Growing Software

~rom Scripts to Programs

Sam lTobin-Hochstadt March 2, 201 |
Oregon State University




The Rise Of Scripting

A brief tour




https://mail.google.com/mail/?shva= 1#label /javascript N ﬁ v S 'fcoogle

Reader Web more ~

pt Search Mail  Search the Web 2w seacch options

Create a filter

move label "javascript” Reportspam Delete *+ [= Movetov Labelsv Moreactionsv Refresh 1 - 100 of 596 Oider» Oldest »
nStrat javascript  Agenda - When | get home early next week | plan to issue an agenda for March meetings and am still waiting 10:05 pm &

.. Glenn, Bill (6 . alwhatwg] Cryptographically strong random numbers - On 2/22/11 at 3:39 PM, brendan@mozilla.com (Bre 7:18 pm

, Gavin, T javascript ery constant - On 2011-02-21, at 00:47, Mark S. Miller wrote: > But they convert to back to two 8:14 am

javascript  Ré®.ationale of indirect eval and its subtle features - On 19.02.2011 21:23, Allen Wirfs-Brock L he disti Feb 19

a(27) javascript  i118n objects - i18n API| could potentially have large surface (look at ICU class list for example)‘e may . Feb 17

javascript  bugzilla support for ESS, test262, and Harmony - We now have a bugzilla instance up and running (thanks to Feb 17

. 11) javascript  Question regardi ich wrot 2011, at 12:1 , Dmitry Feb 17

javascript  118n group meeti Hi all, please take a It the venu Feb 15

javascript }9 members, The foll~ be aco Feb 14

] jav il . obj '? - Aller _oTUCK: 2 ly reast Feb 13

) javascript .Dav  jent from my !oid pho ) K-9 Mi Feb 12

nStrat, E javascript @aol. - wrote:>$ ‘:ing oni Feb 11

, Sam (3) ou've ci\ s 'E“H Foo. part of Feb 10

.. Peter, Oliver (15) j1evascpt  do-while grammar - On Feb 9, 2011, at 12:35 AM, Peter van der Zee wrote: > Fwiw | don't recall any specific Feb9

.. Brendan, Douglas (5) javascript  Harmony as a Compilation Target of my Dreams - On 11:59 AM, Kris Kowal wrote: > This is a half-baked idea Feb 8

d, Allen, Tom (4) javascript  [ES Harmony Proxies] Feedback on implementing arrays with proxies - Le 30/01/2011 16:58, Tom Van Cutsel Feb7

, Mark, Juriy (4) javascript  Interesting ESS side effect / window.hasOwnProperty(x) !== hasOwnProperty(x) - Or am | missing something’ Feb7

nStrat .. Istvan (5) javascript  Meeting schedule - Hi John, | have heard that in some major US cities there is a problem recently with bedbu: Feb7

ael.elges jevascript  Auto Reply: es-discuss Digest, Vol 48, Issue 6 - This is an auto-replied message. | will be out of the office Sta Feb 4

1.. lan, Garrett (9) javascript  HTMLS spec. seems to unnecessarily ban strict mode event handlers - It would seem 1o depend upon exactly Feb 3
N Wirfs-Brock javascript - HTMLS spec. seems to unnecessarily ban strict mode event handlers - oops, resend: typo in original to line fc Feb3

SamTH- & .

"

a/




https://mail.google.com/mail/?shva= 1#label /javascript

77 v ) (8 Google

Reader Web more ~

pt Search Mail

Search the Web ~ 2hew search ogtions

Create a filter

move label "javascript” | Report spam

nStrat javascript
Glenn, Bill (6
, Gavin, Tt javascript

javascript
javascript
oK javascript
1) javascript
javascript

javascript

, Jave s

d, Sa ) javascript

javascript
d, Sam (3)

.. Peter, Oliver (15)
.. Brendan, Douglas (5)

)avascriBt

javascript

d, Allen, Tom (4) javascript
, Mark, Juriy (4) javascript
nStrat .. Istvan (5) javascript
1ael.elges javascript
1 .. lan, Garrett (9) javascript
1 Wirfs-Brock javascript

VDeleter ,'_"7' 7 (= VMovetOv”Labelsv

More actions v

Refresh
Agenda - When | get home early next week | plan to issue an agenda for March meetings and am still waiting
piwhatwg] Cryptographically strong random numbers - On 2/22/11 at 3:39 PM, brendan@mozilla.com (Bre
mystery constant - On 2011-02-21, at 00:47, Mark S. Miller wrote: > But they convert to back to two
Ré# ationale of indirect eval and its subtle features - On 19.02.2011 21:23, Allen Wirfs-Brock khe disti
i18n objects - i18n API could potentially have large surface (look at ICU class list for example)’

2 may .

bugzilla support for ESS5, test262, and Harmony - We now have a bugzilla instance up and running (thanks to

ich wrot

. - >
Hi all, please take a It

}9 members, The follr

?-Aller  Liock: G
. Dav @t from my
@aol. » wrote: > S

ou've Ci ]

l..‘v.

do—while grammar - On Feb 9, 2011, at 12:35 AM, Peter van der Zee wrote: > Fwiw | don't recall any specific

Harmony as a Compilation Target of my Dreams - On 11:59 AM, Kris Kowal wrote: > This is a half-baked idea
[ES Harmony Proxies) Feedback on implementing arrays with proxies - Le 30/01/2011 16:58, Tom Van Cutse:
Interesting ESS side effect / window.hasOwnProperty(x) !== hasOwnProperty(x) - Or am | missing something’
Meeting schedule - Hi John, | have heard that in some major US cities there is a problem recently with bedbu
Auto Reply: es-discuss Digest, Vol 48, Issue 6 - This is an auto-replied message. | will be out of the office Sta
HTMLS spec. seems to unnecessarily ban strict mode event handlers - It would seem 1o depend upon exactly
HTMLS spec. seems to unnecessarily ban strict mode event handlers - cops, resend: typo in original to line fc

SamTH-~ & ﬁ

1-100 of 596 Oider» Oldest »

10:05 pm &
7:18 pm
8:14 am

Feb 19
Feb 17
Feb 17
Feb 17
Feb 15
Feb 14
Feb 13
Feb 12
Feb 11
Feb 10
Feb9
Feb 8
Feb7
Feb7
Feb7
Feb 4
Feb3
Feb3

v

a







| - r - ) | N
-\ \ !

