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The Rise Of Scripting
A brief tour





JavaScript



Lua



Python



Perl



Swedish Pensions

Quick hack to critical system: 
The paradigmatic scripting story

Started as a backup system
Ended managing billions in assets



“whipitupitude” — Larry Wall



Common Lisp

C++

Ruby 

Scala

Java
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The all-too-common result: rewrite in C++/Java

Waterfall development of spec and code

Replace all scripting languages

Omniscient program analysis
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Existing PL technology: 
Types as lightweight specifications

•Robustness via static enforcement
•Maintainability via checked specs
•Evolution via refactoring support
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My Research Methodology

Validate the solution in theory & practice

Study the challenge in a controlled but realistic environment

Discover a challenge in the real world

Bring the solution to the broader community

Implement the solution in 
a production systemFormally analyze the problem



Racket

A descendant of Lisp & Scheme

15 years of development

Used in dozens of companies, 
120 universities, 200 schools

20+ current developers

500,000 line code base

Ideal environment for 
investigating script to 
program evolution



Typed Racket

A typed dialect of Racket

Publicly distributed for 4+ years

Used in multiple companies and
several college courses

Supports dozens of existing libraries

Used in key Racket systems A testbed for scripts-
to-programs research



(define (main stx trace-flag super-expr
              deser-id-expr name-id
              ifc-exprs defn-and-exprs)

  

What’s not so good

+ 900 lines

(define (main stx trace-flag super-expr
deserialize-id-expr name-id
interface-exprs defn-and-exprs)

  (let-values ([(this-id) #'this-id]

[(the-obj) (datum->syntax (quote-syntax here) (gensym 'self))]

[(the-finder) (datum->syntax (quote-syntax here) (gensym 'find-self))])

  (let* ([def-ctx (syntax-local-make-definition-context)]

[localized-map (make-bound-identifier-mapping)]

[any-localized? #f]

[localize/set-flag (lambda (id)

  (let ([id2 (localize id)])

  (unless (eq? id id2)

  (set! any-localized? #t))

  id2))]

[bind-local-id (lambda (id)

  (let ([l (localize/set-flag id)])

  (syntax-local-bind-syntaxes (list id) #f def-ctx)

  (bound-identifier-mapping-put!

localized-map

id

l)))]

[lookup-localize (lambda (id)

  (bound-identifier-mapping-get

localized-map

id

(lambda ()

  ; If internal & external names are distinguished,

  ; we need to fall back to localize:

  (localize id))))])

  ; ----- Expand definitions -----

  (let ([defn-and-exprs (expand-all-forms stx defn-and-exprs def-ctx bind-local-id)]

[bad (lambda (msg expr)

  (raise-syntax-error #f msg stx expr))]

[class-name (if name-id

(syntax-e name-id)

(let ([s (syntax-local-infer-name stx)])

  (if (syntax? s)

(syntax-e s)

s)))])

  ; ------ Basic syntax checks -----

  (for-each (lambda (stx)

  (syntax-case stx (-init init-rest -field -init-field inherit-field

private public override augride

public-final override-final augment-final

pubment overment augment

rename-super inherit inherit/super inherit/inner rename-inner

inspect)

  [(form orig idp ...)

(and (identifier? #'form)

(or (free-identifier=? #'form (quote-syntax -init))

(free-identifier=? #'form (quote-syntax -init-field))))])))))))

6

)

+ 900 more lines
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(: main : Stx Bool Expr (or #f Id) ... -> Expr)
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Modular Programs, 
                      Modular Checking

require(["some/module", 
         "text!some/module.html", 
         "text!some/module.css"],
    function(module, html, css) {
        return style_with(html, css);
    }
);

import os.system
system.output(“hello world”)

.

module DogsRelated
  NBR_OF_DOGS_NEEDED = 5
  class Dog
    def bark
      puts "Woof..."
    end
  end
end

render :: Data -> Graphic

function render(d) {
    let d1 = process(d);
    return transform(d1);
}



Making Interoperation Safe

Typed Module

Untyped Module

?
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Static Type Synthesized Dynamic Check

Number is_numeric

Listof[String] s.all(is_string)

InFile -> OutFile preconditions/postconditions

(ℝ -> ℝ) -> (ℝ -> ℝ) ???
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Dynamically Enforcing Types

Static Type Synthesized Dynamic Check

Number is_numeric

Listof[String] s.all(is_string)

InFile -> OutFile preconditions/postconditions

(ℝ -> ℝ) -> (ℝ -> ℝ) higher-order contracts

[Findler & Felleisen ICFP 02]





client broke the specification on deriv



typechecker: incorrect argument to deriv



Typed & UntypedTyped & Untyped
Untyped code can make mistakes

Typed & Untyped
Catch errors dynamically at the boundary

Typed & Untyped
Catch errors dynamically at the boundary

Key Elements

Automatically Synthesizing 
Dynamic Checks from Types

[DLS 06]

Multi-language Infrastructure 
[PLDI 11]

More Efficient, More 
Expressive Contracts
[Work in progress]



Static Guarantees from Blame

client broke the specification on add5

server interface broke the specification on add5

client broke the specification on deriv



Static Guarantees from Blame

Contracts and blame give us a soundness theorem:

 Dynamic type errors always blame the untyped modules
                                                                   [DLS 2006]

client broke the specification on add5

server interface broke the specification on add5

client broke the specification on deriv



Well-typed programs can’t be blamed

Philip Wadler
University of Edinburgh

Robert Bruce Findler
University of Chicago

Abstract
We show how contracts with blame fit naturally with recent work
on hybrid types and gradual types. Unlike hybrid types or gradual
types, we require casts in the source code, in order to indicate where
type errors may occur. Two (perhaps surprising) aspects of our
approach are that refined types can provide useful static guarantees
even in the absence of a theorem prover, and that type dynamic
should not be regarded as a supertype of all other types. We factor
the well-known notion of subtyping into new notions of positive
and negative subtyping, and use these to characterise where positive
and negative blame may arise. Our approach sharpens and clarifies
some recent results in the literature.

1. Introduction
Recently, a number of researchers have suggested ways to integrate
static and dynamic typing into a single framework. These include
the contracts of Findler and Felleisen (2002) and others, the grad-
ual types of Siek and Taha (2006), and the hybrid types of Flana-
gan (2006) and others. Interfaces between Scheme and statically
typed languages have been explored by Gray et al. (2005), Tobin-
Hochstadt and Felleisen (2006), and Matthews and Findler (2007).
Static and dynamic typing are both supported in Visual Basic (Mei-
jer 2004), with similar integration planned for Perl 6 and Javascript;
and one of the designers of Java has argued that static types should
be optional (Bracha 2004).

We provide a uniform view of recent work on contracts, grad-
ual types, and hybrid types by introducing a notion of blame (from
contracts) to a type system with casts (similar to intermediate lan-
guages used for gradual and hybrid types), yielding a system that
we call evolutionary types. Programmers using this type system
may add contracts to evolve dynamically typed programs into stati-
cally typed programs (as with gradual types) or to evolve statically
typed programs into programs with refinement types (as with hy-
brid types).

