
The Fortress Language Specification
Version 1.0

Eric Allen
David Chase
Joe Hallett

Victor Luchangco
Jan-Willem Maessen

Sukyoung Ryu
Guy L. Steele Jr.

Sam Tobin-Hochstadt

Additional contributors:
Joao Dias

Carl Eastlund
Christine Flood

Yossi Lev
Cheryl McCosh

Janus Dam Nielsen
Dan Smith

c© Sun Microsystems, Inc.

March 31, 2008

This release of the Fortress Language Specification is the first to be released in tandem with a compliant interpreter,
available as open source and online at:

http://projectfortress.sun.com

Our tandem release of a specification and matching interpreter is a major milestone for the project; it is a goal we
have been working toward for some time. All Fortress source code appearing in this specification has been tested by
executing it with the open source Fortress implementation. Moreover, all code has been rendered automatically with
the tool Fortify, also included with the standard Fortress distribution. Fortify is an open source tool for converting
Fortress source code to LATEX.
Our reference implementation has been evolving gradually, in parallel with the evolution of the language specification
and the development of the core libraries. In order to synchronize the specification with the implementation, it was
necessary both to add features to the implementation and to drop features from the specification. Most significantly,
most static checks in the implementation are currently turned off, as we are in the process of completing the static
type checker and the type inference engine. Static constraints are still included in the specification as documentation.
Contrary to the Fortress Language Specification, Version 1.0 β , inference of static parameter instantiations is based on
the runtime types of the arguments to a functional call. Support for syntactic abstraction is not included in this release.
We do not yet support nontrivial distributions, nor parallel nested transactions. Moreover, many other minor language
features defined in the Fortress Language Specification, Version 1.0 β have been elided. All of these features require
additional research before they can be implemented reliably; this research and development is a high priority for the
Fortress team.

With this release, our goal in moving forward is to incrementally add back features taken out of the specification as
they are implemented. In particular, all language features included in the Fortress Language Specification, Version
1.0 β remain goals for eventual inclusion in the language (perhaps with additional modification and evolution of their
design). By proceeding in this manner, we believe that our implementation will be useful for more tasks more quickly,
as it will comply with the public specification. Moreover, the Fortress community will be better able to evaluate the
design of new features, as users will be able to use them immediately, and developers will be able to contribute to the
implementation effort more easily, as they will be able to build off of a relatively stable and well-specified base.

Moving forward with the implementation, in concert with our open source community, our goal is to build off of the
infrastructure of our interpreter to construct the first optimizing Fortress compiler and to achieve our long-standing
goal of constructing a new programming language with high performance and high programmer productivity, owned
by the community that uses it, and able to grow gracefully with the tasks it is applied to.

2

Contents

I Preliminaries 12

1 Introduction 13

1.1 Fortress in a Nutshell . 13

1.2 Acknowledgments . 14

1.3 Organization . 15

2 Overview 16

2.1 The Fortress Programming Environment . 16

2.2 Exports and Imports . 17

2.3 Rendering . 19

2.4 Some Common Types in Fortress . 20

2.5 Functions in Fortress . 20

2.6 Some Common Expressions in Fortress . 22

2.7 For Loops Are Parallel by Default . 22

2.8 Atomic Expressions . 23

2.9 Aggregate Expressions . 23

2.10 Comprehensions . 24

2.11 Summations and Products . 25

2.12 Tests and Properties . 25

2.13 Objects and Traits . 25

2.14 Features for Library Development . 27

II Fortress for Application Programmers 28

3 Programs 29

3

4 Lexical Structure 30

4.1 Characters . 30

4.2 Words and Chunks . 32

4.3 Lines, Pages and Position . 32

4.4 Input Elements and Scanning . 32

4.5 Comments . 33

4.6 Whitespace Elements . 33

4.7 Reserved Words . 33

4.8 Character Literals . 34

4.9 String Literals . 34

4.10 Boolean Literals . 34

4.11 The Void Literal . 34

4.12 Numerals . 34

4.13 Operator Tokens . 35

4.14 Identifiers . 36

4.15 Special Tokens . 36

4.16 Rendering of Fortress Programs . 36

5 Evaluation 39

5.1 Values . 39

5.2 Normal and Abrupt Completion of Evaluation . 40

5.3 Memory and Memory Operations . 40

5.4 Threads and Parallelism . 41

5.5 Environments . 42

5.6 Input and Output Actions . 42

6 Types 44

6.1 Kinds of Types . 44

6.2 Relationships between Types . 45

6.3 Trait Types . 45

6.4 Object Expression Types . 45

6.5 Tuple Types . 46

6.6 Arrow Types . 46

6.7 Function Types . 47

6.8 Special Types . 47

4

7 Names and Declarations 48

7.1 Kinds of Declarations . 48

7.2 Namespaces . 49

7.3 Reach and Scope of a Declaration . 50

8 Variables 52

8.1 Top-Level Variable Declarations . 52

8.2 Local Variable Declarations . 53

9 Functions 55

9.1 Function Declarations . 55

9.2 Function Applications . 56

9.3 Function Contracts . 57

9.4 Local Function Declarations . 57

10 Traits 59

10.1 Trait Declarations . 59

10.2 Method Declarations . 60

10.3 Method Contracts . 62

10.4 Value Traits . 62

11 Objects 64

11.1 Object Declarations . 64

11.2 Field Declarations . 65

11.3 Value Objects . 66

12 Static Parameters 67

12.1 Type Parameters . 67

12.2 Nat and Int Parameters . 67

12.3 Bool Parameters . 68

12.4 Operator Parameters . 68

13 Expressions 70

13.1 Literals . 70

13.2 Identifier References . 70

13.3 Dotted Field Accesses . 71

5

13.4 Dotted Method Invocations . 71

13.5 Naked Method Invocations . 72

13.6 Function Calls . 72

13.7 Operator Applications . 72

13.8 Function Expressions . 73

13.9 Object Expressions . 74

13.10Assignments . 74

13.11Do Expressions . 76

13.12Label and Exit . 77

13.13While Loops . 78

13.14Generators . 78

13.15For Loops . 80

13.16Ranges . 80

13.17Summations and Other Reduction Expressions . 80

13.18If Expressions . 81

13.19Case Expressions . 82

13.20Extremum Expressions . 82

13.21Typecase Expressions . 83

13.22Atomic Expressions . 84

13.23Spawn Expressions . 85

13.24Throw Expressions . 85

13.25Try Expressions . 86

13.26Tuple Expressions . 87

13.27Aggregate Expressions . 87

13.28Comprehensions . 89

13.29Type Ascription . 90

13.30Type Assumption . 90

14 Exceptions 92

14.1 Causes of Exceptions . 92

14.2 Types of Exceptions . 92

6

15 Overloading and Multiple Dispatch 94

15.1 Principles of Overloading . 94

15.2 Applicability to Named Functional Calls . 95

15.3 Applicability to Dotted Method Calls . 96

15.4 Applicability for Functionals with Varargs Parameters . 96

15.5 Overloading Resolution . 96

15.6 Overloading Rules for Functional Declarations . 96

16 Operators 100

16.1 Operator Names . 100

16.2 Operator Precedence and Associativity . 101

16.3 Operator Fixity . 103

16.4 Chained Operators . 104

16.5 Enclosing Operators . 104

16.6 Conditional Operators . 105

16.7 Big Operators . 105

16.8 Juxtaposition . 105

17 Tests 108

18 Type Inference 109

19 Memory Model 111

19.1 Principles . 111

19.2 Programming Discipline . 112

19.3 Read and Write Atomicity . 114

19.4 Ordering Dependencies among Operations . 114

20 Components and APIs 117

20.1 Overview . 117

20.2 Components . 117

20.3 APIs . 120

20.4 Component and API Identity . 121

7

III Fortress for Library Writers 122

21 Parallelism and Locality 123

21.1 Regions . 123

21.2 Placing Threads . 124

21.3 Shared and Local Data . 125

21.4 Distributed Arrays . 126

21.5 Abortable Atomicity . 127

21.6 Early Termination of Threads . 127

21.7 Use and Definition of Generators . 128

22 Operator Declarations 131

22.1 Infix Operator Declarations . 132

22.2 Prefix Operator Declarations . 132

22.3 Postfix Operator Declarations . 132

22.4 Nofix Operator Declarations . 132

22.5 Bracketing Operator Declarations . 133

22.6 Subscripting Operator Method Declarations . 133

22.7 Subscripted Assignment Operator Method Declarations . 133

22.8 Conditional Operator Declarations . 134

22.9 Big Operator Declarations . 134

IV Fortress Library APIs and Documentation 135

23 Structure of the Fortress Libraries 136

24 Default Libraries 137

24.1 FortressLibrary . 137

24.2 Builtins . 164

25 Additional Libraries Available to Fortress Programmers 166

25.1 Constants . 166

25.2 List . 166

25.3 PureList . 168

25.4 File . 169

8

25.5 Set . 171

25.6 Map . 172

25.7 Sparse . 174

25.8 Heap . 174

25.9 SkipList . 176

25.10QuickSort . 177

V Appendices 178

A Fortress Calculi 179

A.1 Basic Core Fortress . 179

A.2 Core Fortress with Overloading . 184

B Rendering of Fortress Code 191

B.1 Rendering of Fortress Identifiers . 191

B.2 Rendering of Other Fortress Constructs . 194

C Operator Precedence, Associativity, Chaining, and Enclosure 197

C.1 Bracket Pairs for Enclosing Operators . 197

C.2 Vertical-Line Operators . 198

C.3 Arithmetic Operators . 199

C.4 Relational Operators . 202

C.5 Boolean Operators . 209

C.6 Other Operators . 210

D Simplified Grammar for Application Programmers and Library Writers 221

D.1 Components and APIs . 222

D.2 Top-level Declarations . 223

D.3 Trait and Object Declarations . 223

D.4 Variable Declarations . 225

D.5 Function Declarations . 225

D.6 Dimension, Unit, Type Alias, Test, Property, and External Syntax Declarations 225

D.7 Headers . 226

D.8 Parameters . 228

D.9 Method Declarations . 228

9

D.10 Method Parameters . 229

D.11 Field Declarations . 229

D.12 Abstract Field Declarations . 229

D.13 Expressions . 230

D.14 Expressions Enclosed by Keywords or Symbols . 231

D.15 Local Declarations . 232

D.16 Literals . 233

D.17 Types . 233

D.18 Symbols and Operators . 234

D.19 Identifiers . 234

D.20 Spaces and Comments . 234

E Full Grammar for Fortress Implementors 235

E.1 Components and APIs . 235

E.2 Top-level Declarations . 236

E.3 Trait and Object Declarations . 236

E.4 Variable Declarations . 238

E.5 Function Declarations . 239

E.6 Dimension, Unit, Type Alias, Test, Property, and External Syntax Declarations 239

E.7 Headers without Newlines . 240

E.8 Headers Maybe with Newlines . 242

E.9 Parameters . 244

E.10 Method Declarations . 245

E.11 Method Parameters . 246

E.12 Field Declarations . 246

E.13 Abstract Field Declarations . 246

E.14 Expressions . 246

E.15 Expressions Enclosed by Keywords or Symbols . 249

E.16 Local Declarations . 250

E.17 Literals . 251

E.18 Expressions without Newlines . 252

E.19 Expressions within Array Expressions . 253

E.20 Types . 253

E.21 Types without Newlines . 255

10

E.22 Symbols and Operators . 255

E.23 Identifiers . 257

E.24 Spaces and Comments . 258

F Changes between Fortress 1.0 β and 1.0 Specifications 259

11

Part I

Preliminaries

12

Chapter 1

Introduction

The Fortress programming language is a general-purpose, statically typed, component-based programming language
designed for producing robust high-performance software with high programmability.

In many ways, Fortress is intended to be a “growable language”, i.e., a language that can be gracefully extended and
applied in new and unanticipated contexts. Fortress supports state-of-the-art compiler optimization techniques, scaling
to unprecedented levels of parallelism and of addressable memory. Fortress also supports modular and extensible
parsing, allowing new notations and static analyses to be added to the language.

The name “Fortress” is derived from the intent to produce a “secure Fortran”, i.e., a language for high-performance
computation that provides abstraction and type safety on par with modern programming language principles. Despite
this etymology, the language is a new language with little relation to Fortran other than its intended domain of ap-
plication. No attempt has been made to support backward compatibility with existing versions of Fortran; indeed,
many new language features were invented during the design of Fortress. Many aspects of Fortress were inspired
by other object-oriented and functional programming languages, including the JavaTM Programming Language [3],
NextGen [4], Scala [18], Eiffel [14], Self [1], Standard ML [16], Objective Caml [12], Haskell [20], and Scheme [11].
The result is a language that employs cutting-edge features from the programming-language research community to
achieve an unprecedented combination of performance and programmability.

Fortress is an open source project. An interpreter, implementing the language features presented in this specification,
is available at the Fortress project website:

http://projectfortress.sun.com

There you will find source code, supporting documents, and access to discussion groups related to the Fortress project.

1.1 Fortress in a Nutshell

Two basic concepts in Fortress are that of object and of trait. An object consists of fields and methods. The fields of
an object are specified in its definition. An object definition may also include method definitions.

Traits are named program constructs that declare sets of methods. They were introduced in the Self programming lan-
guage, and their semantic properties (and advantages over conventional class inheritance) were analyzed by Ducasse,
Nierstrasz, Schärli, Wuyts and Black [5]. In Fortress, a method declared by a trait may be either abstract or concrete:
abstract methods have only headers; concrete methods also have definitions. A trait may extend other traits: it inherits
the methods provided by the traits it extends. A trait provides the methods that it inherits as well as those explicitly
declared in its declaration.

13

Every object extends a set of traits (its “supertraits”). An object inherits the concrete methods of its supertraits and
must include a definition for every method declared but not defined by its supertraits.

Fortress allows the use of Unicode characters [22] in program identifiers, as well as subscripts and superscripts.
Fortress also includes a set of standard formatting rules that follow the conventions of mathematical notation. For
example, most variable references in Fortress programs are italicized. Moreover, multiplication can be expressed by
simple juxtaposition. There is also support for operator overloading.

Although Fortress is statically and nominally typed, types are not specified for all fields, nor for all method parameters
and return values. Instead, wherever possible, type inference is used to reconstruct types. In the examples throughout
this specification, we often omit the types when they are clear from context. Additionally, types can be parametric
with respect to other types and values (most notably natural numbers).

These design decisions are motivated in part by our goal of making the scientist/programmer’s life as easy as possible
without compromising good software engineering. In particular, they allow us to write Fortress programs that preserve
the look of standard mathematical notation.

In addition to objects and traits, Fortress allows the programmer to define top-level functions. Functions are first-class
values: They can be passed to and returned from functions, and assigned as values to fields and variables. Functions
and methods can be overloaded, with calls to overloading methods resolved by multiple dynamic dispatch similarly to
the manner described in [15]. Variable size argument lists are also supported.

Fortress programs are organized into components, which export and import APIs. APIs describe the “shape” of a
component, specifying the types in traits, objects and functions provided by a component. All external references
within a component (i.e., references to traits, objects and functions implemented by other components) are to APIs
imported by the component. We discuss components and APIs in detail in Chapter 20.

To address the needs of modern high-performance computation, Fortress also supports a rich set of operations for
defining parallel execution of large data structures. This support is built into the core of the language. For example,
for loops in Fortress are parallel by default.

1.2 Acknowledgments

With the help of many contributors and supporters, we are in the midst of building an open source interpreter for
Fortress. Many people have contributed to the Fortress project with useful comments and suggestions for both the
specification and implementation, code contributions, and supporting tools. Special thanks go to Bob Apthorpe, Mike
Atkinson, Alex Battisti, David J. Biesack, Steve Brandt, Martin Buchholz, Zoran Budimlic, Bill Callahan, Corky
Cartwright, Darren Dale, Joe Darcy, David Detlefs, Dave Dice, Kento Emoto, Matthias Felleisen, Robby Findler,
Kathi Fisler, Richard Gabriel, Markus Gaisbauer, Alex Garthwaite, Jesse Glick, Brian Goetz, Robert Grimm, Yuto
Hayamizu, Steve Heller, Maurice Herlihy, James Hughes, Zhenjiang Hu, Andy Johnson, Mackale Joyner, Miriam
Kadansky, Kazuhiko Kakehi, Ken Kennedy, Scott Kilpatrick, Alex Kravets, Shriram Krishnamurthi, Eric Lavigne,
Doug Lea, Vass Litvinov, Eugene Loh, Kiminori Matsuzaki, Daniel MD, John Mellor-Crummey, Daniel Mendes,
Jim Mitchell, Mark Moir, Akhilesh Mritunjai, Dan Nussbaum, Andrew Pitonyak, Bill Pugh, Doron Rajwan, John
Reppy, John Rose, Ulrich Schreiner, Nir Shavit, Michael Spiegel, Bob Sproull, Walid Taha, Masato Takeichi, Peter
Vanderbilt, Michael Van de Vanter, Chris Vick, Larry Votta, Jim Waldo, Russel Winder, Kathy Yelick, and the many
other participants in the Fortress community.

We would also like to thank the anonymous referees of peer-reviewed papers related to the Fortress project, who
have influenced the language design in many ways, as well as the DARPA reviewers from the HPCS project for their
thoughtful feedback throughout the design of the language.

14

1.3 Organization

This language specification is organized as follows. In Part II, the Fortress language features for application program-
mers are explained, including objects, types, and functions. Relevant parts of the concrete syntax are provided with
many examples. The full concrete syntax of Fortress is described in Appendix D. Part III describes advanced Fortress
language features for library writers. In Part IV, APIs and documentation of the Fortress Library are presented. Finally,
in Part V, the Fortress calculi and the Fortress grammars are described.

15

Chapter 2

Overview

In this chapter, we provide a high-level overview of the entire Fortress language. We present most features in this
chapter through the use of examples, which should be accessible to programmers of other languages. In this chapter,
unlike the rest of the specification, no attempt is made to provide complete descriptions of the various language features
presented. Instead, we intend this overview to provide useful context for reading other sections of this specification,
which provide rigorous definitions for what is merely introduced here.

2.1 The Fortress Programming Environment

Although Fortress is independent of the properties of a particular platform on which it is implemented, it is helpful for
concreteness to present the programming model used in the Fortress reference implementation. In this programming
model, Fortress source code is stored in files and organized in directories, and there is a text-based shell from which
we can store environment variables and issue commands to execute and compile programs.

A Fortress program can be processed in one of two ways:

• It can be executed. The Fortress program is stored in a file with the suffix “.fss” and executed directly from an
underlying operating system shell by calling the command “fortress run” on it. For example, suppose we
write the following “Hello, world! ” program to a file “HelloWorld.fss”:

export Executable
run(args) = print “Hello, world!”

The first line is an export statement; we ignore it for the moment. The second line defines a function run , which
takes a parameter named args and prints the string “Hello, world! ”. Note that the parameter args does
not include a declaration of its type. In many cases, types can be elided in Fortress and inferred from context.
(In this case, the type of args is inferred based on the program’s export statement, explained in Section 2.2.)

We can execute this program by issuing the following command to the shell:

fortress run HelloWorld.fss

The instruction fortress run can be abbreviated as fortress:

fortress HelloWorld.fss

• It can be compiled. In this case, the Fortress program is compiled into a component, which is stored in a hidden
persistent cache maintained by the implementation. called a fortress. Typically, a single fortress holds all the

16

components of a user, or group of users sharing programs and libraries. In our examples, we often refer to the
fortress we are storing components in as the resident fortress.

For example, we could have written our “Hello, world! ” program as follows:

component HelloWorld
export Executable
run(args) = print “Hello, world!”

end

We can compile this program, by issuing the command “fortress compile” on it:

fortress compile HelloWorld.fss

As a result of this command, a component named “HelloWorld” is stored in the resident fortress. The name
of this component is provided by the enclosing component declaration surrounding the code. If there is no
enclosing component declaration, then the contents of the file are understood to belong to a single component
whose name is that of the file it is stored in, minus its suffix. For example, suppose we write the following
program in a source file named “HelloWorld2.fss”:

export Executable
run(args) = print “Hi, it’s me again!”

When we compile this file:

fortress compile HelloWorld2.fss

the result is that a new component with the name HelloWorld2 is stored in the resident fortress. Once this
component is compiled, we can execute it by issuing the following command:

fortress run HelloWorld2.fss

Compiling a source file allows us to catch static errors before running a program. It also allows the system to
perform static optimizations on a program and use those optimizations when executing.

Once a program is compiled, the cached code will be used during execution unless modifications have been
made to the source file since the most recent compilation. If the source file is newer, the program is recompiled
before execution.

A source file must contain exactly one component declaration, and its name must match the file name.

2.2 Exports and Imports

When a component is defined, it can include export statements. For example, all of the components we have defined
thus far have included the export statement “ export Executable ”. Export statements list various APIs that a com-
ponent implements. Unlike in other languages, APIs in Fortress are themselves program constructs; programmers
can rely on standard APIs, and declare new ones. API declarations are sequences of declarations of variables, func-
tions, and other program constructs, along with their types and other supporting declarations. For example, here is the
definition of API Executable :

api Executable
run(args: String . . .): ()

end

This API contains the declaration of a single function run , whose type is (String . . .)→ () . This type is an arrow
type; it declares the type of a function’s parameter, and its return type. The function run includes a single parameter;

17

the notion (String . . .) indicates that it is a varargs parameter; the function run can be called with an arbitrary
number of string arguments. For example, here are valid calls to this function:

run(“a simple”, “ example”)
run(“run(...)”)
run(“Nobody”, “expects”, “that”)

The return type of run is () , pronounced “void”. Type () may be used in Fortress as a return type for functions
that have no meaningful return value. There is a single value with type () : the value () , also pronounced “void”.
References to value () as opposed to type () are resolved by context.

As with components, APIs can be defined in files and compiled. APIs must be defined in files with the suffix .fsi. An
.fsi file contains source code for exactly one API, and its name must match the file name, minus the suffix. If there
are no explicit “ api ” headers, the file is understood to define a single API whose name is the name of the containing
file (minus its suffix).

An API is compiled with the shell command “fortress compile”. When an API is compiled, it is installed in the
resident fortress.

For example, if we store the following API in a file named “Zeepf.fsi”:

api Zeepf
foo: String→ ()
baz : String→ String

end

then we can compile this API with the following shell command:

fortress compile Zeepf.fsi

This command compiles the API Zeepf and installs it in the resident fortress.

A component that exports an API must provide a definition for every program construct declared in the API. For
example, because our component HelloWorld:

component HelloWorld
export Executable
run(args) = print “Hello, world!”

end

exports the API Executable , it must include a definition for the function run . The definition of run in HelloWorld
need not include declarations of the parameter type or return type of run , as these can be inferred from the definition
of API Executable .

Components are also allowed to import APIs. A component that imports an API is allowed to use any of the program
constructs declared in that API. For example, the following component imports the API Zeepf and calls the function
foo declared in Zeepf :

component Blargh
import Zeepf.{. . .}
export Executable
run(args) = foo(“whatever”)

end

The component Blargh imports declaration foo from the API Zeepf and exports the API Executable . Its run
function is defined by calling function foo , defined in Zeepf . In an import statement of the form:

import A.{S}

18

all names in the list of names S are imported from API A, and can be referred to as unqualified names within the
importing component. In the example above, the names we have imported consist of a single name: foo . If we had
instead written:

import Zeepf.{foo, baz}

then we would have been able to refer to both foo and baz as unqualified names in Blargh .

Note that no component refers directly to another component, or to constructs defined in another component. Instead,
all external references go through APIs. This level of indirection provides us with significant power. It provides a way
to hide implementation details in a component. Also, our intention is that in future implementations, it will be possible
to make use of APIs to provide sophisticated link and upgrade operations for the purposes of building large programs.

Components that contain no import statements and export the API Executable are referred to as executable compo-
nents. They can be compiled and executed directly as stand-alone components. All of our HelloWorld components
are executable components. However, if a component imports one or more APIs, it cannot be executed as a stand-alone
program. Instead, its imports are resolved to other components that export all of the APIs it imports, to form a new
compound component. For example, we define the following component in a file named Ralph.fss:

export Zeepf
foo(s) = ()
baz (s) = s

We can now issue the following shell commands:

fortress compile Ralph.fss

fortress compile Blargh.fss

fortress run Blargh.fss

The first two commands compile files Ralph.fss and Blargh.fss, respectively, and install them in the resident
fortress. The third command tells the resident fortress to run component Blargh . References to API Zeepf in Blargh
are resolved to their implementation in component Ralph .

2.3 Rendering

One aspect of Fortress that is quite different from many other languages is that various program constructs are rendered
in particular fonts, so as to emulate mathematical notation. For example, variable names are rendered in italic fonts.
Many other program constructs have their own rendering rules. For example, the operator ˆ indicates superscripting
in Fortress. A function definition consisting of the following ASCII characters:

f(x) = xˆ2 + sin x - cos 2 x

is rendered as follows:

f(x) = x2 + sinx− cos 2x

Array indexing, written with brackets:

a[i]

is rendered as follows:

ai

19

There are many other examples of special rendering conventions.

There are also ASCII abbreviations for writing down commonly used Fortress characters. For example, ASCII iden-
tifiers for all Greek letters are converted to Greek characters (e.g., “lambda” becomes λ and “LAMBDA” becomes Λ).
Here are some other common ASCII shorthands:

BY becomes × TIMES becomes ×
DOT becomes · CROSS becomes ×
CUP becomes ∪ CAP becomes ∩

BOTTOM becomes ⊥ TOP becomes >
SUM becomes

∑
PROD becomes

∏
INTEGRAL becomes

∫
EMPTYSET becomes ∅

SUBSET becomes ⊂ NOTSUBSET becomes 6⊂
SUBSETEQ becomes ⊆ NOTSUBSETEQ becomes 6⊆

EQUIV becomes ≡ NOTEQUIV becomes 6≡
IN becomes ∈ NOTIN becomes 6∈
LT becomes < LE becomes ≤
GT becomes > GE becomes ≥
EQ becomes = NE becomes 6=

AND becomes ∧ OR becomes ∨
NOT becomes ¬ XOR becomes ⊕
INF becomes ∞ SQRT becomes

√

2.4 Some Common Types in Fortress

Fortress provides a wide variety of standard types, including String , Boolean , and various numeric types. The
floating-point type R64 (written in ASCII as RR64) is the type of 64-bit precision floating-point numbers. For
example, the following function takes a 64-bit float and returns a 64-bit float:

halve(x: R64): R64 = x/2

64-bit integers are denoted by the type Z64 and 32-bit integers by the type Z32 .

2.5 Functions in Fortress

Fortress allows recursive, and mutually recursive function definitions. Here is a simple definition of a factorial
function in Fortress:

factorial(n) =
if n = 0 then 1
else n factorial(n− 1) end

2.5.1 Juxtaposition and function application

In the definition of factorial , note the juxtaposition of parameter n with the recursive call factorial(n− 1) . In
Fortress, as in mathematics, multiplication is represented through juxtaposition. By default, two expressions of nu-
meric type that are juxtaposed represent a multiplication. On the other hand, juxtaposition of an expression of function
type with another expression to its right represents function application, as in the following example:

sinx

20

Moreover, juxtaposition of expressions of string type represents concatenation, as in the following example:

“Hi,” “ it’s” “ me” “ again.”

In fact, juxtaposition is an operator in Fortress, just like + and − , that is overloaded based on the runtime types of
its arguments.

2.5.2 Varargs Parameters

It is also possible to define functions that take a variable number of arguments. For example:

printFirst(xs: Z32 . . .) =
if xs.reduce(SizeReductionJZ32K()) > 0 then println xs0

else throw Error end

This function takes an arbitrary number of integers and prints the first one (unless it is given zero arguments; then it
throws an exception).

2.5.3 Function Overloading

Functions can be overloaded in Fortress by the types of their parameters. Calls to overloaded functions are resolved
based on the runtime types of the arguments. For example, the following function is overloaded based on parameter
type:

size(x: Nil) = 0
size(x: Cons) = 1 + size(rest(x))

If we call size on an object with runtime type Cons , the second definition of size will be invoked regardless of the
static type of the argument.

2.5.4 Function Contracts

Fortress allows contracts to be included in function declarations. Among other things, contracts allow us to require
that the argument to a function satisfies a given set of constraints, and to ensure that the resulting value satisfies
some constraints. They provide essential documentation for the clients of a function, enabling us to express semantic
properties that cannot be expressed through the static type system.

Contracts are placed at the end of a function header, before the function body. For example, we can place a contract
on our factorial function requiring that its argument be nonnegative as follows:

factorial(n) requires {n ≥ 0 }
= if n = 0 then 1

else n factorial(n− 1) end

We can also ensure that the result of factorial is itself nonnegative:

factorial(n)
requires {n ≥ 0 }
ensures { result ≥ 0 }
= if n = 0 then 1

else n factorial(n− 1) end

The variable result is bound in the ensures clause to the return value of the function.

21

2.6 Some Common Expressions in Fortress

We have already seen an if expression in Fortress. Here’s an example of a while expression:

while x < 10 do
println x
x += 1

end

A sequence of expressions in Fortress may be delimited by do and end . Here is an example of a function that prints
three words:

printThreeWords() = do
print “print”
print “ three”
print “ words”

end

A tuple expression contains a sequence of elements delimited by parentheses and separated by commas:

(“this”, “is”, “a”, “tuple”, “of”, “mostly”, “strings”, 0)

When a tuple expression is evaluated, the various subexpressions are evaluated in parallel. For example, the following
tuple expression denotes a parallel computation:

(factorial(10), factorial(5), factorial(2))

The elements in this expression may be evaluated in parallel. This same computation can be expressed as follows:

do
factorial(10)

also do
factorial(5)

also do
factorial(2)

end

2.7 For Loops Are Parallel by Default

Here is an example of a simple for loop in Fortress:

for i← 1 : 10 do
print(i “ ”)

end

This for loop iterates over all elements i between 1 and 10 and prints the value of i . Expressions such as 1 : 10
are referred to as range expressions. They can be used in any context where we wish to denote all the integers between
a given pair of integers.

A significant difference between Fortress and most other programming languages is that for loops are parallel by
default. Thus, printing in the various iterations of this loop can occur in an arbitrary order, such as:

5 4 6 3 7 2 9 10 1 8

22

2.8 Atomic Expressions

In order to control interactions of parallel executions, Fortress includes the notion of atomic expressions, as in the
following example:

atomic do
x += 1
y += 1

end

An atomic expression is executed in such a manner that all other threads observe either that the computation has
completed, or that it has not yet begun; no other thread observes an atomic expression to have only partially completed.
Consider the following parallel computation:

do
x: Z32 := 0
y: Z32 := 0
z: Z32 := 0
atomic do

x += 1
y += 1

also atomic do
z := x + y

end
z

end

Both parallel blocks are atomic; thus the second parallel block either observes that both x and y have been updated,
or that neither has. Thus, possible values of the outermost do expression are 0 and 2, but not 1.

2.9 Aggregate Expressions

As with mathematical notation, Fortress includes special syntactic support for writing down many common kinds
of collections, such as arrays, matrices, vectors, maps, sets, and lists simply by enumerating all of the collection’s
elements. We refer to an expression formed by enumerating the elements of a collection as an aggregate expression.
The elements of an aggregate expression are computed in parallel.

For example, we can define an array a in Fortress by explicitly writing down its elements, enclosed in brackets and
separated by whitespace, as follows:

a : Z32[5] = [0 1 2 3 4]

Two-dimensional arrays can be written down by separating rows by newlines (or by semicolons). For example, we
can bind b to a two-dimensional array as follows:

b : Z32[2, 2] = [3 4
5 6]

There is also support for writing down arrays of dimension three and higher. We bind c to a three-dimensional array
as follows:

23

c : Z32[2, 2, 3] = [1 2
3 4; ; 5 6

7 8; ; 9 10
11 12]

Various slices of the array along the third dimension are separated by pairs of semicolons. (Higher dimensional arrays
are also supported. When writing a four-dimensional array, slices along the fourth dimension are separating by triples
of semicolons, and so on.)

Vectors are written down just like one-dimensional arrays. Similarly, matrices are written down just like two-dimensional
arrays. Of course, all elements of vectors and matrices must be numbers.

Note that there is a syntactic conflict between the use of juxtaposition to represent elements along a row in an array and
the use of juxtaposition to represent applications of the juxtaposition operator. In order to include an application of the
juxtaposition operator as an outermost subexpression of an array aggregate, it is necessary to include extra parentheses.
For example, the following aggregate expression represents a counterclockwise rotation matrix by an angle θ in R2:

d : R64[2, 2] = [(cos θ)(− sin θ)
(sin θ)(cos θ)]

A set can be written down by enclosing its elements in braces and separating its elements by commas. Here we bind
s to the set of integers 0 through 4 :

s = {0, 1, 2, 3, 4}

The elements of a list are enclosed in angle brackets (written in ASCII as <| and |>):

l = 〈0, 1, 2, 3, 4〉

The elements of a map are enclosed in curly braces, with key/value pairs joined by the arrow 7→ (written in ASCII as
|->):

m = { “a” 7→ 0, “b” 7→ 1, “c” 7→ 2 }

2.10 Comprehensions

Another way in which Fortress mimics mathematical notation is in its support for comprehensions. Comprehensions
describe the elements of a collection by providing a rule that holds for all of the collection’s elements. The elements
of the collection are computed in parallel by default. For example, we define a set s that consists of all elements of
another set t divided by 2, as follows:

s = {x/2 | x← t}

The expression to the left of the vertical bar explains that elements of s consist of every value x/2 for every valid
value of x (determined by the right hand side). The expression to the right of the vertical bar explains how the elements
x are to be generated (in this case, from the set t). The right hand side of a comprehension can consist of multiple
generators. For example, the following set consists of every element resulting from the sum of an element of s with
an element of t :

u = {x + y | x← s, y ← t}

The right hand side of a comprehension can also contain filtering expressions to constrain the elements provided by
other clauses. For example, we can stipulate that v consists of all nonnegative elements of t as follows:

v = {x | x← t, x ≥ 0}

24

As another example, here is a list comprehension in Fortress:

l = 〈 2x | x← v 〉

The elements of this list consist of all elements of the set v multiplied by 2 .

2.11 Summations and Products

As with mathematical notation, Fortress provides syntactic support for summations and productions (and other big
operations) over the elements of a collection. For example, an alternative definition of factorial is as follows:

factorial(n) =
∏

i←1:n

i

This function definition can be written in ASCII as follows:

factorial(n) = PROD[i <- 1:n] i

The character
∏

is written PROD. Likewise,
∑

is written SUM. As with comprehensions, the values in the iteration
are generated from specified collections.

2.12 Tests and Properties

Fortress includes support for automated program testing. New test in a component can be defined using the test
modifier on a top-level function definition with type “ ()→ () ”. For example, here is a test function that calls to the
factorial function on some representative values result in values greater than or equal to what was provided:

test factorialResultLarger() = do
assert(0 ≤ factorial(0))
assert(1 ≤ factorial(1))
assert(10 ≤ factorial(10))
println “Test factorialResultLarger succeeded.”

end

2.13 Objects and Traits

A great deal of programming can be done simply through the use of functions, top-level variables, and standard types.
However, Fortress also includes a trait and object system for defining new types, as well as objects that belong to them.
Traits in Fortress exist in a multiple inheritance hierarchy. A trait declaration includes a set of method declarations,
some of which may be abstract. For example, here is a declaration of a simple trait named Moving :

trait Moving extends {Tangible,Object }
position(): R3

velocity(): R3

end

The set of traits extended by trait Moving are listed in braces after extends . Trait Moving inherits all methods
declared by each trait it extends. The two methods position and velocity declared in trait Moving are abstract; they

25

contain no body. Their return types are vectors of length 3, whose elements are of types R . As in mathematical
notation, a vector of length n with element type T is written Tn .

Traits can also declare concrete methods, as in the following example:

trait Fast extends Moving
velocity() = [0 0 299792458]

end

Trait Fast extends a single trait, Moving . (Because it extends only one trait, we can elide the braces in its extends
clause.) It inherits both abstract methods defined in Moving , and it provides a concrete body for method velocity .

Trait declarations can be extended by other trait declarations, as well as by object declarations. There are two kinds
of object declarations: singleton declarations and constructor declarations.

A singleton declaration declares a sole, stand-alone, singleton object. For example:

object Sol extends {Moving,Stellar }
spectralClass = G2

position() = [0 0 0]
velocity() = [0 0 0]

end

The object Sol extends two traits: Moving and Stellar , and provides definitions for the abstract methods it inherits.
Objects must provide concrete definitions for all abstract methods they inherit. Sol also defines a field spectralClass .

The self parameter of a method can be given a position other than the default position. For example, here is a definition
of a type where the self parameters appear in nonstandard positions:

trait List
cons(x: Object, self): List
append(xs: List, self): List

end

In both methods cons and append , the self parameter occurs as the second parameter. Calls to these methods look
more like function calls than method calls. For example, in the following call to append , the receiver of the call is l2 :

append(l1, l2)

A constructor declaration declares an object constructor. In contrast to singleton declarations, a constructor declaration
includes value parameters in its header, as in the following example:

object Particle(position: R3, velocity : R3)
extends Moving

end

Every call to the constructor of Particle yields a new object. For example:

pos: R3 = [3 2 5]
vel : R3 = [1 0 0]
p1 = Particle(pos, vel)

The parameters to an object constructor implicitly define fields of the object.

26

2.14 Features for Library Development

The language features introduced above are sufficient for the vast majority of applications programming. However,
Fortress has also designed to be a good language for library programming. In fact, much of the Fortress language as
viewed by applications programmers actually consists of code defined in libraries, written in a small core language.
By defining as much of the language as possible in libraries, our aim is to allow the language to evolve gracefully
as new demands are placed on it. In this section, we briefly mention some of the features that make Fortress a good
language for library development.

2.14.1 Generic Types and Static Parameters

As in other languages, Fortress allows types to be parametric with respect to other types, as well as other “static”
parameters, including integers, booleans, and operators. Fortress provides some standard parametric types, such as
Array and Vector . Programmers can also define new traits, objects, and functions that include static parameters.

2.14.2 Operator Overloading

Operators in Fortress can be overloaded with new definitions. Here is an alternative definition of the factorial func-
tion, defined as a postfix operator:

opr (n: Z32)! =
∏

i←1:n

i

As with mathematical notation, Fortress allows operators to be defined as prefix, postfix, and infix. More exotic
operators can even be defined as subscripting (i.e., applications of the operators look like subscripts), and as bracketing
(i.e., applications of the operators look like the operands have been simply enclosed in brackets).