\ > . _ - - N A "~ - , L A . |
P TR e —_ ) \ A = “\ ‘ e o ; ” f Sy ) - U
- ! . . - - Y - f ’ i ) ) / . _va

7 MMTK"? é.

/ Ye \
bg’} * Molecular Modelling Toolkit
| 238

A

| s

A



Sitemap | Prenumerera | Ordlista | English

FORSTA _, 0
AP-FONDEN an

m AP1 Vartuppdrag Forvaltningen | Agarstyming | Upphandlingar | Finansiell information och press

Vart uppdrag > Pensionssystemet

Pensionssystemet

Det svenska pensionssystemet bestar av tre huvuddelar, den statliga allmé@nna
‘ensionssystemet pensionen, tjdnstepensionen och den frivilliga pensionen. AP-fondernas B Kontakt
férvaltning ar den del av den alimdnna pensionen. Ossian Ekdahl

) Chef for
Sa har fungerar kommunikation och

\ *
inkomstpensionssystemet \ Frivilligt, privat pensionssparande agarstyrning
Vad paverkar \\\\\\\\ \ sob: 0700-661 200
inkomstpensionens storlek? \ R .st
»_ Tianstepension epa
AP-fondernas historia \\
>laceringsregler \\\\\\\\ "

Relaterade lénkar

{egeringens utvardering Allman pension m S& hér fungerar

inkomstpensionssystemet

Inkomstpensionssystemet

-xterna lankar . . .
Inkomstpension och premiepension

(Den som har haft I3g eller ingen
inkomst f3r garantipension)

Pensionssystemet kan liknas vid en pyramid dar den allmanna pensionen Relaterade linkar
utgdr basen, darefter tjanstepensionen och dverst det frivilliga privata = Virt uppdrag

pensionssparandet.  Inkomstpensionssystemet

@ Vad paverkar

A]lman pension inkomstpensionens storlek?




Swedish Pensions

Quick hac

The

paradig

< to critical system:

matic scripting story

Started as a backup system
Ended managing billions in assets




“whniprtuprtude” — Larry VVall




Common Lisp

viaweb




Addressing the Challenge




Non-Solutions

Waterfall development of spec and code

Replace all scripting languages

Omniscient program analysis

l




Non-Solutions

Waterfall development of spec and code

Replace all scripting languages

| Omniscient program analysis

The all-too-common result: rewrite In C++/Java 3

——— —t—




VWhat Is a solution?

What we want: a robust,
maintainable program

Where we are: a
quick but overgrown
script




| 0ONn?
What 5 d SO‘U-UOH' What we want: a robust,

e ———— i el i) ek A
.’ dm

Existing PL technology:
Types as lightweight specifications

Robustness via static enforcement
Vaintainability via checked specs
-volution via refactoring support

quick but overgrown
script

| Te—



VWhat Is a solution?

What we want: a robust,
maintainable program
N a typed sister language

g —
yd
4
P
y
Y.
7 :

Where we are: a
quick but overgrown
script




What Is a solution!?

VWhat we want: a robust,
maintainable program
N a typed sister language

C— S
Q
s /
7
4
7

Add type annotations
o — ———
Choose a component
| — e—
Where we are: a
quick but overgrown

script




What Is a solution!?

VWhat we want: a robust,
maintainable program
N a typed sister language

/

Check types statically
E—— ———
Add type annotations
SRR——— et
Choose a component
PR —— ——
Where we are: a
quick but overgrown

script

S — S




What Is a solution!?

VWhat we want: a robust,
maintainable program
N a typed sister language

A—

Safely Interoperate t

Check types statically *
SRR —-— st
Add type annotations
SEA—— ——
Choose a component *
P—— ———
Where we are: a
quick but overgrown

script




What Is a solution!?

VWhat we want: a robust,
maintainable program
N a typed sister language

Add type annotations

P—— —
Choose a component *
PR “—————

Where we are: a
quick but overgrown
script

N —



My Research Methodo\ogy
[ Discover a challenge i the real world |

| Implement the solution in §
| 2@ production’sysichis

] Formally analyze the problem

{ Validate the solution in theory & practicej

Bring the solution to the broader community |




@ Racket

A descendant of Lisp & Scheme

|5 years of development

20+ current developers |deal environment for
investigating script to
program evolution

Used in dozens of companies,
| 20 universities, 200 schools — —

500,000 line code base




@Typed Racket

A typed dialect of Racket
Publicly distributed for 4+ years
Used in key Racket systems

Used in multiple companies ana
several college courses

A testbec

for scripts-

to-programs research

Supports dozens of existing libraries




(define (main stx trace-flag super-expr
deser-id-expr name-id
1fc-exprs defn-and-exprs