We suggest that what has been used as an intermediate type
system for gradual and hybrid types is itself useful as a source
language—this has the advantage that it is obvious reading the
source language where static guarantees hold and where dynamic
checks are enforced. We also suggest, in contrast to previous work,
that hybrid types can be useful even in the absence of a theorem
prover—one need not have a sophisticated type checker to benefit
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classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Workshop on Scheme and Functional Programming 30 September 2007, Freiburg,
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from sophisticated types! Finally, we suggest that one should not
regard every type as a subtype of the dynamic type.

The technical content of this paper is to introduce notions of
positive and negative subtyping, and prove a theorem that charac-
terises when positive and negative blame can occur. We show how
our theorem sharpens the published results for gradual and hybrid
types, and clarifies other recent results.

Many readers will recognise that our title is the third in a series.
“Well-typed programs can’t go wrong” summarised a denotational
approach to soundness introduced by Milner (1978). “Well-typed
programs don’t get stuck” refined this slogan, summarising an oper-
ational approach to soundness introduced by Wright and Felleisen
(1994). A related slogan, “safety is preservation plus progress”, is
due to Harper (Pierce 2002, page 95). “Well-typed programs can’t
be blamed” describes an approach suited to systems that use con-
tracts and blame, characterising interaction between more-typed
and less-typed components of a program.

We make the following contributions:

• We introduce our language, showing that a language with ex-
plicit casts and no theorem prover (and a little syntactic sugar)
is suited to many of the same purposes as gradual types and
hybrid types (Section 2).

• We give a framework similar to that of the hybrid typing of
Flanagan (2006) and the dynamic dependent typing of Ou et al.
(2004), but with a decidable type system for the source lan-
guage and satisfying unicity of type (Section 3).

• We factor the well-known notion of subtyping into new notions
of positive and negative subtyping. We prove that a cast from a
positive subtype cannot give rise to positive blame, and that a
cast from a negative subtype cannot give rise to negative blame
(Section 4).

• We apply our theorem to sharpen published results for gradual
types (Siek and Taha 2006) and hybrid types (Flanagan 2006),
and to shed light on recently published results by Gronski and
Flanagan (2007) and Matthews and Findler (2007) (Section 5).

Section 6 describes related work, and Section 7 concludes.

2. Evolutionary Programming
2.1 From Untyped to Typed
Consider the following program written without types.

�let
x = 2

in let
f = λy. y + 1

in let
h = λg. g (g x)

in
h f�

Blame for All

Amal Ahmed
Indiana University

amal@cs.indiana.edu

Robert Bruce Findler
Northwestern University

robby@eecs.northwestern.edu

Jeremy G. Siek
University of Colorado at Boulder

jeremy.siek@colorado.edu

Philip Wadler
University of Edinburgh
wadler@inf.ed.ac.uk

Abstract
Several programming languages are beginning to integrate static
and dynamic typing, including Racket (formerly PLT Scheme), Perl
6, and C# 4.0 and the research languages Sage (Gronski, Knowles,
Tomb, Freund, and Flanagan, 2006) and Thorn (Wrigstad, Eug-
ster, Field, Nystrom, and Vitek, 2009). However, an important open
question remains, which is how to add parametric polymorphism
to languages that combine static and dynamic typing. We present a
system that permits a value of dynamic type to be cast to a polymor-
phic type and vice versa, with relational parametricity enforced by
a kind of dynamic sealing along the lines proposed by Matthews
and Ahmed (2008) and Neis, Dreyer, and Rossberg (2009). Our
system includes a notion of blame, which allows us to show that
when casting between a more-precise type and a less-precise type,
any cast failures are due to the less-precisely-typed portion of the
program. We also show that a cast from a subtype to its supertype
cannot fail.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Procedures, functions, and subroutines

General Terms Languages, Theory

Keywords casts, coercions, blame tracking, lambda-calculus

1. Introduction
The long tradition of work that integrates static and dynamic types
includes the partial types of Thatte (1988), the dynamic type of
Abadi et al. (1991), the coercions of Henglein (1994), the contracts
of Findler and Felleisen (2002), the dynamic dependent types of Ou
et al. (2004), the hybrid types of Gronski et al. (2006), the grad-
ual types of Siek and Taha (2006), the migratory types of Tobin-
Hochstadt and Felleisen (2006), the multi-language programming
of Matthews and Findler (2007), and the blame calculus of Wadler
and Findler (2009). Integration of static and dynamic types is a fea-
ture of .NET languages including Visual Basic and C#, is being ex-
plored for Javascript, Perl, Python, and Ruby, and is the subject of
the recent STOP 2009 workshop held in conjunction with ECOOP.
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A unifying theme in this work is to use casts to mediate between
statically and dynamically typed code. Casts may be introduced by
compiling to an intermediate language; the blame calculus may be
regarded as either such an intermediate language or as a source
language. The main innovation of the blame calculus is to assign
positive and negative blame (to either the term contained in the
cast or the context containing the cast), with associated notions of
positive and negative subtype. These support the Blame Theorem,
which ensures that when a program goes wrong, blame lies with
the less-precisely-typed side of a cast (Wadler and Findler, 2009).

In this paper, we extend a fragment of the blame calculus to
incorporate polymorphism, based on a notion of dynamic sealing.
For simplicity, our fragment includes base types, function types,
and the dynamic type, as found in gradual types, but omits subset
types, as found in hybrid types. Our system adds the ability to cast
a value of dynamic type to a polymorphic type and vice versa. We
name this system the polymorphic blame calculus.

A fundamental semantic property of polymorphic types is re-
lational parametricity, as introduced by Reynolds (1983). Our sys-
tem uses dynamic sealing to ensure that values of polymorphic type
satisfy relational parametricity. For instance, every function of type
∀X. X→X must either be the identity function (one which always
returns its argument) or an undefined function (one which never
returns a value), and this property holds true even for values of dy-
namic type cast to a polymorphic type. Relational parametricity un-
derlies some program optimizations, notably shortcut deforestation
as employed by the Glasgow Haskell Compiler (Gill et al., 1993).
Our system may guarantee the validity of such optimizations even
in the presence of dynamic types.

Dynamic sealing to enforce parametricity has a long history.
Sealing for data abstraction goes back at least to Morris (1973).
Cryptographic sealing for parametricity was introduced by Pierce
and Sumii (2000). Extending casts to include seals, while demon-
strating relational parametricity, was first explored in the context
of multi-language programming by Matthews and Ahmed (2008).
A practical implementation for Scheme contracts was described by
Guha et al. (2007). Recently, Neis et al. (2009) used dynamic seal-
ing to restore parametricity in a non-parametric language.

Our development is supported by the use of type bindings to
control the scope of type variables, both statically and dynamically.
Type bindings are closely related to constructs for generating new
type names (Neis et al., 2009; Rossberg, 2003); an important differ-
ence is that our type bindings are immobile, that is, there is no scope
extrusion. Our development also uses static casts to conceal and re-
veal the representations of type variables. Together with type bind-
ings, static casts provide a syntactic means to preserve the type-

Stateful Contracts for Affine Types∗

Jesse A. Tov and Riccardo Pucella

Northeastern University, Boston, MA 02115, USA

{tov,riccardo}@ccs.neu.edu

Abstract. Affine type systems manage resources by preventing some

values from being used more than once. This offers expressiveness and

performance benefits, but difficulty arises in interacting with components

written in a conventional language whose type system provides no way

to maintain the affine type system’s aliasing invariants. We propose and

implement a technique that uses behavioral contracts to mediate between

code written in an affine language and code in a conventional typed

language. We formalize our approach via a typed calculus with both

affine-typed and conventionally-typed modules. We show how to preserve

the guarantees of both type systems despite both languages being able

to call into each other and exchange higher-order values.

