
Extensible Pattern Matching in an Extensible Language

Sam Tobin-Hochstadt

PLT @ Northeastern University
samth@ccs.neu.edu

Abstract. Pattern matching is a widely used technique in functional languages,
especially those in the ML and Haskell traditions, where it is at the core of the
semantics. In languages in the Lisp tradition, in contrast, pattern matching it typ-
ically provided by libraries built with macros. We present match, a sophisticated
pattern matcher for Racket, implemented as language extension. using macros.
The system supports novel and widely-useful pattern-matching forms, and is it-
self extensible. The extensibility of match is implemented via a general technique
for creating extensible language extensions.

1 Extending Pattern Matching

The following Racket1 [12] program finds the magnitude of a complex number, repre-
sented in either Cartesian or polar form as a 3-element list, using the first element as a
type tag:

(define (magnitude n)

(cond [(eq? (first n) ’cart)

(sqrt (+ (sqr (second n)) (sqr (third n))))]

[(eq? (first n) ’polar)

(second n)]))

While this program accomplishes the desired purpose, it’s far from obviously correct,
and commits the program to the list-based representation. Additionally, it unnecessarily
repeats accesses to the list structure making up the representation. Finally, if the input
is ’(cart 7), it produces a hard-to-decipher error from the third function.

In contrast, the same program written using pattern matching is far simpler:

(define (magnitude n)

(match n

[(list ’cart x y) (sqrt (+ (sqr x) (sqr y)))]

[(list ’polar r theta) r]))

The new program is shorter, more perspicuous, does not repeat computation, and pro-
duces better error messages. For this reason, pattern matching has become a ubiquitous
tool in functional programming, especially for languages in the Haskell and ML fam-
ilies. Unfortunately, pattern matching is less ubiquitous in functional languages in the

1 Racket is the new name of PLT Scheme.



Lisp tradition, such as Common Lisp, Scheme, and Racket. This is unfortunate, since as
we demonstrate in the remainder of the paper, not only are the same benefits available
as in Haskell or ML, but the extensibility provided by languages such as Racket leads
naturally to expressive and extensible pattern matchers.

1.1 More Expressive Patterns

The function can also be easily converted to arbitrary-dimensional coordinates, using
the ... notation for specifying an arbitrary-length list:

(define (magnitude n)

(match n

[(list ’cart xs ...) (sqrt (apply + (map sqr xs)))]

[(list ’polar r theta ...) r]))

Racket is untyped, so we can add argument checking in the pattern match to catch errors
early. Here we use the ? pattern, which tests the value under consideration against the
supplied predicate:

(define (magnitude n)

(match n

[(list ’cart (? real? xs) ...) (sqrt (apply + (map sqr xs)))]

[(list ’polar (? real? r) (? real? theta) ...) r]))

This implementation is more robust than our original function, but it approaches it in
complexity, and still commits us to a list-based representation of coordinates.

1.2 Custom Patterns

By switching to custom, user-defined pattern matching forms, we can simplify our pat-
terns and the representation choice can be abstracted away:

(define (magnitude n)

(match n

[(cart xs ...)

(sqrt (apply + (map sqr xs)))]

[(polar r theta ...) r]))

Our custom pattern matching form can use other features of Racket’s pattern matcher
to perform arbitrary computation, allowing us to simplify the function further by trans-
parently converting Cartesian to polar coordinates when necessary:

(define (magnitude n)

(match n

[(polar r theta ...) r]))



| x variables
pat ::= (? expr) predicates

| (and pat) conjunction
| ’val literal data
| (cons pat pat) pairs
| (list pat) fixed-length lists

Figure 1: Simple Patterns

We now have an implementation which avoids commitment to representation and han-
dles arbitrary dimensions as well as argument checking. Without extensible pattern
matching, this might require interface changes or a large number of helper functions.
Instead, we have developed reusable abstractions which support the clear definition of
exactly what we mean.

In the remainder of the paper, we describe the implementation of all of these exam-
ples, focusing on user-extensibility. We begin with a tour of pattern matching in Racket,
touching briefly on the adaptation of standard techniques from ML-style matching [18]
and their implementation via macros [9,7]. Then we describe the implementation of se-
quence patterns—seen above with the use of ...—and other pattern forms not found in
conventional pattern-matching systems. Third, we describe how to make patterns user-
extensible by exploiting the flexibility of Racket’s macro system. Finally, we discuss
related work, including a history of pattern matching in Scheme and Racket.