(let-values ([(this-id) #'this-id]
[ (the-obj) (datum->syntax (quote-syntax here) (gensym 'self))]
[ (the-finder) (datum->syntax (quote-syntax here) (gensym 'find-self))])
(let* ([def-ctx (syntax-local-make-definition-context)]
[localized-map (make-bound-identifier-mapping)]
[any-localized? #f]
[localize/set-flag (lambda (id)
(let ([id2 (localize id)])
(unless (eq? id id2)
(set! any-localized? #t))
id2))]
[bind-local-id (lambda (id)
(let ([1 (loc
(syntax-loc

== + 900 more lines

id
NI

[lookup-localize (lambda (id)

(bound- identifier—mapping—geri

localized-map
id
(lambda ()

; If internal & external names are distinguished,

; we need to fall back to localize:
(localize id))))1])
Expand definitions
(let ([defn-and-exprs (expand-all-forms stx defn-and-exprs def-ctx bind-local-id)]
[bad (lambda (msg expr)
(raise-syntax-error #f msg stx expr))]
[class-name (if name-id
(syntax-e name-id)
(let ([s (syntax-local-infer-name stx)])
(if (syntax? s)
(syntax-e s)
s))1)
Basic syntax checks
(for-each (lambda (stx)

(syntax-case stx (-init init-rest -field -init-field inherit-field
private public override augride
public-final override-final augment-final
pubment overment augment
rename-super inherit inherit/super inherit/inner rename-inner
inspect)

[ (form orig idp ...)
(and (identifier? #'form)
(or (free-identifier=? #'form (quote-syntax -init))
(free-identifier=? #'form (quote-syntax -init-field))))1))))))




tart Here

ine (main stx trace-flag super-expr
deser-id-expr name-id
1fc-exprs defn-and-exprs

(let-values ([(this-id) #'this-id]
[ (the-obj) (datum->syntax (quote-syntax here) (gensym 'self))]
[ (the-finder) (datum->syntax (quote-syntax here) (gensym 'find-self))])
(let* ([def-ctx (syntax-local-make-definition-context)]
[localized-map (make-bound-identifier-mapping)]
[any-localized? #f]
[localize/set-flag (lambda (id)
(let ([id2 (localize id)])
(unless (eq? id id2)
(set! any-localized? #t))
id2))]
[bind-local-id (lambda (id)
(let ([1 (loc
(syntax-loc

== + 900 more lines

id

NI
[lookup-localize (lambda (id)

(bound-identifier-mapping-get

localized-map
id
(lambda ()
; If internal & external names are distinguished,
; we need to fall back to localize:
(localize id))))1])
Expand definitions
(let ([defn-and-exprs (expand-all-forms stx defn-and-exprs def-ctx bind-local-id)]
[bad (lambda (msg expr)
(raise-syntax-error #f msg stx expr))]
[class-name (if name-id
(syntax-e name-id)
(let ([s (syntax-local-infer-name stx)])
(if (syntax? s)
(syntax-e s)
s))1)
Basic syntax checks
(for-each (lambda (stx)

(syntax-case stx (-init init-rest -field -init-field inherit-field
private public override augride
public-final override-final augment-final
pubment overment augment
rename-super inherit inherit/super inherit/inner rename-inner
inspect)

[ (form orig idp ...)
(and (identifier? #'form)
(or (free-identifier=? #'form (quote-syntax -init))
(free-identifier=? #'form (quote-syntax -init-field))))1))))))




(: main : Stx Bool Expr (or #f Id) ... -> Expr)
(define (main stx trace-flag super-expr
deser-id-expr name-id
1fc-exprs defn-and-exprs

(let-values ([(this-id) #'this-id]
[ (the-obj) (datum->syntax (quote-syntax here) (gensym 'self))]
[ (the-finder) (datum->syntax (quote-syntax here) (gensym 'find-self))])
(let* ([def-ctx (syntax-local-make-definition-context)]
[localized-map (make-bound-identifier-mapping)]
[any-localized? #f]
[localize/set-flag (lambda (id)
(let ([id2 (localize id)])
(unless (eq? id id2)
(set! any-localized? #t))
id2))]
[bind-local-id (lambda (id)
(let ([1 (loc
(syntax-loc

=z 4+ 900 more lines

id

NI
[lookup-localize (lambda (id)

(bound-identifier-mapping-get
localized-map
id
(lambda ()
; If internal & external names are distinguished,
; we need to fall back to localize:
(localize id))))1])
Expand definitions
(let ([defn-and-exprs (expand-all-forms stx defn-and-exprs def-ctx bind-local-id)]
[bad (lambda (msg expr)
(raise-syntax-error #f msg stx expr))]
[class-name (if name-id
(syntax-e name-id)
(let ([s (syntax-local-infer-name stx)])
(if (syntax? s)
(syntax-e s)
s))1)
Basic syntax checks
(for-each (lambda (stx)
(syntax-case stx (-init init-rest -field -init-field inherit-field
private public override augride
public-final override-final augment-final
pubment overment augment
rename-super inherit inherit/super inherit/inner rename-inner
inspect)
[ (form orig idp ...)
(and (identifier? #'form)
(or (free-identifier=? #'form (quote-syntax -init))
(free-identifier=? #'form (quote-syntax -init-field))))1))))))




<

Safe Interoperation !
R ——— T ——




Modular Programs,
Modular Checking

‘require(["some/module”,

| "text!some/module.html”,

4 "text!some/module.css"],

function(module, html, css) {
return style_with(html, css);

}
i;




Modular Programs,
Modular Checking

‘require(["some/module”,
| textlsome/module htm”, )

Eﬁ import os.system
{ system.output(“hello world”)




Modular Programs,
Modular Checking

‘require(["some/module”,

t import os.system
i system.output(“hello world”

module DogsRelated
NBR_OF _DOGS_NEEDED = 5
class Dog
def bark
puts "Woof..."
end
end
end




Modular Programs,
Modular Checking

‘require(["some/module”,
| Eeraelisome/module.html . F

import os.system
system.output(“hello world”

module DogsRelated
NBR_OF _DOGS_NEEDED = 5
class Dog
def bark
puts "Woof..
end
end
end

render :: Data -> Graphic

function render(d) {
let d1 = process(d);
return transform(dil);




Making Interoperation Safe

| 7
lyped Module

p——
Y

ot
- | 7
Untyped [Module Untyped Module

|
)

Untyped Module

— el




Making Interoperation Safe

Dynamic

e e ~ Type-Enforcing
@ 7/ocd Module SOUTE.