27

Part II

Fortress for Application Programmers

28

Chapter 3

Programs

A program consists of a finite sequence of Unicode 5.0 abstract characters. In order to more closely approximate
mathematical notation, certain sequences of characters are rendered as subscripts or superscripts, italicized or bold-
face text, or text in special fonts, according to the rules in Appendix B. Although much of the program text in this
specification is rendered as formatted Unicode, some text is presented unformatted to aid in exposition.

A program is valid if it satisfies all static constraints stipulated in this specification. Failure to satisfy a static constraint
is a static error. Only valid programs can be executed; the validity of a program must be checked before it is executed.

Executing a valid Fortress program consists of evaluating expressions. Evaluation of an expression may modify the
program state yielding a result. A result is either a value, or an abrupt completion.

The characters of a valid program determine a sequence of input elements. In turn, the input elements of a program
determine the program constructs. Some program constructs may contain other program constructs. The two most
common kinds of constructs in Fortress are declarations and expressions. We explain the structure of input elements,
and of each program construct, in turn, along with accompanying static constraints. We also explain how the outcome
of a program execution is determined from the sequence of constructs in the program.

Programs are developed and compiled as components as described in Chapter 20.

Fortress is block-structured: A Fortress program consists of nested blocks of code. The entire program is a single
block. Each component is a block. Any top-level declaration is a block, as is any function declaration. Several
expressions are also blocks, or have blocks as parts of the expression, or both (e.g., a while expression is a block, and
its body is a different block). See Chapter 13 for a discussion of expressions in Fortress. In addition, a local declaration
begins a block that continues to the end of the smallest enclosing block unless it is a local function declaration and is
immediately preceded by another local function declaration. (This exception allows overloaded and mutually recursive
local function declarations.) Because Fortress is block-structured, and because the entire program is a block, the
smallest block that syntactically contains a program construct is always well defined.

Fortress is expression-oriented: What are often called “statements” in other languages are just expressions with type
() in Fortress. They do not evaluate to an interesting value, and are typically evaluated solely for their effects.

Fortress is whitespace-sensitive: Fortress has different contexts influencing the whitespace-sensitivity of expressions
as described in Appendix D.

29

Chapter 4

Lexical Structure

A Fortress program consists of a finite sequence of Unicode 5.0 abstract characters [22]. Every character in a program
is part of an input element. The partitioning of the character sequence into input elements is uniquely determined by
the characters themselves. In this chapter, we explain how the sequence of input elements of a program is determined
from a program’s character sequence.

This chapter also describes standard ways to render (that is, display) individual input elements in order to approximate
conventional mathematical notation more closely. Other rules, presented in later chapters, govern the rendering of
certain sequences of input elements; for example, the sequence of three input elements a , ˆ , and b may be rendered
ab . The rules of rendering are “merely” a convenience intended to make programs more readable. Alternatively, the
reader may prefer to think of the rendered presentation of a program as its “true form” and to think of the underlying
sequence of Unicode characters as “merely” a convenient way of encoding mathematical notation for keyboarding
purposes.

Most of the program text in this specification is shown in rendered presentation form. However, sometimes, particu-
larly in this chapter, unformatted code is presented to aid in exposition. In many cases the unformatted form is shown
alongside the rendered form in a table, or following the rendered form in parentheses.

4.1 Characters

A Unicode 5.0 abstract character is the smallest element of a Fortress program. Many characters have standard glyphs,
which are how these characters are most commonly depicted. However, more than one character may be represented
by the same glyph. Thus, Unicode 5.0 specifies a representation for each character as a sequence of code points.
Fortress programs are not permitted to contain characters that map to multiple code points, or to sequences of code
points of length greater than 1. Thus, every character in a Fortress program is associated with a single code point,
designated by a hexadecimal numeral preceded by “U+”. Unicode also specifies a name for each character;1 when
introducing a character, we specify its code point and name, and sometimes the glyph we use to represent it in this
specification. In some cases, we use such glyphs without explicitly introducing the characters (as, for example, with
the simple upper- and lowercase letters of the Latin and Greek alphabets). When the character represented by a glyph
is unclear and the distinction is important, we specify the code point or the name (or both). The Unicode Standard [22]
specifies a general category for each character, which we use to describe sets of characters below.

We partition the Unicode 5.0 character set into the following (disjoint) classes:

1There are sixty-five “control characters”, which do not have proper names. However, many of them have Unicode 1.0 names, or other standard
names specified in the Unicode Character Database, which we use instead.

30

• special non-operator characters, which are:

U+0026 AMPERSAND & U+0027 APOSTROPHE ’

U+0028 LEFT PARENTHESIS (U+0029 RIGHT PARENTHESIS)
U+002C COMMA , U+002E FULL STOP .
U+0038 SEMICOLON ; U+005C REVERSE SOLIDUS \

• special operator characters, which are

U+002A ASTERISK * U+002F SOLIDUS /
U+003A COLON : U+003C LESS-THAN SIGN <
U+003D EQUALS SIGN = U+003E GREATER-THAN SIGN >
U+005B LEFT SQUARE BRACKET [U+005D RIGHT SQUARE BRACKET]
U+005E CIRCUMFLEX ACCENT ˆ U+007B LEFT CURLY BRACKET {
U+007C VERTICAL LINE | U+007D RIGHT CURLY BRACKET }
U+2192 RIGHTWARDS ARROW → U+21A6 RIGHTWARDS ARROW FROM BAR 7→
U+21D2 RIGHTWARDS DOUBLE ARROW ⇒

• letters, which are ASCII characters

• digits

• whitespace characters, which are:

U+000A LINE FEED U+000C FORM FEED

U+000D CARRIAGE RETURN U+0020 SPACE

• character literal delimiters, which are:

U+0060 GRAVE ACCENT ‘

• string literal delimiters, which are:

U+0022 QUOTATION MARK "

• ordinary operator characters, enumerated (along with the special operator characters) in Appendix C, which
include the following characters with code points less than U+007F:

U+0021 EXCLAMATION MARK ! U+0023 NUMBER SIGN #
U+0024 DOLLAR SIGN $ U+0025 PERCENT SIGN %
U+002B PLUS SIGN + U+002D HYPHEN-MINUS −
U+003F QUESTION MARK ? U+0040 COMMERCIAL AT @
U+007E TILDE ˜

and most Unicode characters specified to be mathematical operators (i.e., characters with code points in the
range 2200-22FF) are operators in Fortress, but there are some exceptions (e.g., ∀, ∃ and :=).

• other characters

Some other classes of characters, which overlap with the ones above, are useful to distinguish:

• ASCII characters are those with code points U+007F and below;

• word characters are letters, digits, and apostrophe;

• restricted-word characters are ASCII letters, ASCII digits, and the underscore character (i.e., ASCII word
characters other than apostrophe);

• hexadecimal digits are the digits and the ASCII letters A, B, C, D, E, F, a, b, c, d, e and f;

• operator characters are special operator characters and ordinary operator characters;

31

• special characters are special non-operator characters and special operator characters;

• enclosing characters are the enclosing operator characters enumerated in Section C.1, left and right parenthesis
characters, and mathematical left and right white square brackets;

Forbidden and Restricted Characters

It is a static error for the following characters to occur outside a comment:

U+0009 CHARACTER TABULATION U+000B LINE TABULATION

U+001C INFORMATION SEPARATOR FOUR U+001D INFORMATION SEPARATOR THREE

U+001E INFORMATION SEPARATOR TWO U+001F INFORMATION SEPARATOR ONE

Thus, LINE FEED, FORM FEED and CARRIAGE RETURN are the only control characters—and the only whitespace
characters other than spaces, LINE SEPARATOR, and PARAGRAPH SEPARATOR—outside of comments in a valid
Fortress program.

4.2 Words and Chunks

In a sequence of characters, a chunk is a nonempty contiguous subsequence. A word is a maximal chunk consisting
of only word characters (letters, digits, and apostrophe); that is, a word is one or more consecutive word characters
delimited by characters other than word characters (or the beginning or end of the entire sequence). A restricted word
is a maximal chunk that has only restricted-word characters (ASCII letters and digits and underscore characters). Note
that a restricted word is not a word if it is delimited by word characters.

For example, in the sequence

A′bc123.def φ456

there are three words (A’bc 123, def and φ456), and four restricted words (A, bc 123, def and 456).

4.3 Lines, Pages and Position

The characters in a Fortress program are partitioned into lines and into pages, delimited by line terminators and page
terminators respectively. A page terminator is an occurrence of the character FORM_FEED. A line terminator is an
occurrence of any of the following:

• LINE FEED or

• CARRIAGE RETURN not immediately followed by LINE FEED.

If a character (or any other syntactic entity) x precedes another character y in the program, we say that x is to the left
of y and that y is to the right of x, regardless of how they may appear in a typical rendered display of the program.
Thus, it is always meaningful to speak, for example, of the left-hand and right-hand operands of a binary operator, or
the left-hand side of an assignment expression.

4.4 Input Elements and Scanning

A Fortress program is partitioned into input elements by a process called scanning. Scanning transforms a Fortress
program from a sequence of Unicode characters to a sequence of input elements. Input elements are always chunks:

32

the characters that comprise an input element always appear contiguously in the program. Input elements are either
whitespace elements (including comments) or tokens. A token is a reserved word, a literal, an identifier, an operator
token, or a special token. There are five kinds of literals: boolean literals, character literals, string literals, the void
literal, and numerals (i.e., numeric literals).

Conceptually, we can think of scanning as follows: First, the comments, character literals and string literals are
identified. Then the remaining characters are partitioned into words (i.e., maximal chunks of letters, digits, primes and
apostrophes), whitespace characters, and other characters. In some cases, words separated by a single ‘ . ’ are joined to
form a single numeral (see Section 4.12). Words that are not so joined are classified as reserved words, boolean literals,
numerals, identifiers, or operator tokens, as described in later sections in this chapter. It is a static error if any word
in a Fortress program is not part of one of the input elements described above. All remaining whitespace characters,
together with the comments, form whitespace elements, which may be line-breaking. Finally, chunks of symbols
(and a few other special cases) are checked to see whether they form void literals (see Section 4.11) or multicharacter
operator tokens (see Section 4.13). Every other character is a token by itself, either a special token (if it is a special
character) or an operator token.

4.5 Comments

When not within string literals, occurrences of “ (∗ ” and “ ∗) ” are opening comment delimiters and closing comment
delimiters respectively. In a valid program, every opening comment delimiter is balanced by a closing comment
delimiter; it is a static error if comment delimiters are not properly balanced. All the characters between a balanced
pair of comment delimiters, including the comment delimiters themselves, comprise a comment. Comments may be
nested. For example, the following illustrates three comments, one of which is nested:

(* This is a comment. *) (* As is this (* nested *)
comment *)

4.6 Whitespace Elements

A whitespace element is a maximal chunk consisting of comments and whitespace characters that are not within string
or character literals.

We distinguish line-breaking whitespace from non-line-breaking whitespace using the following terminology:

• A line-terminating comment is a comment that encloses one or more line terminators. All other comments are
called spacing comments.

• Spacing refers to any chunk of spaces, FORM FEED characters and spacing comments.

• A line break is a line terminator possibly with intervening spacing.

• Whitespace refers to any nonempty sequence of spacing, line terminators, and line-terminating comments.

• Line-breaking whitespace is whitespace that contains at least one line break.

4.7 Reserved Words

The following tokens are reserved words:

33

BIG FORALL SI unit absorbs abstract also api
as asif at atomic bool case catch
coerce coerces component comprises default dim do
elif else end ensures except excludes exit
export extends finally fn for forbid from
getter hidden if import int invariant io
juxtaposition label most nat native object of
opr or override private property provided requires
self settable setter spawn syntax test then
throw throws trait transient try tryatomic type
typecase unit value var where while widens
with wrapped

To avoid confusion, Fortress reserves the following tokens:

goto idiom public pure reciprocal static

They do not have any special meanings but they cannot be used as identifiers.

4.8 Character Literals

A character literal consists of one character enclosed in single quotation marks.

4.9 String Literals

A string literal is a sequence of characters enclosed in double quotation marks (for example, "Hello, world!"). As
discussed in Section 13.1, a string literal evaluates to a value of type String , which represents a finite sequence of
characters.

4.10 Boolean Literals

The boolean literals are false and true .

4.11 The Void Literal

The void literal is () (pronounced “void”).

4.12 Numerals

A numeric literal, or numeral, in Fortress is a maximal chunk consisting one or more words (and the intervening
characters) satisfying the following properties:

• each word consists of only digits and letters;

• consecutive words are separated by exactly one character, a ‘ . ’ character; and

34

• the first word begins with a digit.

A numeral is simple if it does not contain a ‘.’ character; otherwise, the number is compound. It is a static error if a
numeral contains more than one ‘.’ character.

4.13 Operator Tokens

In this section, we describe how to determine the operator tokens of a program. Because operator tokens do not occur
within comments, string literals and character literals, we henceforth in this section consider only characters that are
outside these constructs.

An operator word of a program is a word that is not reserved, consists only of uppercase letters and underscores (no
digits or non-uppercase letters), does not begin or end with an underscore, and has at least two different letters.

A base operator is an ordinary operator character,2 an operator word, a (contiguous) sequence of two or more vertical-
line characters (U+007C), or a multicharacter enclosing operator, as defined in Section 4.13.1. A base operator is
maximal in a program if it is not contained within any other base operator of that program. It is a static error if two
maximal base operators overlap (which is only possible if both are multicharacter enclosing operators). A simple
operator is a maximal base operator that is an operator character, or an operator word.

A maximal base operator is an operator token unless it is a simple operator other than an enclosing or vertical-line
operator character, and it is immediately preceded by ‘ˆ’ or immediately followed by ‘=’. Such an operator is an
enclosing operator if it is an enclosing operator character (see Section C.1) or a multicharacter enclosing operator; it
is a vertical-line operator if it has only vertical-line operator characters (see Section C.2); otherwise, it is an ordinary
operator.

If a simple operator is immediately preceded by ‘ˆ’ then the ‘ˆ’ and the simple operator together comprise a single
operator token; such an operator token is called a superscripted postfix operator. In addition, “ ˆT ” is also a super-
scripted postfix operator provided that it is not immediately followed by a word character. It is a static error for a
superscripted postfix operator to be immediately followed by a word character.

Finally, if a simple operator is not immediately preceded by ‘ˆ’ and is immediately followed by ‘=’ then the simple
operator and the ‘=’together comprise an operator token; such an operator token is called a compound assignment
operator.

4.13.1 Multicharacter Enclosing Operators

The following multicharacter sequences (in which there must be no other characters, and particularly no whitespace)
can be used as brackets as described below:

1. Any chunk of vertical-line characters is a vertical-line operator. Such an operator can be used in an enclosing
pair matching itself.

2. Any of ‘(’ or ‘[’ or ‘{’ may be immediately followed by any number of ‘/’ characters or by any number of ‘\’
characters. Such a token is a left bracket, and it is matched by the multicharacter token consisting of the same
number and kind of ‘/’ or ‘\’ characters followed immediately by a matching ‘)’ or ‘]’ or ‘}’, as appropriate.
Thus, for example, “(////” and “////)” are matching left and right brackets respectively. (In the future,
we may allow tokens with mixtures of ‘/’ and ‘\’, in which case the left and right brackets must match from
outside in. But for now, such tokens are simply illegal.)

2The ordinary operator characters are enumerated in Appendix C, less the special operator characters listed in Section 4.1.

35

3. One or more ‘<’ characters may be followed immediately by one or more ‘|’ characters. Such a token is a left
bracket, and it is matched by the multicharacter token consisting of the same number of ‘|’ characters followed
by as many ‘>’ characters as there are ‘<’ characters in the left bracket.

4. One or more ‘<’ characters, or one or more ‘|’ characters may be followed immediately by one or more ‘/’
characters or by one or more ‘\’ characters. Such a token is a left bracket, and it is matched by the multicharacter
token consisting of the same number and opposite kind of ‘/’ or ‘\’ characters followed immediately by as
many matching ‘>’ or ‘|’ characters as appropriate. Thus, for example, “<<//” matches “\\>>’, and “|\\\”
matches “///|”. (As in case 2 above, we may allow tokens with mixtures of ‘/’ and ‘\’ in the future.)

5. Finally, any number of ‘*’ (U+002A) or ‘.’ (U+002E) characters may be placed within any of the above
multicharacter sequences, except those that contain ‘(’ or ‘)’, as long as no ‘*’ or ‘.’ is the first or last character
in the sequence, and no ‘*’ or ‘.’ characters are adjacent. The rule for matching is as above, except that in
addition, the positions of the ‘*’ and the ‘.’ characters must match from the outside in.

4.13.2 Special Operators

Note that in the preceding discussion, a single operator character can be an operator token only if it is an ordinary oper-
ator character. In some cases, some of the special operator characters (and even some special non-operator characters)
form part of an operator token. However, most of the special operator characters cannot be determined to be operators
before parsing the program because they are also used for various parts of Fortress syntax. The one exception is ‘ˆ’:
if an occurrence of this character is not part of a superscripted postfix operator, then it is an operator token by itself:
the special superscripting operator. This operator is always an infix operator, and it is a static error if it appears in a
context in which a prefix or postfix operator is expected.

Every other special operator character, when not part of an operator token, is a special token that may be used as an
operator. There is also a special juxtaposition operator (described in Section 16.8), which is also always infix,
but this operator is a reserved word rather than an operator token. Occurrences of this operator are determined by the
Fortress grammar.

4.14 Identifiers

A word is an identifier if it begins with a letter or an underscore and is not a reserved word, an operator, or all or part
of a numeral.

4.15 Special Tokens

Every special character (operator or non-operator) that is not part of a token (or within a comment) as described above
is a special token by itself. The special operator characters may be operators in the appropriate context.

4.16 Rendering of Fortress Programs

In order to more closely approximate mathematical notation, Fortress mandates standard rendering for various input
elements, particularly for numerals and identifiers, as specified in this section. In the remainder of this specification,
programs are presented formatted unless stated otherwise.

36

4.16.1 Fonts

Throughout this section, we refer to different fonts or styles in which certain characters are rendered, with names
suggestive of their appearance.

• roman

• italic

• math (often identical to italic)

• script

• fraktur

• sans-serif

• italic sans-serif

• monospace

• double-struck

Additionally, the following fonts may be specified to be bold: roman, italic, script, fraktur, sans-serif, italic sans-serif.

However, a particular environment may substitute different fonts either because of local practice or because the desired
fonts are not available.

4.16.2 Numerals

A numeral is rendered in roman type.

27 is rendered as 27
3.143159265 is rendered as 3.143159265

Note: the elegant way to write Avogadro’s number is 6.02 TIMES 10ˆ23, which is not a single token but is a
constant expression; its rendered form is 6.02× 1023 .

4.16.3 Identifiers

Fortress has rather complicated rules for rendering an identifier; as in other parts of Fortress, the rules are complicated
so that the simple cases will be very simple, but also so that difficult cases of interest will be possible.

It is conventional in mathematical notation to make use of variables, particularly single-letter variables, in a number
of different fonts or styles, with italic being the most common, then boldface, and roman: a , b , c . Frequently such
variables are also decorated with accents and subscripts: p̄ , q′ , r̂ , Tmax , ~u , vx , w17 , z̄ ′17 . Fortress provides
conventions for typing such variables using plain ASCII characters: for example, the unformatted presentations of
these same variables are a , _b , c_ , p_bar , q’ or q_prime , r_hat , T_max , _u_vec , _v_x , w17 ,
and z17_bar’ . The rules are also intended to accommodate the typical use of multicharacter variable names for
computer programming, such as count , isUpperCase , and Boolean .

The most important rules of thumb are that simple variables are usually italic z (z), a leading underscore usually
means boldface font z (_z), a trailing underscore usually means roman font z (z_), and a doubled capital letter
means double-struck (or “blackboard bold”) font Z (ZZ). However, mixed-case variable names that begin with
a capital letter, which are usually used as names of types, are rendered in roman font even if there is no trailing
underscore.

The detailed rules are described in Section B.1.

37

4.16.4 Other Rendering Rules

Reserved words are rendered in monospace. Operator words are rendered in monospace. Comments are rendered in
roman font. Any character within a character literal or string literal is rendered in monospace if possible.

The detailed rules for rendering other constructions are described in Section B.2.

38

Chapter 5

Evaluation

The state of an executing Fortress program consists of a set of threads, and a memory. Communication with the outside
world is accomplished through input and output actions. In this chapter, we give a general overview of the execution
process and introduce terminology used throughout this specification to describe the behavior of Fortress constructs.

Executing a Fortress program consists of evaluating the body expression of the run function and the initial-value
expressions of all top-level variables and singleton object fields in parallel. All initializations must complete normally
before any reference to the objects or variables being initialized.

Threads evaluate expressions by taking steps. We say evaluation of an expression begins when the first step is taken.
A step may complete the evaluation, in which case no more steps are possible on that expression, or it may result in
an intermediate expression, which requires further evaluation. Dynamic program order is a partial order among the
expressions evaluated in a particular execution of a program. When two expressions are ordered by dynamic program
order, the first must complete execution before any step can be taken in the second. Chapter 13 gives the dynamic
program order constraints for each expression in the language.

Intermediate expressions are generalizations of ordinary Fortress expressions: some intermediate expressions cannot
be written in programs. We say that one expression is dynamically contained within a second expression if all steps
taken in evaluating the first expression must be taken between the beginning and completion of the second. A step
may also have effects on the program state beyond the thread taking the step, for example, by modifying one or more
locations in memory, creating new threads to evaluate other expressions, or performing an input or output action.
Threads are discussed further in Section 5.4. The memory consists of a set of locations, which can be read and
written. New locations may also be allocated. The memory is discussed further in Section 5.3. Finally, input actions
and output actions are described in Section 5.6.

5.1 Values

A value is the result of normal completion of the evaluation of an expression. (See Section 5.2 for a discussion of
completion of evaluation.) A value is an object, a tuple or the void value () . Every value has a type, and every object
has an environment (see Section 5.5). See Chapter 6 for a description of the types corresponding to these different
values. An object may be a value object, a reference object, or a function. A nonfunction object has a finite set of
fields; the names and types of these fields are specified by the type of the object. The type of a nonfunction object also
specifies its methods.

A field consists of a name, a type, and either a value or a location: in value objects, fields have values; in reference
objects, locations. The name of a field is either an identifier or an index. Every field in a value object is immutable.
Reference objects may have both mutable and immutable fields. No two distinct values share any mutable field.

39

Values are constructed:

1. by top-level function declarations (see Section 9.1) and singleton declarations (see Section 11.1), and

2. by evaluating an object expression (see Section 13.9), a function expression (see Section 13.8), a local func-
tion declaration (see Section 9.4), a call to an object constructor (declared by a constructor declaration; see
Chapter 11), a literal (see Section 13.1), a spawn expression (see Section 13.23), a tuple expression (see Sec-
tion 13.26), an aggregate expression (see Section 13.27), or a comprehension (see Section 13.28).

In the latter case, the constructed value is the result of the normal completion of such an evaluation.

5.2 Normal and Abrupt Completion of Evaluation

Conceptually, an expression is evaluated until it completes. Evaluation of an expression may complete normally,
resulting in a value, or it may complete abruptly. Each abrupt completion has an associated value, either an exception
value that is thrown and uncaught or the exit value of an exit expression (described in Section 13.12). In addition
to programmer-defined exceptions thrown explicitly by a throw expression (described in Section 13.24), there are
predefined exceptions thrown by the Fortress standard libraries. For example, dividing an integer by zero (using the /
operator) causes a DivisionByZero to be thrown.

When an expression completes abruptly, control passes to the dynamically immediately enclosing expression. This
continues until the abrupt completion is handled either by a try expression (described in Section 13.25) if an ex-
ception is being thrown or by an appropriately tagged label expression (described in Section 13.12) if an exit
expression was evaluated. If abrupt completion is not handled within a thread and its outermost expression completes
abruptly, the thread itself completes abruptly. If the main thread of a program completes abruptly, the program as a
whole also completes abruptly.

5.3 Memory and Memory Operations

In this specification, the term memory refers to a set of abstract locations; the memory is used to model sharing and
mutation. A location has an associated type, and contains a value of that type (i.e., the type of the value is a subtype
of the type of the location). Locations can have non-object trait types; by contrast, a value always has an object type.

There are three operations that can be performed on memory: allocation, read, and write. Reads and writes are
collectively called memory accesses. Intuitively, a read operation takes a location and returns the value contained in
that location, and a write operation takes a location and a value of the location’s type and changes the contents of the
location so the location contains the given value. Accesses need not take place in the order in which they occur in the
program text; a detailed account of memory behavior appears in Chapter 19.

Allocation creates a new location of a given type. Allocation occurs when a mutable variable is declared, or when a
reference object is constructed. In the latter case, a new location is allocated for each field of the object. Abstractly,
locations are never reclaimed; in practice, memory reclamation is handled by garbage collection.

A freshly allocated location is uninitialized. Any location whose value can be written after initialization is mutable.
Mutable locations consist of mutable variables and mutable fields of reference objects. Any location whose value
cannot be written after initialization is immutable. Immutable locations are the immutable fields of a reference object.

40

5.4 Threads and Parallelism

There are two kinds of threads in Fortress: implicit threads and spawned (or explicit) threads. Spawned threads are
objects created by the spawn construct, described in Section 13.23.

A thread may be in one of five states: not started, executing, suspended, normally completed or abruptly completed.
We say a thread is not started after it is created but before it has taken a step. This is only important for purposes of
determining whether two threads are executing simultaneously; see Section 21.3. A thread is executing or suspended
if it has taken a step, but has not completed; see below for the distinction between executing and suspended threads.
A thread is complete if its expression has completed evaluation. If the expression completes normally, its value is the
result of the thread.

Every thread has a body and an execution environment. The body is an intermediate expression, which the thread
evaluates in the context of the execution environment; both the body and the execution environment may change when
the thread takes a step. This environment is used to look up names in scope but bound in a block that encloses the
construct that created the thread. The execution environment of a newly created thread is the environment of the thread
that created the new thread.

In Fortress, a number of constructs are implicitly parallel. An implicitly parallel construct creates a group of one or
more implicit threads. The implicitly parallel constructs are:

• Tuple expressions: Each element expression of the tuple expression is evaluated in a separate implicit thread
(see Section 13.26).

• also do blocks: each sub-block separated by an also clause is evaluated in a separate implicit thread (see
Section 13.11.3).

• Method invocations and function calls: The receiver or the function and each of the arguments is evaluated in
a separate implicit thread (see Section 13.4, Section 13.5, and Section 13.6).

• for loops, comprehensions, sums, generated expressions, and big operators: Parallelism in looping con-
structs is specified by the generators used (see Section 13.14). Programmers must assume that generators that
do not extend SequentialGenerator can execute each iteration of the body expression in a separate implicit
thread. The functional method seq and the equivalent function sequential can be used to turn any Generator
into a SequentialGenerator .

• Extremum expressions: Each guarding expression of the extremum expression is evaluated in a separate im-
plicit thread (see Section 13.20).

• Tests: Each test is evaluated in a separate implicit thread (see Chapter 17).

Implicit threads run fork-join style: all threads in a group are created together, and they all must complete before the
group as a whole completes. There is no way for a programmer to single out an implicit thread and operate upon it
in any way; they are managed purely by the compiler, runtime, and libraries of the Fortress implementation. Implicit
threads need not be scheduled fairly; indeed, a Fortress implementation may choose to serialize portions of any group
of implicit threads, interleaving their operations in any way it likes. For example, the following code fragment may
loop forever:

r: Z64 = 0
(r := 1, while r = 0 do end)

If any implicit thread in a group completes abruptly, the group as a whole will complete abruptly as well. Every
thread in the group will either not run at all, complete (normally or abruptly), or may be terminated early as described
in Section 21.6. The result of the abrupt completion of the group is the result of one of the constituent threads that
completes abruptly.

Spawned thread objects are reference objects of type ThreadJT K , where T is the static type of the expression
spawned; this trait has the following methods, each taking no arguments:

41

• The val method returns the value computed by the subexpression of the spawn expression. If the thread has
not yet completed execution, the invocation of val blocks until it has done so.

• The wait method waits for a thread to complete, but does not return a value.

• The ready method returns true if a thread has completed, and returns false otherwise.

• The stop method attempts to terminate a thread as described in Section 21.6.

We say a spawned thread has been observed to complete after invoking the val or wait methods, or when an invocation
of the ready method returns true .

In the absence of sufficient parallel resources, an attempt is made to run the subexpression of the spawn expression
before continuing succeeding evaluation. We can imagine that it is actually the rest of the evaluation after the parallel
block which is spawned off in parallel. This is a subtle technical point, but makes the sequential execution of parallel
code simpler to understand, and avoids subtle problems with the asymptotic stack usage of parallel code [17, 6].

There are three ways in which a thread can be suspended. First, a thread that begins evaluating an implicitly parallel
construct, creating a thread group, is suspended until that thread group has completed. Second, a thread that invokes
val or wait is suspended until the spawned thread completes. Finally, invoking the abort function from within an
atomic expression may cause a thread to suspend; see Section 21.5.

Threads in a Fortress program can perform operations simultaneously on shared objects. In order to synchronize data
accesses, Fortress provides atomic expressions (see Section 13.22). Chapter 19 describes the memory model which
is obeyed by Fortress programs.

5.5 Environments

An environment maps names to values or locations. Environments are immutable, and two environments that map
exactly the same names to the same values or locations are identical.

A program starts executing with an empty environment. Environments are extended with new mappings by variable,
function, and object declarations, and functional calls (including calls to object constructors). After initializing all
top-level variables and singleton objects, the top-level environment for each component is constructed.

The environment of a value is determined by how it is constructed. For all but object expressions, function expressions
and local function declarations, the environment of the constructed value is the top-level environment of the component
in which the expression or declaration occurs. For object and function expressions and local function declarations, the
environment of the constructed value is the lexical environment in which the expression or declaration was evaluated.

We carefully distinguish a spawned thread from its associated spawned thread object. In particular, note that the
execution environment of a spawned thread, in which the body expression is evaluated, is distinct from the environment
of the associated thread object, in which calls to the thread methods are evaluated.

5.6 Input and Output Actions

Certain functionals in Fortress perform primitive input/output (I/O) actions. These actions have an externally visible
effect.

Any primitive I/O action may take many internal steps; each step may read or write any memory locations referred
to either directly or transitively by object references passed as arguments to the action. Each I/O action is free to
complete either normally or abruptly. I/O actions may block and be prevented from taking a step until any necessary
external conditions are fulfilled (input is available, data has been written to disk, and so forth).

42

Each I/O action taken by an expression is considered part of that expression’s effects. The steps taken by an I/O action
are considered part of the context in which an expression evaluates, in much the same way as effects of simultaneously-
executing threads must be considered when describing the behavior of an expression. For example, we cannot consider
two functionals to be equivalent unless the possible I/O actions they take are the same, given identical internal steps
by each I/O action.

43

Chapter 6

Types

The Fortress type system supports a mixture of nominal and structural types. Specifically, Fortress provides nominal
trait types, which are defined in programs (often in libraries), and a few constructs that combine types structurally.

Every expression has a static type, and every value has a runtime type (also known as a dynamic type). Sometimes we
abuse terminology by saying that an expression has the runtime type of the value it evaluates to (see Section 5.2 for a
discussion about evaluation of expressions).

Some types may be parameterized by static parameters; we call these types generic types. See Chapter 12 for a
discussion of static parameters. A static parameter may be instantiated with a type or a value depending on whether it
is a type parameter. Two types are identical if and only if they are the same kind and their names and static arguments
(if any) are identical. Types are related by several relationships as described in Section 6.2.

Syntactically, the positions in which a type may legally appear (i.e., type contexts) is determined by the nonterminal
Type in the Fortress grammar, defined in Appendix D.

6.1 Kinds of Types

Fortress supports the following kinds of types:

• trait types,

• object expression types,

• tuple types,

• arrow types,

• function types, and

• three special types: Any , BottomType and () .

Object expression types, function types and BottomType are not first-class types: they cannot be written in a pro-
gram. However, some values have object expression types and function types and throw and exit expressions have
the type BottomType .

Collectively, trait types and object expression types are defined types; the trait and object declarations and object
expressions are the types’ definitions.

44

6.2 Relationships between Types

We define two relations on types: subtype and exclusion.

The subtype relation is a partial order on types that defines the type hierarchy; that is, it is reflexive, transitive and
antisymmetric. Any is the top of the type hierarchy: all types are subtypes of Any . BottomType is the bottom of
the type hierarchy: all types are supertypes of BottomType . For types T and U , we write T � U when T is a subtype
of U , and T ≺ U when T � U and T 6= U ; in the latter case, we say T is a strict subtype of U . We also say that T is
a supertype of U if U is a subtype of T . We say that a value is an instance of its runtime type and of every supertype
of its runtime type.

The exclusion relation is a symmetric relation between two types whose intersection is BottomType . Because
BottomType is uninhabited (i.e., no value has type BottomType), types that exclude each other are disjoint: no
value can have a type that is a subtype of two types that exclude each other. Note that BottomType excludes every
type including itself (because the intersection of BottomType and any type is BottomType), and also that no type
other than BottomType excludes Any (because the intersection of any type T and Any is T). BottomType is the
only type that excludes itself. If two types exclude each other then any subtypes of these types also exclude each other.

These relations are defined more precisely in the following sections describing each kind of type in more detail.
Specifically, the relations are the smallest ones that satisfy all the properties given in those sections (and this one).

6.3 Trait Types

Syntax:
Type ::= TraitType

A trait type is a named type defined by a trait or object declaration. It is an object trait type if it is defined by an object
declaration.

A trait type is a subtype of every type that appears in the extends clause of its definition. In addition, every trait type
is a subtype of Any .

A trait declaration may also include an excludes clause, in which case the defined trait type excludes every type that
appears in that clause. Every trait type also excludes every arrow type and every tuple type, and the special types ()
and BottomType .

6.3.1 Object Trait Types

An object trait type is a trait type defined by an object declaration. Object declarations do not include excludes
clauses, but an object trait type cannot be extended. Thus, an object trait type excludes any type that is not its
supertype.

6.4 Object Expression Types

An object expression type is defined by an object expression and the program location of the object expression. Every
evaluation of a given object expression has the same object expression type. Two object expressions at different
program locations have different object expression types.

Like trait types, an object expression type is a subtype of all trait types that appear in the extends clause of its
definition, as well as the type Any .

45

Like object trait types, an object expression type excludes any type that is not its supertype.

6.5 Tuple Types

Syntax:
TupleType ::= (Type , TypeList)
TypeList ::= Type(, Type)∗

A tuple type consists of a parenthesized, comma-separated list of two or more types.

Every tuple type is a subtype of Any . No other type encompasses all tuple types. Tuple types cannot be extended by
trait types. Tuple types are covariant: a tuple type X is a subtype of tuple type Y if and only if they have the same
number of element types and each element type of X is a subtype of the corresponding element type of Y .

A tuple type excludes any non-tuple type other than Any . A tuple type excludes every tuple type that does not have
the same number of element types. Also, tuple types that have the same number of element types exclude each other
if any pair of corresponding element types exclude each other.

6.6 Arrow Types

Syntax:
Type ::= ArgType → Type Throws?
ArgType ::= ((Type ,)∗ Type ...)

| TupleType

The static type of an expression that evaluates to a function value is an arrow type (or possibly an intersection of
arrow types). An arrow type has three constituent parts: a parameter type, a return type, and a set of exception
types. (Multiple parameters or return values are handled by having tuple types for the parameter type or return type
respectively.) Syntactically, an arrow type consists of the parameter type followed by the token → , followed by the
return type, and optionally a throws clause that specifies the set of exception types. If there is no throws clause,
the set of exception types is empty.

The parameter type of an arrow type may end with a “varargs entry”, T The resulting parameter type is not a
first-class type; rather, it is the union of all the types that result from replacing the varargs entry with zero or more
entries of the type T . For example, (T . . .) is the union of () , T , (T, T) , (T, T, T) , and so on.

We say that an arrow type is applicable to a type A if A is a subtype of the parameter type of the arrow type. (If the
parameter type has a varargs entry, then A must be a subtype of one of the types in the union defined by the parameter
type.)

Every arrow type is a subtype of Any . No other type encompasses all arrow types. A type parameter can be instantiated
with an arrow type. Arrow types cannot be extended by trait types. Arrow types are covariant in their return type and
exception types and contravariant in their parameter type; that is, arrow type “ A→ B throws C ” is a subtype of
arrow type “ D → E throws F ” if and only if:

• D is a subtype of A,

• B is a subtype of E, and

• for all X in C, there exists Y in F such that X is a subtype of Y .

46

For arrow types S and T , we say that S is more specific than T if the parameter type of S is a subtype of the parameter
type of T . We also say that S is more restricted than T if the return type of S is a subtype of the return type of T
and for every X in the set of exception types of S, there exists Y in the set of exception types of T such that X is a
subtype of Y . Thus, S is a subtype of T if and only if T is more specific than S and S is more restricted than T .

An arrow type excludes any non-arrow type other than Any and the function types that are its subtypes (see Sec-
tion 6.7). However, arrow types do not exclude other arrow types because of overloading as described in Chapter 15.

Here are some examples:

f : (R64, R64)→ R64
g: Z32→ (Z32, Z32) throws IOFailure

6.7 Function Types

Function types are the runtime types of function values. We distinguish them from arrow types to handle overloaded
functions. A function type consists of a finite set of arrow types. However, not every set of arrow types is a well-
formed function type. Rather, a function type F is well-formed if, for every pair (S1, S2) of distinct arrow types in F ,
the following properties hold:

• the parameter types of S1 and S2 are not the same,

• if S1 is more specific than S2 then S1 is more restricted than S2, and

• if the intersection of the parameter types of S1 and S2 is not BottomType (i.e., the parameter types of S1 and
S2 do not exclude each other) then F has some constituent arrow type that is more specific than both S1 and S2

(recall that the more specific relation is reflexive, so the required constituent type may be S1 or S2).

Henceforth, we consider only well-formed function types. The overloading rules ensure that all function values have
well-formed function types.

We say that a function type F is applicable to a type A if any of its constituent arrow types is applicable to A. We
extend this terminology to values of the corresponding types. That is, for example, we say that a function of type F
is applicable to a value of type A if F is applicable to A. Note that if a well-formed function type F is applicable to
a type A, then among all constituent arrow types of F that are applicable to A (and there must be at least one), one is
more specific than all the others. We say that this constituent type is the most specific type of F applicable to A.

A function type is a subtype of each of its constituent arrow types, and also of Any . Like object trait types and object
expression types, a function type excludes every type that is not its supertype.

6.8 Special Types

Fortress provides three special types: Any , BottomType and () . The type Any is the top of the type hierarchy: it is
a supertype of every type. The only type it excludes is BottomType .

The type () is the type of the value () . Its only supertype (other than itself) is Any , and it excludes every other type.