1 Introduction

Substructural type systems augment conventional type systems with the ability

to control the number and order of uses of a data structure or operation [20].

Linear type systems [19, 11, 3, 1], for example, ensure that values with linear type

cannot be duplicated or dropped, but must be eliminated exactly once. Other

substructural type systems refine these constraints. Affine type systems, which

we consider here, prevent values from being duplicated but allow them to be

dropped: a value of affine type may be used once or not at all.

Affine types are useful to support language features that rely on avoidance of

aliasing. One example is session types [6], which are a method to represent and

statically check communication protocols. Suppose that the type declared by

typeA prot = (int send → string recv → unit) chan (1)

represents a channel whose protocol allows us to to send an integer, then receive a

string, and finally end the session. Further, suppose that send and recv consume

a channel whose type allows sending or receiving, as appropriate, and return a

channel whose type is advanced to the next step in the protocol. Then we might

write a function that takes two such channels and runs their protocols in parallel:

letA twice (c1 : prot, c2 : prot, z : int): string ⊗ string =
let once (c : prot) ( : unit) =

let c = send c z in
let (s, ) = recv c in s

in (once c1) ||| (once c2) (2)

∗
Our prototype implementation and the full details of our soundness theorem may

be found at http://www.ccs.neu.edu/~tov/pubs/affine-contracts/.

Threesomes, With and Without Blame ∗

Jeremy G. Siek
University of Colorado at Boulder

jeremy.siek@colorado.edu

Philip Wadler
University of Edinburgh
wadler@inf.ed.ac.uk

Abstract
How to integrate static and dynamic types? Recent work focuses
on casts to mediate between the two. However, adding casts may
degrade tail calls into a non-tail calls, increasing space consumption
from constant to linear in the depth of calls.

We present a new solution to this old problem, based on the
notion of a threesome. A cast is specified by a source and a target
type—a twosome. Any twosome factors into a downcast from the
source to an intermediate type, followed by an upcast from the
intermediate to the target—a threesome. Any chain of threesomes
collapses to a single threesome, calculated by taking the greatest
lower bound of the intermediate types. We augment this solution
with blame labels to map any failure of a threesome back to the
offending twosome in the source program.

Herman, Tomb, and Flanagan (2007) solve the space prob-
lem by representing casts with the coercion calculus of Henglein
(1994). While they provide a theoretical limit on the space over-
head, there remains the practical question of how best to imple-
ment coercion reduction. The threesomes presented in this paper
provide a streamlined data structure and algorithm for represent-
ing and normalizing coercions. Furthermore, threesomes provide a
typed-based explanation of coercion reduction.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Procedures, functions, and subroutines

General Terms Languages, Theory

Keywords casts, coercions, blame tracking, lambda-calculus

1. Introduction
The old question of how to mix static and dynamic typing is attract-
ing renewed interest. On one side, Hejlsberg (2008) brings type
dynamic to C# 4.0, and on the other side, Tobin-Hochstadt and
Felleisen (2008) integrate static types into Scheme and Wall (2009)
adds optional static types to Perl 6. In these mixed settings, pro-
grammers and compilers should still be able to trust the results of
the static type checker, so run-time checks are needed to safeguard
the invariants established by the static type system. Recent work
mediates between static and dynamic regions using casts.

∗ A preliminary version of this paper appeared in the informal proceedings
of the 2009 Workshop on Script to Program Evolution.
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Building on the higher-order contracts of Findler and Felleisen
(2002), Wadler and Findler (2009) design the blame calculus to
serve as an intermediate language that integrates static and dynamic
typing. The blame calculus earns its name by tracking blame:
it maps run-time type errors back to their origin in the source
program. The Blame Theorem asserts that statically typed regions
of a program can never be blamed for run-time type errors.

However, there is concern that the casts used in the blame
calculus impose too much run-time overhead. Findler and Felleisen
(2002) observed that contracts may degrade a tail call into a non-tail
call and Herman et al. (2007) noted that the same is true for casts.
This concern prompted the ECMAScript 4.0 committee (Hansen
2007) and the designers of Thorn (Wrigstad et al. 2009) to consider
compromises such as like types that do not require casts.

Herman et al. (2007) use the coercion calculus of Henglein
(1992, 1994) to represent and compress sequences of casts. Any
coercion normalizes to a coercion of bounded size, thereby limiting
the run-time space overhead to a constant factor. Siek et al. (2009)
augment the coercion calculus with blame tracking to obtain a
space-efficient implementation of the blame calculus.

In this paper we present a new solution to the space problem,
based on the notion of a threesome. Traditionally, a cast is specified
by a source and a target type—a twosome. We show that any
twosome factors into a downcast from the source to an intermediate
type, followed by an upcast from the intermediate to the target—a
threesome. We also show that any chain of threesomes collapses to
a single threesome, calculated by taking the greatest lower bound of
the intermediate types. We then augment this solution with blame
labels so as to map any failure of a threesome back to the offending
twosome in the source program.

Threesomes are designed to correspond to twosomes and two-
somes are designed to correspond to Henglein’s coercions. So it
is not surprising that threesomes correspond to Henglein’s coer-
cions. Nonetheless, it is a pleasant validation of our design that
threesomes turn out to be exactly isomorphic to Henglein’s coer-
cions in normal form. Coercion normalization is an iterative pro-
cess, whereas composition of threesomes is a direct recursive defi-
nition. Thus, we believe that the alternative view offered by three-
somes may make possible a more efficient implementation than one
based directly on the coercion calculus.

The rest of the paper begins with a review of the blame calcu-
lus (Section 2). Then, to factor the presentation of the threesome
calculus, we present a simplified version that captures the main in-
tuitions and detects cast failures appropriately, but does not track
blame (Section 3). We prove that the simplified version is correct
and space efficient. Section 4 presents the complete threesome cal-
culus with support for blame tracking and proves that it is correct
(equivalent to the blame calculus). Section 5 shows that the three-
some calculus is isomorphic to a coercion-based calculus of Siek
et al. (2009). Some of the proofs are in-line and the rest are in
the Appendix. We explain the relationship between our results and
prior work in Section 6.