N
S -

—
Untyped Module '

WS-
)

Untyped Module

— el




Making Interoperation Safe

Dynamic

” _ “ N\, |Ype-Enforcing
Typed Module (RN SCEUREN

N

Untyped Module Typed Module

2

Untyped Module

et




Making Interoperation Safe

Dynamic

— N\ Type.Enforcing
@ T/ped Module | \Boundary

Untyped Module | Typed Module

lyped Module




Dynamically Enforcing Types

Static Type Synthesized Dynamic Check

Number 1sS_numeric

Listof[String] s.all(is_string)




Dynamically Enforcing Types

Static Type Synthesized Dynamic Check

Number 1S_numeric
Listof[String] s.all(is_string)

InFile -> OutFile preconditions/postconditions




lang racket server

(define (add5 x) (+ x 5))
-

s

lang racket

(require server)
adad 7)

\-




lang racket server

(define (add5 x) (+ x 5))
-

@ ,
lang racket

(require server)
(add5 "seven")

il expected number, but got “sevens




-
lang typed/racket

(: add5 : Number -> Number)
(define (add5 x) (+ x 5))

\_

-

lang racket

(require server)
(add5 "seven”)

+: expected number, but got “seven”




lang typed/rac“égﬁgwqg_ server

25 e N X o e >
St e Sy AR 3 2 N
" gﬁ sl -3 L R N
e s | AR Nl TR TR A -
S A B o x o
3 < ot Ny
e & e o - S i
3 & - ; B¢ ™ H
<. »

\_

r

lang racket

(require server)
(add5 "seven”)

il expected number, but got “sevens




-
lang typed/racket

(: add5 : Number -> Number)
(define (add5 x) (+ x 5))

\_

r

lang racket

(require server)
(add5 "seven")

client broke the specification on add5




-
lang racket

(define (add5 x) "x plus 5")

G

4 .
lang typed/racket

(require server
[add5 (Number -> Number)])

adas /)

server i1nterface broke the specification on addb5




Dynamically Enforcing Types

Static Type Synthesized Dynamic Check

Number 1s_numeric
Listof[String] s.all(is_string)
InFile -> OutFile preconditions/postconditions

(R -> R) -> (R -> R)




Dynamically Enforcing Types

Static Type Synthesized Dynamic Check

Number 1s_numeric
Listof[String] s.all(is_string)
InFile -> OutFile preconditions/postconditions

(RE=y —> (R > R) higher-order contracts

[Findler & Felleisen [CFP 02]



-
lang typed/racket

(: deriv : (R > R) -> (R -> R))
(define (deriv f) (lambda (x) ...))

\_

r

lang racket

(require server)
(define cos (deriv sin))

(cos "bad"”)




-
lang typed/racket

(: deriv : (R > R) -> (R -> R))
(define (deriv f) (lambda (x) ...))

\_

r

lang racket

(require server)
(define cos (deriv sin))

(cos "bad"”)

client broke the specification on deriv




r

lang typed/racket server

(: deriv : (R > R) -> (R -> R))
(define (deriv f) (lambda (x) ...))

N

r

lang typed/racket client

(require server)
(define cos (deriv sin))

(cos "bad"”)

typechecker: 1incorrect argument to deriv




client ®
server

{Key Elements}

Automatically Synthesizi

Dynamic Checks f

rom ly

'DLS 06

Multi-language Infrastructure
[PLDI 1]

More E
Expressi

ficient, More

ve Contrac
[Work in progress

| ee—

LS

R———




Static Guarantees from Blame

server 1nterface broke the specification on add5
client broke the specification on add5

client broke the specification on deriv




Static Guarantees from Blame

server 1nterface broke the specification on add5
client broke the specification on add5

client broke the specification on deriv

Contracts and blame give us a soundness theorem:

Dynamic type errors always blame the untyped modules
[DLS 2006]




Contracts and blame g

IVE US 4 SOUN

Static Guarantees from Blame

dness theorem

Dynamic type errors always blame the untyped modules

Threesomes, With and Without Blame *

Jeremy G. Siek
University of Colorado at Boulder
jeremy.siek@colorado.edu

Abstract
How 10 integrate static and dynamic types? Recent work focuses
on casts to mediate between the two. However, adding casts may
degrade tail calls into a non-tail calls, increasing space consumption
fiom constant o linear in the depth of calls

We present 4 new solution o this old problem, based on the
notion of a threesome. A cast is specified by a source and a target
type—a twosome. Any twosome factors into a downcast from the
o 0 an nerecine type, Dollowed by 0 upeast o the
intermediate to m
collapses 10 a wm .
lower bound of the i vmedmlew “We tugmenfihis soltion
wilh blame lbels 10 iy filffe ofg omfl bacigf the
in