Fortress provides a special bottom type, BottomType , which is an uninhabited type. No value in Fortress has
BottomType ; throw and exit expressions have BottomType . BottomType is a subtype of every type and
it excludes every type (including itself). As mentioned above, BottomType is not a first-class type: programmers
must not write BottomType .

47

Chapter 7

Names and Declarations

Names are used to refer to certain kinds of entities in a Fortress program. A name is either an identifier or an operator.
An operator may be an operator token, a special token corresponding to a special operator character, or a matching
pair of enclosing operator tokens.

Names are typically introduced by declarations, which bind the name to an entity. In some cases, the declaration is
implicit. Every declaration has a scope, in which the declared name can be used to refer to the declared entity.

Declarations introduce named entities; we say that a declaration declares an entity and a name by which that entity
can be referred to, and that the declared name refers to the declared entity. As discussed later, there is not a one-one
correspondence between declarations and named entities: some declarations declare multiple named entities, some
declare multiple names, and some named entities are declared by multiple declarations.

Some declarations contain other declarations. For example, a trait declaration may contain method declarations, and a
function declaration may contain parameter declarations.

The positions in which a declaration may legally appear in a component are determined by the nonterminal Decl in
the simplified Fortress grammar in Appendix D.

7.1 Kinds of Declarations

Syntax:
Decl ::= TraitDecl

| ObjectDecl
| VarDecl
| FnDecl

There are two kinds of declarations: top-level declarations and local declarations.

Top-level declarations occur at the top level of a component, not within any other declaration or expression. A top-level
declaration is one of the following:1

• trait declarations (see Chapter 10);

• object declarations (see Chapter 11), which may be singleton declarations or constructor declarations;

1The Fortress component system, defined in Chapter 20, includes declarations of components and APIs. Because component names are not used
in a Fortress program and API names are used only in import and export statements, we do not discuss them in this chapter.

48

• top-level variable declarations (see Section 8.1);

• top-level function declarations (see Chapter 9), including top-level operator declarations (see Chapter 16);

Local declarations occur in another declaration or in some expression (or both). A local declaration is one of the
following:

• field declarations (see Section 11.2), which occur in object declarations and object expressions, and include field
declarations in the parameter list of a constructor declaration;

• method declarations (see Section 10.2), which occur in trait and object declarations and object expressions;

• local variable declarations (see Section 8.2), which occur in expression blocks;

• local function declarations (see Section 9.4), which occur in expression blocks;

• labeled blocks (see Section 13.12), which are expressions;

• static-parameter declarations, which may declare type parameters, nat parameters, int parameters, bool pa-
rameters, or opr parameters (see Chapter 12), and occur in static-parameter lists of trait and object declarations,
top-level function declarations, method declarations, and local function declarations.

• (value) parameter declarations, which occur in parameter lists of constructor declarations, top-level function
declarations, method declarations, local function declarations, and function expressions

In addition to these explicit declarations, there is one case in which names are declared implicitly:

• the special name self is implicitly declared as a parameter of dotted methods (see Section 10.2 for details);
and

• the name result is implicitly declared as a variable for the ensures clause of a contract (see Section 9.3 for
details).

Trait declarations, object declarations, and type-parameter declarations, are collectively called type declarations; they
declare names that refer to types (see Chapter 6). Constructor declarations, top-level function declarations, method
declarations, and local function declarations are collectively called functional declarations. Singleton declarations,
top-level variable declarations, field declarations, local variable declarations (including implicit declarations of result)
and (value) parameter declarations (including implicit declarations of self) are collectively called variable declara-
tions. Static-parameter declarations are also called static-variable declarations. Note that static-variable declarations
are disjoint from variable declarations.

The groups of declarations defined in the previous paragraph are neither disjoint nor exhaustive. For example, labeled
blocks are not included in any of these groups, and an object declaration is both a type declaration and either a function
or variable declaration, depending on whether it is singleton.

Most declarations declare a single name given explicitly in the declaration (though, as discussed in Section 7.2, they
may declare this name in multiple namespaces).

Method declarations in a trait may be either abstract or concrete. Abstract declarations do not have bodies; concrete
declarations, sometimes called definitions, do.

7.2 Namespaces

Fortress supports three namespaces, one for types, one for values, and one for labels. (If we consider the Fortress
component system, there is another namespace for APIs.) These namespaces are logically disjoint: names in one
namespace do not conflict with names in another.

49

Type declarations, of course, declare names in the type namespace. Function and variable declarations declare names
in the value namespace. (This implies that object names are declared in both the type and value namespaces.) Labeled
blocks declare names in the label namespace. Although they are not all type declarations, all the static-variable
declarations declare names in the type namespace. In addition, nat parameters, int parameters, bool parameters,
opr parameters are also declared in the value namespace. Section 12.4 describes opr parameters in more detail.

A reference to a name is resolved to the entity that the name refers to the namespace appropriate to the context in
which the reference occurs. For example, a name refers to a label if and only if it occurs immediately following the
reserved word exit . It refers to a type if and only if it appears in a type context (described in Chapter 6). Otherwise,
it refers to a value.

7.3 Reach and Scope of a Declaration

In this section, we define the reach and scope of a declaration, which determine where a declared name may be used to
refer to the entity declared by the declaration. It is an error for a reference to a name to occur at any point in a program
at which the name is not in scope in the appropriate namespace (as defined below), except immediately after the ‘.’ of
a dotted field access or dotted method invocation when the name is the name of the field or dotted method of the static
type of the receiver expression (see Sections 13.3 and 13.4).

We first define a declaration’s reach. The reach of a labeled block is the block itself. The reach of a functional method
declaration is the component containing that declaration. A dotted method declaration not in an object expression or
declaration must be in the declaration of some trait T , and its reach is the declaration of T and any trait or object
declarations or object expressions that extend T ; that is, if the declaration of trait T contains a method declaration,
and trait S extends trait T , then the reach of that method declaration includes the declaration of trait S. The reach
of any other declaration is the smallest block strictly containing that declaration (i.e., not just the declaration itself).
For example, the reach of any top-level declaration (including any imported declaration) is the component containing
(or importing) that declaration; the reach of a field declaration is the enclosing object declaration or expression; the
reach of a parameter declaration is the constructor declaration, functional declaration, or function expression in whose
parameter list it occurs; and the reach of a local variable declaration is the smallest block in which that declaration
occurs (recall from Chapter 3 that a local variable declaration always starts a new block). The reach of an implicit
declaration of self for a dotted method declaration is the method declaration, and the reach of an implicit declaration
of result for an ensures clause is the ensures clause. We say that a declaration reaches any point within its reach.

It is an error for two (explicit) declarations with overlapping reaches to declare the same name, even if the name is
declared in different namespaces, unless one of the following (disjoint) conditions holds:

• both declarations are functional declarations with the same reach;

• both declarations are dotted method declarations that occur in different trait or object declarations;

• both declarations are dotted method declarations, one in an object expression and the other inherited by that
object expression;

• one declaration is a field or dotted method declaration that is provided by (i.e., occurs in or is inherited by) some
trait or object declaration and the other is a top-level declaration or a functional method declaration; or

• one declaration is a field or dotted method declaration that is provided by (i.e., occurs in or is inherited by) some
object expression that is strictly contained in the reach of the other declaration, and the other declaration is not
a dotted method declaration provided by a trait that is extended by the object expression.

If any of the first three conditions holds, or if one declaration is a method declaration that occurs in an object decla-
ration or expression that inherits the other declaration (which therefore must be a method declaration), then the two
declarations are overloaded, and subject to the overloading rules (see Chapter 15).

50

If two declarations with overlapping reaches declare the same name in the same namespace, and the declarations are
not overloaded, then at any point that their reaches overlap, one declaration shadows the other for that name in that
namespace; references at such points resolve to the entity declared by the shadowing declaration. We often elide
mentioning the name and namespace when they are clear from context. Shadowing is permitted only in the following
cases:

• In a trait or object declaration, any top-level declaration or functional method declaration is shadowed if it
declares a name of a field or dotted method provided (declared or inherited) by the trait or object.

• In an object expression, any declaration of self (including implicit declarations) and any declaration which
declares a name of a field or dotted method provided (declared or inherited) by the object expression in a block
enclosing the expression is shadowed unless the declaration is a method declaration of a trait extended by the
object expression.

• In a method declaration, any declaration of self (including implicit declarations) in a block enclosing the
method declaration is shadowed.

• In the ensures clause of a contract, any declaration of result in a block enclosing the ensures clause is
shadowed.

• Any immutable local variable declaration without an initial-value expression is shadowed if the variable is
initialized later in the enclosing block.

We say that a name is in scope in a namespace at any point in the program within the reach of any declaration that
declares that name in that namespace unless one of the following conditions holds:

• the declaration is shadowed at the program point for the name in that namespace;

• the declaration is a field, local variable or parameter declaration, and the program point is in the declaration or
lexically precedes the declaration; or

• the declaration is a labeled block, and the program point is in a spawn expression in the labeled block.

We say that the scope of a declaration for a name in a namespace consists of those points at which the name is in scope
for the namespace and the declaration is not shadowed for that name and that namespace. Again, when it is clear from
context, we may omit the name and namespace.

51

Chapter 8

Variables

8.1 Top-Level Variable Declarations

Syntax:
VarDecl ::= VarMods? VarWTypes InitVal

| VarMods? BindIdOrBindIdTuple = Expr
| VarMods? BindIdOrBindIdTuple : Type ... InitVal
| VarMods? BindIdOrBindIdTuple : TupleType InitVal

VarMods ::= VarMod+

VarMod ::= AbsVarMod
VarWTypes ::= VarWType

| (VarWType(, VarWType)+)
VarWType ::= BindId IsType
InitVal ::= (= | :=) Expr
TupleType ::= (Type , TypeList)
TypeList ::= Type(, Type)∗

IsType ::= : Type

A variable’s name can be any valid Fortress identifier. There are three forms of variable declarations. The first form:

id : Type = expr

declares id to be an immutable variable with static type Type whose value is computed to be the value of the initializer
expression expr . The static type of expr must be a subtype of Type .

The second (and most convenient) form:

id = expr

declares id to be an immutable variable whose value is computed to be the value of the expression expr ; the static
type of the variable is the static type of expr .

The third form:

var id : Type = expr

declares id to be a mutable variable of type Type whose initial value is computed to be the value of the expression
expr . As before, the static type of expr must be a subtype of Type . The modifier var is optional when ‘ := ’ is used
instead of ‘ = ’ as follows:

52

var? id : Type := expr

In short, immutable variables are declared and initialized by ‘ = ’ and mutable variables are declared and initialized by
‘ := ’ except when they are declared as the third form above with the modifier var .

All forms can be used with tuple notation to declare multiple variables together. Variables to declare are enclosed in
parentheses and separated by commas, as are the types declared for them:

(id(, id)+) : (Type(,Type)+)

Alternatively, the types can be included alongside the respective variables, optionally eliding types that can be inferred
from context:

(id(: Type)?(, id(: Type)?)+)

Alternatively, a single type followed by ‘ . . . ’ can be declared for all of the variables:

(id(, id)+): Type . . .

This notation is especially helpful when a function application returns a tuple of values.

The initializer expressions of top-level variable declarations can refer to variables declared later in textual order.

Here are some simple examples of variable declarations:

π = 3.141592653589793238462643383279502884197169399375108209749445923078

declares the variable π to be an approximate representation of the mathematical object π . It is also legal to write:

π: R64 = 3.141592653589793238462643383279502884197169399375108209749445923078

This definition enforces that π has static type R64 .

The following example declares multiple variables using tuple notation:

var (x, y): Z64 . . . = (5, 6)

The following three declarations are equivalent:

(x, y, z): (Z64, Z64, Z64) = (0, 1, 2)
(x: Z64, y: Z64, z: Z64) = (0, 1, 2)
(x, y, z): Z64 . . . = (0, 1, 2)

8.2 Local Variable Declarations

Syntax:
LocalVarDecl ::= var ? LocalVarWTypes InitVal

| var ? LocalVarWTypes
| var ? LocalVarWoTypes = Expr
| var ? LocalVarWoTypes : Type ... InitVal?
| var ? LocalVarWoTypes : TupleType InitVal?

LocalVarWTypes ::= LocalVarWType
| (LocalVarWType(, LocalVarWType)+)

LocalVarWType ::= BindId IsType
LocalVarWoTypes ::= LocalVarWoType

| (LocalVarWoType(, LocalVarWoType)+)
LocalVarWoType ::= BindId

53

Variables can be declared within expression blocks (described in Section 13.11) via the same syntax as is used for
top-level variable declarations (described in Section 8.1) except that local variables must not include modifiers besides
var and additional syntax is allowed as follows:

• The form:

var? id : Type

declares a variable without giving it an initial value (where mutability is determined by the presence of the var
modifier). It is an error if such a variable is referred to before it has been given a value; an immutable variable is
initialized by another variable declaration and a mutable variable is initialized by assignment. It is also an error
if an immutable variable is initialized more than once. Whenever a variable bound in this manner is assigned a
value, the type of that value must be a subtype of its declared type. This form allows declaration of the types of
variables to be separated from definitions, and it allows programmers to delay assigning to a variable before a
sensible value is known. In the following example, the declaration of the type of a variable and its definition are
separated:

π: R64
π = 3.141592653589793238462643383279502884197169399375108209749445923078

54

Chapter 9

Functions

A function is a value that has a function type (described in Section 6.7). Each function takes exactly one argument,
which may be a tuple, and returns exactly one result, which may be a tuple. A function may be declared as top level or
local as described in Section 7.1. Fortress allows functions to be overloaded (as described in Chapter 15); there may
be multiple function declarations with the same function name in a single lexical scope. Functions can be passed as
arguments and returned as values. Single variables may be bound to functions including overloaded functions.

9.1 Function Declarations

Syntax:
FnDecl ::= FnMods? FnHeaderFront FnHeaderClause (= Expr)?
FnMods ::= FnMod+

FnMod ::= AbsFnMod
AbsFnMod ::= test
FnHeaderFront ::= NamedFnHeaderFront

| OpHeaderFront
NamedFnHeaderFront ::= Id StaticParams? ValParam
ValParam ::= BindId

| (Params?)
Params ::= (Param ,)∗ Varargs

| Param(, Param)∗

VarargsParam ::= BindId : Type ...
Varargs ::= VarargsParam
Keyword ::= Param = Expr
PlainParam ::= BindId IsType?

| Type
Param ::= PlainParam
FnHeaderClause ::= IsType? FnClauses
FnClauses ::= Throws? Contract
Throws ::= throws MayTraitTypes

Syntactically, a function declaration consists of the name of the function, optional static parameters (described in
Chapter 12), the value parameter with its (optionally) declared type, an optional type of a return value, an optional
declaration of thrown checked exceptions (discussed in Chapter 14), a contract for the function (discussed in Sec-
tion 9.3), and finally an optional body expression preceded by the token = . A throws clause does not include naked

55

type variables. Every element in a throws clause is a subtype of CheckedException . When a function declaration
includes a body expression, it is called a function definition. Function declarations can be mutually recursive.

A function takes exactly one argument, which may be a tuple. When a function takes a tuple argument, we abuse
terminology by saying that the function takes multiple arguments. Value parameters cannot be mutated inside the
function body.

A function’s value parameter consists of a parenthesized, comma-separated list of bindings where each binding is one
of:

• A plain binding “identifier ” or “ identifier :T ”

• A varargs binding “ identifier :T . . . ”

When the parameter is a single plain binding without a declared type, enclosing parentheses may be elided. The
following restrictions apply: No two bindings may have the same identifier. Note that it is permitted to have a single
plain binding, or to have no bindings. The latter case, “()”, is considered equivalent to a single plain binding of the
ignored identifier “ ” of type (), that is, “ (: ()) ”. Also, there can be at most one varargs binding.

A parameter declared by varargs binding is called a varargs parameter; it is used to pass a variable number of argu-
ments to a function as a single heap sequence. If a function does not have a varargs parameter then the number of
arguments is fixed by the function’s type.

For example, here is a simple polymorphic function for creating lists:

ListJT extends Object, nat lengthK(rest :T [length]) =
if length = 0 then Empty
else Cons(rest0,List(rest [1 : (length − 1)]))
end

9.2 Function Applications

Fortress allows functions to be overloaded; there may be multiple function declarations with the same function name
in a single lexical scope. Thus, we need to determine which functional declarations are applicable to a function
application.

An overloaded function has multiple arrow types in its function type, and it associates a declaration with each con-
stituent arrow type. When an overloaded function of type T is called with an argument of type A , the call is “dis-
patched” to the declaration associated with the most specific type of T applicable to A (if no such type exists, then
the function is not applicable to A).

When a function is called (See Section 13.6 for a discussion of function call expressions), function arguments are
evaluated in parallel, and the body of the function is evaluated in a new environment, extending the environment in
which it is defined with all parameters bound to their arguments.

If the application of a function f ends by calling another function g , tail-call optimization may be applied. Storage
used by the new environments constructed for the application of f may be reclaimed.

Here are some examples:

sin(π)
arctan(y, x)

If the function’s argument is not a tuple, then the argument need not be parenthesized:

sinx
log log n

56

9.3 Function Contracts

Syntax:
Contract ::= Requires? Ensures? Invariant?
Requires ::= requires { ExprList? }
Ensures ::= ensures { EnsuresClauseList? }
EnsuresClauseList ::= EnsuresClause(, EnsuresClause)∗

EnsuresClause ::= Expr (provided Expr)?
Invariant ::= invariant { ExprList? }

Function contracts consist of three optional clauses: a requires clause, an ensures clause, and an invariant
clause. All three clauses are evaluated in the scope of the function body.

The requires clause consists of a sequence of expressions of type Boolean separated by commas and enclosed
in curly braces. The requires clause is evaluated during a function call before the body of the function. If any
expression in a requires clause does not evaluate to true , a CallerViolation exception is thrown.

The ensures clause consists of a sequence of ensures subclauses. Each such subclause consists of an expression
of type Boolean , optionally followed by a provided subclause. A provided subclause begins with provided
followed by an expression of type Boolean . For each subclause in the ensures clause of a contract, the provided
subclause is evaluated immediately after the requires clause during a function call (before the function body is
evaluated). If a provided subclause evaluates to true , then the expression preceding this provided subclause is
evaluated after the function body is evaluated. If the expression evaluated after function evaluation does not evaluate
to true , a CalleeViolation exception is thrown. The expression preceding the provided subclause can refer to the
return value of the function. A result variable is implicitly bound to a return value of the function and is in scope
of the expression preceding the provided subclause. The implicitly declared result shadows any other declaration
with the same name in scope.

The invariant clause consists of a sequence of expressions of any type enclosed by curly braces. These expressions
are evaluated before and after a function call. For each expression e in this sequence, if the value of e when evaluated
before the function call is not equal to the value of e after the function call, a CalleeViolation exception is thrown.

Here are some examples:

factorial(n: Z64) requires {n ≥ 0 } =
if n = 0 then 1
else n factorial(n− 1)
end

mangle(input : List) ensures { sorted(result) provided sorted(input) } =
if input 6= Empty
then mangle(first(input))

mangle(rest(input))
end

9.4 Local Function Declarations

Syntax:
LocalFnDecl ::= NamedFnHeaderFront FnHeaderClause = Expr

Functions can be declared within expression blocks (described in Section 13.11) via the same syntax as is used for
top-level function declarations (described in Chapter 9) except that locally declared functions must not be operators.

57

As with top-level function declarations, locally declared functions in a single scope are allowed to be overloaded and
mutually recursive.

58

Chapter 10

Traits

Traits are declared by trait declarations. Traits define new named types. A trait specifies a collection of methods
(described in Section 10.2). One trait can extend others, which means that it inherits the methods from those traits,
and that the type defined by that trait is a subtype of the types of traits it extends.

10.1 Trait Declarations

Syntax:
TraitDecl ::= TraitMods? TraitHeaderFront TraitClauses GoInATrait? end
TraitHeaderFront ::= trait Id StaticParams? ExtendsWhere?
TraitClauses ::= TraitClause∗

TraitClause ::= Excludes
| Comprises

GoInATrait ::= GoFrontInATrait GoBackInATrait?
| GoBackInATrait

GoFrontInATrait ::= GoesFrontInATrait+

GoesFrontInATrait ::= AbsFldDecl
GoBackInATrait ::= GoesBackInATrait+

GoesBackInATrait ::= MdDecl
TraitMods ::= TraitMod+

TraitMod ::= AbsTraitMod
AbsTraitMod ::= value
ExtendsWhere ::= extends TraitTypeWheres
TraitTypeWheres ::= TraitTypeWhere

| { TraitTypeWhereList }
TraitTypeWhereList ::= TraitTypeWhere(, TraitTypeWhere)∗

TraitTypeWhere ::= TraitType
Excludes ::= excludes TraitTypes
Comprises ::= comprises TraitTypes
TraitTypes ::= TraitType

| { TraitTypeList }
TraitTypeList ::= TraitType(, TraitType)∗

59

TraitType ::= TypeRef
| Type [ArraySize?]
| Type ˆ IntExpr
| Type ˆ (ExtentRange (× ExtentRange)∗)

ArraySize ::= ExtentRange(, ExtentRange)∗

ExtentRange ::= StaticArg?# StaticArg?
| StaticArg? : StaticArg?
| StaticArg

StaticArgs ::= JStaticArgList K
StaticArgList ::= StaticArg(, StaticArg)∗

StaticArg ::= Op
| (StaticArg)
| IntExpr
| BoolExpr
| Type
| Expr

Syntactically, a trait declaration starts with an optional sequence of modifiers followed by trait , followed by the
name of the trait, an optional sequence of static parameters (described in Chapter 12), an optional set of extended traits,
an optional set of excluded traits, and zero or more declarations of methods separated by newlines or semicolons, and
finally end .

Each of extends and excludes clauses consists of extends and excludes respectively followed by a set of
trait references separated by commas and enclosed in braces ‘{’ and ‘}’. If such a clause contains only one trait, the
enclosing braces may be elided.

A trait with an extends clause explicitly extends those traits listed in its extends clause. We define the extension
relation to be the transitive closure of explicit extension. That is, trait T extends trait U if and only if T explicitly
extends U or if there is some trait S that T explicitly extends and that extends U . The extension relation induced by
a program is the smallest relation satisfying these conditions. This relation must form an acyclic hierarchy. If a trait
T extends trait U , or if T and U are the same trait, we say that T is a subtrait of U and that U is a supertrait of T .

We say that trait T strictly extends trait U if and only if (i) T extends U and (ii) T is not U . We say that trait T
immediately extends trait U if and only if (i) T strictly extends U and (ii) there is no trait V such that T strictly
extends V and V strictly extends U . We call U an immediate supertrait of T and T an immediate subtrait of U .

A trait with an excludes clause excludes every trait listed in its excludes clause. If a trait T excludes a trait U ,
the two traits are mutually exclusive: neither can extend the other, and no trait can extend them both. As discussed
in Section 6.2, the exclusion relation is symmetric. Thus, if T excludes U then U excludes T whether or not T is
listed in an excludes clause in the declaration of U .

For example, the following trait declaration:

trait Catalyst extends Object
catalyze(reaction: Reaction): ()

end

declares a trait Catalyst with no modifiers, no static parameters, and no excludes clauses. Trait Catalyst extends
a trait named Object . A single method (named catalyze) is declared, which has a parameter of type Reaction and
the return type () .

10.2 Method Declarations

Syntax:

60

MdDecl ::= MdDef
| abstract ? MdMods? getter ? MdHeaderFront FnHeaderClause

MdDef ::= MdMods? getter ? MdHeaderFront FnHeaderClause = Expr
AbsMdDecl ::= abstract ? AbsMdMods? getter ? MdHeaderFront FnHeaderClause
MdMods ::= MdMod+

MdMod ::= FnMod
FnMod ::= AbsFnMod
AbsFnMod ::= test
AbsMdMods ::= AbsMdMod+

AbsMdMod ::= AbsFnMod
MdHeaderFront ::= NamedMdHeaderFront

| OpMdHeaderFront
NamedMdHeaderFront ::= Id StaticParams? MdValParam
MdValParam ::= (MdParams?)
MdParams ::= (MdParam ,)∗ Varargs

| MdParam(, MdParam)∗

MdParam ::= Param
| self

Param ::= PlainParam
PlainParam ::= BindId IsType?

| Type
FnHeaderClause ::= IsType? FnClauses
IsType ::= : Type
FnClauses ::= Throws? Where? Contract
Throws ::= throws MayTraitTypes
MayTraitTypes ::= {}

| TraitTypes

A trait declaration contains a set of method declarations. Syntactically, a method declaration begins with an optional
sequence of modifiers followed by the method’s name, optional static parameters (described in Chapter 12), the value
parameter with its (optionally) declared type, an optional type of a return value, an optional declaration of thrown
checked exceptions (discussed in Chapter 14), a contract for the method (discussed in Section 10.3), and finally an
optional body expression preceded by the token = . If a method declaration has the getter modifier, it does not
affect the behavior of a program; rather, it documents that the method is intended to serve as a getter. A throws
clause does not include naked type variables. Every element in a throws clause is a subtype of CheckedException .

We say that a method declaration occurs in a trait declaration. A trait declaration declares a method declaration that
occurs in that trait declaration. A trait declaration inherits method declarations from the declarations of its immediate
supertraits. A trait declaration provides the method declarations that it declares or inherits.

There are two sorts of method declarations: dotted method declarations and functional method declarations. Syntac-
tically, a dotted method declaration is identical to a function declaration. When a method is invoked, a special self
parameter is bound to the object on which it is invoked.

A functional method declaration has a parameter named self at an arbitrary position in its parameter list. This
parameter is not given a type and implicitly has the type of the enclosing trait or object. Semantically, functional
method declarations can be viewed as top-level function declarations. For example, the following overloaded func-
tional method f declared within a trait declaration A :

trait A
f(self, t :T) = e1

f(s :S, self) = e2

end

61

f(a, t)

may be rewritten as top-level functions as follows:

trait A
internalF (t :T) = e1

internalF (s :S) = e2

end

f1(a :A, t :T) = a.internalF (t)
f2(s :S, a :A) = a.internalF (s)

f1(a, t)

where internalF is a freshly generated name. Functional method declarations may be overloaded with top-level
function declarations.

When a method declaration includes a body expression, it is called a method definition. A method declaration that
does not have its body expression is referred to as an abstract method declaration. An abstract method declaration
declares an abstract method; any object inheriting an abstract method must define a body expression for the method.
An abstract method declaration may include the modifier abstract . It may elide parameter names but parameter
types cannot be omitted except for the self parameter.

Here is an example trait Enzyme which provides methods reactionSpeed and catalyze :

trait Enzyme extends {OrganicMolecule,Catalyst }
reactionSpeed(): Speed
catalyze(reaction) = reaction.accelerate(reactionSpeed())

end

Enzyme declares the abstract method reactionSpeed and declares the concrete method catalyze which is inherited
as an abstract method from its supertrait Catalyst .

10.3 Method Contracts

Syntax:
Contract ::= Requires? Ensures? Invariant?
Requires ::= requires { ExprList? }
Ensures ::= ensures { EnsuresClauseList? }
EnsuresClauseList ::= EnsuresClause(, EnsuresClause)∗

EnsuresClause ::= Expr (provided Expr)?
Invariant ::= invariant { ExprList? }

Method contracts consist of three optional clauses: a requires clause, an ensures clause, and an invariant
clause. All three clauses are evaluated in the scope of the method body. See Section 9.3 for a discussion of each
clause.

10.4 Value Traits

Syntax:
TraitMod ::= value

62

If a trait declaration has the modifier value , all subtraits of that trait must also have the modifier value , and
all objects extending that trait are required to be value objects (described in Section 11.3). See Section 11.3 for a
discussion of updating fields of value objects.

63

Chapter 11

Objects

Objects are values that have object trait types described in Section 6.3.1. Objects contain methods (described in
Section 10.2) and fields (described in Section 11.2).

11.1 Object Declarations

Syntax:
ObjectDecl ::= ObjectMods? ObjectHeader GoInAnObject? end
ObjectHeader ::= object Id StaticParams? ObjectValParam? ExtendsWhere? FnClauses
ObjectMods ::= TraitMods
ObjectValParam ::= (ObjectParams?)
ObjectParams ::= (ObjectParam ,)∗ ObjectVarargs

| ObjectParam (, ObjectParam)∗

ObjectVarargs ::= Varargs
ObjectParam ::= ParamFldMods? Param

| Param
ParamFldMods ::= ParamFldMod+

ParamFldMod ::= var
GoInAnObject ::= GoFrontInAnObject GoBackInAnObject?

| GoBackInAnObject
GoFrontInAnObject ::= GoesFrontInAnObject+

GoesFrontInAnObject ::= FldDecl
GoBackInAnObject ::= GoesBackInAnObject+

GoesBackInAnObject ::= MdDef
FnClauses ::= Throws? Contract
Throws ::= throws MayTraitTypes

Object declarations declare both object values and object trait types. Object declarations extend a set of traits from
which they inherit methods. An object declaration inherits the concrete methods of its supertraits and must include
a definition for every method declared but not defined by its supertraits. Especially, an object declaration must not
include abstract methods (discussed in Section 10.2); it must define all abstract methods inherited from its supertraits.
It is also allowed to define overloaded declarations of concrete methods inherited from its supertraits.

Syntactically, an object declaration begins with object , followed by the identifier of the object, optional static param-
eters (described in Chapter 12), optional value parameters, optional traits the object extends, zero or more declarations

64

of fields, and zero or more declarations of methods, separated by newlines or semicolons, and finally end . Method
declarations in object declarations are syntactically identical to method declarations in trait declarations.

There are two kinds of object declarations: singleton declarations and constructor declarations. A singleton declara-
tion declares a sole, stand-alone, singleton object. It may have static parameters but it does not have a list of value
parameters; every instantiation of such an object with the same static arguments yields the same singleton object. A
constructor declaration declares an object constructor function. It may have static parameters and it includes a list of
value parameters; every call to the constructor of such an object with the same argument yields a new object. Initial-
ization of singleton objects is nondeterministic as described in Chapter 5. The type of an object constructor function
is an arrow type consisting of the object’s value parameter type followed by the token → , followed by the object trait
type.

For example, the following leaf object extending trait Tree :

object Leaf extends Tree
printTree() : () = println “leaf”
size() : Z32 = 0

end

has no fields and two methods.

Here is an example of a Cons object constructor extending trait ListJT K :

object ConsJT K(first :T, rest : ListJT K)
extends ListJT K
cons(x) = Cons(x, self)
append(xs) = Cons(first , rest .append(xs))

end

Note that this declaration introduces the “factory” function ConsJT K(first :T, rest : ListJT K) : ConsJT K which is
used in the body of the object declaration to define the cons and append methods. Multiple factory functions can be
defined by overloading an object constructor with functions. For example:

ConsJT K(first :T) = Cons(first ,Empty)

11.2 Field Declarations

Syntax:
FldDecl ::= FldMods? FldWTypes InitVal

| FldMods? BindIdOrBindIdTuple = Expr
| FldMods? BindIdOrBindIdTuple : Type ... InitVal
| FldMods? BindIdOrBindIdTuple : TupleType InitVal

FldMods ::= FldMod+

FldMod ::= var
FldWTypes ::= FldWType

| (FldWType(, FldWType)+)
FldWType ::= BindId IsType

Fields are variables local to an object. They must not be referred to outside their enclosing object declarations. Each
field is either a value parameter of a constructor declaration, or it is explicitly defined by a field declaration within
the body of a constructor declaration, a singleton declaration, or an object expression. A field declaration in an
object declaration is syntactically identical to a top-level variable declaration (described in Section 8.1), with the same
meanings attached to the form of variable declarations.

65

Each field declaration includes an initial-value expression, which specifies the initial value of that field. Field initial-
ization occurs in textual program order: evaluation of each initial-value expression must complete before evaluation of
the next initial-value expression, and all previous field names (and the parameters of the constructor, in a constructor
declaration) are in scope when evaluating an initial-value expression (see Section 7.3). All fields of an object are
initialized before that object is made available for subsequent computation; thus, it is illegal to invoke methods on an
object being initialized: self is not implicitly declared by a field declaration.

Within an object declaration or object expression, a field can be accessed by a “naked” identifier reference (see Sec-
tion 13.2).

11.3 Value Objects

An object declaration with the modifier value declares a value object that is called in many languages a primitive
value. The object trait type declared by a value object implicitly has the modifier value .

66

Chapter 12

Static Parameters

Trait, object, and functional declarations may be parameterized with static parameters. Static parameters are static
variables listed in white square brackets J and K immediately after the name of a trait, object, or functional and they
are in scope of the entire body of the declaration. In this chapter, we describe the forms that these static parameters
can take.

Syntax:
StaticParams ::= JStaticParamListK
StaticParamList ::= StaticParam(, StaticParam)∗

12.1 Type Parameters

Syntax:
StaticParam ::= Id Extends? (absorbs unit)?

Static parameters may include one or more type parameters. Syntactically, a type parameter consists of an identifier
followed by an optional extends clause.

Type parameters are instantiated with types such as trait types, tuple types, and arrow types (See Chapter 6 for a
discussion of Fortress types). We use the term naked type variable to refer to an occurrence of a type variable as
a stand-alone type (rather than as a parameter to another type). Type parameters can appear in any context that an
ordinary type can appear, except that a naked type variable must not appear in the extends clause of a trait or object
declaration, nor in the throws clause of a functional or object declaration.

Here is a parameterized trait List:

trait ListJT K
first():T
rest(): ListJT K
cons(T): ListJT K
append(ListJT K): ListJT K

end

12.2 Nat and Int Parameters

Syntax:

67

StaticParam ::= nat Id
| int Id

Static parameters may include one or more nat and int parameters. Syntactically, a nat parameter consists of
nat followed by an identifier. An int parameter consists of int followed by an identifier. These parameters are
instantiated at runtime with numeric values. A nat parameter may be used to instantiate other nat parameters. An
int parameter may be used to instantiate other int parameters, or to appear in any context that a variable of type
Z32 can appear, except that it cannot be assigned to.

For example, the following function f :

makeVectorJT extends Number, nat s0K() : VectorJT, s0K = vectorJT, s0K

declares a nat parameter s0 , which appears in both the parameter type and return type of f .

12.3 Bool Parameters

Syntax:
StaticParam ::= bool Id

Static parameters may include one or more bool parameters. Syntactically, a bool parameter consists of bool
followed by an identifier. These parameters are instantiated at runtime with boolean values. They may be used to
instantiate other bool parameters, or to appear in any context that a variable of type Boolean can appear, except that
they cannot be assigned to.

For example, the following coerce declared in the trait Boolean:

trait Boolean
coerce Jbool bK(x: BooleanLiteralJbK) = f(x)

end

declares a bool parameter b , which appears in the parameter type.

12.4 Operator Parameters

Syntax:
StaticParam ::= opr Op

Static parameters may include one or more operator names. Syntactically, an operator parameter begins with opr
followed by an operator name.

Operator parameters may be freely intermixed with other static parameters. For example, the following trait IdentityOp:

trait IdentityOpJT extends IdentityOpJT,�K, opr �K
opr �(self) :T = self

end

is parameterized with a type parameter T and an operator parameter � . Unlike other static parameters, operator
parameters may be used in both type context and value context. The operator parameter � is declared as the second
static parameter of IdentityOp , instantiated as a static argument in IdentityOpJT,�K which is the bound of T , and
declared as an operator method in IdentityOp . If a trait or object has an operator parameter OP and uses OP in an
expression, then the trait or object must declare or inherit at least one operator method for OP of matching fixity.

68

Operator parameters are instantiated with operators. They may be used to instantiate other operator parameters and
the names of operator declarations. For example, the following trait MyIdentity :

object MyIdentity extends IdentityOpJMyIdentity, IDENTITYK end

instantiates the operator parameter of its supertrait IdentityOp with the operator name IDENTITY . It inherits the
IDENTITY operator from IdentityOp . Two restrictions apply to instantiations of operator parameters: 1) If a trait or
object T has operator parameters OP1 and OP2 , and T declares or inherits operator methods of the same fixity for
both OP1 and OP2 , then the actual operators passed in any instantiation of T must be different. Note that the clause
“of the same fixity” allows both OP1 and OP2 to be given the same actual operator, say “− ”, if OP1 has only a prefix
definition and OP2 has only an infix definition; this is desirable. 2) If a trait or object T has an operator parameter OP
and declares or inherits an operator method for OP , and also declares or inherits an operator method of the same fixity
for any actual operator @ (that is, where @ is not an operator parameter), then the actual operator passed for the OP
parameter must not be @ .

Note that any declarations that may be associated with an actual operator name that is passed for an operator parameter
are irrelevant to the behavior of the operator parameter within the parameterized trait, object, or functional. When a
trait or object extends a trait parameterized by operator names, the subtrait inherits methods whose names are the
actual operator names instead of the operator parameter names.

An operator method declaration whose name is one of the operator parameters of its enclosing trait or object may be
overloaded with other operator declarations in the same component; the operator parameter may be instantiated with
any operator in the same component. Therefore, such an operator method declaration must satisfy the overloading rules
(described in Chapter 15) with every operator declaration in the same component. For example, the above IDENTITY
operator declaration is overloaded with the following IDENTITY operator declaration:

opr IDENTITY(x: Z) = x
opr +(x: Z) = x

where both IDENTITY and + are top-level operator declarations in the same component. Therefore, the declaration
of the operator � in IdentityOp must satisfy the overloading rules with IDENTITY and with + .

69

Chapter 13

Expressions

Fortress is an expression-oriented language. The positions in which an expression may legally appear (value context)
are determined by the nonterminal Expr in the Fortress grammar defined in Appendix D. We say that an expression is
a subexpression of any expression (or any other program construct) that (syntactically) contains it. When evaluation
of one subexpression must complete before another subexpression is evaluated, those subexpressions are ordered by
dynamic program order (see Chapter 5). This constrains the memory behavior of program constructs, as described in
Chapter 19. Unless otherwise specified, abrupt completion of the evaluation of a subexpression causes the evaluation
of the expression as a whole to complete abruptly in the same way. Also, if one expression precedes another by
dynamic program order, and the evaluation of the first expression completes abruptly, the second is not evaluated at
all.

13.1 Literals

Syntax:
LiteralExpr ::= ()

| NumericLiteralExpr
| CharLiteralExpr
| StringLiteralExpr

Fortress provides boolean literals, () literal, character literals, string literals, and numeric literals. Literals are values;
they do not require evaluation.

13.2 Identifier References

Syntax:
Primary ::= VarOrFnRef

| self
VarOrFnRef ::= Id StaticArgs?

A name that is not an operator appearing in an expression context is called an identifier reference. It evaluates to the
value of the name in the enclosing scope in the value namespace. The type of an identifier reference is the declared
type of the name. See Chapter 7 for a discussion of names. An identifier reference performs a memory read operation.
Note in particular that if a name is not in scope, it is a static error (as described in Section 7.3).