Static Guarantees from Blame

Contracts and blame give us a soundness theorem:

 Dynamic type errors always blame the untyped modules
                                                                   [DLS 2006]
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if (typeof x === “number”) {
  return x + 1;
}
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  return x();
}
else if (typeof x === “object”) {
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}
else
  return 0;
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  return x.length;
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  return 0;

Dynamic Type Tests

if isinstance(x,Numeric):
  print x + 1
elif isinstance(x,String):
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else:
  print “Nothing”

if (x instanceof String) {
    return ((String)x).length;
} else if (x instanceof Integer) {
    return ((Integer)x).intValue;
} else {
    return 0;
}
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Key Idea 1:
A logic to prove facts 

about variables and types

L-ATOM

ψ ∈ Γ

Γ � ψ

L-TRUE

Γ �
L-FALSE

Γ �
Γ � ψ

L-ANDI

Γ � ψ1

Γ � ψ2

Γ � ψ1 ∧ ψ2

L-ANDE

Γ,ψ1 � ψ or Γ,ψ2 � ψ

Γ,ψ1 ∧ ψ2 � ψ

L-IMPI

Γ,ψ1 � ψ2

Γ � ψ1 ⊃ ψ2

L-IMPE

Γ � ψ1

Γ � ψ1 ⊃ ψ2

Γ � ψ2

L-ORI

Γ � ψ1 or Γ � ψ2

Γ � ψ1 ∨ ψ2

L-ORE

Γ,ψ1 � ψ
Γ,ψ2 � ψ

Γ,ψ1 ∨ ψ2 � ψ

L-SUB

Γ � τx � τ <: σ

Γ � σx

L-SUBNOT

Γ � σx � τ <: σ

Γ � τx

L-BOT

Γ � ⊥x

Γ � ψ

L-UPDATE

Γ � τx Γ � νx
Γ � update(τ, ν)x

(The metavariable ν ranges over τ and τ (without variables).)

Figure 4. Proof System

e ::= . . . | (cons e e) Expressions

c ::= . . . | cons? | car | cdr Primitive Operations

σ, τ ::= . . . | �τ, τ� Types

ψ ::= . . . | τπ(x) | τπ(x) Propositions

o ::= π(x) | ∅ Objects

π ::= −→pe Paths

pe ::= car | cdr Path Elements

Figure 5. Syntax Extensions for Pairs

S-PAIR

� τ1 <: τ2
� σ1 <: σ2

� �τ1,σ1� <: �τ2,σ2�

T-CONS

Γ � e1 : τ1 ; ψ1+ |ψ1− ; o1
Γ � e2 : τ2 ; ψ2+ |ψ2− ; o2

Γ � (cons e1 e2) : �τ1, τ2� ; | ; ∅

T-CAR

Γ � e : �τ1, τ2� ; ψ0+ |ψ0− ; o
ψ+ |ψ− = #fcar(x)|#fcar(x)[o/x]

or = car(x)[o/x]

Γ � (car e) : τ1 ; ψ+ |ψ− ; or

T-CDR

Γ � e : �τ1, τ2� ; ψ0+ |ψ0− ; o
ψ+ |ψ− = #fcdr(x)|#fcdr(x)[o/x]

or = cdr(x)[o/x]

Γ � (cdr e) : τ2 ; ψ+ |ψ− ; or

Figure 6. Type and Subtype Extensions

L-SUB

Γ � τπ(x) � τ <: σ

Γ � σπ(x)

L-SUBNOT

Γ � σπ(x) � τ <: σ

Γ � τπ(x)

L-BOT

Γ � ⊥π(x)

Γ � ψ

L-UPDATE

Γ � τπ�(x) Γ � νπ(π�(x))

Γ � update(τ, ν,π)π�(x)

Figure 7. Logic Extensions

Logic Rules Figure 7 specifies the changes to the logic for deal-

ing with paths. For the first three rules, the only change needed

is allowing paths in the appropriate syntactic locations. For the L-

UPDATE rule, there is an additional change. When the environment

proves both ��,��x and Ncar(x), it must be possible to derive

�N,��x . The new version of L-UPDATE allows this inference via

a revised version of update. Its third argument specifies a path to

follow before refining the type. See figure 9 for details.

Of course, none of the rules implementing the standard proof

theory of propositional logic change with this extension.

With the addition of pairs, the type system can cope with 12 of

the 14 examples from section 2.

5.2 Local Binding
To add a local binding construct, we again extend the grammar:

d, e ::= . . . | (let (x e) e)

Recall our motivating example 9. The crucial aspect is to relate

the propositions about the initialization expression to the variable

itself. Logical implication precisely expresses this connection, giv-

ing us the following rule:

T-LET

Γ � e0 : τ ; ψ0+ |ψ0− ; o0
Γ, τx , #fx ⊃ ψ0+ , #fx ⊃ ψ0− � e1 : σ ; ψ1+ |ψ1− ; o1

Γ � (let (x e0) e1) : σ[o0/x] ; ψ1+ |ψ1− [o0/x] ; o1[o0/x]

This rule has three components. The first antecedent checks the

right-hand side. The second checks the body with an environment

extended both with the type of the bound variable (τx ) and with

implications stating that if x is not false, e0 must evaluate to

true, and similarly if x is false, e0 must evaluate to false. The

consequence replaces all references to x with the object of e0.

5.3 The Final Example
With this extension, we are now able to check all the examples from

section 2. To demonstrate the complete system, consider exam-

ple 14. We begin with Γ0 = (
�

N S)input, ��,��extra. The two

tests, (number? input) and (number? (car extra)), yield the propo-

sitions Ninput|Ninput for the former and Ncar(extra)|Ncar(extra)

for the latter. Using T-IF, T-SUBSUME, and the definition of and
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Of course, none of the rules implementing the standard proof
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right-hand side. The second checks the body with an environment

extended both with the type of the bound variable (τx ) and with

implications stating that if x is not false, e0 must evaluate to

true, and similarly if x is false, e0 must evaluate to false. The

consequence replaces all references to x with the object of e0.

5.3 The Final Example
With this extension, we are now able to check all the examples from

section 2. To demonstrate the complete system, consider exam-

ple 14. We begin with Γ0 = (
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N S)input, ��,��extra. The two

tests, (number? input) and (number? (car extra)), yield the propo-

sitions Ninput|Ninput for the former and Ncar(extra)|Ncar(extra)
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Key Idea 2:
An environment of 
general propositions

T-NUM

Γ � n : N ; | ; ∅
T-CONST

Γ � c : δτ (c) ; | ; ∅
T-TRUE

Γ � #t : #t ; | ; ∅
T-FALSE

Γ � #f : #f ; | ; ∅

T-VAR

Γ � τx

Γ � x : τ ; #fx |#fx ; x

T-ABS

Γ,σx � e : τ ; ψ+|ψ− ; o

Γ � λxσ.e : x :σ
ψ+|ψ−−−−−→

o
τ ; | ; ∅

T-APP

Γ � e : x :σ
ψf+

|ψf−−−−−−−→
of

τ ; ψ+|ψ− ; o

Γ � e� : σ ; ψ+
�|ψ−

� ; o�

Γ � (e e�) : τ[o�/x] ; ψf+ |ψf− [o�/x] ; of [o
�/x]

T-IF

Γ � e1 : τ1 ; ψ1+ |ψ1− ; o1
Γ,ψ1+ � e2 : τ ; ψ2+ |ψ2− ; o
Γ,ψ1− � e3 : τ ; ψ3+ |ψ3− ; o

Γ � (if e1 e2 e3) : τ ; ψ2+ ∨ ψ3+ |ψ2− ∨ ψ3− ; o

T-SUBSUME

Γ � e : τ ; ψ+|ψ− ; o
Γ,ψ+ � ψ�

+ Γ,ψ− � ψ�
−

� τ <: τ� � o <: o�

Γ � e : τ� ; ψ�
+|ψ�

− ; o�

Figure 2. Typing Rules

SO-REFL

� o <: o

SO-TOP

� o <: ∅

S-REFL

� τ <: τ

S-TOP

� τ <: �

S-UNIONSUPER

∃i. � τ <: σi

� τ <: (
� −→iσ )

S-UNIONSUB−−−−−−→i
� τi <: σ

� (
� −→iτ ) <: σ

S-FUN

� σ� <: σ � τ <: τ�

ψ+ � ψ+
� ψ− � ψ−

� � o <: o�

� x :σ
ψ+|ψ−−−−−→

o
τ <: x :σ� ψ+

�|ψ−
�

−−−−−−→
o�

τ�

Figure 3. Subtyping Rules

Given these definitions, the rules for subtyping are straightfor-

ward. All types are subtypes of � and of themselves. Subtypes of

elements of a union are subtypes of the union, and any type that is

a supertype of every element is a supertype of the union. Finally,

function types are ordered in the usual fashion.