2 Pattern Matching in Racket

In this section, we describe both the interface and implementation of the most basic pat-
tern matching constructs in Racket. The fundamental pattern matching form is match,
with the syntax

(match expr [pat expr])

The meaning of match expressions is the traditional first-match semantics. The gram-
mar of some simple patterns is given in Figure 1. In reality, match provides many more
forms for all of the basic data types in Racket, including mutable pairs, vectors, strings,
hash tables, and many others; user-defined structures are discussed in Section 3. The se-
mantics are as usual for pattern matching: variable patterns match any value and bind the
variable in the right-hand side to the value matched, literals (written here with ’) match
just themselves, list- and cons-patterns match structurally, and and-patterns match if
both conjuncts do. The only non-standard pattern is (? expr). Here, expr must evalu-
ate to a one argument function, and the pattern matches if that function produces true
(or any other non-false value) when applied to the value being considered (the scruti-
nee). For example, the pattern (and (? even?) x) matches only even numbers and
binds them to x. A match expression matches the scrutinee against each pattern in turn,
executing the right-hand side corresponding to the first successful match. If no pattern
matches, a runtime error is signaled.



2.1 Compilation to Racket

The basic compilation model adopted by match is the backtracking automata frame-
work introduced by Augustsson [1] and optimized by Le Fessant and Maranget [18].
However, unlike these models, match is implemented as a macro, and thus produces
plain Racket code directly, rather than exploiting lower-level mechanisms for tag dis-
patch and conditional branching. Each automata state is represented by a thunk (0-
argument procedure) which may be tail-called by a later computation. Conditional
checks simply use if tests and type-testing predicates such as pair?.

To compile the following match expression:

(match e_1

[(and (? number?) x) e_2]

[_ e_3])

the following code is generated:

(let ([tmp e_1]

[f (λ () e_3)])

(if (number? tmp)

(let ([x tmp]) e_2)

(f)))

Here, f is the failure continuation; it is invoked if the number? test fails. Testing is
a simple conditional, and variable patterns translate directly to let binding. In larger
patterns, multiple failure continuations are generated and may be called in multiple
places.

One important detail is added to the compilation process by the presence of the ?

pattern. Since ? patterns contain an expression rather than a subpattern, the expression
is evaluated at some point during matching. This expression should be only evaluated
once, to avoid needless recomputation as well as duplicate effects, but should not be
computed if it is not needed. Finally, since backtracking automata may test data multiple
times, the function produced by the expression may be called 0, 1, or more times during
matching.

2.2 Static Checking

One key design choice is already fixed by the simple patterns, in particular by the pres-
ence of ?: disjointness of patterns and completeness of matching are now impossible to
check in the general case, just as in Haskell with pattern guards. Even in the absence
of ?, the untyped nature of Racket means that checking completeness of pattern match-
ing is only possible in the trivial case when a catch-all pattern is provided. In view of
these limitations, match does not warn the user when it cannot prove the absence of
unreachable patterns or potentially uncovered cases.

In more restricted systems, such as the cases form provided by some textbooks [13,16],
these problems become tractable, but the presence of expressive patterns such as ? pat-
terns makes it impossible here. We are investigating whether Typed Racket [24] makes
more static checking possible.



2.3 Implementing Syntactic Extensions

The basic structure of the match implementation is common to many pattern matching
compilers. The distinctive aspect of the implementation of Racket’s pattern matcher is
the use of syntactic extension in the form of macros to implement the match compiler.
We briefly review Racket’s syntactic extension mechanisms and describe how they are
used for implementing match.

Defining Syntactic Extensions The fundamental extension form is define-syntax,
which binds values to names in the syntactic environment, i.e., the environment used
at compilation time. This form is primarily used to define macros, which are functions
from syntax to syntax. The following is a macro that always produces the constant
expression 5:

(define-syntax (always-5 stx) #’5)

always-5 is a function with formal parameter stx. When the always-5 macro is used,
this function is provided the syntax of the use as an argument. Macros always produce
syntax objects, here created with the syntax constructor (abbreviated here #’). That
syntax object is, of course, just the expression 5. Since always-5 is bound by define-

syntax, it is a macro, and can be used in expressions such as (+ 3 (always-5)).
This expression is rewritten at compile time to the expression (+ 3 5), which then
evaluates as usual.