70

An identifier reference which denotes a polymorphic function may include explicit static arguments (described in
Chapter 9) but most identifier references do not include them. For example, doubleJStringK is an identifier reference
with an explicit static argument where the function double is defined as follows:

doubleJT K(x :T) : (T, T) = (x, x)

The special name self is declared as a parameter of a method. When a dotted method is invoked, its receiver is bound
to the self parameter; the value of self is the receiver. When a functional method is invoked, the corresponding
argument is bound to the self parameter; the value of self is the argument passed to it. The type of self is the
type of the trait or object being declared by the innermost enclosing trait or object declaration or object expression.
See Section 10.2 for details about self parameters.

13.3 Dotted Field Accesses

Syntax:
Primary ::= Primary . Id

An expression consisting of a single subexpression (called the receiver expression), followed by ‘.’, followed by an
identifier, not immediately followed by a parenthesis or a white square bracket, is a field access.

13.4 Dotted Method Invocations

Syntax:
Primary ::= Primary . Id StaticArgs? ParenthesisDelimited
ParenthesisDelimited ::= Parenthesized

| ArgExpr
| ()

Parenthesized ::= (Expr)
ArgExpr ::= TupleExpr

| ((Expr ,)∗ Expr ...)
TupleExpr ::= ((Expr ,)+ Expr)

A dotted method invocation consists of a subexpression (called the receiver expression), followed by ‘.’, followed by
an identifier, an optional list of static arguments (described in Chapter 9) and a subexpression (called the argument
expression). Unlike in function calls (described in Section 13.6), the argument expression must be parenthesized, even
if it is not a tuple. There must be no whitespace on the left-hand side of the ‘.’ and the left-hand side of the left
parenthesis of the argument expression. The receiver expression evaluates to the receiver of the invocation (bound to
the self parameter (discussed in Section 10.2) of the method). A method invocation may include explicit instantiations
of static parameters but most method invocations do not include them.

The receiver and arguments of a method invocation are each evaluated in parallel in a separate implicit thread (see
Section 5.4). After this thread group completes normally, the body of the method is evaluated with the parameter of
the method bound to the value of the argument expression (thus evaluation of the body occurs after evaluation of the
receiver and arguments in dynamic program order). The value and the type of a dotted method invocation are the value
and the type of the method body.

We say that methods or functions (collectively called as functionals) may be applied to (also “invoked on” or “called
with”) an argument. We use “call”, “invocation”, and “application” interchangeably.

Here are some examples:

71

myString .toUppercase()
myString .replace(“foo”, “few”)
myNum.add(otherNum)(∗ NOT myNum.add otherNum ∗)

13.5 Naked Method Invocations

Syntax:
Primary ::= Id Primary

Method invocations that are not prefixed by receivers are naked method invocations. A naked method invocation is
either a functional method call (see Section 10.2 for a discussion of functional methods) or a method invocation within
a trait or object that provides the method declaration. Syntactically, a naked method invocation is same as a function
call except that the method name is used instead of an arbitrary expression denoting the applied method. Like function
calls, an argument expression need not be parenthesized unless it is a tuple. After the evaluation of the argument
expression completes normally, the body of the method is evaluated with the parameter of the method bound to the
value of the argument expression. The value and the type of a naked method invocation are the value and the type of
the method body.

13.6 Function Calls

Syntax:
Primary ::= Primary Primary

A function call consists of two subexpressions: an expression denoting the applied function and an argument expres-
sion. The argument expression and the expression denoting the applied function are evaluated in parallel in separate
implicit threads (see Section 5.4). As with languages such as Scheme and the Java Programming Language, function
calls in Fortress are call-by-value. After the evaluation of the function and its arguments completes normally, the body
of the function is evaluated with the parameter of the function bound to the value of the argument expression. The
value and the type of a function call are the value and the type of the function body. See Section 9.2 for a detailed
description of function calls.

Here are some examples:

cos(x)
arctan(y, x)

If the function’s argument is not a tuple, then the argument need not be parenthesized:

sinx
log log n

13.7 Operator Applications

Syntax:

72

OpExpr ::= EncloserOp OpExpr? EncloserOp?
| OpExpr EncloserOp OpExpr?
| Primary

EncloserOp ::= Encloser
| Op

Primary ::= LeftEncloser ExprList? RightEncloser
| Primary ˆ Exponent
| Primary ExponentOp

Exponent ::= Id
| ParenthesisDelimited
| LiteralExpr
| self

ExponentOp ::= ˆT | ˆOp

To support a rich mathematical notation, Fortress allows most Unicode characters that are specified to be mathematical
operators to be used as operators in Fortress expressions, as well as various tokens described in Chapter 16. Most of
the operators can be used as prefix, infix, postfix, or nofix operators as described in Section 16.3; the fixity of an
operator is determined syntactically, and the same operator may have definitions for multiple fixities.

Syntactically, an operator application consists of an operator and its argument expressions. If the operator is a prefix
operator, it is followed by its argument expression. If the operator is an infix operator, its two argument expressions
come both sides of the operator. If the operator is a postfix operator, it comes right after its argument expression.
Like function calls, argument expressions are evaluated in parallel in separate implicit threads. After evaluation of
arguments completes normally, the body of the operator definition is evaluated with the parameters of the operator
bound to the values of the argument expressions. The value and the type of an operator application are the value and
the type of the operator body. See Chapter 16 for a detailed description of operators.

Here are some examples:

(−b +
√

(b2 − 4a c))/2a
nn en +

√
(2π n)

x1 y2 − x2 y1

1/2g t2

n(n + 1)/2
((j + k)!)/(j!k!)
1/3 3/5 5/7 7/9 9/11
println(“The answers are ” (p + q) “ and ” (p− q))

13.8 Function Expressions

Syntax:
Expr ::= fn ValParam IsType? Throws? ⇒ Expr

Function expressions denote function values; they do not require evaluation. Syntactically, they start with fn followed
by a parameter, optional return type, optional throws clause, ⇒, and finally an expression. The type of a function
expression is an arrow type consisting of the function’s parameter type followed by the token → , followed by the
function’s return type, and the function’s optional throws clause. Unlike declared functions (described in Chapter 9),
function expressions are not allowed to include static parameters.

Here is a simple example:

fn (x: R64)⇒ if x < 0 then −x else x end

73

13.9 Object Expressions

Syntax:
DelimitedExpr ::= object ExtendsWhere? GoInAnObject? end

Object expressions denote object values. Syntactically, they start with object , followed by an optional extends
clause, a series of field declarations, method declarations, and finally end . The type of an object expression is
an anonymous object expression type that extends the traits listed in the extends clause of the object expression.
The object expression type does not include the methods introduced by the object expression (i.e., those methods
not provided by any supertraits of the object expression). Each object expression type is associated with a program
location; every evaluation of a given object expression has the same object expression type. Two object expressions at
different program locations have different object expression types.

Unlike object declarations (described in Chapter 11), object expressions are not allowed to include modifiers, value
parameters, or static parameters. Object expressions may include free static variables unlike object declarations,
which must not include any free static variables (i.e., each static variable in an object declaration must occur as a
static parameter). An object expression is not allowed to declare “new” functional methods; it can provide a functional
method only with a name that is already declared by one of its supertraits. Field initializers and methods may refer
to any variables that are in scope in the context in which the object expression occurs. As with object declarations,
initializers are evaluated in textual program order and may refer to previous fields; the object being constructed might
not be referred to in any way.

In an object expression, any declaration of self (including implicit declarations) and any declaration which declares
a name of a field or dotted method provided (declared or inherited) by the object expression in a block enclosing the
expression is shadowed unless the declaration is a method declaration of a trait extended by the object expression. In
order for an object to be referred to within a nested object expression, the outer object must be renamed before the
object expression because self declared in the outer object is shadowed in the object expression:

object O
m() = do outer = self

object
getOuterSelf () = outer(∗ outer ”self” ∗)
getInnerSelf () = self(∗ inner ”self” ∗)

end
end

end

For example, the following object expression:

fJT K(x:T) = object f :T = x end

has a static variable T that is not its static parameter.

The following example expression evaluates to a new object extending trait Tree :

object extends Tree
printTree() : () = println “leaf”
size(): Z32 = 0

end

13.10 Assignments

Syntax:

74

AssignExpr ::= AssignLefts AssignOp Expr
AssignLefts ::= (AssignLeft(, AssignLeft)∗)

| AssignLeft
AssignLeft ::= SubscriptExpr

| FieldSelection
SubscriptExpr ::= Primary LeftEncloser ExprList? RightEncloser
FieldSelection ::= Primary . Id
AssignOp ::= := | Op =

An assignment expression consists of a left-hand side (AssignLefts) indicating one or more variables, subscripted
expressions (as described in Section 22.7), or field accesses to be updated, an assignment token, and a right-hand-
side expression. Multiple left-hand sides must be grouped using tuple notation (comma-separated and parenthesized).
Variables updated in an assignment expression must already be declared.

The assignment token ‘ := ’ indicates ordinary assignment. Ordinary assignment proceeds in two phases. In the first,
the evaluation phase, the right-hand-side expression is evaluated in parallel with each of the left-hand-side subexpres-
sions, forming an implicit thread group. Evaluating a left-hand variable does nothing. Evaluating a left-hand field
reference evaluates the receiving object. Evaluating a left-hand subscripting operation evaluates the receiving object
and the index in parallel in a nested thread group. After the outer implicit thread group completes normally, the assign-
ment phase begins. Each component of the right-hand-side value is assigned to the corresponding component of the
left-hand side in parallel, forming an implicit thread group. Assigning a left-hand variable simply changes the bind-
ing for the variable’s location to contain the new value. Assigning a left-hand subscript simply calls the subscripted
assignment operation on the corresponding object with the new value.

Any operator (other than ‘ : ’ or ‘ = ’ or ‘ < ’ or ‘ > ’) followed by ‘ = ’ with no intervening whitespace indicates
compound (updating) assignment. This adds an additional phase to assignment between the two phases of ordinary
assignment. In the first phase, a left-hand subscripting operation invokes the subscripting operator on the receiving
object once receiver and index have been evaluated. A left-hand variable simply returns the current value of the
location associated with that variable. In the new second phase, the operator indicated in the assignment is invoked.
The left-hand argument is the value of the left-hand expression evaluated in the first phase; the right-hand argument
is the value evaluated for the right-hand side of the assignment expression. When the operator evaluation completes
normally, the assignment phase is run as in ordinary assignment.

The important point to understand is that compound assignment evaluates its subexpressions exactly once, and that the
parts of assignment proceed implicitly in parallel where possible. The value and type of an assignment expression is
() .

Consider the following assignment:

(ai, c) += f(t, u)

Here in the first phase we evaluate a and i in parallel, then when this completes we invoke the indexing method of a
to evaluate ai . In parallel we look up the value of variable c . Finally, we evaluate f(t, u) in parallel with all of these
left-hand sides. In the second phase, we combine the results using the + operator, to evaluate (ai, c) += f(t, u) .
This must return a tuple of two values (p, q) . In the final phase, in parallel we call the indexed assignment operator
ai := p and perform the local assignment c := q .

Here are some simpler and more commonplace examples of assignment:

x := f(0)
n[i j] = n[i j] + l[i k] m[k j]
(a, b, c) := (b, c, a)(∗ Permuta a, b, and c ∗)
x += 1
(x, y) += (δx, δy)
myBag∪ = newItems

75

13.11 Do Expressions

Syntax:
Do ::= (DoFront also)∗ DoFront end
DoFront ::= (at Expr)? atomic ? do BlockElems?
BlockElems ::= BlockElem+

BlockElem ::= LocalVarFnDecl
| Expr(, GeneratorClauseList)?

LocalVarFnDecl ::= LocalFnDecl+

| LocalVarDecl

A do expression consists of a series of expression blocks separated by also and terminated by end . Each expression
block is preceded by an optional at expression (described in Section 21.2), an optional atomic , and do . When
prefixed by at or atomic , it is as though that expression block were evaluated as the body expression of an at or
atomic expression (described in Section 13.22), respectively. An expression block consists of a (possibly empty)
series of elements–expressions, generated expressions (described in Section 13.11.2), local variable declarations, or
local function declarations–separated by newlines or semicolons.

A single expression block evaluates its elements in order: each element must complete before evaluation of the next
can begin, and the expression block as a whole does not complete until the final element completes. If the last element
of the expression block is an expression, the value and type of this expression are the value and type of the expression
block as a whole. Otherwise, the value and type of the expression block is () . Each expression block introduces a
new scope. Some compound expressions have clauses that are implicitly expression blocks.

Here are examples of function declarations whose bodies are do expressions:

f(x : R64) = do
(sin(x) + 1)2

end

foo(x : R64) = do
y = x
z = 2x
y + z

end

mySum(i : Z64) : Z64 = do
acc : Z64 := 0
for j ← 0 : i do

acc := acc + j
end
acc

end

13.11.1 Distinguishing a Local Declaration from an Equality Expression

Because a local declaration shares a syntax with an equality expression, we provide rules for disambiguation:

• If an expression of the form “ e = e ” occurs as a proper subexpression in any construct that is not an expression
block, it is an equality expression.

• If such an expression occurs as an immediate subexpression of an expression block, it is a local declaration.
Adding parentheses makes the expression an equality expression.

76

13.11.2 Generated Expressions

If a subexpression of a do expression has type () , the expression may be followed by a ‘ , ’ and a generator clause
list (described in Section 13.14). Writing “ expr , gens ” is equivalent to writing “ for gens do expr end ”. See
Section 13.15 for the semantics of the for expression. Note in particular that expr can be a reducing assignment of
the form “ variable OP= expr ”.

13.11.3 Parallel Do Expressions

A series of blocks may be run in parallel using the also construct. Any number of contiguous blocks may be joined
together by also . Each block is run in a separate implicit thread; these threads together form a group. The expression
as a whole completes when the group is complete. A thread can be placed in a particular region by using an at
expression as described in Section 21.2. When multiple expression blocks are separated by also , each expression
block must have type () ; the result and type of the parallel do expression is also () .

For example:

treeSum(t: TreeLeaf) = 0
treeSum(t: TreeNode) = do

var accum : Z32 := 0
do

accum += treeSum(t.left)
also do

accum += treeSum(t.right)
also do

accum += t.datum
end
accum

end

13.12 Label and Exit

Syntax:
DelimitedExpr ::= label Id BlockElems end Id
FlowExpr ::= exit Id? (with Expr)?

An expression block may be labeled using a label expression, which consists of label , an identifier (the block’s
name), an expression block (its body), end , and finally its name again (it is a static error if the identifier after end is
not the name). The name of a label expression is in scope in the label namespace at any point in its body that is not
within a spawn subexpression of the body. A label expression is evaluated by evaluating its body.

An exit expression consists of exit , an optional identifier (the target) and an optional with clause, which consists
of with followed by an expression. If a target is specified, it is an error if the target is not in scope in the label
namespace at the exit expression. That is, the target must be the name of a statically enclosing label expression,
and the exit expression must not be within a spawn expression that is contained in the label expression. If no
target is specified, the target is implicitly the name of the smallest statically enclosing label expression; it is an error
if there is no such expression.

An exit expression with a with clause evaluates its with clause expression to yield an exit value. The exit
expression completes abruptly with the exit value (see Section 5.2). An exit expression with no with clause has an
implicit with clause whose expression is () . The type of an exit expression is BottomType .

77

If the evaluation of the body of a label expression completes normally, its value is the value of the body. If the
evaluation of the body completes abruptly with an exit expression whose target is the name of the label expression,
then the evaluation of the label expression completes normally and its value is the exit value of the exit expression.
The type of a label expression is the union of the type of the last expression of its expression block and the types of
the values of any exit expressions within the label expression whose target is the label expression’s name.

If one or more try expressions are nested between an exit expression and the targeted label block, the finally
clauses of these expressions are run in order, from innermost to outermost, as described in Section 13.25. If any
finally clause completes abruptly by throwing an exception, the exit expression fails to exit, the evaluation of the
label expression completes abruptly, and the exception is propagated.

Here is a simple example:

label I95

if goingTo(Sun)
then exit I95 with x32B
else x32A
end

end I95

The expression “ exit I95 with x32B ” completes abruptly and attempts to transfer control to the end of the targeted
labeled block “ label I95 ”. The targeted labeled block completes normally with value x32B .

13.13 While Loops

Syntax:
DelimitedExpr ::= while Expr Do

A while loop consists of a condition expression of type Boolean followed by a simple do expression (see Sec-
tion 13.11). An iteration of a while loop evaluates the condition expression; if it completes normally and returns
true it then evaluates the body expression to completion. When one iteration completes a new one is run until either
an iteration completes abruptly (in which case the evaluation of the while expression completes abruptly), or the
condition expression has the value false (in which case the while loop completes normally with value ()).

13.14 Generators

Syntax:
GeneratorClauseList ::= GeneratorBinding(, GeneratorClause)∗

GeneratorBinding ::= BindIdOrBindIdTuple←Expr
GeneratorClause ::= GeneratorBinding

| Expr
BindIdOrBindIdTuple ::= BindId

| (BindId , BindIdList)
BindIdList ::= BindId(, BindId)∗

BindId ::= Id
|

Fortress makes extensive use of comma-separated generator clause lists to express parallel iteration. Generator clause
lists occur in generated expressions (described in Section 13.11.2) and for loops (described in Section 13.15), sums
and big operators (described in Section 13.17), and comprehensions (described in Section 13.28). We refer to these

78

collectively as expressions with generator clauses. Every expression with generator clauses contains a body expression
which is evaluated for each combination of values bound in the generator clause list (each such combination yields an
iteration of the body).

A generator clause is either a generator binding or an expression of type GeneratorJ()K (this includes the type
Boolean). A generator clause list must begin with a generator binding. A generator binding consists of one or more
comma-separated identifiers followed by the token ← , followed by a subexpression (called the generator expression).
A generator expression evaluates to an object whose type is Generator . A generator encapsulates zero or more
generator iterations. By default, the programmer must assume that generator iterations are run in parallel in separate
implicit threads unless the generators are instances of SequentialGenerator ; the actual behavior of generators is
dictated by library code, as described in Section 21.7. No generator iterations are run until the generator expression
completes. For each generator iteration, a generator object produces a value or a tuple of values. These values are
bound to the identifiers to the left of the arrow, which are in scope of the subsequent generator clause list and of the
body of the construct containing the generator clause list.

An expression of type GeneratorJ()K in a generator clause list is interpreted as a filter. A generator iteration is
performed only if the filter yields () . If the filter yields no value, subsequent expressions in the generator clause list
will not be evaluated. Note in particular that true is a Boolean value yielding () exactly once, while false is a
Boolean value that yields no elements.

The order of nesting of generators need not imply anything about the relative order of nesting of iterations. In most
cases, multiple generators can be considered equivalent to multiple nested loops. However, the compiler will make an
effort to choose the best possible iteration order it can for a multiple-generator loop, and may even combine generators
together; there may be no such guarantee for nested loops. Thus loops with multiple generators are preferable to
distinct nested loops in general. Note that the early termination behavior of nested looping is subtly different from a
single multi-generator loop, since nested loops give rise to nested thread groups; see Section 21.6.

Each generator iteration of the innermost generator clause corresponds to a body iteration, or simply an iteration of the
generator clause list. Each iteration is run in its own implicit thread. Each expression in the generator clause list can
be considered to evaluate in a separate implicit thread. Together these implicit threads form a thread group. Evaluation
of an expression with generators completes only when this thread group has completed.

Some common Generators include:

l :u Any range expression
a Array a generates its elements
a.indices() The index set of array a
{0, 1, 2, 3} The elements of an aggregate expression
sequential(g) A sequential version of generator g

The generator sequential(g) forces the iterations using values from g to be performed in order. Every generator has
an associated natural order which is the order obtained by sequential . For example, a sequential for loop starting
at 1 and going to n can be written as follows:

for i← sequential(1 : n) do
· · ·

end

The sequential generator respects generator clause list ordering; it will always nest strictly inside preceding generator
clauses and outside succeeding ones.

Given a multidimensional array, the indices generator returns a tuple of values, which can be bound by a tuple of
variables to the left of the arrow:

(i, j)← my2DArray .indices()

79

13.15 For Loops

Syntax:
DelimitedExpr ::= for GeneratorClauseList DoFront end
DoFront ::= (at Expr)? atomic ? do BlockElems?

A for loop consists of for followed by a generator clause list (discussed in Section 13.14), followed by a non-
parallel do expression (the loop body; see Section 13.11). Parallelism in for loops is specified by the generators
used (see Section 13.14); in general the programmer must assume that each loop iteration will occur independently
in parallel unless every generator is explicitly sequential . For each iteration, the body expression is evaluated in the
scope of the values bound by the generators. The value and type of a for loop is () .

13.16 Ranges

Syntax:
Range ::= Expr? : Expr?(: Expr?)?

| Expr # Expr

A range expression is used to create a set of integers, called a Range , useful for indexing an array or controlling a
for loop. Generators in general are discussed further in Section 13.14.

An explicit range is self-contained and completely describes a set of integers. Assume that a, b, and c are expressions
that produce integer values.

• The range a : b is the set of n = max(0, b− a + 1) integers {a, a + 1, a + 2, . . . , b− 2, b− 1, b}.

• The range a#n is the set of max(0, n) integers {a, a + 1, a + 2, . . . , a + n− 3, a + n− 2, a + n− 1}.

Non-static components of a range expression are computed in separate implicit threads. The range is constructed when
all components have completed normally.

An implicit range may be used only in certain contexts, such as array subscripts, that can supply implicit information.
Suppose an implicit range is used as a subscript for an axis of an array for which the lower bound is l and the upper
bound is u.

• The implicit range : is treated as l :u .

• The implicit range : b is treated as l : b .

• The implicit range a : and a# are treated as a :u .

• The implicit range # s is treated as l # s .

One may test whether an integer is in a range by using the operator ∈:

if j ∈ (a : b) then println “win” end

Note that a range is very different from an interval with integer endpoints. The range 3 : 5 contains only the values 3,
4, and 5, whereas the interval [3, 5] contains all real numbers x such that 3 ≤ x ≤ 5 .

13.17 Summations and Other Reduction Expressions

Syntax:

80

FlowExpr ::= Accumulator StaticArgs? ([GeneratorClauseList])? Expr
Accumulator ::=

∑
|
∏
| BIG Op

A reduction expression begins with a big operator such as
∑

or
∏

followed by an optional static arguments and
an optional generator clause list (described in Section 13.14), followed by a body expression. There is no explicit
relationship between BIG Op and Op. Instead, a reduction expression corresponds to a call to the BIG Op operator,
which has the following header:

opr BIG OpJT K(g : (ReductionJR0K, T → R0)→ R0) :R

Here R is the result type of the operator, and g corresponds to the method generateJR0K of the trait GeneratorJT K :
it is a function that takes a reduction (of type ReductionJR0K) and a body (of type T → R0) and returns a value
of type R0 by running body on each generated element and combining them using the reduction. When a generator
clause list is provided, generator clauses produce values and bind the values to the identifiers that are used in the
subexpression. Each iteration of the body expression is assumed to be evaluated in a separate implicit thread as
described in Section 13.14. The resulting values are combined together using Op. The value of a reduction expression
is this combined value. When no generator clause list is provided, the body is taken to be an object of type Generator
and the elements it generates are combined. Thus, the reduction expression

∑
a is equivalent to

∑
x←a

x .

A reduction expression without a generator clause list:∑
g

is equivalent to the following:∑
[x← g]x

Note that reduction expressions without generator clause lists can be used to conveniently sum any aggregate expres-
sion (described in Section 13.27), since every aggregate expression is a generator.

13.18 If Expressions

Syntax:
DelimitedExpr ::= if Expr then BlockElems Elifs? Else? end

| (if Expr then BlockElems Elifs? Else end ?)
Elifs ::= Elif +

Elif ::= elif Expr then BlockElems
Else ::= else BlockElems

An if expression consists of if followed by a condition expression of type Boolean , followed by then , an ex-
pression block, an optional sequence of elif clauses (each consisting of elif followed by a condition expression,
then , and an expression block), an optional else clause (consisting of else followed by an expression block), and
finally end . Each clause forms an expression block and has the various properties of expression blocks (described
in Section 13.11). An if expression first evaluates its condition expression. If the condition expression completes
normally and results in true , the then clause is evaluated. If the condition expression results in false , the next
clause (either elif or else), if any, is evaluated. An elif clause works just as the original if , evaluating its
condition expression and continuing with its then clause if the condition is true . An else clause simply evaluates
its expression block. The type of an if expression is the union of the types of the expression blocks of each clause.
If there is no else clause in an if expression, then every clause must have type () . The result of the if expression
is the result of the expression block which is evaluated; if no expression block is evaluated it is () . The reserved word
end may be elided if the if expression is immediately enclosed by parentheses. In such a case, an else clause is
required.

For example,

81

if x ∈ {0, 1, 2} then 0
elif x ∈ {3, 4, 5} then 3
else 6 end

13.19 Case Expressions

Syntax:
DelimitedExpr ::= case Expr Op? of CaseClauses CaseElse? end
CaseClauses ::= CaseClause+

CaseClause ::= Expr ⇒ BlockElems
CaseElse ::= else ⇒ BlockElems

A case expression begins with case followed by a condition expression, followed by an optional operator, of , a
sequence of case clauses (each consisting of a guarding expression followed by the token⇒, followed by an expression
block), an optional else clause (consisting of else followed by the token⇒, followed by an expression block), and
finally end .

A case expression evaluates its condition expression and checks each case clause to determine which case clause
matches. To find a matched case clause, the guarding expression of each case clause is evaluated in order and compared
to the value of the condition expression. For the first clause, the condition expression and guarding expression are
evaluated in separate implicit threads; for subsequent clauses the value of the condition expression is retained and only
the guarding expression is evaluated. Once both guard and condition expressions have completed normally, the two
values are compared according to an optional operator specified. If the operator is omitted, it defaults to = or ∈. If
the type of the guarding expression is a subtype of type Generator and the condition expression does not, the default
operator is ∈; otherwise, it is = .

If the operator application completes normally and returns true , the corresponding expression block is evaluated (see
Section 13.11) and its value is returned. If the operator application returns false , matching continues with the next
clause. If no matched clause is found, a MatchFailure exception is thrown. The optional else clause always matches
without requiring a comparison. The value of a case expression is the value of the right-hand side of the matched
clause. The type of a case expression is the union of the types of all right-hand sides of the case clauses.

For example, the following case expression specifies the operator ∈:

case planet ∈of
{“Mercury”, “Venus”, “Earth”, “Mars”} ⇒ “inner”
{“Jupiter”, “Saturn”, “Uranus”, “Neptune”} ⇒ “outer”
else⇒ “remote”

end

but the following does not:

case 2 + 2 of
4⇒ “it really is 4”
5 : 7⇒ “we were wrong again”

end

13.20 Extremum Expressions

Syntax:

82

DelimitedExpr ::= case most Op of CaseClauses end
CaseClauses ::= CaseClause+

CaseClause ::= Expr ⇒ BlockElems

An extremum expression uses the same syntax as a case expression (described in Section 13.19) except that most
is used where a case expression would have a condition expression, the specified operator is not optional, and an
extremum expression does not have an optional else clause.

All guarding expressions are evaluated in parallel in separate implicit threads as part of the same group in which
the guarding expressions themselves are evaluated. The values of the guarding expressions are compared in parallel
according to the operator specified. The specified operator must be a total order operator. Which pairs of guarding ex-
pressions are compared is unspecified, except that the pairwise comparisons performed will be sufficient to determine
that the chosen clause is indeed the extremum (largest or smallest depending on the specified operator) assuming a
total order. Any or all pairwise comparisons may be considered.

The expression block of the clause with the extremum guarding expression (and only that clause) is evaluated. If more
than one guarding expressions are tied for the extremum, the first clause in textual order is evaluated to yield the result
of the extremum expression. The type of an extremum expression is the union of the types of all right-hand sides of
the clauses.

For example, the following code:

case most>of
1 mile⇒ “miles are larger”
1 kilometer⇒ “we were wrong again”

end

evaluates to “miles are larger” .

13.21 Typecase Expressions

Syntax:
DelimitedExpr ::= typecase TypecaseBindings of TypecaseClauses CaseElse? end
TypecaseBindings ::= TypecaseVars (= Expr)?
TypecaseVars ::= BindId

| (BindId(, BindId)+)
TypecaseClauses ::= TypecaseClause+

TypecaseClause ::= TypecaseTypes ⇒ BlockElems
TypecaseTypes ::= (TypeList)

| Type
CaseElse ::= else ⇒ BlockElems

A typecase expression begins with typecase followed by an identifier or a sequence of parenthesized identifiers,
optionally followed by the token = and a binding expression, followed by of , a sequence of typecase clauses (each
consisting of a sequence of guarding types followed by the token ⇒ , followed by an expression block), an optional
else clause (consisting of else followed by the token ⇒ , followed by an expression block), and finally end .

A typecase expression with a binding expression evaluates the expression first; if it completes normally, the value
of the expression is bound to the identifiers and the first matching typecase clause is chosen. If there are multiple
identifiers, the binding expression must be evaluated to a tuple value of the same number of elements. A typecase
clause matches if the type of the value bound to each identifier is a subtype of the corresponding type in the clause. The
expression block of the first matched clause (and only that clause) is evaluated (see Section 13.11) to yield the value
of the typecase expression. If no matched clause is found, a MatchFailure exception is thrown (MatchFailure is

83

an unchecked exception). Unlike bindings in other contexts, the static type of such an identifier is not determined by
the static type of the expression it is bound to. If the static type of a subexpression in the bindings for a typecase
expression has type T , when typechecking each typecase clause, the static type of the corresponding identifier is the
intersection of T and the corresponding guarding type for that clause. The type of a typecase expression is the
union of types of all right-hand sides of the typecase clauses.

For example:

typecase x = myLoser .myField of
String⇒ x “foo”
Number⇒ x + 3
Object⇒ yogiBerraAutograph

end

Note that x has a different type in each clause.

For a typecase expression without a binding expression, the identifiers must be immutable variables in scope at that
point. In that case, the typecase expression is equivalent to one that rebinds the variables to their values, with the
new bindings shadowing the old ones: the first matching typecase clause is evaluated, and within that clause, the static
type of the variable is the intersection of its original type and the guarding type.

13.22 Atomic Expressions

Syntax:
FlowExpr ::= atomic AtomicBack

| tryatomic AtomicBack
AtomicBack ::= AssignExpr

| OpExpr
| DelimitedExpr

As Fortress is a parallel language, an executing Fortress program consists of a set of threads (See Section 5.4 for a
discussion of parallelism in Fortress). In multithreaded programs, it is often convenient for a thread to evaluate some
expressions atomically. For this purpose, Fortress provides atomic expressions.

An atomic expression consists of atomic followed by a body expression. Evaluating an atomic expression is
simply evaluating the body expression. All reads and all writes which occur as part of this evaluation will appear to
occur simultaneously in a single atomic step with respect to any action performed by any thread which is dynamically
outside. This is specified in detail in Chapter 19. The value and type of an atomic expression are the value and type
of its body expression.

A tryatomic expression consists of tryatomic followed by an expression. It acts exactly like atomic except that
in certain circumstances (see Section 21.5) it throws TryAtomicFailure and discards the effects of its body.

When the body of an atomic expression completes abruptly, the atomic expression completes abruptly in the same
way. If it completes abruptly by exiting to an enclosing label expression, writes within the block are retained
and become visible to other threads. If it completes abruptly by throwing an uncaught exception, all writes to objects
allocated before the atomic expression began evaluation are discarded. Writes to newly allocated objects are retained.
Any variable reverts to the value it held before evaluation of the atomic expression began. Thus, the only values
retained from the abruptly completed atomic expression will be reachable from the exception object through a chain
of newly allocated objects.

Atomic expressions may be nested arbitrarily; the above semantics imply that an inner atomic expression is atomic
with respect to evaluations which occur dynamically outside the inner atomic expression but dynamically inside an
enclosing atomic .

84

Implicit threads may be created dynamically within an atomic expression. These implicit threads will complete
before the atomic expression itself does so. The implicit threads may run in parallel, and will see one another’s
writes; they may synchronize with one another using nested atomic expressions.

Note that atomic expressions may be evaluated in parallel with other expressions. An atomic expression expe-
riences conflict when another thread attempts to read or write a memory location which is accessed by the atomic
expression. The evaluation of such an expression must be partially serialized with the conflicting memory operation
(which might be another atomic expression). The exact mechanism by which this occurs will vary; the necessary
serialization is provided by the implementation. In general, the evaluation of a conflicting atomic expression may
be abandoned, forcing the effects of execution to be discarded and execution to be retried. The longer an atomic
expression evaluates and the more memory it touches the greater the chance of conflict and the larger the bottleneck a
conflict may impose.

For example, the following code uses a shared counter atomically:

sum: Z32 := 0
accumArrayJN extends Number, nat xK(a: Array1JN, 0, xK): () =

for i← a.indices() do
atomic sum += ai

end

The loop body reads ai and sum , then adds them and writes the result back to sum ; this will appear to occur
atomically with respect to all other threads—including both other iterations of the loop body and other simultaneous
calls to accumArray . Note in particular that the atomic expression will appear atomic with respect to reads and
writes of ai and sum that do not occur in atomic expressions.

13.23 Spawn Expressions

Syntax:
FlowExpr ::= spawn Expr

A spawned thread is created using a spawn expression. A spawn expression consists of spawn followed by an
expression. A spawn expression spawns a thread which evaluates its subexpression in parallel with any succeeding
evaluation. The value of a spawn expression is the spawned thread and the type of the expression is ThreadJT K ,
where T is the static type of the expression spawned. A spawn expression cannot be run within the body of an
atomic expression. The semantics of spawned threads are discussed in Section 5.4.

13.24 Throw Expressions

Syntax:
FlowExpr ::= throw Expr

A throw expression consists of throw followed by a subexpression. The type of the subexpression must be a subtype
of the type Exception (see Chapter 14). A throw expression evaluates its subexpression to an exception value and
throws the exception value; the expression completes abruptly and has BottomType .

The type Exception has exactly two direct mutually exclusive subtypes, CheckedException and UncheckedException .
Every CheckedException that is thrown must be caught or forbidden by an enclosing try expression (see Sec-
tion 13.25), or it must be declared in the throws clause of an enclosing functional declaration (see Section 9.1).
Similarly, every CheckedException declared to be thrown in the static type of a functional called must be either

85

caught or forbidden by an enclosing try expression, or declared in the throws clause of an enclosing functional
declaration.

13.25 Try Expressions

Syntax:
DelimitedExpr ::= try BlockElems Catch? (forbid TraitTypes)? (finally BlockElems)? end
Catch ::= catch BindId CatchClauses
CatchClauses ::= CatchClause+

CatchClause ::= TraitType ⇒ BlockElems

A try expression starts with try followed by an expression block (the try block), followed by an optional catch
clause, an optional forbid clause, an optional finally clause, and finally end . A catch clause consists of catch
followed by an identifier, followed by a sequence of subclauses (each consisting of an exception type followed by the
token ⇒ followed by an expression block). A forbid clause consists of forbid followed by a set of exception
types. A finally clause consists of finally followed by an expression block. Note that the try block and the
clauses form expression blocks and have the various properties of expression blocks (described in Section 13.11).

The expressions in the try block are first evaluated in order until they have all completed normally, or until one of
them completes abruptly. If the try block completes normally, the provisional value of the try expression is the
value of the last expression in the try block. In this case, and in case of exiting to an enclosing label expression,
the catch and forbid clauses are ignored.

If an expression in the try block completes abruptly by throwing an exception, the exception value is bound to the
identifier specified in the catch clause, and the type of the exception is matched against the subclauses of the catch
clause in turn, exactly as in a typecase expression (Section 13.21). The right-hand-side expression block of the first
matching subclause is evaluated. If it completes normally, its value is the provisional value of the try expression. If
the catch clause completes abruptly, the try expression completes abruptly. If a thrown exception is not matched
by the catch clause (or this clause is omitted), but it is a subtype of the exception type listed in a forbid clause, a
new ForbiddenException is created with the thrown exception as its argument and thrown.

If an exception thrown from a try block is matched by both catch and forbid clauses, the exception is caught by
the catch clause. If an exception thrown from a try block is not matched by any catch or forbid clause, the
try expression completes abruptly.

The expression block of the finally clause is evaluated after completion of the try block and any catch or
forbid clause. The type of this expression block must be (). The expressions in the finally clause are evaluated
in order until they have all completed normally, or until one of them completes abruptly. In the latter case, the try
expression completes abruptly exactly as the subexpression in the finally clause does.

If the finally clause completes normally, and the try block or the catch clause completes normally, then the
try expression completes normally with the provisional value of the try expression. Otherwise, the try expression
completes abruptly as specified above. The type of a try expression is the union of the type of the try block and
the types of all the right-hand sides of the catch clauses.

For example, the following try expression:

try
inp = read(file)
write(inp,newFile)

forbid IOFailure
end

is equivalent to:

86

try
inp = read(file)
write(inp,newFile)

catch e
IOFailure⇒ throw ForbiddenException(e)

end

The following example ensures that file is closed properly even if an IO error occurs:

try
open(file)
inp = read(file)
write(inp,newFile)

catch e
IOFailure⇒ throw ForbiddenException(e)

finally
close(file)

end

13.26 Tuple Expressions

Syntax:
TupleExpr ::= ((Expr ,)+ Expr)

A tuple expression is an ordered sequence of expressions separated by commas and enclosed in parentheses. There
must be at least two element expressions. The type of a tuple expression is a tuple type (as discussed in Section 6.5).
Each element of a tuple is evaluated in parallel in a separate implicit thread (see Section 5.4).

13.27 Aggregate Expressions

Syntax:
Primary ::= LeftEncloser ExprList? RightEncloser
ExprList ::= Expr(, Expr)∗

ArrayExpr ::= [RectElements]
RectElements ::= Expr MultiDimCons∗

MultiDimCons ::= RectSeparator Expr
RectSeparator ::= ; +

| Whitespace

Aggregate expressions evaluate to values that are themselves homogeneous collections of values. Each subexpression
of an aggregate expression is evaluated in parallel in a separate implicit thread (see Section 5.4). With the exception
of array expressions, the resulting values are passed to the appropriate bracketing operator, which is a function with
a varargs parameter constructing the aggregate. The array aggregate operations construct the aggregate directly, after
all subexpressions have completed normally. Any aggregate expression may reserve storage for its result before its
elements complete evaluation.

Functions defining aggregate expressions are provided in the Fortress standard libraries for sets, maps, lists, matrices,
vectors, and arrays.