(1994, Wil thy p r
head, there remains the practical quesion of how bet 10 mple-
ment coercion reduction. The threesomes presented in this paper
provide a streamlined data structure and algorithm for represent

ing and normalizing coercions. Furthermore, threesomes provide a
typed-based explana

Categories and Subjy Descriffort o Clbsiructs
and Features]: Proce ol

General Terms  Larfluages, Theol

Keywords  casts, coflcions, blame tr fia-calcllus

1. Introduction

The old question of how 1o mix static and dynamic typing is attract-
ing renewed interest. On one side, Hejlsberg (2008) brings type
azic to C# 40, and on the other side. Tobin-Hochstadt and
static types into Scheme and Wall 2009)
o Perl 6. In these mixed settings. pro-
ramimers and Compilcs should Sl b able 1o ot th realsof
the satic type checker, so run-time checks are needed 10 safeguard
the invariants established by the satic type system. Recent work

mediates between statc and dynamic regions using casts

A preliminary version of this paper appeared in the informal proceedings
of the 2009 Workshop on Seript to Program Exolution.

Penmission o make digitalor hard copies of sl or part of this work fo personal or
lassroom use s granid without fe provide that copes st ot made o distribued
for proit o his

onthe kg Tocopy b, 0 b, 0o o rcr o et
it s i prmon

POPLID, 010, Madrd,Spain.

Copyig © 3010 ACN 573 1 GosS5-1 D61 _$1000

Philip Wadler
University of Edinburgh
wadler@inf.ed.ac.ul

Building on the higher-order contracts of Findler and Felleisen
(2002), Wadler and Findler (2009 design the blame caleulus o
serve s an i
byping. The blame clculs
maps o
program. The Blame Theorem ssers ha statically tped reions
of a program can never be blamed for run-time type errors,
However, there is concern that the casts used in the blame
caleulus impose too much run-time overhead. Findler and Fellcisen
(2002) observed that contracts may degrade a tal cal nto a non-tail
1l and Herman et al. (2007) noted thaifihe same is true for casts.
This concernfrompied the ECMASeril 4.0 committee (Hansen
p f vrigofhd ot al. 2009 to consider
 require casts.
bn calculus of Henglein
uenoes o cat. Any
. thercby limiting
pace overhead to a constant o Skt (005
augment the coereion calculus with blame tracking o obain 4
space-efficient implementation of the blame calculus.
I s paper e prescnt 4w soluton 0 e space provlens
ased on the notion of aghreesome nally s fed
e and a taf
wosome factors info 2
ype. followed by an uj
hrecsome. We also shd
nale threesome, cald
iate types.
R map any Pulure of Y obsome back 1o the offnding
twosome in the source program
Threesomes are designed to correspond to twosomes and two-
somes are designed to correspond to Henglein's coercions. So it
is not surprising that threesomes correspond to Henglein's coer-

somes may make possible a more efficient implementation than one
based directly on the coercion calculus,

The et of e paper begins Wil review of the bl cl
lus (Section 2). Then, to factor the presentation of the threesome
caleulus, we present a simplified version that captures the main in-
tuitions and detects cast failures appropritely, but does not track
blame (Section 3). We prove that the simplified version is correct
and space efficient. Section 4 presents the complete threesome cal-
culus with support for blame tracking and proves that i is correct
(equivalent to the blame calculus). Section $ shows that the three
some calculus is isomorphic to a coercion-based calculus of Siek
et al. (2009). Some of the proofs are in-line and the rest are in
e Appendis. We explin the relationship berwecn our fealts and
prior work in Section 6

Blame for All

Amal Ahmed Robert Bruce Findler Jeremy G. Sick

amal@cs.indiana.edu

Indiana University Northwestern University
robby rthwests

University of Colorado at Boulder
d

Philip Wadler
University of Edinburgh

wadler@inf.ed.ac.uk

Abstract
Several pgaramming fangusges are beginning (o integrae sttic
mm Racke Tomerly PLT Scheme). Pt

d parg

by
phictype and vice vers, with relatonal paramericiy enforced by
2 ki of Ayl sealin oo e lncsproposd by Mthws
and Ahmed (2008) and Neis, Dreyer, and Rossberg (2009). Our
w e includes a noion of Blame, which allows s 10 show tht
when casting betweer ccise  prcis e
any cast failures are e (0 the Piscly-typedWgrtionfp the
program. We also shf tha iype 0 suffitype
cannot fai,

Categories nd Subjell Descripars WD 3.3 Langue ructs
and Features): Procees, functions,

General Terms  Languages, Theory

Keywords ~casts, coercions, blame tracking, lambda

1. Introduction
“The long tradition of work that integrates static and dynamic types
includes the partial types of Thatie (1988), the dynamic type of
Abadi et al. (1991), the coercions of Henglein (1994), the contracts
of Findler and Felleisen (2002). the dynamic dependent types of Ou
et al. (004), the Iybrid types of Gronski et al. (2006), the grad-
ual rypes of Sick and Taha (2006), the migrarory prer ot “Tobin:
Hochstadt and Felleisen (2006), the muli-language programmii
of Matiews and Findler (2007 and the bame caeurs of Wadler
and Findler (2009). Integration of static and dynamic types s a fea-
ture of NET languages including Visual Basic and C#, is being ex.
plord o Jvascrpt,Pel, Pyton,and Ry, nd i the subjectof
1 STOP 2009 workshop held in conjunction with ECOOP.

om0k o copc o e st o s ek for e
lasroom us  grnied withoot s rovided tha coies s o mace o disibued

o e Tocap ol b i, b s s e oo s
11, Januury 26-26, 2011, Austin,Texs, USA
Conyreh © 301 A1 905 D001 10151000