Of course, most syntactic extensions examine their arguments. Typically, these are
written with pattern matching to simplify destructuring.2 For example, the following
defines a macro which takes a function and an argument, and adds a debugging printout
of the argument value:

(define-syntax (debug-call stx)

(syntax-parse stx

[(debug-call fun arg)

#’(let ([tmp arg])

(printf "argument ∼a was: ∼a\n" ’arg tmp)

(fun tmp))]))

> (debug-call add1 (+ 3 4))

argument (+ 3 4) was: 7

8

Here the pattern (debug-call fun arg) binds the variables fun and arg which are
then used in the result.

Finally, macros such as debug-call can perform computation in addition to pat-
tern substitution to determine the resulting expression. We use this ability to define the
match syntactic extension.



(define-syntax (simple-match stx)

(define (parse-pat pat rhs)

(syntax-parse pat

[x:id

#‘[true (let ([x tmp]) #,rhs)]]

[’val

#‘[(equal? tmp ’val) #,rhs]]))

(syntax-parse stx

[(simple-match e:expr [pat rhs] ...)

(with-syntax ([(new-clause ...)

(syntax-map parse-pat

#’(pat ...) #’(rhs ...))])

#’(let ([tmp e])

(cond new-clause ...

[else (error "match failed")])))]))

Figure 2: A simple pattern matcher

The Basics of match Implementing complex language extensions such as match re-
quires more care than extensions that are expressed as simple rewrite rules. A simple
pattern matcher supporting only variable and literal patterns is given in Figure 2. The
basic architecture is as follows:

– The expression being matched, e, is bound to a new temporary variable, tmp.
– Each clause, consisting of a pattern pat and a right-hand side rhs, is transformed

into a clause suitable for cond by the parse-pat function. For literal patterns, the
test expression is an equality check against tmp. For variable patterns, the test is
trivial, but the variable from the pattern is bound to tmp in the right-hand side.

– Finally, all of the clauses are placed in a single cond expression with an else clause
that throws a pattern-match failure.

This matcher is missing most of the features of match, but demonstrates the key aspects
of defining match as a syntactic extension. In the subsequent sections, we will see
how to extend this matcher via the same syntactic extension framework in which it is
implemented.

A Production Implementation The match implementation first translates each pat-
tern into an abstract syntax tree of patterns while also simplifying patterns to remove
redundancy. For example, list patterns are simplified to cons patterns, and patterns
with implicit binding are rewritten to use and with variable patterns.

Given a table of pattern structures, both column optimizations [18] and row op-
timizations [19] are performed to select the best order to for matching patterns and
to coalesce related patterns. Finally, the Augustsson algorithm is used to generate the
residual code.

2 For more on the relationship between match and these pattern matchers, see Section 5.



3 Advanced Patterns

Extending the simple patterns described in Section 2, we now add repetition to lists,
patterns that transform their input, and matching of user-defined structures. These pat-
terns are necessary both to support the examples presented in Section 1, as well as
introducing concepts that are used in the definition of match expanders.

3.1 Lists with Repetition

The first significant extension is the ability to describe arbitrary-length lists. Of course,
we can already describe some uses of such lists using the cons pattern:

(match (list 1 2 3)

[(cons (and x (? number?)) xs) x])

However, the use of ... allows the specification of arbitrary-length lists with a
specification of a pattern to be matched against each element. For example, to match a
list of numbers:

(match (list 1 2 3)

[(list (and xs (? number?)) ...) xs])

This checks that every element of the list is a number, and binds xs to a list of numbers
(or fails to match). The ... suffix functions similarly to the Kleene closure operator
in regular expressions. In fact, in conjunction with or and and patterns match patterns
can express many regular languages.

Compilation Compiling patterns with ... requires a straightforward extension to the
traditional pattern matching compilation algorithm. A pattern clause such as [(list

p ...) expr] is compiled using two clauses. The first is [(list) expr], matching
empty list and the second is [(cons p rest) (loop rest)] where loop is a re-
cursive function that repeats the matching again on its argument. Of course, all of the
variables bound by p must be passed along in the loop so that they are accumulated as
a list.