4.3 Proof System
Figure 4 specifies the proof rules for our logic. The first nine

rules—L-ATOM through L-ORE—use the natural deduction style

to express the standard rules of propositional logic.

The subsequent four rules relate the atomic propositions. In

particular, L-SUB says that if x has type τ, then it has any larger

type. Similarly, L-SUBNOT says that if x does not have type τ, then

it does not have any smaller type. By L-BOT, if x has an empty

type, it is possible to conclude anything since this is impossible.

The L-UPDATE rule refines the type of a variable via a combina-

tion of multiple propositions. Roughly speaking, this metafunction

satisfies the equations

update(τ,σ) = τ ∩ σ update(τ,σ) = τ − σ

See figure 9 for the full definition.

4.4 A Worked Example
At this point, eight of our 14 examples typecheck. To illustrate the

workings of the type system, let us work example 7:

(if (if (number? x) (string? y) #f)
(+ x (string-length y))

0)

First, assume that the initial environment is Γ = �x,�y . Now

consider the inner if expression. The test has then proposition Nx

and else proposition Nx . The then branch has propositions Sy

and Sy , or by subsumption Nx ∧ Sy | , since T-IF adds the then
proposition of the test to the environment for checking the then
branch. The else branch has propositions | , and by subsump-

tion Nx ∧ Sy | since � Nx ∧ Sy . Therefore, the entire inner if
expression has then proposition

(Nx ∧ Sy) ∨ (Nx ∧ Sy) = Nx ∧ Sy

and else proposition .

Second, we typecheck the then branch of the main if expression

in the environment Γ1 = �x,�y,Nx ∧ Sy . Since Γ1 � Nx and

Γ1 � Sy , we can give x and y the appropriate types to check the

expression (+ x (string-length y)).

5. Extensions
The base system of section 4 lacks several important features, in-

cluding support for compound data structures and let. This section

shows how to extend the base system with these features.

5.1 Pairs
The most significant extension concerns compound data, e.g., pairs.

We extend the expression, type, and proposition grammars as

shown in figure 5.
4

Most significantly, in all places where a variable

appeared previously in propositions and objects, it is now legal to

specify a path—a sequence of selectors—rooted at a variable, writ-

ten π(x). This allows the system to refer not just to variables in the

environment, but to parts of their values.

Typing Rules Figure 6 shows the extensions to the typing and

subtyping rules. Again, the subtyping rule S-PAIR and typing rule

for cons are straightforward; all pair values are treated as true.

The T-CAR and T-CDR rules are versions of the application rule

specialized to the appropriate latent propositions and objects, which

here involve non-trivial paths. Substitution of objects for variables

is also appropriately extended; the full definition is in figure 8.

None of the existing typing rules require changes.

4
In a polymorphic λTR, pair operations could be added as primitives.
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� �τ1,σ1� <: �τ2,σ2�

T-CONS

Γ � e1 : τ1 ; ψ1+ |ψ1− ; o1
Γ � e2 : τ2 ; ψ2+ |ψ2− ; o2

Γ � (cons e1 e2) : �τ1, τ2� ; | ; ∅

T-CAR

Γ � e : �τ1, τ2� ; ψ0+ |ψ0− ; o
ψ+ |ψ− = #fcar(x)|#fcar(x)[o/x]

or = car(x)[o/x]

Γ � (car e) : τ1 ; ψ+ |ψ− ; or

T-CDR

Γ � e : �τ1, τ2� ; ψ0+ |ψ0− ; o
ψ+ |ψ− = #fcdr(x)|#fcdr(x)[o/x]

or = cdr(x)[o/x]

Γ � (cdr e) : τ2 ; ψ+ |ψ− ; or

Figure 6. Type and Subtype Extensions

L-SUB

Γ � τπ(x) � τ <: σ

Γ � σπ(x)

L-SUBNOT

Γ � σπ(x) � τ <: σ

Γ � τπ(x)

L-BOT

Γ � ⊥π(x)

Γ � ψ

L-UPDATE

Γ � τπ�(x) Γ � νπ(π�(x))

Γ � update(τ, ν,π)π�(x)

Figure 7. Logic Extensions

Logic Rules Figure 7 specifies the changes to the logic for deal-

ing with paths. For the first three rules, the only change needed

is allowing paths in the appropriate syntactic locations. For the L-

UPDATE rule, there is an additional change. When the environment

proves both ��,��x and Ncar(x), it must be possible to derive

�N,��x . The new version of L-UPDATE allows this inference via

a revised version of update. Its third argument specifies a path to

follow before refining the type. See figure 9 for details.

Of course, none of the rules implementing the standard proof

theory of propositional logic change with this extension.

With the addition of pairs, the type system can cope with 12 of

the 14 examples from section 2.

5.2 Local Binding
To add a local binding construct, we again extend the grammar:

d, e ::= . . . | (let (x e) e)

Recall our motivating example 9. The crucial aspect is to relate

the propositions about the initialization expression to the variable

itself. Logical implication precisely expresses this connection, giv-

ing us the following rule:

T-LET

Γ � e0 : τ ; ψ0+ |ψ0− ; o0
Γ, τx , #fx ⊃ ψ0+ , #fx ⊃ ψ0− � e1 : σ ; ψ1+ |ψ1− ; o1

Γ � (let (x e0) e1) : σ[o0/x] ; ψ1+ |ψ1− [o0/x] ; o1[o0/x]

This rule has three components. The first antecedent checks the

right-hand side. The second checks the body with an environment

extended both with the type of the bound variable (τx ) and with

implications stating that if x is not false, e0 must evaluate to

true, and similarly if x is false, e0 must evaluate to false. The

consequence replaces all references to x with the object of e0.

