then-else statements,
there is a trace for only one branch. For the other branch, Mitchell

suggests reinvoking the interpreter. Bala et al. (2000) applied trac-
ing JIT compilation to optimize native assembly code and Gal et al.
(2006) showed that tracing JIT compilers can efficiently execute
object-oriented programs, which feature control flow that is highly
dynamic and data-dependent.

Developing a just-in-time compiler is traditionally a complex un-
dertaking. However, Bolz et al. (2009) developed meta-tracing, an
approach that can significantly reduce the development cost for trac-
ing JIT compilers. With meta-tracing, the language implementer
does not have to implement a JIT compiler for their language. In-
stead they simply write an interpreter for their language in a special
implementation language called RPython. Then some annotations
(hints) can be added to their interpreter, and RPython’s tracing JIT
compiler will be automatically inserted into the language implemen-
tation. Rigo and Pedroni (2006) and Bolz and Tratt (2013) describe
an efficient meta-tracing implementation of Python, called PyPy.

Meta-tracing has not previously been applied to a programming
language in the Scheme family. Scheme is interesting for two rea-
sons: on the one hand, Scheme presents a number of challenges,
such as continuations, guaranteed tail call optimization, heavy use
of higher-order programming and multiple return values. On the
other hand, Scheme has traditionally had very good ahead-of-time
(AOT) compilers that do static analysis of Scheme code and opti-
mize it heavily, such as Gambit (Feeley 2014). It is therefore an
open question whether a tracing JIT compiler, and more so a non-
language specific meta-tracing compiler, can compete.

In this paper we presentPycket, an implementation of the Racket
language (Flatt and PLT 2010) in RPython. Pycket was written
in a relatively straightforward way, closely following the control,
environment, and continuation (CEK) abstract machine (Felleisen
and Friedman 1987). We chose to base our interpreter on the CEK-
machine for two reasons: first, the CEK-machine embodies perhaps
the most straightforward way to implement a language with first-
class continuations. Second, we wanted to see if meta-tracing could
produce good results on an interpreter written at a higher-level than
the usual bytecode interpreters.

In this paper, we make the following contributions.

• We show that meta-tracing makes a CEK-based interpreter for
Racket competitive with the existing AOT and JIT compilers.

• We explain the transformations we applied to Pycket to make it
amenable to optimization by meta-tracing.

• We report the performance of Pycket on a standard set of
Scheme benchmarks, comparing it to Larceny (Clinger and



Hansen 1994), Gambit (Feeley 2014), and the Racket JIT com-
piler.

The paper is structured as follows: in section 2 we review some
of the salient features of Scheme and Racket and give some back-
ground on RPython and its tracing JIT compiler. In section 3 we
describe the Pycket interpreter and the transformations that were
needed to make it amenable to optimization by the RPython trac-
ing JIT compiler. We evaluate the performance of Pycket in sec-
tion 5 and discuss related work in section 6. Section 7 concludes
with some future directions.

2. Background
Pycket is based on RPython and Racket; we give brief introductions
to both in this section.

2.1 RPython and Meta-Tracing
RPython is a statically typed subset of Python that can be compiled
into efficient C code. The types do not have to be given in the source
code but are inferred. It was designed to be an implementation
language for interpreters for (dynamic) languages.

The feature that makes RPython interesting is its support for
meta-tracing. When compiling an interpreter written in RPython to
C, optionally a tracing JIT compiler can be inserted into the gen-
erated C code. This requires some source code annotations by the
interpreter author to make it work (Bolz et al. 2009, 2011b). The in-
serted tracing JIT compiler produces linear sequences of machine
code by recording the operations the interpreter executed while run-
ning a specific piece of the user’s program. The recorded sequence
of operations (called a trace) is optimized and then machine code
is emitted. Traces are only produced for parts of the program that
have been executed more than a specified threshold.

Because the produced machine code is linear, it needs to encode
potential control flow branches in a special way. This is done with
guards, an instruction that encodes the conditions that have to be
true to stay on the trace. If a guard fails, execution falls back to
the interpreter. If it fails often enough, a trace for that side path is
produced as well. Quite often the produced traces are actually loops,
meaning that they end with jumps to their own beginning.