3.2 app Patterns

The simplest form of extensible pattern matching is the app pattern. A pattern of the
form (app f pat) applies the (user-specified) function f to the value being matched,
and then matches pat against the result of f. For example:

> (match 16

[(app sqrt (and (? integer?) x))

(format "perfect square: ∼a" x)]

[_ "not perfect"])

"perfect square: 4"



Implementing the app pattern is straightforward. We simply apply the function to the
value being matched, and continue pattern matching with the new result and the sub-
pattern. This fits straightforwardly into the Augustsson-style matching algorithm. Cur-
rently, we do not attempt to coalesce multiple uses of the same expression, however this
would be a straightforward addition. As a result of the backtracking algorithm, the func-
tion may be called multiple times; the use of side-effects in this function is therefore
discouraged.

app patterns are already very expressive—Peyton Jones [20] gives many examples
of their use under the name view patterns. Below is one simple demonstration of their
use:

(define (map f l)

(match l

[’() ’()]

[(cons (app f x) (app (curry map f) xs))

(cons x xs)]))

> (map add1 (list 1 2 3 4 5))

’(2 3 4 5 6)

In combination with the ability to define new pattern forms, app patterns allow almost
arbitrary extensions to patterns.

3.3 User-defined Structures

Racket supports the definition of new user-specified structures:

(struct point (x y))

(define p1 (make-point 1 2))

> (point-x p1)

1

Of course, they should also be supported in pattern matching:

> (match p1

[(point a b) a])

1

To accomplish this, the struct form, which is also implemented as a language exten-
sion, must communicate with match at expansion time, so that match can produce code
using the point? predicate and point-x selector.

Static Binding The simplest form of communication between two portions of the pro-
gram is binding. To take advantage of this at expansion time, we can bind arbitrary
values with the define-syntax form, not just macros.



(define-syntax just-5 5)

Now, just-5 is bound to 5 in the static environment. We can access this environment
with the syntax-local-value function, rewriting the always-5 macro thus:

(define-syntax (always-5 stx)

(to-syntax (syntax-local-value #’just-5)))

> (always-5)

reference to undefined identifier: to-syntax

syntax-local-value produces the value to which an identifier such as #’just-5 is
bound. We then convert that value to a piece of syntax with to-syntax.

Static Structure Information We can take advantage of this static binding mechanism
to record statically known information about structure definitions. The (struct point

(x y)) form expands to definitions of the runtime values:

(define point-x —) (define point-y —) (define make-point —)

as well as compile-time static information about the structure.

(define-syntax point

(list #’make-point #’point? #’point-x #’point-y))

Thus, the identifier point contains information about how to create points, test for
them, and extract their components. Using this facility, we can now extend our simple
pattern matcher from Figure 2 to test for structures. We add a new clause to the parse-
pat function:

[(struct sname)

(let* ([static-info (syntax-local-value #’sname)]

[predicate (second static-info)])

#‘[(#,predicate tmp) #,rhs])]

In this, we first access the static structure information about the mentioned structure
(static-info), and select the element naming the structure predicate (predicate).
Then the result clause simply uses the predicate to test tmp.

In Racket, of course, the struct pattern also takes patterns to match against each
field of the structure. Compiling these patterns uses the field accessors names provided
by the static information.

4 Extensible Patterns

Using the techniques of Section 3.3, we now add extensibility to match.



4.1 match Expanders

The first task is to define the API for extending match. The fundamental mechanism is a
procedure that consumes the syntax for a pattern using the extension and produces syn-
tax for a new pattern. For example, the following procedure always produces a pattern
matching numbers:

(λ (stx) #’(? number?))

Of course, more interesting functions are possible. This example combines the and
and ? pattern to make them more useful together than the ones presented in our original
grammar in Figure 1:3

(λ (stx)

(syntax-parse stx

[(?? pred pat) #’(and (? pred) pat)]))

To inform match that this is to be used as an extension, we introduce the define-
match-expander form. This form expects a procedure for transforming patterns, and
binds it statically. We could simply use define-syntax, but this has several draw-
backs: (a) it prevents us from distinguishing match expanders from other forms and
(b) it prevents us from adding additional information to match expanders. For exam-
ple, the Racket match implementation supports an old-style syntax for backwards-
compatibility, and the distinction between match expanders and other static binding
enables the definition of expanders that work with both syntaxes.

We can therefore define our trivial match expander for numbers with

(define-match-expander num

(λ (stx) #’(? number?)))

which is equivalent to

(define-syntax num

(make-match-expander (λ (stx) #’(? number?))))