5.3 The Final Example
With this extension, we are now able to check all the examples from

section 2. To demonstrate the complete system, consider exam-

ple 14. We begin with Γ0 = (
�

N S)input, ��,��extra. The two

tests, (number? input) and (number? (car extra)), yield the propo-

sitions Ninput|Ninput for the former and Ncar(extra)|Ncar(extra)

for the latter. Using T-IF, T-SUBSUME, and the definition of and
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T-NUM

Γ � n : N ; | ; ∅
T-CONST

Γ � c : δτ (c) ; | ; ∅
T-TRUE

Γ � #t : #t ; | ; ∅
T-FALSE

Γ � #f : #f ; | ; ∅

T-VAR

Γ � τx

Γ � x : τ ; #fx |#fx ; x

T-ABS

Γ,σx � e : τ ; ψ+|ψ− ; o

Γ � λxσ.e : x :σ
ψ+|ψ−−−−−→

o
τ ; | ; ∅

T-APP

Γ � e : x :σ
ψf+

|ψf−−−−−−−→
of

τ ; ψ+|ψ− ; o

Γ � e� : σ ; ψ+
�|ψ−

� ; o�

Γ � (e e�) : τ[o�/x] ; ψf+ |ψf− [o�/x] ; of [o
�/x]

T-IF

Γ � e1 : τ1 ; ψ1+ |ψ1− ; o1
Γ,ψ1+ � e2 : τ ; ψ2+ |ψ2− ; o
Γ,ψ1− � e3 : τ ; ψ3+ |ψ3− ; o

Γ � (if e1 e2 e3) : τ ; ψ2+ ∨ ψ3+ |ψ2− ∨ ψ3− ; o

T-SUBSUME

Γ � e : τ ; ψ+|ψ− ; o
Γ,ψ+ � ψ�

+ Γ,ψ− � ψ�
−

� τ <: τ� � o <: o�

Γ � e : τ� ; ψ�
+|ψ�

− ; o�

Figure 2. Typing Rules

SO-REFL

� o <: o

SO-TOP

� o <: ∅

S-REFL

� τ <: τ

S-TOP

� τ <: �

S-UNIONSUPER

∃i. � τ <: σi

� τ <: (
� −→iσ )

S-UNIONSUB−−−−−−→i
� τi <: σ

� (
� −→iτ ) <: σ

S-FUN

� σ� <: σ � τ <: τ�

ψ+ � ψ+
� ψ− � ψ−

� � o <: o�

� x :σ
ψ+|ψ−−−−−→

o
τ <: x :σ� ψ+

�|ψ−
�

−−−−−−→
o�

τ�

Figure 3. Subtyping Rules

Given these definitions, the rules for subtyping are straightfor-

ward. All types are subtypes of � and of themselves. Subtypes of

elements of a union are subtypes of the union, and any type that is

a supertype of every element is a supertype of the union. Finally,

function types are ordered in the usual fashion.

4.3 Proof System
Figure 4 specifies the proof rules for our logic. The first nine

rules—L-ATOM through L-ORE—use the natural deduction style

to express the standard rules of propositional logic.

The subsequent four rules relate the atomic propositions. In

particular, L-SUB says that if x has type τ, then it has any larger

type. Similarly, L-SUBNOT says that if x does not have type τ, then

it does not have any smaller type. By L-BOT, if x has an empty

type, it is possible to conclude anything since this is impossible.

The L-UPDATE rule refines the type of a variable via a combina-

tion of multiple propositions. Roughly speaking, this metafunction

satisfies the equations

update(τ,σ) = τ ∩ σ update(τ,σ) = τ − σ

See figure 9 for the full definition.

4.4 A Worked Example
At this point, eight of our 14 examples typecheck. To illustrate the

workings of the type system, let us work example 7:

(if (if (number? x) (string? y) #f)
(+ x (string-length y))

0)

First, assume that the initial environment is Γ = �x,�y . Now

consider the inner if expression. The test has then proposition Nx

and else proposition Nx . The then branch has propositions Sy

and Sy , or by subsumption Nx ∧ Sy | , since T-IF adds the then
proposition of the test to the environment for checking the then
branch. The else branch has propositions | , and by subsump-

tion Nx ∧ Sy | since � Nx ∧ Sy . Therefore, the entire inner if
expression has then proposition

(Nx ∧ Sy) ∨ (Nx ∧ Sy) = Nx ∧ Sy

and else proposition .

Second, we typecheck the then branch of the main if expression

in the environment Γ1 = �x,�y,Nx ∧ Sy . Since Γ1 � Nx and

Γ1 � Sy , we can give x and y the appropriate types to check the

expression (+ x (string-length y)).

5. Extensions
The base system of section 4 lacks several important features, in-

cluding support for compound data structures and let. This section

shows how to extend the base system with these features.

5.1 Pairs
The most significant extension concerns compound data, e.g., pairs.

We extend the expression, type, and proposition grammars as

shown in figure 5.
4

Most significantly, in all places where a variable

appeared previously in propositions and objects, it is now legal to

specify a path—a sequence of selectors—rooted at a variable, writ-

ten π(x). This allows the system to refer not just to variables in the

environment, but to parts of their values.

Typing Rules Figure 6 shows the extensions to the typing and

subtyping rules. Again, the subtyping rule S-PAIR and typing rule

for cons are straightforward; all pair values are treated as true.

The T-CAR and T-CDR rules are versions of the application rule

specialized to the appropriate latent propositions and objects, which

here involve non-trivial paths. Substitution of objects for variables

is also appropriately extended; the full definition is in figure 8.

None of the existing typing rules require changes.

4
In a polymorphic λTR, pair operations could be added as primitives.
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fun balance T (B, T(R, T(R, a, x, b), y, c), z, d) = T(R, T(B, a, x, b), y, T(B, c, z, d))
| balance T (B, T(R, a, x, T(R, b, y, c)), z, d) = T(R, T(B, a, x, b), y, T(B, c, z, d))
| balance T (B, a, x, T(R, T(R, b, y, c), z, d)) = T(R, T(B, a, x, b), y, T(B, c, z, d))
| balance T (B, a, x, T(R, b, y, T(R, c, z, d))) = T(R, T(B, a, x, b), y, T(B, c, z, d))
| balance T body = T body

Figure 5.4: Pattern Matching in ML

(: balance : (∀ (α) ((Tree α) → (Tree α))))
(define (balance tree)

(match tree
[(T B (T R (T R a x b) y c) z d) (T R (T B a x b) y (T B c z d))]
[(T B (T R a x (T R b y c)) z d) (T R (T B a x b) y (T B c z d))]
[(T B a x (T R (T R b y c) z d)) (T R (T B a x b) y (T B c z d))]
[(T B a x (T R b y (T R c z d))) (T R (T B a x b) y (T B c z d))]
[else tree]))

Figure 5.5: Pattern Matching in Typed Racket

Pattern matching is a widely used technique in statically typed functional
languages like ML and Haskell. Figure 5.4 shows the ML function definition to
balance a Red-Black Tree (Okasaki, 1999).

balance uses the pattern matching technique. The function takes a tree as input
and returns a tree. The function definition has five clauses. The structure of the
input tree is matched against the left side of the clauses and upon a match, the
right side is returned.

