
Extensible Pattern Matching in an Extensible Language
(Extended Abstract)

Sam Tobin-Hochstadt

Northeastern University

Abstract. Pattern matching is a widely used technique in functional languages,
especially those in the ML and Haskell traditions. Although pattern matching
is typically not built into languages in the Lisp tradition, it is often available
via libraries built with macros. We present a sophisticated pattern matcher for
Racket, which extends the language using macros, supports novel and widely-
useful pattern-matching forms, and is itself extensible with macros.

1 Extending Pattern Matching

The following Racket1 [3] program finds the magnitude of a complex number, repre-
sented in either Cartesian or polar form as a 3-element list:
(define (magnitude n)
(cond [(eq? (first n) ’cart)

(sqrt (+ (sqr (second n)) (sqr (third n))))]
[(eq? (first n) ’polar)
(second n)]))

While this program accomplishes the desired purpose, it’s far from obviously correct,
and commits the program to the list-based representation. Additionally, it unnecessarily
repeats accesses to the list structure making up the representation. Finally, if the input
is ’(cart 7), it produces a hard-to-decipher error.

In contrast, the same program written using pattern matching is far easier to under-
stand:
(define (magnitude n)
(match n
[(list ’cart x y) (sqrt (+ (sqr x) (sqr y)))]
[(list ’polar r theta) r]))

The new program is shorter, more perspicuous, does not repeat computation, and pro-
duces better error messages.

The function can also be easily converted to arbitrary-dimensional coordinates:
(define (magnitude n)
(match n
[(list ’cart xs ...) (sqrt (apply + (map sqr xs)))]
[(list ’polar r theta ...) r]))

1 Racket is the new name of PLT Scheme.



This definition is much improved from the original, but it still commits us to a list-based
representation of coordinates. By switching to custom, user-defined pattern matching
forms, this representation choice can be abstracted away:
(define (magnitude n)
(match n
[(cart xs ...)
(sqrt (apply + (map sqr xs)))]
[(polar r theta ...) r]))

Our custom pattern matching form can use other features of Racket’s pattern matcher
to perform arbitrary computation, allowing us to simplify the function further by trans-
parently converting Cartesian to polar coordinates when necessary:
(define (magnitude n)
(match n
[(polar r theta ...) r]))

In the remainder of the paper, we describe the implementation of all of these ex-
amples, focusing on user-extensibility. We begin with a history of pattern matching in
Scheme, leading up to the current implementation in Racket, touching briefly on the
adaptation of standard techniques from ML-style matching [4] and their implementa-
tion via macros [2,1]. Then we describe the implementation of sequence patterns (seen
above with the use of ...) and other pattern forms not found in conventional pattern-
matching systems. Third, we describe how to make patterns user-extensible by exploit-
ing the flexibility of Racket’s macro system.

References

1. Ryan Culpepper, Sam Tobin-Hochstadt, and Matthew Flatt. Advanced Macrology and the
Implementation of Typed Scheme. In Proceedings of the Eighth Workshop on Scheme and
Functional Programming, 2007.

2. R. Kent Dybvig, Robert Hieb, and Carl Bruggeman. Syntactic abstraction in Scheme. Lisp
and Symbolic Computation, 5(4):295–326, December 1993.

3. Matthew Flatt and PLT. Reference: Racket. Reference Manual PLT-TR2010-reference-v5.0,
PLT Scheme Inc., June 2010. http://racket-lang.org/techreports/.

4. Fabrice Le Fessant and Luc Maranget. Optimizing pattern matching. In ICFP ’01: Proceed-
ings of the sixth ACM SIGPLAN international conference on Functional programming, pages
26–37, New York, NY, USA, 2001. ACM.

http://racket-lang.org/techreports/

	Extensible Pattern Matching in an Extensible Language (Extended Abstract)
	Sam Tobin-Hochstadt