A anitying thrme inthis wor i 10 e st to mediate betwen
ind dynamically typed e Cat oy be nrodced by
ih bame calulus may

1 e precinly typed e of 4 st (Wadle an Findler 2009).
In this paper, we extend a fragment of the blame calculus to
inonpore polymophin. bsed o 4 noion of i g
ypes,

bt omitssubses

h uhl\ the ability to cast
and vice versa. We

rphic
ropeny offohymorpic yes is
v, as iffroduced by
aling fensure that v

R onalparametsidly. For insta
X, XX musteither be the identity function (one which always
retuns its argument) or an undefined function (one which never
returns a value), and this property holds true even for values of dy-
namic type cast to a polymorphic type. Relational parametricity un-

P otably

as employed by the Glasgow Haskell Compiler (Gill et al., 1993).

ystem may guarantee the validity of such optimizations even
esence of dynamic types.

Dynamic sealing to enforce parametricity has a long history
\mhn for data abstraction goes back at least to Morris (1973).
Cry hic scaling for parametricity was introduced by Pierce
o Sumi (2000, Exinding cam o inclod eas, whil demon
strating relational parametricity, was first explored in the context
of mltanguage programming by Matews ] Ahned (2008,

d by
v et . 2009 used dynamic el
city in a non-parametric language.

Our development s supported by the us of nype bindings to
controlthe scope of type vartabls, both staticaly and dynamicaly
ype bindings are clotel rlated t constructs fo acneraing new
type 1., 2009; Rossberg, 2003):
enceis that our type bindings are immobile, that s, there is no scope
extrusion. Our developmen also uses saric casts o conceal and re-
veal the representations of type variables. Together with type bind-
ings, static casts provide a syntactic means (0 preserve the type-

Well-typed programs can’t be blamed

Philip Wadler

University of Edinburgh

Abstract

We show how contracts with blame it naturally with recent work
on hybrid types and gradual types. Unlike hybrid types or gradual
types, we require casts in the source code, in order 10 indicte where

pe errors may occur. Two (perhaps surprising) aspects of our
approach are that refined types can provide useful static guarantees
even in the absence of a theorem prover, and that type dynamic
should not be regarded as a supertype of all other types. We factor
the wel koo noko of ablyping no vew soions of posive

ur approach sharpens flnd darifies

Robert Bruce Findler

University of Chicago

from sophisticated types! Finally, we suggest that one should nor
regard every type as a subtype of the dynamic type.
“The technical content of this paper is to introduce notions of
positive and negative subtyping, and prove a theorem that
terises when positive and negative blame can oceur. We show how
our theorem sharpens the published results for gradual and hybrid
types, and clarifies other recent results.
Many readers will recognise that our tile is the third in a series.
“Well-typed programs can’t go wrong” summarised a denotational
1t soundress inroduced by Milner (1976). Vel gped
programs don't g s logan.sumaising anfper-
ational approa ess intflducd by Wright and Felfbisen

atic and dynamic typing into a single framework. These include

the contracis of Findler and Felleisen (2002) and others, the grad-

wal types of Sick and Taha (2006), and the hybrid types of Flana-

£an (2006) and others. Interfaces between Scheme and saically
d b 2 "

and Javascript;
c types should
be optional (Bracha 200-

We provide a uniforn e
wal types, and hybrid types by mitoducing a notion of blame (lrom
contracts) (0 @ type system with casts (similar (o intermediate lan-
guages used for gradual and hybrid types), yielding a system that

¢ call evolutionary types. Programmers using this type system
may add contracts to evolve dynamically typed programs into sta
cally typed programs (as with gradual types) or to cvolve statically
typed programs into programs with refinement types (as with hy-
brid types).

We suggest dhat what s been usd as an intemedite type
systen for radual and bybrid types i il usful s 3 soutce
Iaguage—his bas the advaape that i cvions eading the
Sounce anguage where siatc guarantees hold and where dynamic
checks e cnoreed W also oot Inconrat 1 previous work,
that hybrid types can be useful even in the absence of a theorem
prover—one need not have  Sophiteated ype ehecker to boneft

Pemission to make digita or ard copies of sl o part of his work fo personal or
lastoon s s gl wihot e prvidd htcopis st ot made o Gisrted
for prote

on e i pae. Tocopy ibermise: 1 republNh, 1 o ot on e or o el

o st requies prior specific permision andior

Workshop on Scheme and Functional Programming 30 September 2007, Fcibure,
Gemmany

Copyright © 2007 ACM ... 85,00

nd
We mike the foowing contrbutions:

. \vP ineoduce our anguage,showing that  anguage with ex-
o theorem prover (and a litle syntactic sugar)
dual types and

the hybrid typing of

'* We factor the well-KNoWn notion'of subtyping into new notions
of positive and negative subtyping. We prove that a cast from a

(Section 4),

© We apply our theorem to sharpen published results for gradual
types (Siek and Taha 2006) and hybrid types (Flanagan 2006),
and to shed light on recently published resulis by Gronski and
Flanagan (2007) and Matthews and Findler (2007) (Section 5).

Section 6 describes related work, and Section 7 concludes,

2. Evolutionary Programming
21 From Untyped to Typed

Consider the following program written without types.