Typed Racket provides a sophisticated match construct for pattern matching
known as match. It supports a wide variety of useful pattern-matching forms
and makes porting code from ML to Typed Racket straightforward. Figure 5.5
shows the Typed Racket definition of balance using match. It is similar to the
ML definition of balance.
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ST-Var
Γ !ST x : Γ(x); x

ST-ModVar
Γ !ST f : t; {t ⇐f f}

ST-ModVarSelf
Γ !ST f : t; f if module f has type t in P

ST-Int
Γ !ST n : int; n

ST-App
Γ !ST e1 : (t1 → t2); e

′

1 Γ !ST e2 : t1; e
′

2

Γ !ST (e1 e2) : t2; (e
′

1 e′2)

ST-If0
Γ !ST e1 : t1; e

′

1 Γ !ST e2 : t2; e
′

2 Γ !ST e3 : t2; e
′

3

Γ !ST (if0 e1 e2 e3) : t2; (if0 e′1 e′2 e′3)

ST-Abs
Γ, x : t !ST e : s; e′

Γ !ST (λx : t.e) : (t → s); (λx : t.e′)

Figure 10: Simple Transformation

T-Var
Γ !M

P M x : Γ(x)x
T-Cast
Γ !M

P M {t ⇐f e} : t
T-BlessedCast
Γ !M

P M {(c1 !!" c2) ⇐
f v} : (c1 → c2)

T-Int
Γ !M

P M n : int

T-App
Γ !M

P M e1 : (t1 → t2) Γ !M
P M e2 : t1

Γ !M
P M (e1 e2) : t2

T-If0
Γ !M

P M e1 : t1 Γ !M
P M e2 : t2 Γ !M

P M e3 : t2

Γ !M
P M (if0 e1 e2 e3) : t2

T-Abs
Γ, x : t !M

P M e : s

Γ !M
P M (λx : t.e) : (t → s)

T-TypeMod

Γ !M
P M f : t if (module M t e) ∈ PM

Figure 11: Mixed Type System

the inner cast. If w is typed, then it must have been
consistent (since the only other possibility is a redex).
Therefore, the whole application must have been con-
sistent, and thus !M

P M w : c1, which is precisely the
desired type.

3. Both casts trivially satisfy this case. Thus we have
to consider v, w, and the application. Both the ap-
plication and w are immediate arguments to a cast.
If v is consistent, then it must be been a typed ab-
straction, since it is the argument of a blessed ar-
row contract, and untyped abstractions are not con-
sistent. If it is a type-annotated abstraction, it must
have label M, as required by the grammar. Thus,
by hypothesis, it must satisfy its cast, and have type
(c1 → c2). Therefore, since the operand is a cast to
c2, !M

P M (v {c1 ⇐f w}) : c2.

This concludes the case. The others are proved in a similar
way.

Given the soundness of ST , we can turn to proving sound-
ness for MT . This relies on a relationship between contracts,
as stated in the following lemma.

Lemma 7 (Soundness of the ⇒ relation). If {t ⇐f

v} →∗ v′ and c ⇒ t then {c ⇐f v} →∗ v′.

Proof Sketch By induction on the derivation of c ⇒
t, either c = t or c contains some disjunction in negative
position, where t does not. If c = t then the conclusion
trivially follows. Further, by examination of the reduction
rules Int-IntOr and Int-LamOr we note that if {c1 ⇐
v} → v then {c1 ∨ c2 ⇐ v} → v. Therefore, these additional
disjunctions will not introduce new failures that did not exist
previously.

With this, we can now conclude the main theorem of our
paper.

Theorem 1 (Soundness of the transformation).
If P ′ ∈ MT (P ) then P # P ′.

Proof Sketch Given the soundness of the simple trans-
formation, all we need to prove is that every module vari-
able reference that is not wrapped in a cast reduces to an
appropriate value. By the definition of the MT transfor-
mation, however, every module reference is to a module to
which we have added a contract. And by the lookup rule,
that contract is turned into a cast at the point of reference.
Therefore, by lemma 7, and the rules in figure 7 by which
we add casts to the typed module, the new program still
cannot blame the typed module.

5. RELATED WORK
Over the past 20 years, researchers have made significant

progress in related areas, both in typing untyped programs,
and in inter-operation between languages with different type
systems. Additionally, several systems have added a type
discipline to previously untyped languages.

5.1 Soft Typing
Fagan and Cartwright [9], Aiken, Wimmers and Laksh-

man [2], Henglein and Rehof [15], Wright and Cartwright
[30], Flanagan and Felleisen [12] and Meunier, Findler and
Felleisen [23] studied the use of static analysis to infer types
from untyped programs and to use the types to predict run-
time errors statically in untyped programs. Meunier et al,
whose calculus forms the basis for our own research, study an
analysis that operated in the context of a first-order mod-
ule system and a contract system. None of these systems
considered the problem in a context with both typed and
untyped code. Variants of these techniques will be useful,
however, for automatically inserting the type annotations
that we currently require programmers to write.

5.2 Interoperability
The problem of integrating typed languages with untyped

ones has also seen significant study. Abadi, Cardelli, Pierce
and Plotkin [1] considered the addition of a “type Dynamic”

Typed

Untyped
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the inner cast. If w is typed, then it must have been
consistent (since the only other possibility is a redex).
Therefore, the whole application must have been con-
sistent, and thus !M

P M w : c1, which is precisely the
desired type.

3. Both casts trivially satisfy this case. Thus we have
to consider v, w, and the application. Both the ap-
plication and w are immediate arguments to a cast.
If v is consistent, then it must be been a typed ab-
straction, since it is the argument of a blessed ar-
row contract, and untyped abstractions are not con-
sistent. If it is a type-annotated abstraction, it must
have label M, as required by the grammar. Thus,
by hypothesis, it must satisfy its cast, and have type
(c1 → c2). Therefore, since the operand is a cast to
c2, !M

P M (v {c1 ⇐f w}) : c2.

This concludes the case. The others are proved in a similar
way.

Given the soundness of ST , we can turn to proving sound-
ness for MT . This relies on a relationship between contracts,
as stated in the following lemma.

Lemma 7 (Soundness of the ⇒ relation). If {t ⇐f

v} →∗ v′ and c ⇒ t then {c ⇐f v} →∗ v′.

Proof Sketch By induction on the derivation of c ⇒
t, either c = t or c contains some disjunction in negative
position, where t does not. If c = t then the conclusion
trivially follows. Further, by examination of the reduction
rules Int-IntOr and Int-LamOr we note that if {c1 ⇐
v} → v then {c1 ∨ c2 ⇐ v} → v. Therefore, these additional
disjunctions will not introduce new failures that did not exist
previously.

With this, we can now conclude the main theorem of our
paper.

Theorem 1 (Soundness of the transformation).
If P ′ ∈ MT (P ) then P # P ′.

Proof Sketch Given the soundness of the simple trans-
formation, all we need to prove is that every module vari-
able reference that is not wrapped in a cast reduces to an
appropriate value. By the definition of the MT transfor-
mation, however, every module reference is to a module to
which we have added a contract. And by the lookup rule,
that contract is turned into a cast at the point of reference.
Therefore, by lemma 7, and the rules in figure 7 by which
we add casts to the typed module, the new program still
cannot blame the typed module.

5. RELATED WORK
Over the past 20 years, researchers have made significant

progress in related areas, both in typing untyped programs,
and in inter-operation between languages with different type
systems. Additionally, several systems have added a type
discipline to previously untyped languages.