This simply wraps the given procedure in a structure that match will later recognize.
We can now use the match expander in a pattern as follows:

> (match 7

[(num) ’yes]

[_ ’no])

’yes

3 Racket’s version of match includes this functionality in the ? pattern, as demonstrated in the
first section.



4.2 Parsing match expanders

Extending the parse-pat function of Figure 2 to handle match expanders is surpris-
ingly straightforward. We add one new clause:

[(expander . rest)

; (1) look up the match expander

(let ([val (syntax-local-value #’expander)])

(if (match-expander? val)

(let (; (2) extract the transformer function

[transformer (match-expander-transformer val)]

; (3) transform the original pattern

[new-pat (transformer #’(expander . rest))])

; (4) recur on the new pattern

(parse-pat new-pat rhs))

(error "not an expander")))]

There are four parts to this new clause. In step 1, we look up the value bound to the
name expander. If this is a match-expander value, then we extract the transformer
function in step 2, which we defined to be a function from the syntax of a pattern to
syntax for a new pattern. In step 3, we apply this transformer to the original pattern,
producing a new pattern. Finally, in step 4, we recur with the parse-pat function,
since we now have a new pattern to be handled.

This loop executes the same steps as the basic loop of macro expansion as presented
by Dybvig et al. [9, Figure 4] and by Culpepper and Felleisen [6, Figure 2]. This is un-
surprising, since we have extended the syntax of an embedded language, that of match
patterns, with transformer functions, just as macros extend the syntax of the expression
language with transformers. Based on this insight, we can use the same strategies to en-
sure hygiene, a key correctness criterion for macro systems, that are applied in existing
systems. Racket provides an API to these facilities, but their use is beyond the scope of
this paper.

These 8 lines of code are the key to extensible pattern matching. They provide a
simple facility for defining arbitrary syntactic transformations on patterns. In combina-
tion with expressive patterns such as app, and, and ?, new pattern abstractions and new
uses of pattern matching can be created.

4.3 Using match expanders

In combination with the app pattern, we can now define the polar example from the
introduction. The implementation is given in Figure 3. This expander makes use of
the or pattern to handle either polar or Cartesian coordinates, and the app pattern to
transform the Cartesian coordinates into polar ones.

match expanders have been put to numerous other uses in Racket. For example, they
are used to create a domain-specific matching language for specifying rewrite rules in
the PLT web server [17]. They are used to provide abstract accessors to complicated
data structures in numerous systems. A library for defining Wadler-style ”views” using
match expanders is available for Racket as well.



(define-match-expander polar

(λ (stx)

(syntax-parse stx

[(_ r pats ...)

#’(or (list ’polar r (? real? pats) ...)

(cons ’cart

(app (λ (x)

(cons (sqrt (apply + (map sqr x)))

... compute angles ...))
(list r (? real? pats) ...))))])))

Figure 3: A match expander

4.4 Further Extensions

Based on this framework, we can add additional features to match expanders, making
them more useful in real-world applications. Above, we discuss the ability to specify
a separate transformer for legacy pattern-matching syntax, allowing the same match

expander to be used with both syntaxes. Additionally, since Racket supports creat-
ing structures which can be used as procedures[12, Section 3.17], define-match-
expander supports creating match expanders which can be also used in expressions,
allowing the same name to be both a constructor and a pattern matching form.

5 History and Related Work

5.1 A History of Pattern Matching in Scheme

To the best of the author’s knowledge, the first pattern matcher in Scheme was written
by Matthias Felleisen in February or March of 1984, inspired by the pattern matching
features of Prolog [4]. This original system was written in, or ported to, Kohlbecker et
al’s extend-syntax macro system [14], and went by the name of match, which was
also the name of the primary macro. The system was then maintained by Bruce Duba
until 1991, when Andrew Wright began maintaining it. At this point, it was ported to a
number of other macro systems, including Common Lisp-style defmacro [22], Clinger
and Rees’s explicit renaming system [2], and Dybvig et al’s expander-passing style [8].
In 1995, Wright and Duba prepared an unpublished manuscript [26]4 describing the
features of match, including the grammar of patterns. This matcher generated decision
trees rather than automata.

At this point, the development of the match library, usually known as the “Wright
matcher”, stagnated. Wright’s implementation was ported to syntax-case [9] by Bruce
Hauman in Racket, but this implementation was not used by any other Scheme imple-
mentation. Hauman also added a number of features not found in other versions of

4 Although this is often cited as a Rice University technical report, it was never published as
such.



Wright’s library. Hauman’s implementation was then maintained by the author, and
extended with match expanders as described in Section 4. The author subsequently
created a new implementation in 2008 using backtracking automata, which is currently
distributed with Racket.