'DLS 2006]

Stateful Contracts for Affine Types

Jesse A. Tov and Riccardo Pucella

Northeastern University, Boston, MA 02115, USA
{tov, riccardo}6ccs.neu. edu

Abstract. Affine type systems manage resources by preventing some
values from being used more than once. This offers expressiveness and
performance benefits, but difficulty arises in interacting with components
written in a conventional language whose type system provides no way
to maintain the afine type system’s aliasing invariants. We propose and
implement a technique that uses behavioral contracts to mediate between
code written in an affine language and code in a conventional typed
language. We formalize our approach via o typed calculus with both
P,cd and conventionally-typed modules. We show how to preservel
e guarantees of both type systems despite botff languages being able

call JRger andffxchange p1 Mucs.
1 In ro‘v (

Substructural type systems augment conventional type systems with the ability
to control the number and order of uses of a data structure or operation [20].
Linear type systems [19, 11,3, 1], for example, ensure that values with linear type

Quliminated exgetly onggmigher
fing qblicated but ffilow fliem tofe
e or not at al
lage features that rfy on s

i ple 1 pes (6] which are a methoff to
e tocols, Suppos that the 1ype declatoy

type,, prot = (int send — string recv — unit) chan ()
represents a channel whose protocol allows us to to send an integer, then receive a
string, and finally end the session. Further, suppose that send and recv consume
a channel whose type allows sending or receiving, as appropriate, and return a
channel whose type is advanced to the next step in the protocol. Then we might
write a function that takes two such channels and runs their protocols in parallel:

let.,, twice (cI: prot, c2: prot, z: int): string @ string

let (s, ) n
(once cI) ||| (once c2)

* Our prototype implementation and the full details of our soundness theorem may
be found at http: //uww. ccs. neu. edu/~tov/pubs/af f ine-contracts/




Why Multilanguage Soundness!

Support local reasoning

Static guarantee only depends on typed modules

Tunable levels of checking




Types for Untyped Languages |

R —— ————eE




All programmers reason about their programs

Yves Bertot
Plerre Castéran

AL ' A

HOW TO DESIGN PROGRAMS

Interactive Theorem Proving
An Introduction fo Programming and Computing and Program Development

Coq'Art: The Calculus of Inductive Constructions

Robert Bruce Matthew Shriram
Findler Flatt Krishnamurthi




All programmers reason about their programsl

Yves Bertot
Pierre Castéran

lype systems capture
Drogrammer reasoning el

Coq’Art: The Calculus of Inductive Constructions

An Infroductio

Matthias Robert Bruce Matthew Shriram
Felleisen Findler Flatt Krishnamurthi




Programs in Lua don't use the Java type system




RE| MIL
Python askell
Ruby Scala

Programs in Lua don't use the Java type system
Clojure C#
Javascript Carar
PP Pascal




Per] ML
Solution: design a type

- system based on the existing

idioms of the language
PHP Pascal




Types tor Existing Programs

Unions, Structures,
Polymorphism

Stanc

Occurrence [POPL
lyping ‘ '

Refinement Types

Variable-Arrty

Numerics N preparation|




Types tor Existing Programs

Unions, Structures,
Polymorphism

rrence] / IFOIFL
Ding .

Refinement lypes

Variable-Arrty

Numerics N preparation|




Dynamic lype lests

if (typeof x === “number”) {
return x + 1;

b

else if (typeof x === “function”) {
return x();

J

else 1f (typeof x === “object”) {
return x.length;

J

else
return 0;




Dynamic lype lests

if (typeof x === “number”) {
return x + 1;
b
else 1f (typé
return x() S .
} if 1§1nstance(x,Numer1c):
else if (typduNARLER SN
T lE clif isinstance(x,String):
} print x
else:
print “Nothing”

else
return 0;




Dynamic lype lests

return x + 1;

J

else 1f (typé
return x()

B

else if (type
return x.le

B

else
return 0;

1f (typeof x === “number”) {

if (x instanceof String) {
return ((String)x).length;
} else if (x instanceof Integer) {
return ((Integer)x).intValue;
} else {
return 0;

P—



-+ sum : BT -> Number
(define (sum bt)
(cond [ (number? bt) bt]

[else (+
(sum (left bt))

(sum (right bt)))1))




(define-type BT (U Number (Pair BT BT)))

(: sum : BT —-> Number)
(define (sum bt)
(cond [ (number? bt) bt]

[else (+
(sum (left bt))

(sum (right bt)))1))




(define-type BT (U Number (Pair BT BT)))

e (sum bt)
d [(nhumber? bt) bt]
[else (+
(sum (left bt))

(sum (right bt)))1))




(define-type BT (U Number (Pair BT BT)))

. BT => Ny
lne (sum bt) RN
d [(number? bt) bt3 bt . Number

[else (+ .- - )
(sum (left bt))

(sum (right bt)))1))

bt : (Pair BT BT)|




(define-type BT (U Number (Pair BT BT)))

d [(number7 bt) bt : Number ,

. bum (left bt))
_Any %5001 ~ bum (right bt)))1))




(define-type BT (U Number (Pair BT BT)))

lne (sum bt) SO
d [(number? bt) bt pt : Number |

f— .‘:"'7um <1eft bt))
(_ Any “™5"Bool _Bum (right bt)))1))




(define-type BT (U Number (Pair BT BT)))

C any "™ Bool Bum (right\ bt)))1))

(bt : (Pair BT BT);




(map rectangle-area
(filter rectangle? list-of-shapes))

msliter

Vaps.(a g Bool) (Listof a) — (Listof ()




(map rectangle-area
(filter rectangle? list-of-shapes))

L e —

filter :
Rect

(Shape = Bool)Y Listof Shape))— (Listof Rect)

Vab.(a .4 Bool) (Listof o) — (Listof j3)




(map rectangle-area
(filter rectangle? list-of-shapes))

filter :
* Rect

(Shape — Bool)({Listof Shape

Vap.(a L Bool) (Listof a) — (Listof j3)




C

t varl

Key ldea |

'O prove {

ﬁ

daCLl

ables anc

ty

M——




<ey|dea |
ic to prove 1
t variables anc

| ——

Key |dea 2.
An environment

oeneral propositi

| e—




0gIC

t varl

Key ldea |
'O prove {

ables anc

Key |dea 2.
An environment

oeneral

DroposIt

Result:
Rich type system that can
follow sophisticated reasoning




Soundness: ife:7and e — v, then v: 7T

In other words, we can trust our types.