87

13.27.1 Set Expressions

Set element expressions are enclosed in braces and separated by commas. The type of a set expression is SetJT K ,
where T is the union type of the types of all element expressions of the set expression.

Set containment is checked with the operator ∈. For example:

3 ∈ {0, 1, 2, 3, 4, 5}

evaluates to true .

13.27.2 Map Expressions

Map entries are enclosed in curly braces, separated by commas, and matching pairs are separated by 7→. The type of a
map expression is MapJK, V K where K is the union of the types of all left-hand-side expressions of the map entries,
and V is the union of the types of all right-hand-side expressions of the map entries.

A map m is indexed by placing an element in the domain of m enclosed in brackets immediately after an expression
evaluating to m . For example, if:

m = { “a” 7→ 0, “b” 7→ 1, “c” 7→ 2 }

then m[“b”] evaluates to 1 . In contrast, m[“x”] throws a NotFound exception, as “x” is not an index of m .

13.27.3 List Expressions

List element expressions are enclosed in angle brackets 〈 and 〉 and are separated by commas. The type of a list
expression is ListJT K where T is the union type of the types of all element expressions.

A list l is indexed by placing an index enclosed in square brackets immediately after an expression evaluating to l .
Lists are always indexed from 0 . For example:

〈3, 2, 1, 0〉[2]

evaluates to 1 .

13.27.4 Array Expressions

Array element expressions are enclosed in brackets. Element expressions along a row are separated only by whites-
pace. Two dimensional array expressions are written by separating rows with newlines or semicolons. If a semicolon
appears, whitespace before and after the semicolon is ignored. The parts of higher-dimensional array expressions are
separated by repeated-semicolons, where the dimensionality of the result is equal to one plus the number of repeated
semicolons. The type of a k-dimensional array expression is ArraykJT, 0, n0, · · · , 0, nk−1K , where T is the union
type of the types of the element expressions and n0, ..., nk−1 are the sizes of the array in each dimension1. This type
can be abbreviated as T [n0, · · · , nk−1] .

A k-dimensional array A is indexed by placing a sequence of k indices enclosed in brackets, and separated by commas,
after an expression evaluating to A . By default, arrays are indexed from 0. The horizontal dimension of an array is
the last dimension mentioned in the array index. For example:

A: Z32[3, 3] = [1 2 3; 4 5 6; 7 8 9]

1 As of March 2008, the Fortress library provides Arrayk types for 1 ≤ k ≤ 3.

88

then A[1, 0] evaluates to 4 .

An array of two dimensions whose elements are a subtype of Number is a matrix. Matrices are indexed in the same
manner as arrays.

A one-dimensional array whose elements are a subtype of Number is a vector.

The element expressions in an array expression may be either scalars or array expressions themselves. If an element
is an array expression, it is “flattened” (pasted) into the enclosing expression. This pasting works because array
expressions never contain other arrays as elements. The elements along a row (or column) must have the same number
of columns (or rows), though two elements in different rows (columns) need not have the same number of columns
(rows).

The following four examples are all equivalent:

A: Z32[2, 2] = [3 4
5 6]

A: Z32[2, 2] = [3 4;
5 6]

A: Z32[2, 2] = [3 4

; 5 6]

A: Z32[2, 2] = [3 4; 5 6]

Here is a 3× 3× 3× 2 matrix example:

[1 0 0
0 1 0
0 0 1; ; 0 1 0

1 0 1
0 1 0; ; 1 0 1

0 1 0
1 0 1]

13.28 Comprehensions

Syntax:
Comprehension ::= BIG ? { StaticArgs? Entry | GeneratorClauseList }

| BIG ? LeftEncloser StaticArgs? Expr | GeneratorClauseList RightEncloser
Entry ::= Expr 7→ Expr

Fortress provides comprehension syntax, in which a generator clause list binds values used in the body expression on
the left-hand side of the token | . As described in Section 13.14, each iteration of the body expression must be assumed
to execute in its own implicit thread. Comprehensions evaluate to aggregate values and have corresponding aggregate
types. The rules for evaluation of a comprehension are similar to those for a reduction expression (see Section 13.17).

The relationship between a comprehension and an aggregate expression (Section 13.27) is similar to the relationship
between a reduction expression (Section 13.17) and the corresponding infix operator application (Section 13.7). The
language does not enforce an explicit connection between comprehension syntax and the corresponding aggregate
syntax, but in practice libraries that provide definitions for aggregate expressions are expected to define a correspond-
ing comprehension and vice versa. As with reduction expressions, a comprehension using a particular set of enclosers

89

corresponds to a call to a big bracketing operator. Thus the definition of set comprehensions is given by a function
with the following signature:

opr BIG{JT Kg : (ReductionJR0K, T → R0)→ R0}: SetJT K

This is almost identical to the signature required to define a reduction expression BIG Op , shown in Section 13.17.
Further information on defining comprehensions are described in Section 21.7.

A set comprehension is enclosed in braces, with a left-hand body separated by the token | from a generator list. For
example, the comprehension:

{x2 | x← {0, 1, 2, 3, 4, 5}, x MOD 2 = 0}

evaluates to the set

{0, 4, 16}

Map comprehensions are like set comprehensions, except that the left-hand body must be of the form e1 7→ e2 . If
e1 produces the same value but e2 a different value on more than one iteration of the generator list, a KeyOverlap
exception is thrown. For example:

{x2 7→ x3 | x← {0, 1, 2, 3, 4, 5}, x MOD 2 = 0}

evaluates to the map

{0 7→ 0, 4 7→ 8, 16 7→ 64}

List comprehensions are like set comprehensions, except that they are syntactically enclosed in angle brackets. For
example:

〈x2 | x← {0, 1, 2, 3, 4, 5}, x MOD 2 = 0〉

evaluates to the list

〈0, 4, 16〉

Note that the order of elements in the resulting list corresponds to the natural order of the generators in the generator
clause list (see Section 21.7).

13.29 Type Ascription

Syntax:
Expr ::= Expr as Type

An expression consisting of a single subexpression, followed by as , followed by a type, is a type ascription. The
value of the expression is the value of the subexpression. The static type of the expression is the ascribed type. The
type of the subexpression must be a subtype of the ascribed type. A type ascription does not affect the dynamic type
of the value the expression evaluates to (unlike a type assumption described in Section 13.30).

13.30 Type Assumption

Syntax:
Expr ::= Expr asif Type

90

An expression consisting of a single subexpression, followed by asif , followed by a type, is a type assumption. The
value of the expression is the value of the subexpression. The static type of the expression is the given type. The type
of the subexpression must be a subtype of the given type. A type assumption considers both the static and the dynamic
type of the value of the expression to be the specified type for the purposes of the immediately enclosing function,
method, or operator invocation or field access. This is in contrast to type ascription, which only gives a static type to
an expression. Type assumption is used to access a method provided by a supertrait when multiple supertraits provide
different methods with the same name. Fortress thus provides a richer version of type assumption operations such as
super in the Java Programming Language.

91

Chapter 14

Exceptions

Exceptions are values that can be thrown and caught, via throw expressions (described in Section 13.24) and catch
clauses of try expressions (described in Section 13.25). When a throw expression “ throw e ” is evaluated, the
subexpression e is evaluated to an exception. The static type of e must be a subtype of Exception . Then the throw
expression tries to transfer control to its dynamically containing block (described in Chapter 5), from the innermost
outward, until either (i) an enclosing try expression is reached, with a catch clause matching a type of the thrown
exception, or (ii) the outermost dynamically containing block is reached.

If a matching catch clause is reached, the right-hand side of the first matching subclause is evaluated. If no matching
catch clause is found before the outermost dynamically containing block is reached, the outermost dynamically
containing block completes abruptly whose cause is the thrown exception.

If an enclosing try expression of a throw expression includes a finally clause, and the try expression completes
abruptly, the finally clause is evaluated before control is transferred to the dynamically containing block.

14.1 Causes of Exceptions

Every exception is thrown for one of the following reasons:

1. A throw expression is evaluated.

2. An implementation resource is exceeded (e.g., an attempt is made to allocate beyond the set of available loca-
tions).

14.2 Types of Exceptions

All exceptions are subtypes of the type Exception declared as follows:

trait Exception comprises {CheckedException,UncheckedException }
end

Every exception is a subtype of either type CheckedException or UncheckedException:

trait CheckedException extends Exception excludes UncheckedException
end

trait UncheckedException extends Exception excludes CheckedException

92

end

93

Chapter 15

Overloading and Multiple Dispatch

In order to synchronize the Fortress language specification with the implementation, it was necessary to drop static
overloading checks from the specification. Contrary to the Fortress Language Specification, Version 1.0 β , there may
not exist a unique most specific declaration for a functional call. Thus, it may be ambiguous which declaration shall
be applied at run time. This possibility of ambiguous calls at run time will be eliminated by a set of static overloading
checks when it is implemented.

Fortress allows functions and methods (collectively called functionals) to be overloaded. That is, there may be multiple
declarations for the same functional name visible in a single scope (which may include inherited method declarations),
and several of them may be applicable to any particular functional call.

However, with these benefits comes the potential for ambiguous calls at run time. For an overloaded functional call,
the most specific applicable declaration is chosen, if any. Otherwise, any of the applicable declarations such that no
other applicable declaration is more specific than them is chosen.

In this chapter, we describe how to determine which declarations are applicable to a particular functional call, and
when several are applicable, how to select among them. We also provide overloading rules for the declarations of
functionals to eliminate some possibility of ambiguous calls at run time, whether or not these calls actually appear in
the program. Section 15.1 introduces some terminology and notation. In Section 15.2, we show how to determine
which declarations are applicable to a named functional call (a function call described in Section 13.6 or a naked
method invocation described in Section 13.5) when all declarations have only ordinary parameters (without varargs
parameters). We discuss how to handle dotted method calls (described in Section 13.4) in Section 15.3, and declara-
tions with varargs parameters in Section 15.4. Determining which declaration is applied, if several are applicable, is
discussed in Section 15.5. Section 15.6 outlines several criteria for valid functional overloading.

15.1 Principles of Overloading

Fortress allows multiple functional declarations of the same name to be declared in a single scope. However, recall
from Chapter 7 the following shadowing rules:

• dotted method declarations shadow top-level function declarations with the same name, and

• dotted method declarations provided by a trait or object declaration or object expression shadow functional
method declarations with the same name that are provided by a different trait or object declaration or object
expression.

94

Also, note that a trait or object declaration or object expression must not have a functional method declaration and a
dotted method declaration with the same name, either directly or by inheritance. Therefore, top-level functions can
overload with other top-level functions and functional methods, dotted methods with other dotted methods, and func-
tional methods with other functional methods and top-level functions. If a top-level function declaration is overloaded
with a functional method declaration, the top-level function declaration must not be more specific than the functional
method declaration.

Operator declarations with the same name but different fixity are not a valid overloading; they are unambiguous
declarations. An operator method declaration whose name is one of the operator parameters (described in Section 12.4)
of its enclosing trait or object may be overloaded with other operator declarations in the same component. Therefore,
such an operator method declaration must satisfy the overloading rules (described in Section 15.6) with every operator
declaration in the same component.

Recall from Chapter 6 that we write T � U when T is a subtype of U , and T ≺ U when T � U and T 6= U .

15.2 Applicability to Named Functional Calls

In this section, we show how to determine which declarations are applicable to a named functional call when all
declarations have only ordinary parameters (i.e., without varargs parameters).

For the purpose of defining applicability, a named functional call can be characterized by the name of the functional
and its argument type. Recall that a functional has a single parameter, which may be a tuple (a dotted method has
a receiver as well). We use call f (C) to refer to a named functional call with name f and whose argument, when
evaluated, has dynamic type C . We assume throughout this chapter that all static variables in functional calls have
been instantiated or inferred.

We also use function declaration f (P) : U to refer to a function declaration with function name f , parameter type P ,
and return type U .

For method declarations, we must take into account the self parameter, as follows:

A dotted method declaration P0.f (P) : U is a dotted method declaration with name f , where P0 is the trait or
object type in which the declaration appears, P is the parameter type, and U is the return type. (Note that despite the
suggestive notation, a dotted method declaration does not explicitly list its self parameter.)

A functional method declaration f (P) : U with self parameter at i is a functional method declaration with name f ,
with the parameter self in the ith position of the parameter type P , and return type U . Note that the static type of
the self parameter is the trait or object trait type in which the declaration f (P) : U occurs. In the following, we will
use Pi to refer to the ith element of P .

We elide the return type of a declaration, writing f (P) and P0.f (P), when the return type is not relevant to the
discussion. Note that static parameters may appear in the types P0, P , and U .

A declaration f (P) is applicable to a call f (C) if the call is in the scope of the declaration and C � P . (See Chapter 7
for the definition of scope.) If the parameter type P includes static parameters, they are inferred as described in
Chapter 18 before checking the applicability of the declaration to the call.

Note that a named functional call f (C) may invoke a dotted method declaration if the declaration is provided by the
trait or object enclosing the call. To account for this, let C0 be the trait or object declaration immediately enclosing the
call. Then we consider a named functional call f (C) as C0.f (C) if C0 provides dotted method declarations applicable
to f (C), and use the rule for applicability to dotted method calls (described in Section 15.3) to determine which
declarations are applicable to C0.f (C).

95

15.3 Applicability to Dotted Method Calls

Dotted method applications can be characterized similarly to named functional applications, except that, analogously
to dotted method declarations, we use C0 to denote the dynamic type of the receiver object, and, as for named func-
tional calls, C to denote the dynamic type of the argument of a dotted method call. We write C0.f (C) to refer to the
call.

A dotted method declaration P0.f (P) is applicable to a dotted method call C0.f (C) if C0 � P0 and C � P . If the
types P0 and P include static parameters, they are inferred as described in Chapter 18 before checking the applicability
of the declaration to the call.

15.4 Applicability for Functionals with Varargs Parameters

A declaration with a varargs parameter corresponds to an infinite number of declarations, one for every number of
arguments that may be passed to the varargs parameter. In practice, we can bound that number by the maximum
number of arguments that the functional is called with anywhere in the program (in other words, a given program
will contain only a finite number of calls with different numbers of arguments). The expansion described here is a
conceptual one to simplify the description of the semantics; we do not expect a real implementation to actually expand
these declarations at compile time. For example, the following declaration:

f(x : Z, y : Z, z : Z . . .) : Z

would be expanded into:

f(x : Z, y : Z) : Z
f(x : Z, y : Z, z1 : Z) : Z
f(x : Z, y : Z, z1 : Z, z2 : Z) : Z
f(x : Z, y : Z, z1 : Z, z2 : Z, z3 : Z) : Z
. . .

A declaration with a varargs parameter is applicable to a call if any one of the expanded declarations is applicable.

15.5 Overloading Resolution

To evaluate a given functional call, it is necessary to determine which functional declaration to dispatch to. To do
so, we consider the declarations that are applicable to that call at run time. If there is exactly one such declaration,
then the call dispatches to that declaration. If there is no such declaration, then the call is undefined, which is an
error. If multiple declarations are applicable to the call at run time, then we choose an arbitrary declaration among the
declarations such that no other applicable declaration is more specific than them.

We use the subtype relation to compare parameter types to determine a more specific declaration. Formally, a dec-
laration f (P) is more specific than a declaration f (Q) if P ≺ Q . Similarly, a declaration P0.f (P) is more specific
than a declaration Q0.f (Q) if P0 ≺ Q0 and P ≺ Q . If the declarations include static parameters, they are inferred as
described in Chapter 18 before comparing their parameter types to determine which declaration is more specific.

15.6 Overloading Rules for Functional Declarations

This section provides rules for valid functional overloading. If a pair of overloaded declarations satisfies any one
of the following three rules, it is considered a valid overloading. The overloading rules given in this section are

96

disjoint; at most one rule applies to each pair of overloaded declarations. It is possible for new rules to be added which
allow additional overloadings. Valid overloadings for declarations that contain varargs parameters are determined by
analyzing the expansion of these declarations as described in Section 15.4. Therefore, varargs parameters are ignored
in the remainder of this section.

15.6.1 Type Relationships with Static Parameters

Before describing the overloading rules, we extend two type relations to take static parameters into account. For type
parameters, we use their bounds as their supertypes. As with the rest of this chapter, the type relations described in
this section may be replaced when the static type checker and the type inference engine are implemented.

We say that type T is a subtype of U if any of the following holds:

• neither type includes static parameters and T is a subtype of U (as described in Section 6.2),

• U does not include any static parameters and any supertype of T that does not include a static parameter is a
subtype of U (as described in Section 6.2).

We say that two types exclude each other if any of the following holds:

• neither type can be extended,

• one cannot be extended, and the other is not its supertype, or

• their supertypes exclude each other.

15.6.2 Subtype Rule

If the parameter type of one declaration is a subtype of the parameter type of another (and they are not the same) then
there is no ambiguity between these two declarations: for every call to which both are applicable, the first is more
specific. This is the basis of the Subtype Rule.

The Subtype Rule also requires a relationship between the return types of the two declarations. Without such a
requirement, a program may violate type safety.

The Subtype Rule for Functions and Functional Methods: Suppose that f (P) : U and f (Q) : V are two distinct
function or functional method declarations in a single scope. If P ≺ Q and U � V then f (P) and f (Q) are a valid
overloading.

The Subtype Rule for Dotted Methods: Suppose that P0.f (P) : U and Q0.f (Q) : V are two distinct dotted
method declarations provided by a trait or object C. If P0 ≺ Q0, P ≺ Q , and U � V then P0.f (P) and Q0.f (Q) are
a valid overloading.

15.6.3 Exclusion Rule

The basic idea behind the Exclusion Rule is that if there is no call to which two overloaded declarations are both
applicable then there is no potential for ambiguous calls. In such a case, we say that the declarations are exclusive. We
write T ♦ U if T and U exclude each other. Note that if T ♦ U then no type is substitutable for both T and U .

97

The Exclusion Rule for Functions and Functional Methods: Suppose that f (P) and f (Q) are two distinct func-
tion or functional method declarations in a single scope. If P ♦ Q then f (P) and f (Q) are a valid overloading.

The Exclusion Rule for Dotted Methods: Suppose that P0.f (P) and Q0.f (Q) are two distinct dotted method
declarations provided by a trait or object C. If P ♦ Q then P0.f (P) and Q0.f (Q) are a valid overloading.

15.6.4 Meet Rule

If neither the Subtype Rule nor the Incompatibility Rule holds for a pair of overloaded declarations then the declara-
tions introduce the possibility of ambiguity. This ambiguity can be eliminated by a disambiguating declaration; this
is, for every call to which both declarations are applicable, a third, more specific, declaration that is also applicable
can resolve the ambiguity. Thus, at run time, neither of the pair of declarations is executed because the disambiguating
declaration is also applicable, and it is more specific than both.

The Meet Rule for Functions: Suppose that f (P) and f (Q) are two function declarations in a single scope such
that neither P nor Q is a subtype of the other and P and Q do not exclude each other. f (P) and f (Q) are a valid
overloading if there is a declaration f (P ∩Q) in the scope.

We write P ∩ Q to denote the intersection of types P and Q . If for some type S we have S � P and S � Q then
S � (P ∩ Q), but it is not necessarily the case that S = (P ∩ Q) since another type may be more specific than both
P and Q.

Unlike for functions, the Meet Rule for dotted methods applies only to dotted methods that are provided by the same
trait or object. This is possible because two dotted methods are applicable to a given call A0.f(A) only if they are
both provided by the trait or object A0.

The Meet Rule for Dotted Methods: Suppose that P0.f (P) and Q0.f (Q) are two dotted method declarations
provided by a trait or object C such that neither (P0,P) nor (Q0,Q) is a subtype of the other and P and Q do not
exclude each other. P0.f (P) and Q0.f (Q) are a valid overloading if there is a declaration R0.f (P ∩ Q) provided by
C with R0 � (P0 ∩Q0).

Recall that functional methods can be viewed semantically as top-level functions, as described in Section 10.2. How-
ever, treating functional methods as top-level functions for determining valid overloading is too restrictive. In the
following example:

trait Z
opr @(self): Z

end
trait R

opr @(self): R
end

if the functional methods were interpreted as top-level functions then this program would define two top-level functions
with parameter types Z and R . These declarations would be an invalid overloading because there is no relation
between Z and R ; another trait may extend them both without declaring its own version of the functional method
which may lead to an ambiguous call at run time. However, notice that declarations are ambiguous only for calls on
arguments that extend both Z and R , and any type that extends both can include a new declaration that disambiguates
them. We use this intuition to allow such overloadings.

98

The Meet Rule for Functional Methods: Suppose that f (P) and f (Q) are two functional method declarations
occurring in trait or object declarations or object expressions such that neither P nor Q is a subtype of the other and
P and Q do not exclude each other. Let f (P) and f (Q) have self parameters at i and j respectively. f (P) and f (Q)
are a valid overloading if all of the following hold:

• i = j

• if there exists a trait or object C that provides both f (P) and f (Q) then P 6= Q and there is a declaration
f (P ∩Q) provided by C having self parameter at i.

Notice that the Meet Rule for functional methods requires the self parameters of two overloaded declarations to be in
the same position. This requirement guarantees that no ambiguity is caused by the position of the self parameter. Two
declarations which differ in the position of the self parameter must satisfy either the Subtype Rule or the Exclusion
Rule to be a valid overloading.

Functional method declarations can overload with function declarations. A valid overloading between a functional
method declaration and a function declaration is determined by applying the (more restrictive) Meet Rule for functions
to both declarations.

99

Chapter 16

Operators

Operators are like functions or methods; operator declarations are described in Chapter 22 and operator applications
are described in Section 13.7, Section 13.17, and Section 13.28. Just as functions or methods may be overloaded
(see Chapter 15 for a discussion of overloading), so operators may have overloaded declarations of the same fixity.
Operator declarations with the same operator name but with different fixities are valid declarations because it is always
unambiguous which declaration shall be applied to an application of the operator. Calls to overloaded operators are
resolved first via the fixity of the operators based on the context of the calls. Then, among the applicable declarations
with that fixity, the most specific declaration is chosen.

Most operators can be used as prefix, infix, postfix, or nofix operators as described in Section 16.3 (nofix operators
take no arguments); the fixity of an operator is determined syntactically. A simple example is that ‘− ’ may be either
infix or prefix, as is conventional. As another example, ‘ ! ’ may be a postfix operator that computes factorial when
applied to integers. These operators might not be used as enclosing operators.

Several pairs of operators can be used as enclosing operators. Any number of ‘|’ (vertical line) can be used as both
infix operators and enclosing operators.

Some operators are always postfix: a ‘ˆ’ followed by any ordinary operator (with no intervening whitespace) is
considered to be a superscripted postfix operator. For example, ‘ ˆ∗ ’ and ‘ ˆ+ ’ and ‘ ˆ? ’ are available for use as part
of the syntax of extended regular expressions. As a very special case, ‘ ˆT ’ is also considered to be a superscripted
postfix operator, typically used to signify matrix transposition.

Finally, there are special operators such as juxtaposition. Juxtaposition may be a function application or an infix
operator in Fortress. When the left-hand-side expression is a function, juxtaposition performs function application;
when the left-hand-side expression is a number, juxtaposition conventionally performs multiplication; when the left-
hand-side expression is a string, juxtaposition conventionally performs string concatenation.

16.1 Operator Names

To support a rich mathematical notation, Fortress allows most Unicode characters that are specified to be mathematical
operators to be used as operators in Fortress expressions, as well as these characters:

! @ # $ % * + - = | : < > / ? ˆ ˜

In addition, a token that is made up of a mixture of uppercase letters and underscores (but no digits), does not begin or
end with an underscore, and contains at least two different letters is also considered to be an operator:

100

MAX MIN

The above operators are rendered as: MAX MIN . (See Section 4.13 and Appendix C for detailed descriptions of
operator names in Fortress.)

16.2 Operator Precedence and Associativity

Fortress specifies that certain operators have higher precedence than certain other operators and certain operators
are associative, so that one need not use parentheses in all cases where operators are mixed in an expression. (See
Appendix C for a detailed description of operator precedence and associativity in Fortress.) However, Fortress does not
follow the practice of other programming languages in simply assigning an integer to each operator and then saying
that the precedence of any two operators can be compared by comparing their assigned integers. Instead, Fortress
relies on defining traditional groups of operators based on their meaning and shape, and specifies specific precedence
relationships between some of these groups. If there is no specific precedence relationship between two operators,
then parentheses must be used. For example, Fortress does not accept the expression a + b ∪ c ; one must write either
(a + b) ∪ c or a + (b ∪ c) . (Whether or not the result then makes any sense depends on what definitions have been
made for the + and ∪ operators—see Chapter 22.)

Here are the basic principles of operator precedence and associativity in Fortress:

• Member selection (.) and method invocation (.name(. . .)) are not operators. They have higher precedence
than any operator listed below.

• Subscripting ([] and any kind of subscripting operators, which can be any kind of enclosing operators), su-
perscripting (ˆ), and postfix operators have higher precedence than any operator listed below; within this group,
these operations are left-associative (performed left-to-right).

• Tight juxtaposition, that is, juxtaposition without intervening whitespace, has higher precedence than any oper-
ator listed below. The associativity of tight juxtaposition is type-dependent; see Section 16.8.

• Next, tight fractions, that is, the use of the operator ‘ / ’ with no whitespace on either side, have higher prece-
dence than any operator listed below. The tight-fraction operator has no precedence compared with itself, so it
is not permitted to be used more than once in a tight fraction without use of parentheses.

• Loose juxtaposition, that is, juxtaposition with intervening whitespace, has higher precedence than any operator
listed below. The associativity of loose juxtaposition is type-dependent and is different from that for tight
juxtaposition; see Section 16.8. Note that lopsided juxtaposition (having whitespace on one side but not the
other) is a static error as described in Section 16.3.

• Prefix operators have higher precedence than any operator listed below. However, it is a static error for an
operand of a loose prefix operator to be an operand of a tight infix operator.

• The infix operators are partitioned into certain traditional groups, as explained below. They have higher prece-
dence than any operator listed below.

• The equal symbol ‘ = ’ in binding context, the assignment operator ‘ := ’, and compound assignment operators
(+= , − = , ∧ = , ∨ = , ∩ = , ∪ = , and so on as described in Section 13.7) have lower precedence than any
operator listed above. Note that compound assignment operators themselves are not operator names.

The infix binary operators are divided into four general categories: arithmetic, relational, boolean, and other. The arith-
metic operators are further categorized as multiplication/division/intersection, addition/subtraction/union, and other.
The relational operators are further categorized as equivalence, inequivalence, ordering, and other. The boolean oper-
ators are further categorized as conjunctive, disjunctive, and other.

The arithmetic and relational operators are further divided into groups based on shape:

101

• “ordinary” operators: +− · × /±∓⊕	�⊗����� <≤≥>�≪≫�≮��≯ etc.

The arithmetic operations in this group are further subdivided into “plain” (+− · × /±∓ etc.), “circled”
(⊕	�⊗� etc.), “boxed” (���� etc.), and so on; any of these groups may be used with the plain relational
operators (<≤≥>�≪≫�≮��≯ etc.), but the groups might not be mixed.

• “rounded horseshoe” or “set” operators: ∩ e ∪ d] ⊂⊆⊇⊃bc6⊂*+6⊃ etc.

• “square horseshoe” operators: ut @vwA6v6w etc.

• “curly” operators: fg ≺���⊀646<� etc.

• “triangular” relations: CEDB 6547 etc.

• “chickenfoot” relations: <--> etc.

The principles of precedence for binary operators are then as follows:

• A multiplication or division or intersection operator has higher precedence than any addition or subtraction or
union operator that is in the same shape group.

• Certain addition and subtraction operators come in pairs, such as + and − , or ⊕ and 	 , which are considered
to have the same precedence and so may be mixed within an expression and are grouped left-associatively.
These addition-subtraction pairs are the only cases where two different operators are considered to have the
same precedence.

• An arithmetic operator has higher precedence than any equivalence or inequivalence operator.

• An arithmetic operator has higher precedence than any relational operator that is in the same shape group.

• A relational operator has higher precedence than any boolean operator.

• A conjunctive boolean operator has higher precedence than any disjunctive boolean operator.

While the rules of precedence are complicated, they are intended to be both unsurprising and conservative. Note
that operator precedence in Fortress is not always transitive; for example, while + has higher precedence than
< (so you can write a + b < c without parentheses), and < has higher precedence than ∨ (so you can write
a < b ∨ c < d without parentheses), it is not true that + has higher precedence than ∨—the expression a ∨ b + c
is not permitted, and one must instead write (a ∨ b) + c or a ∨ (b + c) .

Another point is that the various multiplication and division operators do not have “the same precedence”; they may
not be mixed freely with each other. For example, one cannot write u · v × w ; one must write (u · v) × w or
(more likely) u · (v × w) . Similarly, one cannot write a � b / c � d ; but juxtaposition does bind more tightly
than a loose (whitespace-surrounded) division slash, so one is allowed to write a b / c d , and this means the same
as (a b)/(c d) . On the other hand, loose juxtaposition binds less tightly than a tight division slash, so that a b/c d
means the same as a (b/c) d . On the other other hand, tight juxtaposition binds more tightly than tight division, so
that (n + 1)/(n + 2)(n + 3) means the same as (n + 1)/((n + 2)(n + 3)) .

There are two additional rules intended to catch misleading code: it is a static error for an operand of a tight infix
or tight prefix operator to be a loose juxtaposition, and it is a static error if the rules of precedence determine that a
use of infix operator a has higher or equal precedence than a use of infix operator b , but that particular use of a is
loose and that particular use of b is tight. Thus, for example, the expression sin x + y is permitted, but sin x+y
is not permitted. Similarly, the expression a · b + c is permitted, as are a·b + c and a·b+c , but a · b+c is not
permitted. (The rule detects only the presence or absence of whitespace, not the amount of whitespace, so a · b + c
is permitted. You have to draw the line somewhere.)

When in doubt, just use parentheses. If there’s a problem, the compiler will (probably) let you know.

102

16.3 Operator Fixity

Most operators in Fortress can be used variously as prefix, postfix, infix, or nofix operators. (See Section 16.4 for
a discussion of how infix operators may be chained.) Some operators can be used in pairs as enclosing (bracketing)
operators—see Section 16.5. The Fortress language dictates only the rules of syntax; whether an operator has a
meaning when used in a particular way depends only on whether there is a definition in the program for that operator
when used in that particular way (see Chapter 22).

The fixity of a non-enclosing operator is determined by context. To the left of such an operator we may find (1) a
primary tail (described below), (2) another operator, or (3) a comma, semicolon, or left encloser. To the right we may
find (1) a primary tail, (2) another operator, (3) a comma, semicolon, or right encloser, or (4) a line break. A primary
tail is an identifier, a literal, a right encloser, or a superscripted postfix operator (exponent operator). Considered in
all combinations, this makes twelve possibilities. In some cases one must also consider whether or not whitespace
separates the operator from what lies on either side. The rules of operator fixity are specified by Figure 16.1, where
the center column indicates the fixity that results from the left and right context specified by the other columns.

left context whitespace operator fixity whitespace right context

primary tail

yes
yes
no
no

infix
error (infix)

postfix
infix

yes
no
yes
no

primary tail

primary tail

yes
yes
no
no

infix
error (infix)

postfix
infix

yes
no
yes
no

operator

primary tail yes
no

error (postfix)
postfix

, ; right encloser

primary tail yes
no

infix
postfix

line break

operator prefix primary tail
operator prefix operator
operator error (nofix) , ; right encloser
operator error (nofix) line break

, ; left encloser prefix primary tail
, ; left encloser prefix operator
, ; left encloser nofix , ; right encloser
, ; left encloser error (prefix) line break

Figure 16.1: Operator Fixity (I)

A case described in the center column of the table as an error is a static error; for such cases, the fixity mentioned
in parentheses is the recommended treatment of the operator for the purpose of attempting to continuing the parse in
search of other errors.

The table may seem complicated, but it all boils down to a couple of practical rules of thumb:

1. Any operator can be prefix, postfix, infix, or nofix.

2. An infix operator can be loose (having whitespace on both sides) or tight (having whitespace on neither side),
but it mustn’t be lopsided (having whitespace on one side but not the other).

3. A postfix operator must have no whitespace before it and must be followed (possibly after some whitespace) by
a comma, semicolon, right encloser, or line break.

103

left context whitespace operator fixity whitespace right context

primary tail

yes
yes
no
no

infix
left encloser

right encloser
infix

yes
no
yes
no

primary tail

primary tail

yes
yes
no
no

infix
left encloser

right encloser
infix

yes
no
yes
no

operator

primary tail yes
no

error (right encloser)
right encloser

, ; right encloser

primary tail yes
no

infix
right encloser

line break

operator error (left encloser)
left encloser

yes
no primary tail

operator error (left encloser)
left encloser

yes
no operator

operator error (nofix) , ; right encloser
operator error (nofix) line break

, ; left encloser left encloser primary tail
, ; left encloser left encloser operator
, ; left encloser nofix , ; right encloser
, ; left encloser error (left encloser) line break

Figure 16.2: Operator Fixity (II)

16.4 Chained Operators

Certain infix mathematical operators that are traditionally regarded as relational operators, delivering boolean re-
sults, may be chained. For example, an expression such as A ⊆ B ⊂ C ⊆ D is treated as being equivalent to
(A ⊆ B) ∧ (B ⊂ C) ∧ (C ⊆ D) except that the expressions B and C are evaluated only once (which matters only
if they have side effects such as writes or input/output actions). Similarly, the expression A ⊆ B = C ⊂ D is treated
as being equivalent to (A ⊆ B) ∧ (B = C) ∧ (C ⊂ D) , except that B and C are evaluated only once. Fortress
restricts such chaining to a mixture of equivalence operators and ordering operators; if a chain contains two or more
ordering operators, then they must be of the same kind and have the same sense of monotonicity; for example, neither
A ⊆ B ≤ C nor A ⊆ B ⊃ C is permitted. This transformation is done before type checking. In particular, it is done
even if these operators do not return boolean values, and the resulting expression is checked for type correctness. (See
Section C.4 for a detailed description of which operators may be chained.)

16.5 Enclosing Operators

These operators are always used in pairs as enclosing operators:

(/ /) (\ \)
[] [/ /] [* *]
{ } {/ /} {\ \} {* *}

</ /> <\ \>
<</ />> <<\ \>>

104

(ASCII encodings are shown here; they all correspond to particular single Unicode characters.) There are other pairs
as well, such as b c and d e and multicharacter enclosing operators described in Section 4.13.1. Note that the pairs
() and [\ \] (also known as J K) are not operators; they play special roles in the syntax of Fortress, and their
behavior cannot be redefined by a library. The bracket pairs that may be used as enclosing operators are described in
Section C.1.

Any number of ‘|’ (vertical line) may also be used in pairs as enclosing operators but there is a trick to it, because on
the face of it you can’t tell whether any given occurrence is a left encloser or a right encloser. Again, context is used
to decide, this time according to Figure 16.2.

This is very similar to Figure 16.1 in Section 16.3; a rough rule of thumb is that if an ordinary operator would be
considered a prefix operator, then one of these will be considered a left encloser; and if an ordinary operator would be
considered a postfix operator, then one of these will be considered a right encloser.

In this manner, one may use |. . .| for absolute values and ||. . .|| for matrix norms.

16.6 Conditional Operators

If a binary operator other than ‘:’ is immediately followed by a ‘:’ then it is conditional: evaluation of the right-
hand operand cannot begin until evaluation of the left-hand operand has completed, and whether or not the right-hand
operand is evaluated may depend on the value of the left-hand operand. If the left-hand operand throws an exception,
then the right-hand operand is not evaluated.

The Fortress standard libraries define several conditional operators on boolean values including ∧ : and ∨ : .

See Section 22.8 for a discussion of how conditional operators are declared.

16.7 Big Operators

A big operator application is either a reduction expression described in Section 13.17 or a comprehension described in
Section 13.28.

The Fortress standard libraries define several big operators including
∑

,
∏

, and BIG ∧ .

See Section 22.9 for a discussion of how big operators are declared.

16.8 Juxtaposition

Juxtaposition in Fortress may be a function call or a special infix operator. The Fortress standard libraries include
several declarations of a juxtaposition operator.

When two expressions are juxtaposed, the juxtaposition is interpreted as follows: if the left-hand-side expression
is a function, juxtaposition performs function application; otherwise, juxtaposition performs the juxtaposition
operator application.

The manner in which a juxtaposition of three or more items must be associated requires type information and aware-
ness of whitespace. (This is an inherent property of customary mathematical notation, which Fortress is designed
to emulate where feasible.) Therefore a Fortress compiler must produce a provisional parse in which such multi-
element juxtapositions are held in abeyance, then perform a type analysis on each element and use that information to
rewrite the n-ary juxtaposition into a tree of binary juxtapositions. All we need to know is whether each element of a
juxtaposition has an arrow type.

105

The rules for reassociating a loose juxtaposition are as follows:

• First the loose juxtaposition is broken into nonempty chunks; wherever there is a non-function element followed
by a function element, the latter begins a new chunk. Thus a chunk consists of some number (possibly zero) of
functions followed by some number (possibly zero) of non-functions.

• The non-functions in each chunk, if any, are replaced by a single element consisting of the non-functions grouped
left-associatively into binary juxtapositions.

• What remains in each chunk is then grouped right-associatively.

• Finally, the sequence of rewritten chunks is grouped left-associatively.

(Notice that no analysis of the types of newly constructed chunks is needed during this process.)

Here is an example: n (n + 1) sin 3 n x log log x . Assuming that sin and log name functions in the usual man-
ner and that n , (n + 1) , and x are not functions, this loose juxtaposition splits into three chunks: n (n + 1) and
sin 3 n x and log log x . The first chunk has only two elements and needs no further reassociation. In the sec-
ond chunk, the non-functions 3 n x are replaced by ((3 n) x) . In the third chunk, there is only one non-function,
so that remains unchanged; the chunk is the right-associated to form (log (log x)) . Finally, the three chunks are
left-associated, to produce the final interpretation ((n (n + 1)) (sin ((3 n) x))) (log (log x)) . Now the original jux-
taposition has been reduced to binary juxtaposition expressions.

A tight juxtaposition is always left-associated if it contains any dot (i.e., “.”) not within parentheses or some pair of
enclosing operators. If such a tight juxtaposition begins with an identifier immediately followed by a dot then the
maximal prefix of identifiers separated by dots (whitespace may follow but not precede the dots) is collected into a
“dotted id chain”, which is subsequently partitioned into the dots and identifiers, which are interpreted as selectors. If
the last identifier in the dotted id chain is immediately followed by a left parenthesis, then the last selector together
with the subsequent parenthesis-delimited expression is a method invocation.