2.2 Scheme and Racket
Scheme (Sussman and Steele Jr. 1975; Sperber et al. 2010) is a
small functional language based around the imperative call-by-
value 𝜆-calculus with a core set of additional data structures. Start-
ing with Steele (1978), Scheme also has a long history of optimizing
compilers, often focusing on difficult-to-compile features such as
first-class functions (in the 1970s when Scheme was invented) and
first-class continuations (subsequently).

Racket (Flatt and PLT 2010) is a mature functional language
and implementation, derived from Scheme with significant exten-
sions. For our purposes, we focus mainly on areas where it overlaps
with Scheme, and on its performance characteristics.

Notably for our purposes, Racket extensively uses macros and
other forms of syntax extension; prior to compilation all syntax
extensions are expanded into a small set of core language forms.
Pycket makes use of this pass by invoking Racket itself to perform
this expansion, and then implements only the dozen core forms.

The current Racket implementation features both an AOT com-
piler and a JIT compiler. The AOT compiler takes the core forms
mentioned above and produces a stack-based bytecode. At runtime,
upon first invocation of a function, the bytecode of the function is
compiled to machine instructions by the JIT compiler.

The implementation strategy of Racket placesmost optimization
burden on the AOT compiler to bytecode. This compiler performs
a number of transformations important for functional languages

such as lambda-lifting, as well as standard transformations such
as constant propagation and dead code elimination. In particular,
significant inlining is performed in this pass, including inlining of
recursive functions, resulting in a kind of loop unrolling.

Because the Racket JIT compiler is invoked on the first call
to a function, it can only take advantage of dynamic information
present at that time. Therefore, while the JIT compiler does make
use of information such as types of constant references, it does not
perform the kind of dynamic optimizations often associated with
JIT compilers for dynamic languages. In particular, it does not feed
back type information collected at runtime about variables into the
compiler (Hölzle and Ungar 1994).

3. The Implementation of Pycket
Pycket is implemented directly as an interpreter for the CEK ab-
stract machine (Felleisen and Friedman 1987), with only minor
modifications. The CEK-machine is a well-known abstract machine
that makes environments and continuations explicit in the represen-
tation and it represents control using abstract syntax trees (ASTs).
States within the CEK-machine are triples of an expression to be
evaluated, the environment of that expression which stores bindings
of names to values, and a continuation object that describes what to
do after the expression has been evaluated. The machine is a set
of rules describing transitions between these states. We implement
mutation using the Python heap, instead of an explicit heap as in the
CESK-machine.

Following the CEK-machine has a number of advantages. First,
it makes supporting difficult-to-implement Racket features such as
call/cc, proper tail calls, and multiple return values straightforward.
Second, using the CEK-machine as a starting point is also interest-
ing in that, implemented naively, it is not a particularly efficient
way to execute Scheme-like languages. It is therefore an excellent
way to test the hypothesis that RPython’s meta-tracing can generate
an efficient implementation from such a high-level interpreter.1

Listing 1 shows the main loop of the Pycket interpreter. The lo-
cal variables represent the current expression to be evaluated (ast),
the current environment (env), and the continuation (cont). In every
iteration of the loop, one transition rule of the CEK-machine is ap-
plied, by calling the method interpret on the current ast (line 4),
which returns a new triple ast, env, cont. For transitions that pro-
duce values, the interpretmethod decides what to do next by invok-
ing the plug_reduce method on the current continuation cont. If the
computation is finished, a special Done exception is thrown, which
encapsulates the return value.

The main loop has two hints to RPython’s JIT compiler genera-
tionmachinery, on lines 3 and 5–6. These hints are discussed further
in section 4, but they do not affect the semantics of the program.

1 try:
2 while True:
3 jitdriver.jit_merge_point()
4 ast, env, cont = ast.interpret(env, cont)
5 if ast.should_enter:
6 jitdriver.can_enter_jit()
7 except Done, e:
8 return e.values

Listing 1. Interpreter main loop

1While a direct interpreter on the AST would be even more high-level, it
would make it harder to implement continuations, and would require proper
tail calls from the underlying language, which RPython does not provide.