Validation: Existing Code

6,000

4051010

3,000

D)
5
@)
&
ot
@)
)
D)
=
S

Squad Metrics At Spam SVN PRNG Total

Program

B Original Code B New Code




Validation: Existing Code

0
5500 lines of code /% Increase

o — ——
45 5101

6,0

3,000

D)
5
@)
&
ot
@)
)
D)
=
S

1,500

Squad Metrics At Spam SVN PRNG Total

Program

B Original Code B New Code




Validation: Existing Code

6,00 Find
5500 lines of code /9% Increase

4500

3,000 25 errors found
3 minor edits required

Q
O
O
&
ot
@)
g
(D)
&
|

component left untyped

Squad Metrics At Spam SVN PRNG

Program

B Original Code B New Code

Total




Validation: Comparative

fun balance T (B, T(R, T(R, a, x, b),vy,c),2,d) =T(R, T(B, a,x, b),y, T(B,c, 2, d))
balance T (B, T(R, a,x, T(R,b,y,¢)),2,d) =TR, T(B,a, x,b),y, T(B, c, 2, d))
balance T (B, a,x, T(R, T(R,b,y,¢),2,d) =TR, T(B,a, x,b),y, T(B, c, 2, d))
balance T (B, a,x, T(R,b,y, TR, ¢, 2,d))) =TR, T(B,a, x,b),y, T(B, c, 2, d))
balance T body = T body

(define (balance tree)

(match tree
(TB(TR(TRaxb)yc)zd) (TR(TBaxb)y(TBczd)).
(TB(TRax(TRbyc))zd) (TR(TBaxb)y(TBczd)).
(TBax(TR(TRbyc)zd)) (TR(TBaxb)y (TBczd))!
(TBax(TRby(TRczd)) (TR(TBaxb)y(TBczd)).
‘else tree]))

[Prashanth Thesis 201 |]




Contracts to Dynamically Enforce Types|

Blame for Soundness]

B I06, 51 OP 2009



Contracts to Dynamically Enforce Types|

Blame for Soundness]

Type System for Language Idioms|

Validation on Existing Programs|

o006, C5OPR 2009, ICFP 2010, HOSC 201 |, Prashantmslic e



Contracts to Dynamically Enforce Types|

Blame for Soundness]

Type System for Language Idioms|

Validation on Existing Programs|

Multilanguage Development Infrastructure]

Scheme 200/, PLDI 201 |



Developing a solution

Locate an
existing
problem

T —




Developing a solution

Locate an
existing
problem

ST-ABS
De\/6|0p d F,x:tI—STe:s;e/

rigorous design VR T e O, o




Developing a solution

Locate an
existing
problem

J

ST-ABS
De\/6|0p d F,x:tI—STe:s;e/

rigorous design VR T e O, o

Validate by
implementation &
experiment




Developing a solution

Locate an
existing
problem

J

Develop a
rigorous design

Validate by
implementation &
experiment

ST-ABS
Cx:tF°T e:s; €

T (Azite): (b= 5 s




Developing a solution

Locate an
existing
problem

J

De Iransfer Lessons to Other Languages

. 85 €

rigorous design T O i o). (A )

Validate by
implementation &
experiment




The Way Forward




Next Stop: JavaScript

Contracts
L anguage Infrastructure

J T — —

Modules

In collaboration with




Next Stop: JavaScript

Contracts
L anguage Infrastructure ;

'.Pf

In collaboration with




Modules on the Web

$(document) .ready(function() {
alert(“hello world”);

})

Naming  Scoping Pre-fetching, parsing, compiling

Sandboxing Cross-Origin Security




Beyond lypes ..

What we want: a robust
maintainable program

Where we are: a
quick but overgrown
script




Beyond lypes ...

VWhat we want: reliable,
effective software

What we want: a robust
maintainable program
VVHEre We are: a
quick but overgrown
script




Beyond lypes ...

VWhat we want: reliable,
effective software

Robust

Communication

”.,._4 w
VWhat we want: a robust

maintainable program
VVHEre We are: a
quick but overgrown
script




Beyond lypes ...

VWhat we want: reliable,
fective software

Paralle
Robust Performance

Communication ™ v

”.,._4 w
VWhat we want: a robust

maintainable program
VVHEre We are: a
quick but overgrown
script




Beyond lypes ...

VWhat we want: reliable,
effective software

| ee— S

b
Trustworthy?,

Paralle Security
Robust Performance =~

Communication ™ ‘

”...4 m
VWhat we want: a robust

maintainable program
VVHEre We are: a
quick but overgrown
script




Beyond lypes ...

VWhat we want: reliable,
effective software

g Verified <
Correctness ¢
Trustw8rt ﬁy‘ -

Paralle Security
Robust Performance = "™

Communication ™ .

*...A m
VWhat we want: a robust

maintainable program
VVHEre We are: a
quick but overgrown
script




he Big Picture

Scripts can become robust programs

... modularly, soundly, and effectively

New challenges and new opportunities




1 he Big Picture

Scripts can become robust programs
... modularly, soundly, and effectively

New challenges and new opportunities

1 hank you