In 1990, Quinnec [21] presented a pattern matcher for S-expressions as well as a
formal semantics for his matcher. However, we know of no Scheme implementation
which distributes his implementation.

Eisenberg, Clinger and Hartheimer also included a pattern matcher in their intro-
ductory book, Programming in MacScheme [10]. This matcher was implemented as a
procedure rather than a macro, functioned on quoted lists as patterns, and did not bind
variables.

Of course, Scheme macro systems, beginning with Kohlbecker and Wand’s Macro
by Example [15] have included sophisticated pattern matchers, functioning entirely on
S-expressions. These systems introduced the ... notation for sequence patterns, later
adopted by Wright’s matcher among others and seen in the second example in the intro-
duction. However, these have typically not been integrated into the rest of the program-
ming language and have not made use of sophisticated pattern compilation techniques.
An exception is Culpepper et al.’s syntax-parse system [5], which uses a novel com-
pilation strategy to support sophisticated error reporting.

Finally, numerous Scheme and Lisp systems have implemented their own simple
pattern matching libraries, too many to list here.

5.2 Other Extensible Pattern Matchers

Numerous other proposals for extensible pattern matching in functional languages have
been presented. Here, we survey only the most significant.

The original proposal for extensible pattern matching is Wadler’s ”views” [25], pre-
sented in the context of Haskell. In this system, a view is a pair of an injection and
projection from an abstract type to an algebraic datatype. Views are intended to support
data abstraction in conjunction with pattern matching.

Expressing views using match expanders is straightforward, as is seen with the
example of cart and polar, which form a simple view on tagged lists. More complex
examples are also expressible, including the use of views as injections, which uses the
extensions discussed in Section 4.4. Cobbe [3] provides a library which implements
view definitions as a layer on top of match expanders.

Also in Haskell, Peyton Jones presents view patterns [20] as an extension to the
GHC compiler and gives a wide range of motivating examples. These view patterns are
almost identical to app patterns in match, with the exception that Peyton Jones suggests
using typeclasses to implicitly provide the function when it is not supplied. However,
this extension is not implemented in GHC. Peyton Jones also lists 5 desirable properties
of pattern matching extensions, all of which are provided by match with app patterns
and match expanders.

Active patterns, originally proposed by Erwig [11] and subsequently extended and
implemented in F# by Syme et al. [23], as well as Scala extractors [?], provide more
expressive extensions. Users can define both partial and total patterns. Partial patterns
can be implemented as an abstraction over app and ? patterns, using a helper function.



Total patterns require the definition of several match expanders, each using such an ab-
straction, with only one helper function. Using both pattern abstraction and abstraction
over definitions provided by macros, such extensions can be specified in Racket just
as in F#, but again without the need to modify the base language. Since match does
not check exhaustiveness of pattern matching, total active patterns cannot be verified to
match completely.

6 Conclusion

Pattern matching is an invaluable tool for programmers to write concise, maintainable,
and performant code. However, it does not usually support the abstraction facilities that
functional programmers expect in other parts of the language. In this paper, we describe
a syntactic abstraction facility that allows arbitrary rewriting of patterns at compilation
time. Furthermore, this is provided in a pattern matching system that is implemented
as a syntactic extension in Racket. The implementation reveals a striking similarity
between the base language extension mechanism and extensions defined in higher-level
domain-specific languages such as pattern matching.

Acknowledgments

Ryan Culpepper provided invaluable assistance in the development of match, and de-
vised the algorithm used for handling sequence patterns. Matthias Felleisen shared his
knowledge of the early history of pattern matching in Scheme. Stevie Strickland and
Vincent St-Amour provided feedback on earlier drafts of the paper. The author is sup-
ported by a grant from the Mozilla Foundation.

References

1. Lennart Augustsson. Compiling pattern matching. In Proc. of a conference on Functional
programming languages and computer architecture, pages 368–381, New York, NY, USA,
1985. Springer-Verlag.