A tight juxtaposition without any dots might not be entirely left-associated. Rather, it is considered as a nonempty
sequence of elements: the front expression, any “math items”, and any postfix operator, and subject to reassociation
as described below. A math item may be a subscripting, an exponentiation, or one of a few kinds of expressions. It is
a static error if an exponentiation is immediately followed by a subcripting or an exponentiation.

The procedure for reassociation is as follows:

• For each expression element (i.e., not a subscripting, exponentiation or postfix operator), determine whether it
is a function.

• If some function element is immediately followed by an expression element then, find the first such function
element, and call the next element the argument. It is a static error if either the argument is not parenthesized,
or the argument is immediately followed by a non-expression element. Otherwise, replace the function and
argument with a single element that is the application of the function to the argument. This new element is an
expression. Reassociate the resulting sequence (which is one element shorter).

• If there is any non-expression element (it cannot be the first element) then replace the first such element and the
element immediately preceding it (which must be an expression) with a single element that does the appropriate
operator application. This new element is an expression. Reassociate the resulting sequence (which is one
element shorter).

• Otherwise, left-associate the sequence, which has only expression elements, only the last of which may be a
function.

(Note that this process requires type analysis of newly created chunks along the way.)

Here is an (admittedly contrived) example: reduce(f)(a)(x + 1)atan(x + 2) . Suppose that reduce is a curried
function that accepts a function f and returns a function that can be applied to an array a (the idea is to use the

106

function f , which ought to take two arguments, to combine the elements of the array to produce an accumulated
result).

The leftmost function is reduce , and the following element (f) is parenthesized, so the two elements are replaced with
one: (reduce(f))(a)(x + 1)atan(x + 2) . Now type analysis determines that the element (reduce(f)) is a function.

The leftmost function is (reduce(f)) , and the following element (a) is parenthesized, so the two elements are re-
placed with one: ((reduce(f))(a))(x + 1)atan(x + 2) . Now type analysis determines that the element ((reduce(f))(a))
is not a function.

The leftmost function is atan , and the following element (x + 2) is parenthesized, so the two elements are replaced
with one: ((reduce(f))(a))(x + 1)(atan(x + 2)) . Now type analysis determines that the element (atan(x + 2)) is
not a function.

There are no functions remaining in the juxtaposition, so the remaining elements are left-associated:

(((reduce(f))(a))(x + 1))(atan(x + 2))

Now the original juxtaposition has been reduced to binary juxtaposition expressions.

107

Chapter 17

Tests

To help make programs more robust, the test modifier can appear on a top-level function definition with type
“ ()→ () ”. Functions with modifier test must not be overloaded with functions that do not have modifier test .
The collection of all functions in a program that include modifier test are referred to collectively as the program’s
tests. Tests can refer to non-tests but non-tests must not refer to any test.

For example, we can write the following test function:

test testFactorial1() = do
assert(fact(0) = 1)
assert(fact(5) = 120)
println(“testFactorial1 passed”);

end

When a program’s tests are run, each top-level function definition with modifier test is run in textual program order.

108

Chapter 18

Type Inference

In order to synchronize the Fortress language specification with the implementation, it was necessary to drop static
type inference from the specification. Contrary to the Fortress Language Specification, Version 1.0 β , inference of
static parameter instantiations is based on the runtime types of the arguments to a functional call as described below.
This dynamic type inference will be replaced by a static type inference when it is implemented.

Before describing the dynamic type inference procedure, we introduce some terminology. We say that an arrow type is
an outermost arrow type if and only if it is not a constituent type of another arrow type. We define a covariant context
and a contravariant context as follows:

1. The parameter type of an outermost arrow type is a contravariant context.

2. The return type of an outermost arrow type is a covariant context.

3. The parameter type of an arrow type in a covariant context is a contravariant context.

4. The parameter type of an arrow type in a contravariant context is a covariant context.

For example, in the following declaration:

fJW,T,U, V K(g : (W,T → U)→ V) : ()

W and U are in a covariant context and T and V are in a contravariant context.

Given an invocation of a generic functional (or a non-generic functional method declared by a generic trait or object)
f and its most specific declaration, types are inferred for the static parameters of the generic functional (or the trait or
object declaring the functional method). For each static parameter α , we accumulate a set of constraints as follows:

First, if the static parameter is a type parameter with a bound T declared as “ α extends T ”, we add the following
constraint to the set:

BottomType <:α <:T

Second, if the static parameter is a type parameter without a bound, we add the following constraint to the set:

BottomType <:α <: Any

Third, we collect constraints on α by unifying the types of the parameters and the types of the arguments of the func-
tional. For the self parameter of a non-generic functional method declared by a generic trait or object T JU, V,W K ,
when the self parameter is bound to a value of runtime type S where S has a supertype T JX, Y, ZK , we use
T JX, Y, ZK as the type of the self parameter. Note the assumption that there is at most one supertype that is an

109

instantiation of the generic type T which declares the most specific declaration of f . If there exists more than one
such supertype, inference fails.

Once we have accumulated all constraints for each static parameter, the constraints are solved to get the inferred type
or value for the static parameter as follows:

First, for each static parameter occurring in a covariant context, we infer the least specific type or value for the static
parameter.

Second, for each remaining static parameter which occurs in a non-covariant context, we infer the most specific type
or value for the static parameter.

110

Chapter 19

Memory Model

Fortress programs are highly multithreaded by design; the language makes it easy to expose parallelism. However,
many Fortress objects are mutable; without judicious use of synchronization constructs—reductions and atomic
expressions—data races will occur and programs will behave in an unpredictable way. The memory model has two
important functions:

1. Define a programming discipline for the use of data and synchronization, and describe the behavior of programs
that obey this discipline. This is the purpose of Section 19.2.

2. Define the behavior of programs that do not obey the programming discipline. This constrains the optimizations
that can be performed on Fortress programs. The remaining sections of this chapter specify the detailed memory
model that Fortress programs must obey.

19.1 Principles

The Fortress memory model has been written with several important guiding principles in mind. Violations of these
principles must be taken as a flaw in the memory model specification rather than an opportunity to be exploited by the
programmer or implementor. The most important principle is this: violations of the Fortress memory model must still
respect the underlying data abstractions of the Fortress programming language. All data structures must be properly
initialized before they can be read by another thread, and a program must not read values that were never written.
When a program fails, it must fail gracefully by throwing an exception.

The second goal is nearly as important, and much more difficult: present a memory model which can be understood
thoroughly by programmers and implementors. It must never be difficult to judge whether a particular program be-
havior is permitted by the model. Where possible, it must be possible to check that a program obeys the programming
discipline.

The final goal of the Fortress memory model is to permit aggressive optimization of Fortress programs. A multi-
processor memory model can rule out optimizations that might be performed by a compiler for a uniprocessor. The
Fortress memory model attempts to rule out as few behaviors as possible, but more importantly attempts to make it
easy to judge whether a particular optimization is permitted or not. The semantics of Fortress already allows permis-
sive operation reordering in many programs, simply by virtue of the implicitly parallel semantics of tuple evaluation
and looping.

111

19.2 Programming Discipline

If Fortress programmers obey the following discipline, they can expect sequentially consistent behavior from their
Fortress programs:

• Updates to shared mutable locations must always be performed using an atomic expression. A location is
considered to be shared if and only if that location can be accessed by more than one thread at a time. For
example, statically partitioning an array among many threads need not make the array elements shared; only
elements actually accessed by more than one thread are considered to be shared.

• Within a thread or group of implicit threads objects must not be accessed through aliased references; this can
yield unexpected results. Section 19.2.2 defines the notion of apparently disjoint references. An object must not
be written through one reference when it is accessed through another apparently disjoint reference.

The following stylistic guidelines reduce the possibility of pathological behavior when a program strays from the
above discipline:

• Where feasible, reduction must be used in favor of updating a single shared object.

• Immutable fields and variables must be used wherever practical. We discuss this further in Section 19.2.1.

19.2.1 Immutability

Recall from Section 5.3 that we can distinguish mutable and immutable memory locations. Any thread that reads
an immutable field will obtain the initial value written when the object was constructed. In this regard it is worth
re-emphasizing the distinction between an object reference and the object it refers to. A location that does not contain
a value object contains an object reference. If the field is immutable, that means the reference is not subject to change;
however, fields of the object referred to may still be modified in accordance with the memory model.

19.2.2 Modifying Aliased Objects

In common with Fortran, and unlike most other popular programming languages, Fortress gives special treatment to
accesses to a location through different aliases. For the purposes of variable aliasing, it is important to define the notion
of apparently disjoint (or simply disjoint) object and field references. If two references are not disjoint, we say they
are certainly the same, or just the same. By contrast, we say object references are identical if they refer to the same
object, and distinct otherwise. Accesses to fields reached via apparently disjoint object references may be reordered
(except an initializing write is never reordered with respect to other accesses to the identical location).

Distinct references are always disjoint. Two identical references are apparently disjoint if they are obtained in any of
the following ways:

• distinct parameters of a single function call

• distinct fields

• a parameter and a field

• identically named fields read from apparently disjoint object references

• distinct reads of a single location for which there may be an interposing write

When comparing variables defined in different scopes, these rules will eventually lead to reads of fields or to reads of
parameters in some common containing scope.

112

We extend this to field references as follows: two field references are apparently disjoint if they refer to distinct fields,
or they refer to identically named fields read from apparently disjoint object references.

Consider the following example:

f(x: Z64[2], y: Z64[2]): Z64 = do
x0 := 17
y0 := 32

end

Here x and y in f are apparently disjoint; the writes may be reordered, so the call f(a, a) may assign either 17 or 32
to a0 .

A similar phenomenon occurs in the following example:

g(x: Z64[2], y: Z64[2]): Z64 = do
x0 := 17
y0

end

Again x and y are apparently distinct in g , so the write to x0 and the read of y0 may be reordered. The call g(a, a)
will assign 17 to a0 but may return either the initial value of a0 or 17.

It is safe to read an object through apparently disjoint references:

h(x: Z64[2], y: Z64[2]): Z64 = do
u: Z64 = x0

v: Z64 = y0

u + v
end

A call to h(a, a) will read a0 twice without ambiguity. Note, however, that the reads may still be reordered, and if
a0 is written in parallel by another thread this reordering can be observed.

If necessary, atomic expressions can be used to order disjoint field references:

f ′(x: Z64[2], y: Z64[2]): () = do
atomic x0 := 17
atomic y0 := 32

end

Here the call f ′(a, a) ends up setting a0 to 32. Note that simply using a single atomic expression containing one
or both writes is not sufficient; the two writes must be in distinct atomic expressions to be required to occur in order.

When references occur in distinct calling contexts, they are disambiguated at the point of call:

j(x: Z64[2], y: Z64): () = x0 := y
k(x: Z64[2]): () = do

j(x, 17)
j(x, 32)

end
l(x: Z64[2], y: Z64[2]): () = do

j(x, 17)
j(y, 32)

end

Here if we call k(a) the order of the writes performed by the two calls to j is unambiguous, and a0 is 32 in the
end. By contrast, l(a, a) calls j with two apparently disjoint references, and the writes in these two calls may thus be
reordered.

113

19.3 Read and Write Atomicity

Any read or write to a location is indivisible. In practical terms, this means that each read operation will see exactly the
data written by a single write operation. Note in particular that indivisibility holds for a mutable location containing
a large value object. It is convenient to imagine that every access to a mutable location is surrounded by an atomic
expression. However, there are a number of ordering guarantees provided by atomic accesses that are not respected
by non- atomic accesses.

19.4 Ordering Dependencies among Operations

The Fortress memory model is specified in terms of two orderings: dynamic program order (see Chapter 5 and Chap-
ter 13) and memory order. The actual order of memory operations in a given program execution is memory order, a
total order on all memory operations. Dynamic program order constrains memory order. However, memory operations
need not be ordered according to dynamic program order; many memory operations, even reads and writes to a single
field or array element, can be reordered. Programmers who adhere to the model in Section 19.2 can expect sequentially
consistent behavior: the global ordering of memory operations will respect dynamic program order.

Here is a summary of the salient aspects of memory order:

• There is a single memory order which is respected in all threads.

• Every read obtains the value of the immediately preceding write to the identical location in memory order.

• Memory order on atomic expressions respects dynamic program order.

• Memory order respects dynamic program order for operations that certainly access the same location.

• Initializing writes are ordered before any other memory access to the same location.

19.4.1 Dynamic Program Order

Much of the definition of dynamic program order is given in the descriptions of individual expressions in Chapter 13.
It is important to understand that dynamic program order represents a conceptual, naive view of the order of operations
in an execution; this naive view is used to define the more permissive memory order permitted by the memory model.
Dynamic program order is a partial order, rather than a total order; in most cases operations in different threads will
not be ordered with respect to one another. There is an important exception: there is an ordering dependency among
threads when a thread starts or must be complete.

An expression is ordered in dynamic program order after any expression it dynamically contains, with one exception: a
spawn expression is dynamically ordered before any subexpression of its body. The body of the spawn is dynamically
ordered before any point at which the spawned thread object is observed to have completed.

Only expressions whose evaluation completes normally occur in dynamic program order, unless the expression is
“directly responsible” for generating abrupt termination. Examples of the latter case are throw and exit expressions
and division by zero. In particular, when the evaluation of a subexpression of an expression completes abruptly,
causing the expression itself to complete abruptly, the containing expression does not occur in dynamic program
order. A label block is ordered after an exit that targets it. The expressions in a catch clause whose try block
throws a matching exception are ordered after the throw and before any expression in the finally clause. If the
catch completes normally, the try block as a whole is ordered after the expressions in the finally clause. For
this reason, when we refer to the place of non- spawn expression in dynamic program order, we mean the expression
or any expression it dynamically contains.

114

For any construct giving rise to implicit threads—tuple evaluation, function or method call, or the body of an expres-
sion with generators such as for—there is no ordering in dynamic program order between the expression executed
in each thread in the group. These subexpressions are ordered with respect to expressions which precede or succeed
the group.

When a function or method is called, the body of the function or method occurs dynamically after the arguments and
function or receiver; the call expression is ordered after the body of the called function or method.

For conditional expressions such as if , case , and typecase , the expression being tested is ordered dynamically
before any chosen branch. This branch is in turn ordered dynamically before the conditional expression itself.

Iterations of the body of a while loop are ordered by dynamic program order. Each evaluation of the guarding
predicate is ordered after any previous iteration and before any succeeding iteration. The while loop as a whole is
ordered after the final evaluation of the guarding predicate, which yields false .

An iteration of the body of a for loop, and each evaluation of the body expression in a comprehension or big operator,
is ordered after the generator expressions.

19.4.2 Memory Order

Memory order gives a total order on all memory accesses in a program execution. A read obtains the value of the most
recent prior write to the identical location in memory order. In this section we describe the constraints on memory
order, guided by dynamic program order. We can think of these constraints as specifying a partial order which must
be respected by memory order. The simplest constraint is that accesses certainly to the same location must respect
dynamic program order. Apparently disjoint accesses need not respect dynamic program order, but an initializing
write must be ordered before all other accesses to the identical location in program order.

Accesses in distinct (non-nested) atomic expressions respect dynamic program order. Given an atomic expression,
we divide accesses into four classes:

1. Constituents, dynamically contained within the atomic expression.

2. Ancestors, dynamically ordered before the atomic expression.

3. Descendants, dynamically ordered after the atomic expression.

4. Peers, dynamically unordered with respect to operations dynamically contained within the atomic expression.

We say an atomic expression is effective if it contains an access to a location, there is a peer access to the identical
location, and at least one of these accesses is a write. For an effective atomic expression, every peer access must
either be a predecessor or a successor. A predecessor must occur before every constituent and every descendant in
memory order. A successor must occur after every constituent and every ancestor in memory order. Every ancestor
must occur before every descendant in memory order.

The above conditions guarantee that there is a single, global ordering for the effective atomic expressions in a Fortress
program. This means that for any executions of atomic expressions A and B one of the following conditions holds:

• A is dynamically contained inside B.

• B is dynamically contained inside A.

• Every expression dynamically contained in A precedes every expression dynamically contained in B in memory
order. This will always hold when A is dynamically ordered before B.

• Every expression dynamically contained in B precedes every expression dynamically contained in A in memory
order. This will always hold when B is dynamically ordered before A.

115

The above rules are also sufficient to guarantee that atomic expressions nested inside an enclosing atomic behave
with respect to one another just as if they had occurred at the top level in an un-nested context.

Any access preceding a spawn in dynamic program order will precede accesses in the spawned expression in memory
order. Any access occurring after a spawned thread has been observed to complete in dynamic program order will
occur after accesses in the spawned expression in memory order.

A reduction variable in a for loop does not have a single associated location; instead, there is a distinct location for
each loop iteration, initialized by writing the identity of the reduction. These locations are distinct from the location
associated with the reduction variable in the surrounding scope. In memory order there is a read of each of these
locations each of which succeeds the last access to that variable in the loop iteration, along with a read of the location
in the enclosing scope which succeeds all accesses to that location preceding the loop in dynamic program order.
These reads are followed by a write of the location in the enclosing scope which in turn precedes all accesses to that
location that succeed the loop in dynamic program order.

Finally, reads and writes in Fortress programs must respect dynamic program order for operations that are semantically
related. If the read A precedes the write B in dynamic program order, and the value of B can be determined in some
fashion without recourse to A, then these operations are not semantically related. A simple example is if A is a
reference to variable x and B is the assignment y := x · 0 . Here it can be determined that y := 0 without recourse to
x and these variables are not semantically related. By contrast, the write y := x is always semantically related to the
read of x . Note that two operations can only be semantically related if a transitive data or control dependency exists
between them.

116

Chapter 20

Components and APIs

Fortress programs are developed and compiled as components. The imported and exported references of a component
are described with explicit APIs. 1

20.1 Overview
Syntax:

File ::= CompilationUnit
| Imports? Exports Decls?
| Imports? AbsDecls
| Imports AbsDecls?

CompilationUnit ::= Component
| Api

Components are the fundamental structure of Fortress programs. They export and import APIs, which serve as “inter-
faces” of the components. A key design choice we make is to require that components never refer to other components
directly; all external references are to APIs. This requirement allows programmers to extend and test existing compo-
nents more easily, swapping new implementations of libraries in and out of programs at will. External references are
resolved by linking components together: the references of a component to an imported API are resolved to a com-
ponent that exports that API. Linking components produces new components, whose constituents are the components
that were linked together.

20.2 Components

Syntax:
Component ::= native ? component APIName Imports? Exports Decls? end
APIName ::= Id(. Id)∗

Imports ::= Import+

Import ::= import ImportedNames
ImportedNames ::= APIName . { ... }

| APIName . { SimpleNameList (, ...)? }
SimpleNameList ::= SimpleName(, SimpleName)∗

1The system described in this chapter is based on that described in [2].

117

SimpleName ::= Id
| opr Op
| opr EncloserPair

EncloserPair ::= (LeftEncloser | Encloser) · ? (RightEncloser | Encloser)
Exports ::= Export+

Export ::= export APINames
APINames ::= APIName

| { APINameList }
APINameList ::= APIName(, APIName)∗

Decls ::= Decl+

In this specification, we will refer to components created by compiling a file as simple components, while components
created by linking components together will be known as compound components.

The source code of a simple component definition begins with an optional modifier native followed by component
followed by a possibly qualified name (an identifier or a sequence of identifiers separated by periods with no inter-
vening whitespace), followed by a sequence of import statements, and a sequence of export statements, and finally a
sequence of declarations, where all sequences are separated by newlines or semicolons.

20.2.1 Import Statements

There are two forms of import statements: explicit import statements and on-demand import statements.

An explicit import statement specifies a single API and a set of names; it imports the top-level and functional method
declarations in the specified API. It allows the specified names to be used unqualified in the importing component or
API:

import APIName.{name(,name)+ }

An “ordinary” operator (i.e., operators other than enclosing or vertical-line operators) is a single token, and it is
imported simply by putting opr before it in the import statement. This imports all of its prefix, postfix, infix, multifix
and nofix declarations. A matched pair of enclosing operators is written opr the left encloser, the right encloser,
with · optionally between the two enclosers. A vertical-line operator may be imported either as an infix operator or a
bracketing operator, according to the rules above for ordinary and enclosing operators respectively.

For convenience, an on-demand import statement allows all names declared by imported declarations of the specified
API to be referred to with unqualified names:

import APIName.{. . .}

A name name is imported on demand in a component C from an API A only if all the following conditions hold:

1. C contains an on-demand import statement.

2. Either 1) a top-level or functional method declaration of name appears in C or 2) a reference to name appears
in component C and C does not provide an explicit declaration of name .

The set of all declarations that are declared or imported (either explicitly or on demand) by a component must satisfy
the overloading rules (and in particular, any nonfunctional declaration must not be overloaded).

If there is no imported declaration matching a reference, it is a static error. If there is more than one imported
declaration that a reference may refer to, it is a static error. For example, it is a static error to have a reference List in
the context of the following import statements:

import List.{. . .}
import PureList.{. . .}

A reference List may refer to the type List declared in the API List or the type List declared in the API PureList .

118

20.2.2 Export Statements

Export statements specify the APIs that a component exports. One important restriction on components is that no
API may be both imported and exported by the same component. This restriction helps to avoid some (but not all)
accidental cyclic dependencies.

A component must provide a declaration, or a set of declarations, that satisfies every top-level declaration in any API
that it exports, as described below. A component may include declarations that do not participate in satisfying any
exported declaration (i.e., a declaration of any exported API).

A top-level variable declaration declaring a single variable is satisfied by any top-level variable declaration that declares
the name with the same type (in the component, the type may be inferred). A top-level variable declaration declaring
multiple variables is satisfied by a set of declarations (possibly just one) that declare all the names with their respective
types (which again, may be inferred). In either case, the mutability of a variable must be the same in the exported and
satisfying declarations.

A trait or object declaration is satisfied by a declaration that has the same header,2 and contains, for each field declara-
tion and non-abstract method declaration in the exported declaration, a satisfying declaration (or a set of declarations).
When a trait has an abstract method declared, a satisfying trait declaration is allowed to provide a concrete declaration.

A satisfying trait or object declaration may contain method and field declarations not exported by the API but these
might not be overloaded with method or field declarations provided by (contained in or inherited by) any declarations
exported by the API.

For functional declarations, recall that several functional declarations may define the same entity (i.e., they may be
overloaded). Given a set of overloaded declarations, it is not permitted to export some of them and not others.

20.2.3 Cross-Component Overloading

When a component imports a functional f (either a top-level function or a functional method) by an import statement,
the imported f may be overloaded with a functional f declared by the component. When a component imports a top-
level declaration f from an API A, all the relevant types to type check the uses of f are implicitly imported from A.
However, these implicitly imported types for type checking are not expressible by programmers; programmers must
import the types by import statements to use them. For example, the two functional calls in the following component
C are valid:

api A
trait T

m() : ()
end

end
api B

import A.{. . .}
f():T
g(T): ()

end
component C

import B.{f, g}
export Executable

run(args) = do f().m(); g(f()) end
end

2The order of the modifiers, the clauses, and the types in the extends , excludes and comprises clauses may differ.

119

because T is implicitly imported from B to type check the functional calls. However, the programmers cannot write
T in C because T is not imported by an import statement.

20.2.4 Native Components

A component may have the modifier native to declare an “unsafe component”. Within an unsafe component, the
syntax and semantics are implementation dependent. However, an unsafe component can export an API, which can be
imported by safe components and APIs as usual.

20.3 APIs

Syntax:
Api ::= api APIName Imports? AbsDecls? end
AbsDecls ::= AbsDecl+

AbsDecl ::= AbsTraitDecl
| AbsObjectDecl
| AbsVarDecl
| AbsFnDecl

AbsTraitDecl ::= AbsTraitMods? TraitHeaderFront AbsTraitClauses AbsGoInATrait? end
AbsTraitMods ::= AbsTraitMod+

AbsTraitMod ::= value
AbsTraitClauses ::= AbsTraitClause∗

AbsTraitClause ::= Excludes
| AbsComprises

AbsComprises ::= comprises ComprisingTypes
ComprisingTypes ::= TraitType

| { ComprisingTypeList }
ComprisingTypeList ::= . . .

| TraitType(, TraitType)∗ (, . . .)?
AbsGoInATrait ::= AbsGoFrontInATrait AbsGoBackInATrait?

| AbsGoBackInATrait
AbsGoFrontInATrait ::= AbsGoesFrontInATrait+

AbsGoesFrontInATrait ::= ApiFldDecl
AbsGoBackInATrait ::= AbsGoesBackInATrait+

AbsGoesBackInATrait ::= AbsMdDecl
AbsObjectDecl ::= AbsObjectMods? ObjectHeader AbsGoInAnObject? end
AbsObjectMods ::= AbsTraitMods
AbsGoInAnObject ::= AbsGoFrontInAnObject AbsGoBackInAnObject?

| AbsGoBackInAnObject
AbsGoFrontInAnObject ::= AbsGoesFrontInAnObject+

AbsGoesFrontInAnObject ::= ApiFldDecl
AbsGoBackInAnObject ::= AbsGoesBackInAnObject+

AbsGoesBackInAnObject ::= AbsMdDecl
ApiFldDecl ::= BindId IsType
AbsVarDecl ::= AbsVarMods? VarWTypes

| AbsVarMods? BindIdOrBindIdTuple : Type ...
| AbsVarMods? BindIdOrBindIdTuple : TupleType

AbsVarMods ::= AbsVarMod+

AbsVarMod ::= var

120

APIs are compiled from special API definitions. These are source files which declare the entities declared by the API,
the names of all APIs referred to by those declarations, and prose documentation. In short, the source code of an API
must specify all the information that is traditionally provided for the published APIs of libraries in other languages.

The syntax of an API definition is identical to the syntax of a component definition, except that:

1. An API definition begins with api rather than component .

2. An API does not include export statements. (However, it does include import statements, which name the
other APIs used in the API definition.)

3. Only declarations (not definitions!) are included in an API definition.

Import statements in APIs permit names declared in imported APIs to be used in the importing API just as in com-
ponents. Those names are not, however, part of the importing API, and thus cannot be imported from that API by a
component or another API.

For the sake of simplicity, every identifier reference in an API definition must refer either to a declaration in a used
API (i.e., an API named in an import statement, or the Fortress core APIs, which are implicitly imported), or to a
declaration in the API itself. In this way, APIs differ from signatures in most module systems: they are not parametric
in their external dependencies.

20.4 Component and API Identity

Every component has a unique name, used for the purposes of component linking. This name includes a user-provided
identifier. In the case of a simple component, the identifier is determined by a component name given at the top of the
source file from which it is compiled. Component equivalence is determined nominally to allow mutually recursive
linking of components.

Every API has a unique name that consists of a user-provided identifier. As with components, API equivalence is
determined nominally. Component names must not conflict with API names.

121

Part III

Fortress for Library Writers

122

Chapter 21

Parallelism and Locality

Fortress is designed to make parallel programming as simple and as painless as possible. This chapter describes the
internals of Fortress parallelism designed for use by authors of library code (such as generators and arrays). We adopt
a multi-tiered approach to parallelism:

• At the highest level, we provide libraries that allocate shared arrays (Section 21.4) and implicitly parallel con-
structs such as tuples and loops. Synchronization is accomplished through the use of atomic sections (Sec-
tion 13.22). More complex synchronization makes use of abortable atomicity, described in Section 21.5.

• Immediately below that, the at expression requests that a computation take place in a particular region of the
machine (Section 21.2). We also provide a mechanism to terminate a spawned thread early (Section 21.6).

• Finally, there are mechanisms for constructing new generators via recursive subdivision into tree structures
with individual elements at the leaves. Section 21.7 explains how iterative constructs such as for loops and
comprehensions are desugared into calls to methods of trait Generator , and how new instances of this trait may
be defined.

We begin by describing the abstraction of regions, which Fortress uses to describe the machine on which a program is
run.

21.1 Regions

Every thread (either explicit or implicit) and every object in Fortress, and every element of a Fortress array (the
physical storage for that array element), has an associated region. The Fortress libraries provide a function region
which returns the region in which a given object resides. Regions abstractly describe the structure of the machine on
which a Fortress program is running. They are organized hierarchically to form a tree, the region hierarchy, reflecting
in an abstract way the degree of locality which those regions share. The distinguished region Global represents the
root of the region hierarchy.1 The different levels of this tree reflect underlying machine structure, such as execution
engines within a CPU, memory shared by a group of processors, or resources distributed across the entire machine.
The function here() returns the region in which execution is currently occurring. Objects which reside in regions near
the leaves of the tree are local entities; those which reside at higher levels of the region tree are logically spread out.
The method call r.isLocalTo(s) returns true if r is contained within the region tree rooted at s .

It is important to understand that regions and the structures built on top of them exist purely for performance purposes.
The placement of a thread or an object does not have any semantic effect on the meaning of a program; it is simply an
aid to enable the implementation to make informed decisions about data placement.

1Note: the initial implementation of the Fortress language assumes a single machine with shared memory and exposes only the Global region.

123

It might not be possible for an object or a thread to reside in a given region. Threads of execution reside at the execution
level of the region hierarchy, generally the bottommost level in the region tree. Each thread is generally associated with
some region at the execution level, indicating where it will preferentially be run. The programmer can affect the choice
of region by using an at expression (Section 21.2) when the thread is created. A thread may have an associated region
which is not at the execution level of the region hierarchy, either because a higher region was requested with an at
expression or because scheduling decisions permit the thread to run in several possible execution regions. The region
to which a thread is assigned may also change over time due to scheduling decisions. For the object associated with a
spawned thread, the region function provided by the Fortress libraries returns the region of the associated thread.

The memory level of the region hierarchy is where individual reference objects reside; on a machine with nodes
composed of multiple processor cores sharing a single memory, this generally will not be a leaf of the region hier-
archy. Imagine a constructor for a reference object is called by a thread residing in region r , yielding an object o .
Except in very rare circumstances (for example when a local node is out of memory) either r.isLocalTo(region(o))
or region(o).isLocalTo(r) ought to hold: data is allocated locally to the thread which runs the constructor. For a value
object v being manipulated by a thread residing in region r either region(v).isLocalTo(r) or r.isLocalTo(region(v))
(value objects always appear to be local).

Note that region is a top-level function provided by the Fortress libraries and can be overridden by any functional
method. The chief example of this is arrays, which are generally composed from many reference objects; the region
function can be overridden to return the location of the array as a whole—the region which contains all of its constituent
reference objects.

21.2 Placing Threads

A thread can be placed in a particular region by using an at expression:

(v, w) := (ai,
at a.region(j) do

aj

end)

In this example, two implicit threads are created; the first computes ai locally, the second computes aj in the region
where the jth element of a resides, specified by a.region(j) . The expression after at must return a value of type
Region , and the block immediately following do is run in that region; the result of the block is the result of the at
expression as a whole. Often it is more graceful to use the also do construct (described inSection 13.11.3) in these
cases:

do
v := ai

also at a.region(j) do
w := aj

end

We can also use at with a spawn expression:

s = spawn at a.region(i) do
ai

end
t = spawn at region(s) do

aj

end

Finally, note that it is possible to use an at expression within a block:

124

do
v := ai

at a.region(j) do
w := aj

end
x = v + w

end

We can think of this as the degenerate case of also do : a thread group is created with a single implicit thread running
the contents of the at expression in the given region; when this thread completes control returns to the original
location.

Note that the regions given in an at expression are non-binding: the Fortress implementation may choose to run the
computations elsewhere—for example, thread migration might not be possible within an atomic expression, or load
balancing might cause code to be executed in a different region. In general, however, implementations should attempt
to respect thread placement annotations when they are given.

21.3 Shared and Local Data

Every object in a Fortress program is considered to be either shared or local (collectively referred to as the sharedness
of the object). A local object must be transitively reachable (through zero or more object references) from the variables
of at most one running thread. A local object may be accessed more cheaply than a shared object, particularly in the
case of atomic reads and writes. Sharedness is ordinarily managed implicitly by the Fortress implementation. Control
over sharedness is intended to be a performance optimization; however, functions such as isShared and localize
provided by the Fortress libraries can affect program semantics, and must be used with care.

The sharedness of an object must be contrasted with its region. The region of an object describes where that object is
located on the machine. The sharedness of an object describes whether the object is visible to one thread or to many.
A local object need not actually reside in a region near the thread to which it is visible (though ordinarily it will).

The following rules govern sharedness:

• Reference objects are initially local when they are constructed.

• The sharedness of an object may change as the program executes.2

• If an object is currently transitively reachable from more than one running thread, it must be shared.

• When a reference to a local object is stored into a field of a shared object, the local object must be published:
Its sharedness is changed to shared, and all of the data to which it refers is also published.

• The value of a local variable referenced by a thread must be published before that thread may be run in parallel
with the thread which created it. Values assigned to the variable while the threads run in parallel must also be
published.

• A field with value type is assigned by copying, and thus has the sharedness of the containing object or closure.

Publishing can be expensive, particularly if the structure being broadcast is large and heavily nested; this can cause an
apparently short atomic expression (a single write, say) to run arbitrarily long. To avoid this, the library programmer
can request that an object be published by calling the semantically transparent function shared provided by the Fortress
libraries:

2Note, for example, that the present Fortress implementation immediately makes every object shared after construction, so that isShared() will
always return true .

125

arrayJEK(size : I) : ArrayJE, IK
Creates an uninitialized 0-indexed array of the specified runtime-
determined size. The size is an integer for a 1-dimensional array, a 2-
tuple for a two-dimensional array, and so forth.

array1JE,nK() Creates an uninitialized 0-indexed 1-dimensional array of statically de-
termined size n.

array2JE,n, mK() Creates an uninitialized 0-indexed 2-dimensional array of statically de-
termined size n by m.

array3JE,n, m, pK() Creates an uninitialized 0-indexed 3-dimensional array of statically de-
termined size n by m by p.

a.fill(v :E) Initializes all elements with value v .

a.fill(f : I → E) Calls f at each index and initializes the corresponding element with the
result of the call.

a.init(i : I, v :E) Initializes element at index i with value v .

Figure 21.1: Factories for creating arrays and methods for initializing their elements

y := shared Cons(x, xs)
shared(y)

Two additional functions are provided which permit different choices of program behavior based on the sharedness of
objects:

• The function isShared(o) returns true when o is shared, and false when it is local. This permits the program
to take different actions based on sharedness.

• The function localize(o) is provided that attempts to make a local version of object o , by copying if necessary.

These functions must be used with extreme caution. For example, localize should be used only when there is a unique
reference to the object being localized. The localize function can have unexpected behavior if there is a reference to o
from another local object p . Updates to o will be visible through p ; subsequent publication of p will publish o . By
contrast, if o was already shared, and referred to by another shared object, the newly-localized copy will be entirely
distinct; changes to the copy will not be visible through p , and publishing p will not affect the locality of the copy.

21.4 Distributed Arrays

Arrays, vectors, and matrices in Fortress are assumed to be spread out across the machine. As in Fortran, Fortress
arrays are complex data structures. The default distribution of an array is determined by the Fortress libraries; in
general it depends on the size of the array, and on the size and locality characteristics of the machine running the
program. Programmers must create arrays by using an aggregate expression (Section 13.27), or by using one of the
factory functions at the top of Figure 21.1. After calling any of these factories, the elements of the resulting array must
be initialized using either indexed assignment or using one of the initialization methods described at the bottom of the
figure.

Each array element may be initialized at most once using the methods of Figure 21.1; the programmer must assure
that this initialization completes before any other access to the corresponding array element. The programmer must
also assure that an element is initialized before it is first read.3 Note that these factories and methods are intended to be
used to library programmers to build higher-level functionality (for example, the fill methods themselves are defined
in terms of calls to init , and the array factory is defined in terms of array1 , array2 , and so forth).

Because the elements of a fortress array may reside in multiple regions of the machine, there is an additional method
a.region(i) which returns the region in which the array element ai resides. An element of an array is always local

3The present implementation signals a fatal error in case of duplicate initialization, or if an uninitialized element is read.

126

to the region in which the array as a whole is contained, so (a.region(i)).isLocalTo(region(a)) must always return
true . When an array contains reference objects, the programmer must be careful to distinguish the region in which the
array element ai resides, a.region(i) , from the region in which the object referred to by the array element resides,
region(ai) . The former describes the region of the array itself; the latter describes the region of the data referred to
by the array. These may differ.

21.5 Abortable Atomicity

Fortress provides a user-level abort() function which abandons execution of the innermost atomic expression and
rolls back its changes, requiring the atomic expression to execute again from the beginning. This permits an atomic
section to perform consistency checks as it runs. Invoking the abort function not within an atomic expression has no
effect. The functionality provided by abort() can be abused; it is possible to induce deadlock or livelock by creating
an atomic section that always fails. Here is a simple example of a program using abort() which is incorrect because
Fortress does not guarantee that the two implicit threads (created by evaluating the two elements of the tuple) will
always run in parallel; it is possible for the first element of the tuple to continually abort without ever running the
second element of the tuple:

r: Z64 := 0
(a, b) = (atomic if r = 1 then 17 else abort() end,

do r := 1; r end)(∗ INCORRECT! ∗)

Fortress also includes a tryatomic expression, which attempts to run its body expression atomically. If it succeeds,
the result is returned; if it aborts due to a call to abort or due to conflict (as described in Section 13.22), the checked
exception TryAtomicFailure is thrown. In addition, tryatomic is permitted to throw TryAtomicFailure in the
absence of conflict; however, it is not permitted to fail unless some other thread performs an access to shared state
while the body is being run. Conceptually atomic can be defined in terms of tryatomic as follows:

label AtomicBlock
while true do

try
result = tryatomic body
exit AtomicBlock with result

catch e
TryAtomicFailure⇒ ()(∗ continue execution ∗)

end
end
throw UnreachableCode(∗ inserted for type correctness ∗)

end AtomicBlock

Unlike the above definition, an implementation may choose to suspend a thread running an atomic expression which
invokes abort , re-starting it at a later time when it may be possible to make further progress. The above definition
restarts the body of the atomic expression immediately without suspending.

21.6 Early Termination of Threads

As noted in Section 5.4, an implicit thread can be terminated if its group is going to throw an exception. Similarly, a
spawned thread t may be terminated by calling t.stop() . A successful attempt to terminate a thread causes the thread
to complete asynchronously. There is no guarantee that termination attempts will be prompt, or that they will occur at
all; the implementation will make its best effort. If a thread completes normally or exceptionally before an attempt to
terminate it succeeds, the result is retained and the termination attempt is simply dropped.

127

At present stopping a thread immediately causes it to cease execution; no outstanding finally blocks are run and
the thread is not considered to return a result.

21.7 Use and Definition of Generators

Several expressions in Fortress make use of generator clause lists to express parallel iteration (see Section 13.14).
A generator clause list binds a series of variables to the values produced by a series of objects that extend the trait
Generator . A generator clause list is simply syntactic sugar for a nested series of invocations of methods on these
objects.