3.1 Expressions
The AST is a representation of the program being interpreted. The
AST has to represent only the core forms, with the remainder
handled by Racket’s macro expander; these forms are lambda ab-
stractions, function application, quotes, variables, let bindings, if,
letrec, begin, and set!. As an example, the AST class representing
if-expressions is seen in listing 2.

An if-expression references a test, a then-expression and else-
expression, all of which are themselves ASTs. To interpret an if-
expression, first the test is evaluated and the value resulting from
that evaluation is compared to #f. Depending on whether that is
true or false, the then- or the else-expression is returned as the new
AST to be interpreted. The environment and continuation remain
the same.

1 class If(AST):
2 # constructor omitted
3 def interpret(self, env, cont):
4 val = self.tst.interpret(env)
5 if val is values.false:
6 return self.els, env, cont
7 else:
8 return self.thn, env, cont

Listing 2. If AST node

3.2 Continuations
Continuations encapsulate what the interpreter must do after the cur-
rent AST is fully evaluated to a value. We represent continuations
as a stack implemented as a linked list, The chain of continuations
combines the roles of an operand stack and the procedure call stack
of a more traditional bytecode interpreter.

As a simple example, listing 3 shows the begin continuation,
implementing the begin form. This form evaluates a sequence of
expressions, returning the value of the last. The begin continuation
is therefore used to mark that the results of all but the last expression
are ignored. The plug_reduce method of a continuation is called
with the result of evaluating the previous expression in the begin
form as the vals argument. That value is then ignored and the next
expression is evaluated. For the last expression of the begin no new
continuation is needed, and the value of that expression is eventually
passed on to the previous continuation.

1 class BeginCont(Cont):
2 # constructor omitted
3 def plug_reduce(self, vals):
4 jit.promote(self.ast)
5 env = self.env
6 i = self.i
7 if i == len(self.ast.body) - 1:
8 return self.ast.body[i], env, self.prev
9 else:
10 cont = BeginCont(self.ast, i+1, env, self.prev)
11 return self.ast.body[i], env, cont

Listing 3. Begin continuation

As an optimization, we fuse the expression re-construction
(plug) and new-expression evaluation (reduce) portions of the CEK-
machine, a standard practice in optimizing abstract machines. Thus
the plug_reduce method directly finds the next expression to evalu-
ate.

Prior to interpretation, we translate all expressions to A-normal
form (Danvy 1991; Flanagan et al. 1993). This introduces additional

let-bindings for all non-trivial expressions (e.g. function applica-
tion), so that function operands and the test of an if are always ei-
ther constants or variables. This transformation is not required for
our implementation, but significantly simplifies the continuations
we generate, enabling the tracing JIT compiler to produce better
code.

3.3 Environments
Environments are implemented as linked lists of arrays of values.
Listing 4 shows the implementation of the environment class. It
stores a list of values and a reference to the outer environment. AST
nodes track the lexical nesting structure, meaning that environments
need not store variable names (see section 4.2).

Almost all variables in typical Racket programs are immutable,
but set! must also be supported. To simplify the representation
of environments, Pycket performs assignment conversion: every
mutable variable is transformed into an immutable one whose value
is a mutable heap cell. This makes mutable variables somewhat
slower, but benefits all others by enabling the JIT compiler to look
up variables only once.

1 class ConsEnv(Env):
2 # constructor omitted
3 @jit.unroll_safe
4 def lookup(self, sym, env_structure):
5 jit.promote(env_structure)
6 for i, s in enumerate(env_structure.symbols):
7 if s is sym:
8 v = self.value_list[i]
9 assert v is not None
10 return v
11 return self.prev.lookup(sym, env_structure.prev)

Listing 4. Environment and lookup

Pycket also simplifies environment and closures to handle sim-
ple recursive functions, as is common in functional language imple-
mentations. For example Pycket implements a simplified form of
the letrec rewriting for procedures (Waddell et al. 2005).