2. William Clinger. Hygienic macros through explicit renaming. LISP Pointers, 4(4), 1991.
3. Richard Cobbe. Views, 2007. http://planet.racket-lang.org/.
4. Alain Colmerauer and Philippe Roussel. The birth of Prolog. In History of programming

languages—II, pages 331–367, New York, NY, USA, 1996. ACM.
5. Ryan Culepper and Matthias Felleisen. Fortifying macros. In ACM SIGPLAN International

Conference on Functional Programming, 2010.
6. Ryan Culpepper and Matthias Felleisen. Debugging hygienic macros. Sci. Comput. Pro-

gram., 75(7):496–515, 2010.
7. Ryan Culpepper, Sam Tobin-Hochstadt, and Matthew Flatt. Advanced macrology and the

implementation of Typed Scheme. In Proc. 2007 Workshop on Scheme and Functional
Programming, Université Laval Technical Report DIUL-RT-0701, pages 1–13, 2007.

8. R. Kent Dybvig, Daniel P. Friedman, and Christopher T. Haynes. Expansion-passing style:
A general macro mechanism. Lisp and Symbolic Computation, 1(1):53–75, January 1988.

9. R. Kent Dybvig, Robert Hieb, and Carl Bruggeman. Syntactic abstraction in Scheme. Lisp
and Symbolic Computation, 5(4):295–326, 1993.

http://planet.racket-lang.org/


10. Michael Eisenberg, William Clinger, and Anne Hartheimer. Programming in MacScheme.
MIT Press, Cambridge, MA, USA, 1990.

11. Martin Erwig. Active patterns. In IFL ’96: Selected Papers from the 8th International
Workshop on Implementation of Functional Languages, pages 21–40, London, UK, 1997.
Springer-Verlag.

12. Matthew Flatt and PLT. Reference: Racket. Technical Report PLT-TR-2010-1, PLT Inc.,
2010. http://racket-lang.org/tr1/.

13. Daniel P. Friedman and Mitchell Wand. Essentials of Programming Languages, 3rd Edition.
The MIT Press, 2008.

14. Eugene E. Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce F. Duba. Hy-
gienic macro expansion. In LFP ’86: Proc. 1986 ACM Conference on LISP and Functional
Programming, pages 151–161, New York, NY, USA, 1986. ACM Press.

15. Eugene E. Kohlbecker and Mitchell Wand. Macros-by-example: Deriving syntactic transfor-
mations from their specifications. In Symposium on Principles of Programming Languages,
pages 77–84, 1987.

16. Shriram Krishnamurthi. Programming Languages: Application and Interpretation.
Lulu.com, January 2007.

17. Shriram Krishnamurthi, Peter Walton Hopkins, Jay Mccarthy, Paul T. Graunke, Greg Pet-
tyjohn, and Matthias Felleisen. Implementation and use of the PLT Scheme web server.
Higher Order Symbol. Comput., 20(4):431–460, 2007.

18. Fabrice Le Fessant and Luc Maranget. Optimizing pattern matching. In ICFP ’01: Pro-
ceedings of the sixth ACM SIGPLAN international conference on Functional programming,
pages 26–37, New York, NY, USA, 2001. ACM.

19. Luc Maranget. Compiling pattern matching to good decision trees. In Proceedings of the
2008 ACM Workshop on ML, pages 35–46, 2008.

20. Simon Peyton Jones. View patterns: lightweight views for Haskell, 2007. http://

hackage.haskell.org/trac/ghc/wiki/ViewPatterns.
21. Christian Queinnec. Compilation of non-linear, second order patterns on S-expressions. In

PLILP ’90: Proceedings of the 2nd International Workshop on Programming Language Im-
plementation and Logic Programming, pages 340–357, London, UK, 1990. Springer-Verlag.

22. Guy Lewis Steele Jr. Common Lisp—The Language. Digital Press, Bedford, MA, 1984.
23. Don Syme, Gregory Neverov, and James Margetson. Extensible pattern matching via a

lightweight language extension. In ICFP ’07: Proceedings of the 12th ACM SIGPLAN inter-
national conference on Functional programming, pages 29–40, New York, NY, USA, 2007.
ACM.

24. Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation of Typed
Scheme. In Proc. 35th Symposium on Principles of Programming Languages, pages 395–
406. ACM Press, 2008.

25. P. Wadler. Views: a way for pattern matching to cohabit with data abstraction. In POPL ’87:
Proceedings of the 14th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 307–313, New York, NY, USA, 1987. ACM.

26. Andrew Wright and Bruce Duba. Pattern matching for Scheme, 1995.

http://racket-lang.org/tr1/
http://hackage.haskell.org/trac/ghc/wiki/ViewPatterns
http://hackage.haskell.org/trac/ghc/wiki/ViewPatterns

	Extensible Pattern Matching in an Extensible Language
	Sam Tobin-Hochstadt