A type that extends GeneratorJEK acts as a generator of elements of type E . An instance of GeneratorJEK only
needs to define the generate method:

generateJRK(r : ReductionJRK, body :E → R):R

The mechanics of object generation are embedded entirely in the generate method. This method takes two arguments.
The generate method invokes body once for each object which is to be generated, passing the generated object as
an argument. Each call to body returns a result of type R ; these results are combined using the reduction r , which
encapsulates a monoidal operator on objects of type R . All the parallelism provided by a particular generator is
specified by definition of the generate method.

In practice, calls to generate are produced by desugaring expressions with generator clause lists, as described below
(Section 21.7.1). However it is possible to call the generate method directly, as in the following example:

object SumZZ32 extends ReductionJZ32K
empty(): Z32 = 0
join(a: Z32, b: Z32): Z32 = a + b

end

z = (1# 100).generateJZ32K(SumZZ32, fn (x)⇒ 3x + 2)

Any reduction must define two methods: an associative binary operation join , and empty , a method that returns the
identity of this operation. Here we define reduction SumZZ32 representing integer addition. We use this to compute
the sum of 3x + 2 for x drawn from the range 1# 100 , yielding the expected answer of 15350.

For non-commutative reductions such as the Concat reduction used for list comprehensions in Figure 21.4, it is
important to note that results must be combined in the natural order of the generator. If join is not associative, or
empty is not the identity of join , passing the reduction to generate will produce unpredictable results. A generator
is permitted to group reduction operations in any way it likes consistent with its natural order, and insert an arbitrary
number of empty elements.

Figure 21.2 defines a generator that generates the integers between lo and hi in sequential blocks of size at most b .
In this example, we divide the range in half if it is larger than the block size b ; these two halves are computed in
parallel (recall that the arguments to the method call reduction.join are evaluated in parallel). If the range is smaller
than b , then it is enumerated serially using a while loop, accumulating the result r as it goes. Observe that the
parallelism obtained from a generator is dictated by the code of the generate method. While programmers using a
generator should assume that calls to body may occur in parallel, the library programmer is free to choose the amount
of parallelism that is actually exposed.

This example uses recursive subdivision to divide a blocked range into approximately equal-sized chunks of work.
Recursive subdivision is the recommended technique for exposing large amounts of parallelism in a Fortress program
because it adjusts easily to varying machine sizes and can be dynamically load balanced.

Generator defines the functional method seq(self) that returns an equivalent generator that runs iterations of the
body sequentially in natural order. In most cases (such as in this example), it is prudent to override the default definition

128

object BlockedRange(lo: Z64, hi : Z64, b: Z64) extends GeneratorJZ64K
size : Z64 = hi − lo + 1
seq(self): SequentialGeneratorJZ64K = seq(lo : hi)
generateJRK(reduction: ReductionJRK, body : Z64→ R):R =

if size ≤ (b MAX 1) then
(∗ Blocks smaller than b run sequentially ∗)
r : R := reduction.empty()
i : Z64 := lo
while i ≤ hi do

v : R = body(i)
r := reduction.join(r, v)
i += 1

end
r

else
(∗ Blocks larger than b are split in half and generated in parallel. ∗)
mid = b(lo + hi)/2c
reduction.join(BlockedRange(lo,mid , b).generateJRK(reduction, body),

BlockedRange(mid + 1, hi , b).generateJRK(reduction, body))
end

end

f() = 〈 2x | x← BlockedRange(1, 10, 3) 〉

Figure 21.2: Sample Generator definition: blocked integer ranges.

C[] body = u(body)
C[x← g, gs] body = g.generate(r, fn(x)⇒ C[gs] body)
C[p, gs] body = p.generate(r, fn()⇒ C[gs] body)

Figure 21.3: Simple syntax-directed desugaring of a generator clause list. Here the reduction r and unit u are variables
chosen by the desugarer to be distinct from the variables in gs and body.

of this method; the default implementation of seq effectively collects the generated elements together in parallel and
traverses the result sequentially.

The remainder of this section describes in detail the desugaring of expressions with generator clause lists into invoca-
tions of the generate methods of the generators in the generator clause list.

21.7.1 Simple Desugaring of Expressions with Generators

An expression with a generator clause list gs and body expression body is desugared into the following general form:

wrapper(fn (r, u)⇒ C[gs] body)

The generator clause list and body can be desugared using the syntax-directed desugaring C defined in Figure 21.3.
This yields a function that is in turn passed as an argument to wrapper . The particular choice of the function wrapper
depends upon the construct that is being desugared. For a reduction or a comprehension, the wrapper function is
the corresponding big operator definition; see Section 13.17 and Section 13.28. For a for loop (Section 13.15) or
a generated expression (Section 13.11.2), a special built-in wrapper is used. Examples are shown in Figure 21.4. A
wrapper function always has the following type:

wrapper(g : (ReductionJR0K, T → R0)→ R0):R

129

expr type wrapper u(body) r∑
gs

e N SUMJNK identityJNK(e) SumReductionJNK

〈 e | gs 〉 ListJEK BIG〈JEK 〉 singletonJEK(e) ConcatJEK
lv := e, gs () built in ignore(lv := e) NoReduction

Figure 21.4: Examples of wrappers for expressions with generator clause lists. Top to bottom: big operators (here∑
is used as an example; the appropriate library function is called on the right-hand side), comprehensions (here list

comprehensions are shown; other comprehensions are similar to list comprehensions) and generated assignment.

Here the type T is the type of values returned by the body expression, and R0 and R are arbitrary types chosen by
the wrapper function.

Note that the function g passed to the wrapper has essentially the same type signature as the generate method itself.
It is instructive to think of wrapper as having the following similar type signature:4

wrapper ′(g: GeneratorJT K):R(∗ NOT THE ACTUAL TYPE ∗)

4In future, it is likely that Fortress will use a desugaring that in fact yields a Generator rather than a higher-order function. This permits
type-directed nesting and composition of generators.

130

Chapter 22

Operator Declarations

An operator declaration may appear anywhere a top-level function or method declaration may appear. Operator dec-
larations are like other function or method declarations in all respects except that an operator declaration has opr and
has an operator name (see Section 16.1 for a discussion of valid operator names) instead of an identifier. The precise
placement of the operator name within the declaration depends on the fixity of the operator. Like other functionals,
operators may have overloaded declarations (see Chapter 15 for a discussion of overloading). These overloadings may
be of the same or differing fixities.

Syntax:

FnDecl ::= FnMods? FnHeaderFront FnHeaderClause (= Expr)?
FnHeaderFront ::= OpHeaderFront
OpHeaderFront ::= opr BIG ? ({ 7→ | LeftEncloser | Encloser) StaticParams? Params

(RightEncloser | Encloser)
| opr ValParam (Op | ExponentOp) StaticParams?
| opr BIG ? (Op | ˆ | Encloser |

∑
|
∏

) StaticParams? ValParam
MdDecl ::= MdDef

| MdMods? MdHeaderFront FnHeaderClause
MdHeaderFront ::= OpMdHeaderFront
OpMdHeaderFront ::= opr BIG ? ({ 7→ | LeftEncloser | Encloser) StaticParams? Params

(RightEncloser | Encloser)
(:= (SubscriptAssignParam))?

| opr ValParam (Op | ExponentOp) StaticParams?
| opr BIG ? (Op | ˆ | Encloser |

∑
|
∏

) StaticParams? ValParam
SubscriptAssignParam ::= Varargs

| Param

An operator declaration has one of seven forms: infix operator declaration, prefix operator declaration, postfix operator
declaration, nofix operator declaration, bracketing operator declaration, subscripting operator method declaration,
and subscripted assignment operator method declaration. Each is invoked according to specific rules of syntax. An
operator method declaration must be a functional method declaration, a subscripting operator method declaration, or
a subscripted assignment operator method declaration.

131

22.1 Infix Operator Declarations

An infix operator declaration has opr and then an operator name where a functional declaration would have an iden-
tifier. The declaration must have two value parameter, which must not be a keyword parameter or varargs parameter.
Static parameters may also be present, between the operator and the parameter list.

An expression consisting of an infix operator applied to an expression will invoke an infix operator declaration. The
compiler considers all infix operator declarations for that operator that are both accessible and applicable, and the most
specific operator declaration is chosen according to the usual rules for overloaded functionals.

Note that superscripting (ˆ) may be defined using an infix operator declaration even though it has very high precedence.

Example:

opr MAXJT extends StringK(x:T, y:T) : T = if x > y then x else y end

22.2 Prefix Operator Declarations

A prefix operator declaration has opr and then an operator name where a functional declaration would have an iden-
tifier. The declaration must have one value parameter, which must not be a keyword parameter or varargs parameter.
Static parameters may also be present, between the operator and the parameter list.

An expression consisting of a prefix operator applied to an expression will invoke a prefix operator declaration. The
compiler considers all prefix operator declarations for that operator that are both accessible and applicable, and the
most specific operator declaration is chosen according to the usual rules for overloaded functionals.

Example:

opr INV(x:Widget):Widget = x.invert()

22.3 Postfix Operator Declarations

A postfix operator declaration has opr where a functional declaration would have an identifier; the operator name it-
self follows the parameter list. The declaration must have one value parameter, which must not be a keyword parameter
or varargs parameter. Static parameters may also be present, between opr and the parameter list.

An expression consisting of a postfix operator applied to an expression will invoke a postfix operator declaration. The
compiler considers all postfix operator declarations for that operator that are both accessible and applicable, and the
most specific operator declaration is chosen according to the usual rules for overloaded functionals.

Example:

opr (n: Z32)! =
∏

i←1:n

i(∗ factorial ∗)

22.4 Nofix Operator Declarations

A nofix operator declaration has opr and then an operator name where a functional declaration would have an iden-
tifier. The declaration must have no parameters.

132

An expression consisting only of a nofix operator will invoke a nofix operator declaration. The compiler considers
all nofix operator declarations for that operator that are both accessible and applicable, and the most specific operator
declaration is chosen according to the usual rules for overloaded functionals.

Uses for nofix operators are rare, but those rare examples are very useful. For example, if the @ operator is used to
construct subscripting ranges, and it is the nofix declaration of @ that allows a lone @ to be used as a subscript:

opr @(): ImplicitRange = ImplicitRange

22.5 Bracketing Operator Declarations

A bracketing operator declaration has opr where a functional declaration would have an identifier. The value pa-
rameter list, rather than being surrounded by parentheses, is surrounded by the brackets being defined. A bracketing
operator declaration may have any number of parameters, keyword parameters, and varargs parameters in the value
parameter list. Static parameters may also be present, between opr and the parameter list. Any paired Unicode
brackets may be so defined except ordinary parentheses and white square brackets.

An expression consisting of zero or more comma-separated expressions surrounded by a bracket pair will invoke a
bracketing operator declaration. The compiler considers all bracketing operator declarations for that type of bracket
pair that are both accessible and applicable, and the most specific operator declaration is chosen according to the usual
rules for overloaded functionals. For example, the expression 〈p, q〉 might invoke the following bracketing method
declaration:

(∗ angle bracket notation for inner product ∗)
opr 〈JT extends Number, nat kKx: VectorJT, kK, y: VectorJT, kK〉 =∑

i←x.indices()

xi · yi

22.6 Subscripting Operator Method Declarations

A subscripting operator method declaration has opr where a method declaration would have an identifier. The value
parameter list, rather than being surrounded by parentheses, is surrounded by a pair of brackets. A subscripting
operator method declaration may have any number of value parameters and varargs parameters in that value parameter
list. Static parameters may also be present, between opr and the left bracket. Any paired Unicode brackets may be
so defined except ordinary parentheses and white square brackets; in particular, the square brackets ordinarily used for
indexing may be used.

An expression consisting of a subexpression immediately followed (with no intervening whitespace) by zero or more
comma-separated expressions surrounded by brackets will invoke a subscripting operator method declaration. Methods
for the expression preceding the bracketed expression list are considered. The compiler considers all subscripting op-
erator method declarations that are both accessible and applicable, and the most specific method declaration is chosen
according to the usual overloading rules. For example, the expression foop might invoke the following subscripting
method declaration because expressions in the square brackets are rendered as subscripts:

(∗ subscripting method ∗)
opr [x: BizarroIndex] = self.bizarroFetch(x)

22.7 Subscripted Assignment Operator Method Declarations

A subscripted assignment operator method declaration has opr where a method declaration would have an identifier.
The value parameter list, rather than being surrounded by parentheses, is surrounded by a pair of brackets; this is then

133

followed by the operator := and then a second value parameter list in parentheses, which must contain exactly one
value parameter. A subscripted assignment operator method declaration may have any number of value parameters
within the brackets; these value parameters may include varargs parameters. A result type may appear after the second
value parameter list, but it must be () . Static parameters may also be present, between opr and the left bracket. Any
paired Unicode brackets may be so defined except ordinary parentheses and white square brackets; in particular, the
square brackets ordinarily used for indexing may be used.

An assignment expression consisting of an expression immediately followed (with no intervening whitespace) by zero
or more comma-separated expressions surrounded by brackets, followed by the assignment operator :=, followed by
another expression, will invoke a subscripted assignment operator method declaration. Methods for the expression
preceding the bracketed expression list are considered. The compiler considers all subscript operator method declara-
tions that are both accessible and applicable, and the most specific method declaration is chosen according to the usual
overloading rules. When a compound assignment operator (described in Section 13.7) is used with a subscripting
operator and a subscripted assignment operator, for example a3 += k , both a subscripting operator declaration and
a subscripted assignment operator declaration are required. For example, the assignment foop := myWidget might
invoke the following subscripted assignment method declaration:

(∗ subscripted assignment method ∗)
opr [x: BizarroIndex] := (newValue:Widget) = self.bizarroInstall(x,newValue)

22.8 Conditional Operator Declarations

A conditional operator is a binary operator (other than ‘:’) that is immediately followed by ‘:’; see Section 16.6.
A conditional operator expression x@ : y is syntactic sugar for x@(fn ()⇒ y) ; that is, the right-hand operand is
converted to a “thunk” (zero-parameter function) that then becomes the right-hand operand of the corresponding
unconditional operator. Therefore a conditional operator is simply implemented as an overloading of the operator that
accepts a thunk.

It is also permitted for a conditional operator to have a preceding as well as a following colon. A conditional operator
expression x : @ : y is syntactic sugar for (fn ()⇒ x)@(fn ()⇒ y) ; that is, each operand is converted to a thunk.
This mechanism is used, for example, to define the results-comparison operator :∼:, which takes exceptions into
account.

The conditional ∧ and ∨ operators for boolean values, for example, are implemented as follows:

opr ∨(a : Boolean, b : Boolean) : Boolean = if a then true else b end
opr ∧(a : Boolean, b : Boolean) : Boolean = if a then b else false end
opr ∨(a : Boolean, b : ()→ Boolean) : Boolean = if a then true else b() end
opr ∧(a : Boolean, b : ()→ Boolean) : Boolean = if a then b() else false end

22.9 Big Operator Declarations

A big operator such as
∑

or
∏

is declared as a usual operator declaration. See Section 21.7 for an example decla-
ration of a big operator. A big operator application is either a reduction expression described in Section 13.17 or a
comprehension described in Section 13.28.

134

Part IV

Fortress Library APIs and Documentation

135

Chapter 23

Structure of the Fortress Libraries

The Fortress libraries are divided into two basic categories. The first, covered in Chapter 24, are the libraries that are
automatically imported by every Fortress component and API, chiefly FortressLibrary and FortressBuiltin . These
libraries provide the basic numeric types, generators, arrays, booleans, exceptions, and the like. The second, covered
in Chapter 25, are libraries that must be explicitly imported by the programmer. These include List , Set , and Map .

The documentation in Part IV is largely automatically generated from the API code for the libraries themselves, and
describes the state of the libraries as of the release date of this specification. The libraries are presently in a state of
flux, and programmers using a more recent version of the Fortress implementation may find differences between the
APIs presented here and those found in the actual implementation.

136

Chapter 24

Default Libraries

Two sets of libraries are imported into every Fortress program by default. The first, FortressLibrary (Section 24.1),
implements the high-level functionality that will be used by most Fortress programmers. It will eventually be possible
to selectively exclude portions of this library from a component if desired. By contrast, the second set of libraries are
the builtins (Section 24.2). These libraries are intended to encompass primitive functionality that must be visible in
every Fortress component.

24.1 FortressLibrary

api FortressLibrary

The builtinPrimitive function is actually recognized as a special piece of built-in magic by the Fortress interpreter.
The javaClass argument names a Java Class which is a subclass of
com.sun.fortress.interpreter.glue.NativeApp, which provides code for the closure which is used
in place of the call to builtinPrimitive . Meanwhile all the necessary type information, argument names, etc. must be
declared here in Fortress-land. For examples, see the end of this file.

In practice, if you are extending the interpreter you will probably want to extend
com.sun.fortress.interpreter.glue.NativeFn0,1,2,3,4 or one of their subclasses defined in
com.sun.fortress.interpreter.glue.primitive. These types are generally easier to work with, and
the boilerplate packing and unpacking of values is done for you.

builtinPrimitiveJT K(javaClass : String) : T

Simple Combinators

Casting

castJT extends AnyK(x : Any) : T

instanceOf JT extends AnyK(x : Any) : Boolean

Useful functions

137

ignore(: Any) : ()

identityJT extends AnyK(x :T) :T

(∗ Should we depracate tuple and use identity instead? Decision: no. ∗)
tupleJT K(x :T) :T

(∗ Function composition ∗)
opr ◦JA,B, CK(f :B → C, g:A→ B):A→ C

fail(s : String)

Control over locality and location

At the moment, all Fortress objects are immediately shared by default.
sharedJT extends AnyK(x :T):T

isShared(x : Any): Boolean

localizeJT extends AnyK(x :T):T

(∗copy is presently unimplemented .
copyJT extends AnyK(x :T):T
∗)
trait Region extends EqualityJRegionK

getter toString(): String
isLocalTo(r: Region): Boolean

end

object Global extends Region end

region(a : Any): Region

here(): Region

Equality and ordering
opr =(a : Any, b : Any) : Boolean

opr 6=(a : Any, b : Any) : Boolean

trait EqualityJSelf extends EqualityJSelfKK
excludes {Number }(∗ Until Number is an actual type. ∗)

abstract opr =(self, other : Self): Boolean
end

Total ordering
object LexicographicPartialReduction extends ReductionJComparisonK

empty(): Comparison
join(a : Comparison, b : Comparison) : Comparison

end

object LexicographicReduction extends ReductionJTotalComparisonK
empty(): TotalComparison
join(a : TotalComparison, b : TotalComparison) : TotalComparison

end

trait Comparison

138

extends {StandardPartialOrderJComparisonK }
comprises {Unordered,TotalComparison }

abstract getter toString(): String
opr =(self, other : Comparison): Boolean
opr LEXICO(self, other : Comparison): Comparison
abstract opr INVERSE(self): Comparison

end

Unordered is the outcome of a CMP b when a and b are partially ordered and no ordering relationship exists
between them.
object Unordered extends Comparison

getter toString(): String
opr =(self, other : Unordered): Boolean
opr <(self, other : Comparison): Boolean
opr INVERSE(self): Comparison

end

TotalComparison is both a partial order (including Unordered) and a total order (TotalComparison alone). Its
method definitions avoid ambiguities between these orderings.
trait TotalComparison

extends {Comparison,StandardTotalOrderJTotalComparisonK }
comprises {LessThan,EqualTo,GreaterThan }

opr =(self, other : Comparison): Boolean
opr CMP(self, other : Unordered): Boolean
opr ≥(self, other : Unordered): Boolean
opr ≥(self, other : Comparison): Boolean
opr LEXICO(self, other : TotalComparison): TotalComparison
opr LEXICO(self, other : ()→ TotalComparison): TotalComparison
abstract opr INVERSE(self): TotalComparison

end

object LessThan extends TotalComparison
getter toString(): String
opr =(self, other : LessThan): Boolean
opr CMP(self, other : LessThan): Comparison
opr CMP(self, other : TotalComparison): TotalComparison
opr <(self, other : LessThan): Boolean
opr <(self, other : TotalComparison): Boolean
opr INVERSE(self): TotalComparison

end

object GreaterThan extends TotalComparison
getter toString(): String
opr =(self, other : GreaterThan): Boolean
opr CMP(self, other : GreaterThan): Comparison
opr CMP(self, other : TotalComparison): TotalComparison
opr <(self, other : TotalComparison): Boolean
opr INVERSE(self): TotalComparison

end

object EqualTo extends TotalComparison
getter toString(): String
opr =(self, other : EqualTo): Boolean

139

opr CMP(self, other : TotalComparison): TotalComparison
opr <(self, other : LessThan): Boolean
opr <(self, other : TotalComparison): Boolean
opr LEXICO(self, other : TotalComparison): TotalComparison
opr LEXICO(self, other : ()→ TotalComparison): TotalComparison
opr INVERSE(self): TotalComparison

end

StandardPartialOrder is partial ordering using < , > ,≤ ,≥ , = , and CMP . This is primarily for floating-point values.
Minimal complete definition: CMP or {<,= } .
trait StandardPartialOrderJSelf extends StandardPartialOrderJSelfKK

excludes {Number }(∗ Until Number is an actual type. ∗)
opr CMP(self, other : Self): Comparison
opr <(self, other : Self): Boolean
opr >(self, other : Self): Boolean
opr =(self, other : Self): Boolean
opr ≤(self, other : Self): Boolean
opr ≥(self, other : Self): Boolean

end

StandardTotalOrder is the usual total order using < , > ,≤ ,≥ , = , and CMP . Most values that define a comparison
should do so using this. Minimal complete definition: either CMP or < (it is advisable to define = in the latter case).
trait StandardTotalOrderJSelf extends StandardTotalOrderJSelfKK

extends StandardPartialOrderJSelfK
excludes {Number }(∗ Until Number is an actual type. ∗)

opr CMP(self, other : Self): Comparison
opr ≥(self, other : Self): Boolean

end

Assertions
assert(flag : Boolean): ()

assert(flag : Boolean, failMsg : String): ()

This version of assert checks the equality of its first two arguments; if unequal it includes the remaining arguments
in its error indication.
assert(x : Any, y : Any, failMsg : Any . . .): ()

Generator support

We say an object which extends GeneratorJT K “generates objects of type T .”

Generators are used to express iteration in Fortress. Every generated expression in Fortress (eg. for loop and
comprehension) is desugared into calls to methods of Generator, chiefly the generate method.

Every generator has a notion of a “natural order” (which by default is unspecified), which describes the ordering of
reduction operations, and also describes the order in which elements are produced by the sequential version of the
same generator (given by the seq(self) method). The default implementation of seq(self) guarantees that these
orders will match.

140

Note in particular that the natural order of a Generator must be consistent; that is, if a SEQV b then a and b must
yield SEQV elements in the same natural order. However, note that unless a type specifically documents otherwise,
no particular element ordering is guaranteed, nor is it necessary to guarantee that a = b have the same natural order
when equality is defined.

Note that more complex derived generators are specified further down in the definition of Generator. These have the
same notions of natural order and by default are defined in terms of the generate method.

Minimal complete definition of a Generator is the generate method.
trait GeneratorJEK

excludes {Number }

generate is the core of Generator . It generates elements of type E and passes them to the body function.
This generation can occur using any mixture of serial and parallel execution desired by the author of the
generator; by default uses of a generator must assume every call to body occurs in parallel.

The results of generation are combined using the reduction object R , which specifies a monoidal operation
(associative and with an identity). Body results must be combined together following the natural order of the
generator. The author of the generator is free to use the identity element anywhere desired in this computation,
and to group reductions in any way desired; if no elements are generated, the identity must be returned.
abstract generateJRK(r: ReductionJRK, body :E → R):R

Transforming generators into new generators
map applies a function f to each element generated and yields the result. The resulting generator must have
the same ordering and cross product properties as the generator from which it is derived.
mapJGK(f :E → G):GeneratorJGK

seq produces a sequential version of the same generator, in which elements are produced in the generator’s
natural order.
seq(self): SequentialGeneratorJEK

Nesting of two generators; the innermost is data-dependent upon the outer one. This is specifically designed to
be overloaded so that the combined generators have properties appropriate to the pairing. Because of the data
dependency, the natural order of the nesting is the natural order of the inner generators, in the natural order the
outer nesting produces them. So, for example, if we write:

(0# 3).nestJZ32K(fn (n : Z32) :GeneratorJZ32K⇒ ((n100)# 4))

then the natural order is 0,1,2,3,100,101,102,103,200,201,202,203.
nestJGK(f :E → GeneratorJGK):GeneratorJGK

Cross product of two generators. This is specifically designed to be overloaded, such that pairs of independent
generators can be combined to produce a generator which possibly interleaves the iteration spaces of the two
generators. For example, we might combine

(0# 16).cross(0# 32)

such that it first splits the second range in half, then the first range in half, then the second, and so forth.

Consider a grid for which the rows are labeled from top to bottom with the elements of a in natural order, and
the columns are labeled from left to right with the elements of g in natural order. Each point in the grid
corresponds to a pair (a, b) that must be generated by self.cross(g) . In the natural order of the cross

141

product, an element must occur after those that lie above and to the left of it in the grid. By default the natural
order of the cross product is left-to-right, top to bottom. Programmers must not rely on the default order, except
that cross products involving one or more sequential generators are always performed in the default order. Note
that this means that the following have the same natural order:

seq(a).cross(b)
a.cross(seq(b))
seq(a).cross(seq(b))

But seq(a.cross(b)) may have a different natural order.
crossJGK(g: GeneratorJGK):GeneratorJ(E,G)K

Derived generation operations

mapReduce is equivalent to generate , but takes an explicit join and zero which can have any type. It still
assumes join is associative and that zero is the identity of join .
mapReduceJRK(body :E → R, join : (R,R)→ R, zero :R):R

reduce works much like generate or mapReduce , but has no body expression.
reduce(j : (E,E)→ E, z :E) :E
reduce(r: ReductionJEK) : E

loop is a version of generate which discards the () results of the body computation. It can be used to translate
reduction-variable-free for loops.
loop(f :E → ()): ()

x ∈ self holds if x is generated by this generator. By default this is implemented using the naive O(n)
algorithm.
opr ∈(x :E, self): Boolean

end

The following stubs exist as a temporary workaround to shortcomings in interpreter type inference, and are intended
for use by reduction desugaring.

generateJE,RK(g : GeneratorJEK, r: ReductionJRK, b :E → R):R

nestJE1, E2K(g : GeneratorJE1K, f :E1 → GeneratorJE2K) : GeneratorJE2K

mapJE,RK(g : GeneratorJEK, f :E → R):GeneratorJRK

trait SequentialGeneratorJEK extends {GeneratorJEK }
seq(self)
mapJGK(f :E → G): SequentialGeneratorJGK
nestJGK(f :E → GeneratorJGK):GeneratorJGK
crossJF K(g : GeneratorJF K):GeneratorJ(E,F)K

end

opr ∈ returns true if any element generated by its second argument is = to its first argument. x 6∈ g is simply
¬(x ∈ g) .
opr 6∈JEK(x:E, this: GeneratorJEK): Boolean

sequentialJT K(g : GeneratorJT K) : SequentialGeneratorJT K

142

24.1.1 The Maybe type

This trait makes excludes work without where clauses, and allows opr = to remain non-parametric.
value trait MaybeType extends EqualityJMaybeTypeK excludes Number

not yet: “ comprises MaybeJT K where JT K ”
abstract getter isJust() : Boolean
opr =(self, other :MaybeType): Boolean

end

Maybe represents either Nothing or a single element of type T (JustJT K), which may be retrieved by calling
unJust . An object of type MaybeJT K can be used as a generator; it is either empty (Nothing) or generates the
single element yielded by unJust , so there is no issue of canonical order or parallelism.

Thus, JustJT K can be used as a single-element generator, and Nothing can be used as an empty generator.
value trait MaybeJT K

extends {MaybeType,SequentialGeneratorJT K,ZeroIndexedJT K }
comprises {NothingJT K, JustJT K }

abstract getter unJust() : T throws NotFound
abstract unJust(t :T):T
abstract maybeJRK(nothingAction: ()→ R, justAction:T → R):R

end

value object JustJT K(x :T) extends MaybeJT K
getter size()
getter toString() : String
getter isJust()
getter unJust()
unJust(:T):T
generateJRK(: ReductionJRK,m :T → R):R
opr [i : Z32] : T
opr [r : RangeJZ32K] : MaybeJT K
mapJGK(f :T → G): JustJGK
crossJGK(g: GeneratorJGK):GeneratorJ(T,G)K
mapReduceJRK(m:T → R, : (R,R)→ R, :R):R
reduce(: (T, T)→ T, :T) :T
reduce(: ReductionJT K) :T
loop(f :T → ()): ()
maybeJRK(: ()→ R, justAction:T → R):R
opr =(self, o : JustJT K): Boolean

end

Nothing will become a non-parametric singleton when we get where clauses working.
value object NothingJT K extends MaybeJT K

getter size()
getter isJust()
getter unJust()
getter toString() : String
unJust(t :T) :T
generateJRK(r : ReductionJRK, :T → R):R
opr [: Z32]:T

143

opr [r : RangeJZ32K]: NothingJT K
mapJGK(f :T → G): NothingJGK
crossJGK(g: GeneratorJGK):GeneratorJ(T,G)K

mapReduceJRK(:T → R, : (R,R)→ R, z :R):R
reduce(: (T, T)→ T, z :T) :T
reduce(r: ReductionJT K) :T
loop(f :T → ()): ()
maybeJRK(nothingAction: ()→ R, :T → R):R
opr =(self, : NothingJT K)

end

Exception hierarchy
trait Exception comprises {UncheckedException,CheckedException }
end

(∗ Exceptions which are not checked ∗)
trait UncheckedException extends Exception excludes CheckedException
end

object FailCalled(s : String) extends UncheckedException
toString(): String

end

object DivisionByZero extends UncheckedException
end

object UnpastingError extends UncheckedException
end

object CallerViolation extends UncheckedException
end

object CalleeViolation extends UncheckedException
end

object TestFailure extends UncheckedException
end

object ContractHierarchyViolation extends UncheckedException
end

object NoEqualityOnFunctions extends UncheckedException
end

object InvalidRange extends UncheckedException
end

object ForbiddenException(chain : Exception) extends UncheckedException
end

(∗ Should this be called “IndexNotFound” instead? ∗)
object NotFound extends UncheckedException
end

object IndexOutOfBounds extends UncheckedException
end

object NegativeLength extends UncheckedException
end

144

object IntegerOverflow extends UncheckedException
end

object RationalComparisonError extends UncheckedException
end

object FloatingComparisonError extends UncheckedException
end

(∗ Checked Exceptions ∗)
trait CheckedException extends Exception excludes UncheckedException
end

object CastError extends CheckedException
end

object IOFailure extends CheckedException
end

object MatchFailure extends CheckedException
end

(∗ SetsNotDisjoint? ∗)
object DisjointUnionError extends CheckedException
end

object APIMissing extends CheckedException
end

object APINameCollision extends CheckedException
end

object ExportedAPIMissing extends CheckedException
end

object HiddenAPIMissing extends CheckedException
end

object TryAtomicFailure extends CheckedException
end

(∗ Should take a spawned thread as an argument ∗)
object AtomicSpawnSynchronization extends {UncheckedException}
end

Array support
trait HasRank extends EqualityJHasRankK excludes {Number,MaybeType }

not yet: “ comprises ArrayJT,E, IK where JT,E, IK{T extends ArrayJT,E, IK } ”

abstract rank() : Z32
opr =(self, other : HasRank): Boolean

end

(∗ Declared Rank-n-ness ∗)
trait RankJ nat n K extends HasRank

rank() : Z32
end

145

Potemkin exclusion traits. Really we just want to say that “ RankJnK excludes RankJmK where {m 6= n } ”, but
we cannot yet.
trait Rank1 extends {RankJ1K} excludes {Rank2,Rank3,Number,String }
end

trait Rank2 extends {RankJ2K} excludes {Rank3,Number,String }
end

trait Rank3 extends {RankJ3K} excludes {Number,String }
end

The trait Indexed iJnK indicates that something has an ith dimension of size n. In general, anything which extends
Indexed i must also extend Indexed j for j < i.
trait Indexed1J nat n K end

trait Indexed2J nat n K end

trait Indexed3J nat n K end

The indexed trait indicates that an object of type T can be indexed using type I to obtain elements with type E .

An object i that is an instance of Indexed defines three basic things:

The indexing operator opr [] , which must be defined for every instance of the type.

A suite of generators: i.indices generates the index space of the array. i itself generates the values contained at
those indices. i.indexValuePairs yields pairs of (index , val) . All of these share the same natural order. It is
necessary to define one of indices() and indexValuePairs() , in addition to generate() (but the latter requirement
can be dispensed by instead extending DelegatedIndexed).

A set of utility functions, assign , fill , and copy . Only fill and copy need to be defined.
trait IndexedJE, IK extends GeneratorJEK

isEmpty() indicates whether there are any valid indices. It is defined as size() = 0 .
getter isEmpty(): Boolean

size() indicates the number of distinct valid indices that may be passed to indexing operations.
abstract getter size(): Z32

bounds() yields a range of indices that are valid for the indexed generator.
abstract getter bounds(): FullRangeJIK

indexValuePairs() generates the elements of the indexed object (exactly those elements that are generated by
the object itself), but each element is paired with its index. When we obtain (i, v) from indexValuePairs()
we know that:

• selfi = v

• the i are distinct and i ∈ bounds()

• stripping away the i yields exactly the results of v ← self

This generator attempts to follow the structure of the underlying object as closely as possible.
getter indexValuePairs(): IndexedJ(I, E), IK

146

indices() yields the indices corresponding to the elements of the indexed object—it corresponds to the index
component of indexValuePairs() . This may in general be a subset of all the valid indices represented by
bounds() . This generator attempts to follow the structure of the underlying object as closely as possible.
getter indices(): IndexedJI, IK

Indexing. i ∈ bounds() must hold.
abstract opr [i : I] : E

Indexing by ranges. The results are 0-based when the underlying index type has a notion of 0. This ensures
consistency of behavior between types such as vectors that “only” support 0-indexing and types such as arrays
that permit other choices of lower bounds. The easiest way to write the index by ranges operation for an
instance of Indexed is to take advantage of indexing on the ranges themselves by writing (bounds())[r] in
order to narrow and bounds check the range r and obtain a closed range of indices on the underlying data.
abstract opr [r : RangeJIK] : IndexedJE, IK
opr [: OpenRangeJAnyK] : IndexedJE, IK

Roughly speaking, ivmap(f) is equivalent to indexValuePairs.map(f) . However ivmap is not merely a
convenient shortcut. It is actually intended to create a copy of the underlying indexed structure when that is
appropriate.

The usual map function in Generator should do the same (and does for the instances in this library). Copying
can be bad for space, but is complexity-preserving if the mapped generator is used more than once.
ivmapJRK(f : (I, E)→ R): IndexedJR, IK
mapJRK(f :E → R): IndexedJR, IK

end

trait ZeroIndexedJEK extends IndexedJE, Z32K
bounds(): FullRangeJZ32K
zipJF K(g : ZeroIndexedJF K) : ZeroIndexedJ(E,F)K

end

object DefaultZipJE,F K(e : ZeroIndexedJEK, f : ZeroIndexedJF K)
extends {ZeroIndexedJ(E,F)K,DelegatedIndexedJ(E,F), Z32K }

getter size(): Z32
getter indices():GeneratorJZ32K
opr [i : Z32] : (E,F)
opr [r : RangeJZ32K] : ZeroIndexedJ(E,F)K

end

trait LexicographicOrderJT extends LexicographicOrderJT,EK, EK
extends {StandardTotalOrderJT K,ZeroIndexedJEK }

opr CMP(self, other :T): TotalComparison

We give a specialized version of = because it can fail faster than CMP by checking sizes early.
opr =(self, other :T): Boolean

end

toArrayJEK(g : IndexedJE, Z32K): ArrayJE, Z32K

DelegatedIndexed is an indexed generator that has recourse to another indexed generator internally. By default, this
in turn is defined in terms of indexValuePairs() . Thus, it is only necessary to define either indexValuePairs() or
indices() .

147

This class is designed for convenience; it should not be used as a type in running code, but only as a supertype in lieu
of Indexed .
trait DelegatedIndexedJE, IK extends IndexedJE, IK

getter generator():GeneratorJEK
getter size(): Z32
generateJRK(r: ReductionJRK, body :E → R):R
seq(self): SequentialGeneratorJEK
crossJGK(g: GeneratorJGK):GeneratorJ(E,G)K
mapReduceJRK(body :E → R, join : (R,R)→ R, zero :R):R
reduce(j : (E,E)→ E, z :E) :E
reduce(r: ReductionJEK) : E
loop(f :E → ()): ()

end

The MutableIndexed trait is an indexed trait whose elements can be mutated using indexed assignment. Right now,
we are using this type in a somewhat dangerous way, since, for example, Array1JE, b0, s0K extends both
IndexedJArray1JE, b0, s0K, E, Z32K and IndexedJArrayJE, Z32K, E, Z32K . We will need to find a solution to this
at some point.
trait MutableIndexedJE, IK

extends { IndexedJE, IK }
abstract opr [i : I] := (v :E) : ()

For Ranged assignment, the extents of r and v.bounds() must match, but the lower bounds need not.
abstract opr [r : RangeJIK] := (v : IndexedJE, IK) : ()
opr [: OpenRangeJAnyK] := (v : IndexedJE, IK) : ()

end

Array whose bounds are implicit rather than static, and which may be either mutable or immutable.
trait ReadableArrayJE, IK

extends {HasRank, IndexedJE, IK }
comprises {ArrayJE, IK, ImmutableArrayJE, IK }

Indexed functionality with more specific type information.
abstract opr [r : RangeJIK] : ReadableArrayJE, IK
abstract opr [: OpenRangeJAnyK] : ReadableArrayJE, IK
abstract ivmapJRK(f : (I, E)→ R): ReadableArrayJR, IK
abstract mapJRK(f :E → R): ReadableArrayJR, IK

Shift the origin of an array. This should yield a new view of the same array; that is, initialization and/or update
to either will be reflected in the other.
abstract shift(newOrigin : I) : ReadableArrayJE, IK

Initialize element at index i with value v . This should occur once, before any other access or assignment
occurs to element i . An error will be signaled if an uninitialized element is read or an initialized element is
re-initialized.
abstract init(i : I, v :E): ()

Bulk initialization of an array using a given function or value.