3.4 Values
Values in Pycket are represented straightforwardly as instances of
several classes, one class for each kind such as fixnum, flonum,
bool, pair, vector, etc. We specialize the representation of vectors
to enable unboxed storage for homogeneous vectors of fixnums or
flonums using the storage strategies technique (Bolz et al. 2013).

Racket’s pairs are immutable (mutable pairs are constructed by
mcons and accessed with mcar and mcdr). Therefore it is possible
to choose one of several specialized representations of pairs at
allocation time. Currently Pycket only specializes pairs when the
car is a fixnum, which it represents in unboxed form.

In all other cases, unlike Racket and almost all other functional
language implementations, fixnums are heap allocated. Pycket does
not use pointer tagging.

4. Interaction with Meta-Tracing
One immediate hurdle when applying RPython’s meta-tracing JIT
compiler to Pycket is that one of the hints that the interpreter au-
thor needs to give is where loops at the language level can occur.
Because Racket transforms loops into recursive function calls, we
mark the start of a function as a place where the JIT compiler should
start tracing. This is done by setting a flag should_enter on the body
AST of every lambda form. The bytecode dispatch loop (listing 1)
reads the flag (line 5) and calls the corresponding method on the
JIT driver (line 6). Another hint is given just inside the loop body,
indicating that this is the main loop of the interpreter (line 3).



A further set of hints indicate that data structure are immutable.
RPython assumes that all instances are mutable; since ASTs, con-
tinuations, and environments are immutable, they can be marked as
such. Finally, many functions in the interpreter contain loops which
should be unrolled while tracing, specified by a function decorator
(listing 4, line 3).

A small further optimization is the creation of size-specialized
classes for many classes in the interpreter, such as ConsEnv and
continuation frame classes. This removes a layer of indirection by
putting the content directly into the class.

4.1 Allocation-Removal
The main optimization that the JIT compiler performs after it has
traced a hot piece of code is that it removes allocations of immediate
data structures that have a predictable lifetime (Bolz et al. 2011a).
This optimization is particularly important for Pycket. When run-
ning the interpreter without meta-tracing, a lot of data-structures are
continually allocated: every call to an interpret method allocates a
new triple as its return value and new continuations are instantiated
all the time. Most of the time these do not live very long, and the JIT
compiler can fully remove the overhead of their use. In particular,
simple tail-recursive functions are turned into loops on the machine
code level that, most of the time, do not need to allocate environ-
ments or continuations.

For recursive functions where the recursive call is not in tail po-
sition the situation is slightly more interesting. The JIT compiler
still produces a loop from the start of the function to the recursive
call. However, because there is something left to do after the base
case is reached, every iteration of the loop allocates a continuation.
This continuation records what is left to do upon the return of the
recursive call. When the base case is eventually reached, these con-
tinuations are then activated and removed again. This produces a
second loop which effectively unwinds the stack of continuations.
In this way, even recursion that cannot be directly mapped to itera-
tion is compiled as two loops in Pycket.

4.2 Lexical Addressing for Free
During the rewriting of the AST, another piece of information is
computed for every AST node. Since Racket is lexically scoped, it
is possible to determine the static structure of the environment at
every point in the AST. Environments are linked lists of arrays of
values, thus static environments are a linked list of arrays of names.

In traditional Scheme systems this environment structure is used
to assign two numbers to every variable which encode the position
of the variable in the stack of frames. In Pycket, this encoding is
not necessary. Instead, every time a variable in the environment is
examined, the structure of the environment is traversed in parallel
to the environment, until the looked-for name is found. While this
appears much less efficient than just using the two indices to pick
the right place, the JIT compiler will produce the same machine
code as if the encoding to numbers was used.

This works because the environment structure is an immutable
data structure that is part of theAST. Thus, the JIT can constant-fold
all computations that inspect it. In particular, in listing 4, the loop
on line 6 is unrolled and the condition on line 7 is constant-folded.
The generated code simply traverses the stack of environments to
the right one, and then reads the value at the correct index.