5.1 Soft Typing
Fagan and Cartwright [9], Aiken, Wimmers and Laksh-

man [2], Henglein and Rehof [15], Wright and Cartwright
[30], Flanagan and Felleisen [12] and Meunier, Findler and
Felleisen [23] studied the use of static analysis to infer types
from untyped programs and to use the types to predict run-
time errors statically in untyped programs. Meunier et al,
whose calculus forms the basis for our own research, study an
analysis that operated in the context of a first-order mod-
ule system and a contract system. None of these systems
considered the problem in a context with both typed and
untyped code. Variants of these techniques will be useful,
however, for automatically inserting the type annotations
that we currently require programmers to write.

5.2 Interoperability
The problem of integrating typed languages with untyped

ones has also seen significant study. Abadi, Cardelli, Pierce
and Plotkin [1] considered the addition of a “type Dynamic”
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the inner cast. If w is typed, then it must have been
consistent (since the only other possibility is a redex).
Therefore, the whole application must have been con-
sistent, and thus !M

P M w : c1, which is precisely the
desired type.

3. Both casts trivially satisfy this case. Thus we have
to consider v, w, and the application. Both the ap-
plication and w are immediate arguments to a cast.
If v is consistent, then it must be been a typed ab-
straction, since it is the argument of a blessed ar-
row contract, and untyped abstractions are not con-
sistent. If it is a type-annotated abstraction, it must
have label M, as required by the grammar. Thus,
by hypothesis, it must satisfy its cast, and have type
(c1 → c2). Therefore, since the operand is a cast to
c2, !M

P M (v {c1 ⇐f w}) : c2.

This concludes the case. The others are proved in a similar
way.

Given the soundness of ST , we can turn to proving sound-
ness for MT . This relies on a relationship between contracts,
as stated in the following lemma.

Lemma 7 (Soundness of the ⇒ relation). If {t ⇐f

v} →∗ v′ and c ⇒ t then {c ⇐f v} →∗ v′.

Proof Sketch By induction on the derivation of c ⇒
t, either c = t or c contains some disjunction in negative
position, where t does not. If c = t then the conclusion
trivially follows. Further, by examination of the reduction
rules Int-IntOr and Int-LamOr we note that if {c1 ⇐
v} → v then {c1 ∨ c2 ⇐ v} → v. Therefore, these additional
disjunctions will not introduce new failures that did not exist
previously.

With this, we can now conclude the main theorem of our
paper.

Theorem 1 (Soundness of the transformation).
If P ′ ∈ MT (P ) then P # P ′.

Proof Sketch Given the soundness of the simple trans-
formation, all we need to prove is that every module vari-
able reference that is not wrapped in a cast reduces to an
appropriate value. By the definition of the MT transfor-
mation, however, every module reference is to a module to
which we have added a contract. And by the lookup rule,
that contract is turned into a cast at the point of reference.
Therefore, by lemma 7, and the rules in figure 7 by which
we add casts to the typed module, the new program still
cannot blame the typed module.

5. RELATED WORK
Over the past 20 years, researchers have made significant

progress in related areas, both in typing untyped programs,
and in inter-operation between languages with different type
systems. Additionally, several systems have added a type
discipline to previously untyped languages.

5.1 Soft Typing
Fagan and Cartwright [9], Aiken, Wimmers and Laksh-

man [2], Henglein and Rehof [15], Wright and Cartwright
[30], Flanagan and Felleisen [12] and Meunier, Findler and
Felleisen [23] studied the use of static analysis to infer types
from untyped programs and to use the types to predict run-
time errors statically in untyped programs. Meunier et al,
whose calculus forms the basis for our own research, study an
analysis that operated in the context of a first-order mod-
ule system and a contract system. None of these systems
considered the problem in a context with both typed and
untyped code. Variants of these techniques will be useful,
however, for automatically inserting the type annotations
that we currently require programmers to write.

5.2 Interoperability
The problem of integrating typed languages with untyped

ones has also seen significant study. Abadi, Cardelli, Pierce
and Plotkin [1] considered the addition of a “type Dynamic”
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the inner cast. If w is typed, then it must have been
consistent (since the only other possibility is a redex).
Therefore, the whole application must have been con-
sistent, and thus !M

P M w : c1, which is precisely the
desired type.

3. Both casts trivially satisfy this case. Thus we have
to consider v, w, and the application. Both the ap-
plication and w are immediate arguments to a cast.
If v is consistent, then it must be been a typed ab-
straction, since it is the argument of a blessed ar-
row contract, and untyped abstractions are not con-
sistent. If it is a type-annotated abstraction, it must
have label M, as required by the grammar. Thus,
by hypothesis, it must satisfy its cast, and have type
(c1 → c2). Therefore, since the operand is a cast to
c2, !M

P M (v {c1 ⇐f w}) : c2.

This concludes the case. The others are proved in a similar
way.

Given the soundness of ST , we can turn to proving sound-
ness for MT . This relies on a relationship between contracts,
as stated in the following lemma.

Lemma 7 (Soundness of the ⇒ relation). If {t ⇐f

v} →∗ v′ and c ⇒ t then {c ⇐f v} →∗ v′.

Proof Sketch By induction on the derivation of c ⇒
t, either c = t or c contains some disjunction in negative
position, where t does not. If c = t then the conclusion
trivially follows. Further, by examination of the reduction
rules Int-IntOr and Int-LamOr we note that if {c1 ⇐
v} → v then {c1 ∨ c2 ⇐ v} → v. Therefore, these additional
disjunctions will not introduce new failures that did not exist
previously.

With this, we can now conclude the main theorem of our
paper.

Theorem 1 (Soundness of the transformation).
If P ′ ∈ MT (P ) then P # P ′.

Proof Sketch Given the soundness of the simple trans-
formation, all we need to prove is that every module vari-
able reference that is not wrapped in a cast reduces to an
appropriate value. By the definition of the MT transfor-
mation, however, every module reference is to a module to
which we have added a contract. And by the lookup rule,
that contract is turned into a cast at the point of reference.
Therefore, by lemma 7, and the rules in figure 7 by which
we add casts to the typed module, the new program still
cannot blame the typed module.

5. RELATED WORK
Over the past 20 years, researchers have made significant

progress in related areas, both in typing untyped programs,
and in inter-operation between languages with different type
systems. Additionally, several systems have added a type
discipline to previously untyped languages.

5.1 Soft Typing
Fagan and Cartwright [9], Aiken, Wimmers and Laksh-

man [2], Henglein and Rehof [15], Wright and Cartwright
[30], Flanagan and Felleisen [12] and Meunier, Findler and
Felleisen [23] studied the use of static analysis to infer types
from untyped programs and to use the types to predict run-
time errors statically in untyped programs. Meunier et al,
whose calculus forms the basis for our own research, study an
analysis that operated in the context of a first-order mod-
ule system and a contract system. None of these systems
considered the problem in a context with both typed and
untyped code. Variants of these techniques will be useful,
however, for automatically inserting the type annotations
that we currently require programmers to write.

5.2 Interoperability
The problem of integrating typed languages with untyped

ones has also seen significant study. Abadi, Cardelli, Pierce
and Plotkin [1] considered the addition of a “type Dynamic”
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Modules on the Web

module $ = “http://jquery.com/jquery.js”;

$(document).ready(function() {
    alert(“hello world”);
})
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