The approach is made possible by separating the static part of
the environment, its structure, from the data structure that stores
different values at runtime. The technique of separating static and
dynamic data structure components is common in the context of
partial evaluation, and called binding time improvement (Jones et al.
1993, Chapter 12). Jørgensen (1992) provides an example of using
binding time improvement for environments.

Table 1. Extreme runtimes in milliseconds
Gambit Larceny Pycket Racket

ctak 859 ±36 1965 ± 15 304 ±1 40774 ±81
fibc 768 ±52 1750 ± 28 1061 ±2 27064 ±94
pi 657 ± 7 44742 ±234 624 ±4 502 ± 2

5. Results
We compared Pycket to Racket and several Scheme implementa-
tions to test its performance and therefore our hypothesis.

Hardware We conducted the experiments on an Intel Xeon
E5410 (Harpertown) clocked at 2.33GHz with 2×6MB cache and
16GB of RAM.All benchmarks used are single-threaded, hence the
number of cores (four) was irrelevant to the experiment. Although
virtualized on Xen, the machine was dedicated to the benchmarks.

Software The machine ran Ubuntu 12.04.4 LTS with a 64 bit
Linux 3.2.0. We used the benchmarking framework ReBench2 to
carry out all executions and measurements. RPython as of revision
d86c4a65f830 served for translating Pycket.

Implementations Racket v6.0, Gambit v4.7.2, Larceny v0.97,
and Pycket as of revision 10ed5db6a395 were used in the bench-
marks. All Gambit programs were compiled with -D__SINGLE_HOST.

Benchmarks The benchmark suite consists of the “CrossPlat-
form” benchmark from Larceny, comprising well-known Scheme
benchmarks originally collected for Gambit. We omit those bench-
marks that use mutable pairs, as well as those using I/O and threads,
which we have not yet implemented.

Methodology Every benchmark was run 10 times uninterrupted
at highest priority, in a new process. The runtime (total time) was
measured in-system and, hence, does not include start-up; however,
warm-up was not separated, so JIT compiler runtime is included in
the numbers. We report the arithmetic mean of the ten runs along
with bootstrapped (Davison andHinkley 1997) confidence intervals
showing the 95% confidence level.

The results are summarized in Figure 1. The runtime per bench-
mark of each implementation is normalized to Racket. Pycket’s
performance on individual benchmarks ranges from approximately
three times slower to two times faster than Racket, in nine instances
even faster than Gambit. The geometric mean of all measurements
compared suggests that Pycket is about as fast as Racket, as depicted
by the bars labeled “geometric mean” in the figure.

Three benchmarks are not included in the comparison above, as
the differences were so extreme that they skew the overall num-
bers. As Table 1 suggests, Pycket was one to two orders of mag-
nitude faster than Racket for the ctak and fibc benchmarks. Both
make heavy use of continuations, and hence benefit from the CEK-
machine nature of Pycket, whereas Racket’s implementation of con-
tinuations is known to be slow. On these benchmarks, Pycket is
close to or faster than Gambit and Larceny. On the pi benchmark,
which emphasizes bignum performance, Larceny is much slower
than the other implementations.

Pycket with the meta-tracing JIT compiler disabled runs gener-
ally 40 times slower than the meta-traced verision.

6. Related Work
As mentioned in the introduction, functional languages in general,
and Scheme in particular, have a long tradition of highly optimiz-
ing AOT compilers. Rabbit, by Steele (1978), following on the
initial design of the language, demonstrated the possibilities of
continuation-passing style and of fast first-class functions. Subse-
quent systems such as Gambit (Feeley 2014), Bigloo (Serrano and
Weis 1995), Larceny (Clinger and Hansen 1994), Stalin (Siskind

2 https://github.com/smarr/ReBench

https://github.com/smarr/ReBench
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Figure 1. Benchmark runtime results. Each bar shows the arithmetic mean of 10 runs, normalized to Racket.

1999), and Chez (Dybvig 2011) have pioneered a variety of tech-
niques for static analysis, optimization, and memory management,
among others. Most other Scheme implementations are interpreters,
either directly on the AST or on a bytecode representation. Racket
is the only widely used system in the Scheme family with a JIT com-
piler, and even that is less dynamic than many modern JIT compil-
ers.

Many Lisp implementations provide means for programmers to
manually type-specialize code with specialized operations or type
declarations. Racket provides these operations, but we have not yet
evaluated their effect on performance in Pycket.

JIT compilation has been extensively studied in the context
of object-oriented, dynamically-typed languages (Aycock 2003).
For Smalltalk-80, Deutsch and Schiffman (1984) developed a JIT
compiler from bytecode to native code. Chambers et al. (1989)
explored using type specialization and other optimizations in Self,
a closely-related language. Further research on Self applied more
aggressive type specialization (Chambers and Ungar 1991) and
improved the compiler’s selection of methods (Hölzle and Ungar
1994).

With the rise in popularity of Java, JIT compilation became a
mainstream enterprise, with a significant increase in the volume of
research. The Hotspot compiler (Paleczny et al. 2001) is representa-
tive of the Java JIT compilers. JIT compilation has also become an
important topic in the implementation of JavaScript (see for exam-
ple (Hölttä 2013)) and thus a core part of modern web browers. For
strict functional languages other than Scheme, such as OCaml, JIT
compilers exist (Starynkevitch 2004; Meurer 2010), however, they
are typically auxiliary to the usually much faster AOT compiler im-
plementations.

As mentioned in the introduction, Mitchell (1970) introduced
the notion of tracing JIT compilation, and Gal et al. (2006) used
tracing in a Java JIT compiler. Since then, Gal et al. (2009) devel-
oped a tracing JIT compiler for JavaScript and LuaJIT3 is a very
successful tracing JIT compiler for Lua. Further work was done by
Bebenita et al. (2010) who created a tracing JIT compiler for Mi-
crosoft’s Common Intermediate Language (CIL) and applied it to a
JavaScript implementation in C#. Schilling (2013, 2012) developed
a tracing JIT compiler for Haskell based on LuaJIT called Lambda-
chine. Due to Haskell’s lazy evaluation, the focus is quite differ-
ent than ours. One goal of Lambdachine is to achieve deforestation
(Wadler 1988; Gill et al. 1993) by applying allocation-removal tech-

3 http://luajit.org

niques to traces. Lambdachine is between 50% faster and two times
slower than GHC on the small benchmarks the thesis reports on
(Schilling 2013).

The core idea of meta-tracing, which is to trace an interpreter
running a program rather than a program itself, was pioneered by
Sullivan et al. (2003) in DynamoRIO.

There were experiments with applying meta-tracing to a Haskell
interpreter written in RPython (Thomassen 2013). The interpreter
also follows a variant of a high-level semantics of the Core of Has-
kell (Launchbury 1993). While the first results were promising, it
supports a very small subset of primitives so that not many interest-
ing benchmarks run on it.

7. Future Directions
With approximately two person-months of effort, Pycket has dem-
onstrated that meta-tracing JIT compilers are competitive with ma-
ture AOT compilers for classic functional programming languages.
RPython’s meta-tracing approach takes a simple implementation of
the CEK-machine and turns it into fast machine code.

However, much remains to investigate in this direction. As we
have seen, Pycket is on-average almost two times slower than Gam-
bit, and significantly slower than that on some benchmarks.We con-
jecture that this gap can be closed, but more work is required to find
out. Additionally, Pycket does not yet implement some of Racket’s
runtime features, including threads, continuation marks, and delim-
ited control operators. These features may require changes that sig-
nificantly affect performance, but we conjecture that they do not
since they map naturally onto our CEK-machine architecture.

Additionally, a wide variety of further optimization opportuni-
ties present themselves. For example, while we implement storage
strategies for vectors, all integers stored in environment locations,
heap cells, and continuations are boxed—storage strategies may
also have a role to play here. They may also allow us to implement
Racket’s ubiquitous lists in new ways, taking advantage of new
functional data structures such as Hash-Array Mapped Tries (Bag-
well 2001). We plan to investigate whether tracing provides perfor-
mance advantages for complex control flow such as that generated
by contract checking, objects implemented via macros and struc-
tures, or even interpreters written in Racket itself. Finally, since
meta-tracing has accelerated the CEK-machine so effectively, these
techniques may also apply to other abstract machines.

http://luajit.org
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Table 2. All benchmarks
Benchmark Gambit Larceny Pycket PycketNoJit Racket

mean error mean error mean error mean error mean error

ack 85ms ± 0 73ms ± 0 356ms ± 5 10312ms ± 32 195ms ± 3
array1 594ms ± 6 217ms ± 0 279ms ± 1 39376ms ± 223 634ms ± 1
cpstak 991ms ± 23 913ms ± 35 2356ms ± 4 82679ms ± 391 1779ms ± 10
ctak 859ms ± 36 1965ms ± 15 304ms ± 1 9447ms ± 26 40774ms ± 81
deriv 781ms ± 3 821ms ± 18 2861ms ± 25 85341ms ± 204 1806ms ± 12
diviter 568ms ± 7 435ms ± 18 939ms ± 4 104737ms ± 807 1620ms ± 6
divrec 842ms ± 16 970ms ± 21 2930ms ± 18 97819ms ± 1504 3104ms ± 33
earley 757ms ± 33 1098ms ± 7 3176ms ± 44 72730ms ± 848 1196ms ± 9
fft 632ms ± 22 848ms ± 5 265ms ± 2 54706ms ± 276 954ms ± 8
fib 1909ms ± 1 1278ms ± 8 3714ms ± 27 117401ms ± 2132 2976ms ± 43
fibc 768ms ± 52 1750ms ± 28 1061ms ± 2 17831ms ± 46 27064ms ± 94
fibfp 1051ms ± 6 1624ms ± 1 1515ms ± 7 47600ms ± 1001 1916ms ± 25
gcbench 1965ms ± 37 751ms ± 8 3511ms ± 34 27192ms ± 76 1410ms ± 7
mbrot 865ms ± 33 1150ms ± 4 682ms ± 1 59947ms ± 246 1804ms ± 18
nqueens 1006ms ± 4 1091ms ± 5 3425ms ± 19 142284ms ± 373 1108ms ± 25
nucleic 655ms ± 2 967ms ± 2 2917ms ± 37 26723ms ± 41 1421ms ± 20
paraffins 920ms ± 18 1787ms ± 38 8467ms ± 31 62351ms ± 385 2746ms ± 31
perm9 1216ms ± 7 665ms ± 1 3194ms ± 34 48332ms ± 386 2323ms ± 5
pi 657ms ± 7 44742ms ± 234 624ms ± 4 1594ms ± 26 502ms ± 2
pnpoly 772ms ± 8 972ms ± 9 656ms ± 1 87984ms ± 677 872ms ± 17
primes 1323ms ± 14 5355ms ± 287 2934ms ± 29 87414ms ± 498 1910ms ± 4
puzzle 972ms ± 3 1368ms ± 3 1069ms ± 17 127085ms ± 681 2268ms ± 16
simplex 746ms ± 4 1537ms ± 6 3665ms ± 13 80971ms ± 165 1956ms ± 11
string 174ms ± 1 328ms ± 0 28ms ± 0 28ms ± 0 155ms ± 0
sum 490ms ± 0 518ms ± 1 140ms ± 0 82006ms ± 406 519ms ± 1
sumfp 567ms ± 4 1044ms ± 22 148ms ± 0 41359ms ± 543 1267ms ± 47
sumloop 518ms ± 0 777ms ± 1 601ms ± 6 87337ms ± 914 822ms ± 2
tak 1049ms ± 2 934ms ± 1 4078ms ± 7 136038ms ± 1719 2377ms ± 14
takl 716ms ± 0 779ms ± 1 3414ms ± 5 215217ms ± 651 2252ms ± 13
triangl 1537ms ± 4 1788ms ± 6 1792ms ± 29 161541ms ± 1770 2183ms ± 5
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