148

abstract fill(f : I → E) : ReadableArrayJE, IK
abstract fill(v :E) : ReadableArrayJE, IK

abstract copy() : ReadableArrayJE, IK

Create a fresh array structurally identical to the present one, but holding elements of type U .

abstract replicaJUK() : ReadableArrayJU, IK

opr =(self, other : HasRank): Boolean
end

trait ImmutableArrayJE, IK extends {ReadableArrayJE, IK }
excludes {ArrayJE, IK }

abstract opr [r : RangeJIK] : ImmutableArrayJE, IK
abstract opr [: OpenRangeJAnyK] : ImmutableArrayJE, IK
abstract ivmapJRK(f : (I, E)→ R): ImmutableArrayJR, IK
abstract mapJRK(f :E → R): ImmutableArrayJR, IK
abstract shift(newOrigin : I) : ImmutableArrayJE, IK
abstract init(i : I, v :E): ()
abstract fill(f : I → E) : ImmutableArrayJE, IK
abstract fill(v :E) : ImmutableArrayJE, IK
abstract copy() : ImmutableArrayJE, IK
abstract replicaJUK() : ImmutableArrayJU, IK

Thaw array (return mutable copy).

abstract thaw() : ArrayJE, IK
end

trait ArrayJE, IK extends {ReadableArrayJE, IK,MutableIndexedJE, IK }
abstract opr [r : RangeJIK] : ArrayJE, IK
abstract opr [: OpenRangeJAnyK] : ArrayJE, IK
abstract ivmapJRK(f : (I, E)→ R): ArrayJR, IK
abstract mapJRK(f :E → R): ArrayJR, IK
abstract shift(newOrigin : I) : ArrayJE, IK
abstract init(i : I, v :E): ()
abstract fill(f : I → E) : ArrayJE, IK
abstract fill(v :E) : ArrayJE, IK
abstract assign(f : I → E) : ArrayJE, IK
abstract copy() : ArrayJE, IK
abstract replicaJUK() : ArrayJU, IK

Freeze array (return mutable copy).

abstract freeze(): ImmutableArrayJE, IK
end

Factory for arrays that returns an empty 0-indexed array of a given run-time-determined size.

arrayJEK(x : Z32) : ArrayJE, Z32K
arrayJEK(x : Z32, y : Z32) :ArrayJE, (Z32, Z32)K
arrayJEK(x : Z32, y : Z32, z : Z32) : ArrayJE, (Z32, Z32, Z32)K

Factory for immutable arrays that returns an empty 0-indexed array of a given run-time-determined size.

149

immutableArrayJEK(x : Z32) : ImmutableArrayJE, Z32K
immutableArrayJEK(x : Z32, y : Z32) : ImmutableArrayJE, (Z32, Z32)K
immutableArrayJEK(x : Z32, y : Z32, z : Z32) : ImmutableArrayJE, (Z32, Z32, Z32)K

primitiveArrayJEK(x : Z32) : ArrayJE, Z32K

primitiveImmutableArrayJEK(x : Z32) : ImmutableArrayJE, Z32K

Array type supporting un-bounds-checked 0-based indexing. Useful for the internals of all the array functionality.
trait ArrayTypeWith0JE, IK

extends {ReadableArrayJE, IK,DelegatedIndexedJE, IK }

0-based non-bounds-checked indexing.
abstract get(i : I):E
abstract init0(i : I, e :E): ()
abstract zeroIndices(): FullRangeJIK

Convert from base -based indexing to 0-based indexing, performing bounds checking.
abstract offset(i : I): I

Convert from 0-based indexing to base -based indexing.
abstract toIndex (i : I): I

end

NOTE: StandardImmutableArrayType is a parent of StandardMutableArrayType . It therefore does not extend
ImmutableArrayType as you might expect. Other types that extend it should also extend ImmutableArrayType
explicitly.
trait StandardImmutableArrayTypeJT extends StandardImmutableArrayTypeJT,E, IK, E, IK

extends {ArrayTypeWith0JE, IK }

CONCRETE GETTERS: Default implementations of getters based on abstract methods in
StandardArrayType .
getter indices(): IndexedJI, IK
getter indexValuePairs(): IndexedJ(I, E), IK
getter generator(): IndexedJE, IK

CONCRETE METHODS: Default implementations of most array stuff based on the above. The things we
cannot provide are anything involving replica.
opr [i : I] : E
init(i : I, v :E)

generateJRK(r: ReductionJRK, body :E → R):R
seq(self): SequentialGeneratorJEK

fill(f : I → E) :T
fill(v :E) :T
abstract copy() : T

end

trait StandardMutableArrayTypeJT extends StandardMutableArrayTypeJT,E, IK, E, IK
extends {StandardImmutableArrayTypeJT,E, IK,ArrayJE, IK }

150

0-based non-bounds-checked indexing.
abstract put(i : I, e :E): ()
opr [i : I] := (v :E) : ()

opr [r : RangeJIK] := (a : IndexedJE, IK) : ()

assign(v :T) :T
assign(f : I → E) : T

end

Canonical partitioning of a positive number x into two pieces. If (a, b) = partition(n) and n > 0 then 0 < a <= b,
n = a + b. As it turns out we choose a to be the largest power of 2 < n.
partition(x : Z32) : (Z32, Z32)

A ReadableArray1JT, b0, s0K is an arbitrary 1-dimensional array whose s0 elements are of type T , and whose
lowest index is b0 .

The natural order of all generators is from b0 to b0 + s0 − 1 .
trait ReadableArray1JT, nat b0, nat s0K

extends { Indexed1Js0K,Rank1,ArrayTypeWith0JT, Z32K }
comprises { ImmutableArray1JT, b0, s0K,Array1JT, b0, s0K }

getter size() : Z32
getter bounds() : FullRangeJZ32K
abstract getter mutability() : String
getter toString()

subarrayJnat b, nat s, nat oK() : ReadableArray1JT, b, sK

Offset converts from b0 -indexing to 0-indexing, bounds checking en route.
offset(i : Z32) : Z32
toIndex (i : Z32) : Z32

zeroIndices(): FullRangeJZ32K
end

trait ImmutableArray1JT, nat b0, nat s0K
extends {StandardImmutableArrayTypeJImmutableArray1JT, b0, s0K, T, Z32K,

ImmutableArrayJT, Z32K,ReadableArray1JT, b0, s0K }
getter mutability() : String
shift(o : Z32): ImmutableArrayJT, Z32K
opr [r: RangeJZ32K] : ImmutableArrayJT, Z32K
opr [: OpenRangeJZ32K] : ImmutableArray1JT, 0, s0K
opr [: OpenRangeJAnyK] : ImmutableArray1JT, 0, s0K

subarray selects a subarray of this array based on static parameters. b# s are the new bounds of the array; o
is the index of the subarray within the current array.
subarrayJnat b, nat s, nat oK() : ImmutableArray1JT, b, sK

The replica method returns a replica of the array (similar layout etc.) but with a different element type.
replicaJUK() : ImmutableArray1JU, b0, s0K

copy() : ImmutableArray1JT, b0, s0K

thaw() : Array1JT, b0, s0K

151

mapJRK(f :T → R): ImmutableArray1JR, b0, s0K
ivmapJRK(f : (Z32, T)→ R): ImmutableArray1JR, b0, s0K

end

Array1JT, b0, s0K is a 1-dimension array whose s0 elements are of type T , and whose lowest index is b0 .
trait Array1JT, nat b0, nat s0K

extends {ReadableArray1JT, b0, s0K,
StandardMutableArrayTypeJArray1JT, b0, s0K, T, Z32K }

excludes {Number,String}
getter mutability() : String

shift(o : Z32):ArrayJT, Z32K

opr [r: RangeJZ32K] : ArrayJT, Z32K
opr [: OpenRangeJZ32K] : Array1JT, 0, s0K
opr [: OpenRangeJAnyK] : Array1JT, 0, s0K

subarrayJnat b, nat s, nat oK() : Array1JT, b, sK

replicaJUK() : Array1JU, b0, s0K

copy() : Array1JT, b0, s0K
freeze() : ImmutableArray1JT, b0, s0K
mapJRK(f :T → R): Array1JR, b0, s0K
ivmapJRK(f : (Z32, T)→ R): Array1JR, b0, s0K

end

trait VectorJT extends Number, nat s0K extends Array1JT, 0, s0K
add(v : VectorJT, s0K): VectorJT, s0K
subtract(v : VectorJT, s0K): VectorJT, s0K
negate(): VectorJT, s0K
scale(t:T): VectorJT, s0K
pmul(v: VectorJT, s0K): VectorJT, s0K
dot(v: VectorJT, s0K):T

end

builtinFactory1 must be a non-overloaded 0-parameter factory for 1-D arrays. The type parameters are enshrined
in LHSEvaluator.java and NonPrimitive.java; the factory name is enshrined in
WellKnownNames.java. There must be some factory, named in this file, with this type signature. A similar thing
is true for k-dimensional array types.

builtinFactory1 JT, nat b0, nat s0K() : Array1JT, b0, s0K

immutableFactory1 is a non-overloaded 0-parameter factory for 0-indexed 1-D write-once arrays. It is also
mentioned in WellKnownNames as it is used to allocate storage for varargs.

immutableFactory1 JT, nat b0, nat s0K() : Array1JT, b0, s0K

array1JT, nat s0K() : Array1JT, 0, s0K
array1JT, nat s0K(v :T) : Array1JT, 0, s0K
array1JT, nat s0K(f : Z32→ T) : Array1JT, 0, s0K

immutableArray1JT, nat s0K(): ImmutableArray1JT, 0, s0K

vector is the same as array1 , but specialized to numeric type arguments.
vectorJT extends Number, nat s0K() : VectorJT, s0K
vectorJT extends Number, nat s0K(v :T) : VectorJT, s0K

152

vectorJT extends Number, nat s0K(f : Z32→ T) : VectorJT, s0K

opr +JT extends Number, nat n, nat m K
(me : VectorJT, nK, other : VectorJT, nK) : VectorJT, nK

opr −JT extends Number, nat n, nat m K
(me : VectorJT, nK, other : VectorJT, nK) : VectorJT, nK

opr −JT extends Number, nat n, nat m K
(me : VectorJT, nK) : VectorJT, nK

pmulJT extends Number, nat k K
(a : VectorJT, kK, b : VectorJT, kK) : VectorJT, kK

opr ·JT extends Number, nat n, nat m, nat p K
(me : VectorJT, nK, other : VectorJT, nK) : T

opr juxtaposition J T extends Number, nat n, nat m, nat p K
(me : VectorJT, nK, other : VectorJT, nK) :T

opr ·JT extends Number, nat n, nat m, nat p K
(me : VectorJT, nK, other : T) : VectorJT, nK

opr juxtaposition J T extends Number, nat n, nat m, nat p K
(me : VectorJT, nK, other : T) : VectorJT, nK

opr ·[T extends Number, nat n, nat m, nat p K
(other : T,me : VectorJT, nK) : VectorJT, nK

opr juxtaposition JT extends Number, nat n, nat m, nat p K
(other : T,me : VectorJT, nK) : VectorJT, nK

squaredNormJT extends Number, nat s0K(a : VectorJT, s0K) :T

opr ‖JT extends Number, nat k Kme : VectorJT, kK‖ : R64

Array2JT, b0, s0, b1, s1K is the type of 2-dimensional arrays of element type T , with size s0 in the first dimension
and s1 in the second dimension and lowest index (b0, b1) . Natural order for all generators in each dimension is from
b to b + s− 1; the overall order of elements need only be consistent with the cross product of these orderings (see
Generator.cross()).

trait Array2JT, nat b0, nat s0, nat b1, nat s1K
extends { Indexed1Js0K, Indexed2Js1K,Rank2,

StandardMutableArrayTypeJArray2JT, b0, s0, b1, s1K, T, (Z32, Z32)K }
excludes {Number,String }

getter size() : Z32
getter bounds() : FullRangeJ(Z32, Z32)K
getter toString()

Translate from b0 , b1 -indexing to 0-indexing, checking bounds.

offset(t : (Z32, Z32)) : (Z32, Z32)
toIndex (t : (Z32, Z32)) : (Z32, Z32)
opr [x : Z32, y : Z32] := (v :T) : ()
opr [r : RangeJ(Z32, Z32)K]: ArrayJT, (Z32, Z32)K
opr [: OpenRangeJZ32K] : Array2JT, 0, s0, 0, s1K
opr [: OpenRangeJAnyK] : Array2JT, 0, s0, 0, s1K
shift(t : (Z32, Z32)): ArrayJT, (Z32, Z32)K

153

2-D subarray given static subarray parameters. (bo1, bo2)# (so1, so2) are output bounds. The result is the
subarray starting at (o0, o1) in the original array.
subarrayJnat bo0, nat so0, nat bo1, nat so1, nat o0, nat o1K

(): Array2JT, bo0, so0, bo1, so1K

zeroIndices() : FullRangeJ(Z32, Z32)K

replicaJUK() : Array2JU, b0, s0, b1, s1K
copy() : Array2JT, b0, s0, b1, s1K
put(t : (Z32, Z32), v :T) : ()
get(t : (Z32, Z32)) : T
t() : Array2JT, b1, s1, b0, s0K
(∗ Copied here for better return type information. ∗)
mapJRK(f :T → R): Array2JR, b0, s0, b1, s1K
ivmapJRK(f : ((Z32, Z32), T)→ R): Array2JR, b0, s0, b1, s1K

freeze() : ImmutableArrayJT, (Z32, Z32)K
end

trait MatrixJT extends Number, nat s0, nat s1K extends Array2JT, 0, s0, 0, s1K
abstract add(v :MatrixJT, s0, s1K):MatrixJT, s0, s1K
abstract subtract(v :MatrixJT, s0, s1K):MatrixJT, s0, s1K
abstract negate():MatrixJT, s0, s1K
abstract scale(t:T):MatrixJT, s0, s1K
abstract mulJ nat s2 K(other :MatrixJT, s1, s2K):MatrixJT, s0, s2K
abstract rmul(v: VectorJT, s1K): VectorJT, s0K
abstract lmul(v: VectorJT, s0K): VectorJT, s1K
abstract t():MatrixJT, s1, s0K

end

builtinFactory2 JT, nat b0, nat s0, nat b1, nat s1K() : Array2JT, b0, s0, b1, s1K

array2 is a factory for 0-based 2-D arrays.
array2JT, nat s0, nat s1K() : Array2JT, 0, s0, 0, s1K
array2JT, nat s0, nat s1K(v :T) : Array2JT, 0, s0, 0, s1K
array2JT, nat s0, nat s1K(f : (Z32, Z32)→ T) : Array2JT, 0, s0, 0, s1K

matrix is the same as array2 , but specialized to numeric type arguments, except that the default value (if given) is
used to construct a multiple of the identity matrix.
matrixJT extends Number, nat s0, nat s1K() : MatrixJT, s0, s1K
matrixJT extends Number, nat s0, nat s1K(v :T) : MatrixJT, s0, s1K

opr +JT extends Number, nat n, nat m K
(me :MatrixJT, n, mK, other :MatrixJT, n, mK):MatrixJT, n, mK

opr −JT extends Number, nat n, nat m K
(me :MatrixJT, n, mK, other :MatrixJT, n, mK) : MatrixJT, n, mK

opr −JT extends Number, nat n, nat m K
(me :MatrixJT, n, mK):MatrixJT, n, mK

Matrix multiplication.
opr ·JT extends Number, nat n, nat m, nat pK

(me :MatrixJT, n, mK, other :MatrixJT,m, pK):MatrixJT, n, pK

opr juxtaposition J T extends Number, nat n, nat m, nat pK

154

(me :MatrixJT, n, mK, other :MatrixJT,m, pK):MatrixJT, n, pK

Matrix-vector multiplication.
opr ·JT extends Number, nat n, nat m, nat p K

(me :MatrixJT, n, mK, v : VectorJT,mK) : VectorJT, nK

opr juxtaposition J T extends Number, nat n, nat m, nat p K
(me :MatrixJT, n, mK, v : VectorJT,mK) : VectorJT, nK

Vector-matrix multiplication.
opr ·JT extends Number, nat n, nat m, nat p K

(v : VectorJT, nK,me :MatrixJT, n, mK) : VectorJT,mK

opr juxtaposition J T extends Number, nat n, nat m, nat p K
(v : VectorJT, nK,me :MatrixJT, n, mK) : VectorJT,mK

opr ·JT extends Number, nat n, nat m, nat p K
(me : MatrixJT, n, mK, other : T) : MatrixJT, n, mK

opr juxtaposition J T extends Number, nat n, nat m, nat p K
(me : MatrixJT, n, mK, other : T) : MatrixJT, n, mK

opr ·JT extends Number, nat n, nat m, nat p K
(other : T,me : MatrixJT, n, mK) : MatrixJT, n, mK

opr juxtaposition J T extends Number, nat n, nat m, nat p K
(other : T,me : MatrixJT, n, mK) : MatrixJT, n, mK

Array3JT, b0, s0, b1, s1, b2, s2K is the type of 3-dimensional arrays of element type T , with size si in the ith

dimension and lowest index (b0, b1, b2) . Natural order for all generators in each dimension is from b to b + s− 1 ;
the overall order of elements need only be consistent with the cross product of these orderings (see
Generator.cross()).
trait Array3JT, nat b0, nat s0, nat b1, nat s1, nat b2, nat s2K

extends { Indexed1Js0K, Indexed2Js1K, Indexed3Js2K,Rank3,
StandardMutableArrayTypeJArray3JT, b0, s0, b1, s1, b2, s2K, T,

(Z32, Z32, Z32)K }
excludes {Number,String }
getter size() : Z32
getter bounds() : FullRangeJ(Z32, Z32, Z32)K

getter toString() : String

Again, offset performs bounds checking and shifts to 0-indexing.
offset(t : (Z32, Z32, Z32)) : (Z32, Z32, Z32)
toIndex (t : (Z32, Z32, Z32)) : (Z32, Z32, Z32)

And get and put are 0-indexed without bounds checks.
abstract put(t : (Z32, Z32, Z32), v :T) : ()
abstract get(t : (Z32, Z32, Z32)) : T

opr [i : Z32, j : Z32, k : Z32] := (v :T)
opr [r : RangeJ(Z32, Z32, Z32)K]: ArrayJT, (Z32, Z32, Z32)K
opr [: OpenRangeJZ32K] : Array3JT, 0, s0, 0, s1, 0, s2K
opr [: OpenRangeJAnyK] : Array3JT, 0, s0, 0, s1, 0, s2K

155

shift(t : (Z32, Z32, Z32)): ArrayJT, (Z32, Z32)K

2-D subarray given static subarray parameters. (bo1, bo2)# (so1, so2) are output bounds. The result is the
subarray starting at (o0, o1) in the original array.
subarrayJ nat bo0, nat so0, nat bo1, nat so1, nat bo2, nat so2,

nat o0, nat o1, nat o2K
(): Array3JT, bo0, so0, bo1, so1, bo2, so2K

zeroIndices() : FullRangeJ(Z32, Z32, Z32)K

replicaJUK() : Array3JU, b0, s0, b1, s1, b2, s2K
copy() : Array3JT, b0, s0, b1, s1, b2, s2K
mapJRK(f :T → R): Array3JR, b0, s0, b1, s1, b2, s2K
ivmapJRK(f : ((Z32, Z32, Z32), T)→ R): Array3JR, b0, s0, b1, s1, b2, s2K

freeze() : ImmutableArrayJT, (Z32, Z32, Z32)K
end

builtinFactory3 JT, nat b0, nat s0, nat b1, nat s1, nat b2, nat s2K() :
Array3JT, b0, s0, b1, s1, b2, s2K

array3JT, nat s0, nat s1, nat s2K() : Array3JT, 0, s0, 0, s1, 0, s2K

Reductions
trait ReductionJR K

abstract getter toString() : String
abstract empty():R
abstract join(a:R, b:R):R

end

object VoidReduction extends ReductionJ()K
getter toString()
empty(): ()
join(a: (), b: ()): ()

end

Hack to permit any Number to work non-parametrically.
object SumReduction extends ReductionJNumberK

getter toString()
empty(): Number
join(a: Number, b: Number): Number

end

opr
∑

JT K(g : (ReductionJNumberK, T → Number)→ Number): Number

object ProdReduction extends ReductionJNumberK
getter toString()
empty(): Number
join(a : Number, b : Number): Number

end

opr
∏

JT K(g : (ReductionJNumberK, T → Number)→ Number): Number

Hack to permit both Number and TotalOrder to work.

156

object MinReduction extends ReductionJAnyK
getter toString()
empty(): Any
join(a: Any, b: Any):Any

end

Again, type information is notoriously non-specific to permit either TotalOrder or Number types.
opr BIG MIN JT K(g : (ReductionJAnyK, T → Any)→ Any): Any

object NoMax extends UncheckedException end

Hack to permit both Number and TotalOrder to work.
object MaxReduction extends ReductionJAnyK

getter toString()
empty(): Any
join(a: Any, b: Any):Any

end

opr BIG MAX JT K(g : (ReductionJAnyK, T → Any)→ Any): Any

AndReduction and OrReduction take advantage of natural zeroes for early exit.
object AndReduction extends ReductionJBooleanK

getter toString()
empty(): Boolean
join(a: Boolean, b: Boolean): Boolean

end

opr BIG ∧ JT K(g : (ReductionJBooleanK, T → Boolean)→ Boolean) : Boolean

object OrReduction extends ReductionJBooleanK
getter toString()
empty(): Boolean
join(a: Boolean, b: Boolean): Boolean

end

opr BIG ∨ JT K(g : (ReductionJBooleanK, T → Boolean)→ Boolean) : Boolean

object StringReduction extends ReductionJStringK
getter toString()
empty(): Boolean
join(a : String, b : String): String

end

opr BIG STRING (g : (ReductionJStringK,Any→ String)→ String): String

Ranges

Ranges in general represent uses of the # and : operators. It is mostly subtypes of Range that are interesting.

The partial order on ranges describes containment: a < b if and only if all points in a are strictly contained in b .
trait RangeJT K

extends StandardPartialOrderJRangeJT KK
comprises {RangeWithLowerJT K,RangeWithUpperJT K,

RangeWithExtentJT K,PartialRangeJT K }

157

excludes {Number }
opr =(self, : RangeJT K): Boolean

end

trait PartialRangeJT K extends RangeJT K
comprises {OpenRangeJT K,

LowerRangeJT K,UpperRangeJT K,ExtentRangeJT K }
excludes {FullRangeJT K }

end

object OpenRangeJT K extends {RangeJT K,PartialRangeJT K }
toString() : String
opr =(self, : OpenRangeJT K): Boolean
opr CMP(self, other : RangeJT K): Comparison

end

opr PARTIAL LEXICO(a : Comparison, b : Comparison)
opr PARTIAL LEXICO(a : Comparison, b : ()→ Comparison)

trait RangeWithLowerJT K extends RangeJT K
comprises {LowerRangeJT K,FullRangeJT K }

abstract getter lower() : T
end

object LowerRangeJT K(lo :T) extends {RangeWithLowerJT K,PartialRangeJT K }
getter lower() : T
toString() : String
opr =(self, x : LowerRangeJT K): Boolean
opr CMP(self, other : RangeJT K): Comparison

end

trait RangeWithUpperJT K extends RangeJT K
comprises {UpperRangeJT K,FullRangeJT K }

abstract getter upper() : T
end

object UpperRangeJT K(up :T) extends {RangeWithUpperJT K,PartialRangeJT K }
getter upper() : T
toString() : String
opr =(self, x : UpperRangeJT K): Boolean
opr CMP(self, other : RangeJT K): Comparison

end

trait RangeWithExtentJT K extends RangeJT K
comprises {ExtentRangeJT K,FullRangeJT K }

abstract getter extent() : T
toString() : String

end

object ExtentRangeJT K(ex :T) extends {RangeWithExtentJT K,PartialRangeJT K }
getter extent() : T
opr =(self, x : ExtentRangeJT K): Boolean
opr CMP(self, other : RangeJT K): Comparison

end

trait FullRangeJT K
extends {RangeWithLowerJT K,RangeWithUpperJT K,

RangeWithExtentJT K, IndexedJT, T K }

158

comprises { . . . }
getter indices(): FullRangeJT K

opr [r : RangeJT K]: FullRangeJT K
opr [: OpenRangeJT K]: FullRangeJT K

Square-bracket indexing on a FullRange restricts that range to the range provided. Restriction should behave
as follows:

• Restriction to an OpenRange is the identity.

• An UpperRange or ExtentRange restrict the upper bound and extent of the range.

• A LowerRange restricts the lower bound and extent of the range.

Note that this makes it compatible with the square-bracket indexing of the Indexed trait.
opr [r : LowerRangeJT K]: FullRangeJT K
opr [r : UpperRangeJT K]: FullRangeJT K
opr [r : ExtentRangeJT K]: FullRangeJT K
opr [r : FullRangeJT K]: FullRangeJT K

toString() : String

opr =(self, other : FullRangeJT K): Boolean
opr CMP(self, other : RangeJT K): Comparison

end

The # and : operators serve as factories for parallel ranges.
opr # JI extends IntegralK(lo : I, ex : I): RangeJIK
opr # (lo : IntLiteral, ex : IntLiteral): RangeJZ32K
opr # JI extends Integral, J extends IntegralK

(lo : (I, J), ex : (I, J)): RangeJ(I, J)K
opr # JI extends Integral, J extends Integral,K extends IntegralK

(lo : (I, J,K), ex : (I, J,K)): RangeJ(I, J,K)K
opr: JI extends IntegralK(lo : I, hi : I): FullRangeJIK
opr: (lo : IntLiteral, ex : IntLiteral): FullRangeJZ32K
opr: JI extends Integral, J extends IntegralK

(lo : (I, J), hi : (I, J)): RangeJ(I, J)K
opr: JI extends Integral, J extends Integral,K extends IntegralK

(lo : (I, J,K), hi : (I, J,K)): RangeJ(I, J,K)K

Factories for incomplete ranges.
opr (x :T)# JT K : LowerRangeJT K
opr (x :T) : JT K : LowerRangeJT K
opr # JT K(x :T) : ExtentRangeJT K
opr: JT K(x :T) : UpperRangeJT K

opr # ():OpenRangeJAnyK
opr: (): OpenRangeJAnyK

24.1.2 Top-level primitives
opr |JN extends Integral Kx :N |
opr −(a : Z32) : Z32

159

opr +(a : Z32, b : Z32) : Z32
opr −(a : Z32, b : Z32) : Z32
opr ·(a : Z32, b : Z32) : Z32
opr juxtaposition

(a : Z32, b : Z32) : Z32
opr ÷(a : Z32, b : Z32) : Z32
opr REM(a : Z32, b : Z32) : Z32
opr MOD(a : Z32, b : Z32) : Z32
opr GCD(a : Z32, b : Z32) : Z32
opr LCM(a : Z32, b : Z32) : Z32
opr CHOOSE(a : Z32, b : Z32) : Z32
opr ∧∧(a : Z32, b : Z32) : Z32
opr ∨∨(a : Z32, b : Z32) : Z32
opr ∨∨(a : Z32, b : Z32) : Z32
opr LSHIFT(a : Z32, b : Integral) : Z32
opr RSHIFT(a : Z32, b : Integral) : Z32
opr ¬¬(a : Z32) : Z32
opr =(a : Z32, b : Z32) : Boolean
opr ≤(a : Z32, b : Z32) : Boolean
opr ˆ(a : Z32, b : Integral) : Number

widen converts a Z32 into a valid Z64 quantity.
widen(a : Z32) : Z64

partitionL returns the highest power of 2 < a , used to partition iteration spaces for arrays and ranges.
partitionL(a : Z32) : Z32

nanoTime returns the current time in nanoseconds. Currently, this only supports taking differences of results of
nanoTime to produce an elapsed time interval.
nanoTime() : Z64

printTaskTrace dumps some internal error state.
printTaskTrace() : ()

recordTime(dummy : Any): ()
printTime(dummy : Any): ()

opr −(a: IntLiteral): IntLiteral
opr +(a: IntLiteral, b: IntLiteral): IntLiteral
opr −(a: IntLiteral, b: IntLiteral): IntLiteral
opr ·(a: IntLiteral, b: IntLiteral): IntLiteral
opr juxtaposition

(a: IntLiteral, b: IntLiteral): IntLiteral
opr ÷(a: IntLiteral, b: IntLiteral): IntLiteral
opr REM(a: IntLiteral, b: IntLiteral): IntLiteral
opr MOD(a: IntLiteral, b: IntLiteral): IntLiteral
opr GCD(a: IntLiteral, b: IntLiteral): IntLiteral
opr LCM(a: IntLiteral, b: IntLiteral): IntLiteral
opr CHOOSE(a: IntLiteral, b: IntLiteral): IntLiteral
opr ∧∧(a: IntLiteral, b: IntLiteral): IntLiteral
opr ∨∨(a: IntLiteral, b: IntLiteral): IntLiteral

160

opr ∨∨(a: IntLiteral, b: IntLiteral): IntLiteral
opr LSHIFT(a: IntLiteral, b : Integral): IntLiteral
opr RSHIFT(a: IntLiteral, b : Integral): IntLiteral
opr ¬¬(a: IntLiteral): IntLiteral
opr =(a: IntLiteral, b: IntLiteral) : Boolean
opr ≤(a: IntLiteral, b: IntLiteral) : Boolean
opr ˆ(a: IntLiteral, b : Integral) : Number

opr −JT extends Number, nat n, nat m K
(a : Integral) : Z64

opr +JT extends Number, nat n, nat m K
(a : Integral, b : Integral) : Z64

opr −JT extends Number, nat n, nat m K
(a : Integral, b : Integral) : Z64

opr ·JT extends Number, nat n, nat m, nat p K
(a : Integral, b : Integral) : Z64

opr juxtaposition J T extends Number, nat n, nat m, nat p K
(a : Integral, b : Integral) : Z64

opr ÷(a : Integral, b : Integral) : Z64
opr REM(a : Integral, b : Integral) : Z64
opr MOD(a : Integral, b : Integral) : Z64
opr GCD(a : Integral, b : Integral) : Z64
opr LCM(a : Integral, b : Integral) : Z64
opr CHOOSE(a : Integral, b : Integral) : Z64
opr ∧∧(a : Integral, b : Integral) : Z64
opr ∨∨(a : Integral, b : Integral) : Z64
opr ∨∨(a : Integral, b : Integral) : Z64
opr LSHIFT(a : Integral, b : Integral) : Z64
opr RSHIFT(a : Integral, b : Integral) : Z64
opr ¬¬(a : Integral) : Z64
opr =(a : Integral, b : Integral) : Boolean
opr ≤(a : Integral, b : Integral) : Boolean
opr ˆ(a : Z64, b : Integral) : Number
narrow(a : Z64) : Z32

opr <(a : Integral, b : Integral) : Boolean
opr >(a : Integral, b : Integral) : Boolean
opr ≥(a : Integral, b : Integral) : Boolean
opr CMP(a : Integral, b : Integral) : TotalComparison
opr MINJI extends IntegralK(a : I, b : I) : I
opr MAXJI extends IntegralK(a : I, b : I) : I

opr −(a : R64) : R64
opr +(a : Number, b : Number) : R64
opr −(a : Number, b : Number) : R64
opr ·(a : Number, b : Number) : R64
opr juxtaposition

(a : Number, b : Number) : R64
opr /(a : Number, b : Number) : R64
opr =(a : Number, b : Number) : Boolean
opr 6=(a : Number, b : Number) : Boolean
opr <(a : Number, b : Number) : Boolean
opr ≤(a : Number, b : Number) : Boolean
opr >(a : Number, b : Number) : Boolean

161

opr ≥(a : Number, b : Number) : Boolean
opr CMP(a : Number, b : Number) : Comparison
opr MIN(a : Number, b : Number) : Boolean
opr MAX(a : Number, b : Number) : Boolean
opr |a : R64| : R64
opr ˆ(a : Number, b : Number) : R64
opr
√

(a : Number) : R64
sin(a : Number) : R64
cos(a : Number) : R64
tan(a : Number) : R64
asin(a : Number) : R64
acos(a : Number) : R64
atan(a : Number) : R64
atan2(y : Number, x : Number) : R64
log(a : Number) : R64
e(a : Number) : R64
floor(a : Number) : R64
opr ba : Numberc : Z64
ceiling(a : Number) : R64
opr da : Numbere : Z64
truncate(a : Number) : Z64
random(a : Number) : R64

opr =(a : Char, b : Char) : Boolean

opr ·(a : String, b : String) : String
opr juxtaposition

(a : String, b : String) : String
opr ·(a : Number, b : String) : String
opr juxtaposition

(a : Number, b : String) : String
opr ·(a : String, b : Number) : String
opr juxtaposition

(a : String, b : Number) : String
opr ·(a : Boolean, b : String) : String
opr juxtaposition

(a : Boolean, b : String) : String
opr ·(a : String, b : Boolean) : String
opr juxtaposition

(a : String, b : Boolean) : String
opr ·(a : String, c : Char) : String
opr juxtaposition

(a : String, c : Char) : String
opr ·(c : Char, a : String) : String
opr juxtaposition

(c : Char, a : String) : String
opr ·(a : String, b : ()) : String
opr juxtaposition (a : String, b : ()) : String
opr ·(a : String, b : (Any,Any)) : String
opr juxtaposition (a : String, b : (Any,Any)) : String
opr juxtaposition (a : String, b : (Any,Any,Any)) : String
opr ·(a : (), b : String) : String
opr juxtaposition (a : (), b : String) : String

162

opr ·(a : Any, b : String) : String
opr juxtaposition (a : Any, b : String) : String
opr ·(a : String, b : Any) : String
opr juxtaposition (a : String, b : Any) : String

opr =(a : String, b : String) : Boolean
opr <(a : String, b : String) : Boolean
opr ≤(a : String, b : String) : Boolean
opr >(a : String, b : String) : Boolean
opr ≥(a : String, b : String) : Boolean
opr CMP(a : String, b : String) : TotalComparison

outFileOpen(name : String) : BufferedWriter
outFileWrite(file: BufferedWriter, str : String) : ()
outFileClose(file: BufferedWriter) : ()

substring(str : String, beginIndex : Z32, endIndex : Z32) : String
length(str : String) : Z32

print(a : String) : ()
println(a : String) : ()
print(a : Number) : ()
println(a : Number) : ()
print(a : Boolean) : ()
println(a : Boolean) : ()
println(a : Char) : ()
print(a : Any) : ()
println(a : Any) : ()

0-argument versions handle passing of () to single-argument versions.
print() : ()
println() : ()

The following three functions are useful temporary hacks for debugging multi-threaded programs.
printThreadInfo(a : String) : ()
printThreadInfo(a : Number) : ()
throwError(a : String) : ()

opr SEQV(a : Any, b : Any) : Boolean

opr ∨(a : Boolean, b : Boolean) : Boolean
opr ∧(a : Boolean, b : Boolean) : Boolean
opr ∨(a : Boolean, b : ()→ Boolean) : Boolean
opr ∧(a : Boolean, b : ()→ Boolean) : Boolean
opr ¬(a : Boolean) : Boolean
opr→(a: Boolean, b : Boolean) : Boolean
opr→(a: Boolean, b : ()→ Boolean) : Boolean
opr↔(a: Boolean, b : Boolean) : Boolean

true : Boolean
false : Boolean

opr +JT extends NumberK(x :T) :T

opr =JA,BK(t1 : (A,B), t2 : (A,B)): Boolean
opr <JA,BK(t1 : (A,B), t2 : (A,B)): Boolean
opr ≤JA,BK(t1 : (A,B), t2 : (A,B)): Boolean

163

opr >JA,BK(t1 : (A,B), t2 : (A,B)): Boolean
opr ≥JA,BK(t1 : (A,B), t2 : (A,B)): Boolean
opr CMPJA,BK(t1 : (A,B), t2 : (A,B)): Boolean
opr =JA,B,CK(t1 : (A,B,C), t2 : (A,B,C)): Boolean
opr <JA,B,CK(t1 : (A,B,C), t2 : (A,B,C)): Boolean
opr ≤JA,B,CK(t1 : (A,B,C), t2 : (A,B,C)): Boolean
opr >JA,B,CK(t1 : (A,B,C), t2 : (A,B,C)): Boolean
opr ≥JA,B,CK(t1 : (A,B,C), t2 : (A,B,C)): Boolean
opr CMPJA,B,CK(t1 : (A,B,C), t2 : (A,B,C)): Boolean

end

24.2 Builtins

At present, there are two libraries containing builtins: FortressBuiltin (Section 24.2.1) and NativeSimpleTypes
(Section 24.2.2). This reflects an artifact of the current implementation state; the intention is to eventually provide a
single library called FortressBuiltin . Every Fortress API and component will unconditionally see the names exported
by these builtin APIs.

24.2.1 FortressBuiltin

api FortressBuiltin
(∗ import NativeSimpleTypes.{Boolean} ∗)
trait Any end

trait String extends {Any }
(∗ excludes { IntLiteral, FloatLiteral, Boolean } ∗)

end

trait Char extends {Any }
end

trait Number extends {Any }
(∗ excludes {String, Boolean } ∗)

end

trait Integral extends {Number }
(∗ excludes {String, Boolean, RR64, FloatLiteral } ∗)

end

trait BufferedWriter extends {Any } end
trait Z32 extends { Integral }

(∗ excludes {String, Boolean, RR64, FloatLiteral } ∗)
end

trait Z64 extends { Integral }
(∗ excludes {String, Boolean, RR64, FloatLiteral } ∗)

end

trait R64 extends {Number }
(∗ excludes {String, Boolean } ∗)

end

trait IntLiteral extends {Z32, Z64, R64 } end

164

trait FloatLiteral extends {R64 } end
end

24.2.2 NativeSimpleTypes

api NativeSimpleTypes

object Boolean
extends {SequentialGeneratorJ()K,StandardTotalOrderJBooleanK }

end

object ThreadJT K(fcn : ()→ T)
getter val() : T
getter ready() : Boolean
wait() : ()
stop() : ()

end

abort() : ()

end

165

Chapter 25

Additional Libraries Available to Fortress
Programmers

The libraries described in this chapter must be explicitly imported into Fortress programs.

25.1 Constants
api Constants

Useful floating-point constants.
π : FloatLiteral
e : FloatLiteral
infinity : R64

end

25.2 List
api List

Array lists, immutable style (not the mutable Java ArrayList style).

A List is an immutable segment of an immutable (really write-once) array. The rest of the array may contain
elements of lists which overlap this list, or may be free for future use. Every List includes two internal flags
canExtendLeft and canExtendRight ; if a flag is true we are permitted to add additional elements to the List in
place by initializing additional elements of the array. At most one instance sharing the same backing array will obtain
permission to extend the array in this way; we atomically check and update the flag to guarantee this. Having
obtained permission to extend the list, that permission may be extended to future attempts to extend.

Eventually the backing array fills and we must allocate a new backing array to accept new elements. At the moment,
we are not particularly careful to avoid stealing permission to extend for overflowing append operations.

Note that because of this implementation, a List can be efficiently extended on either side, but only in a
non-persistent way; if a single list is extended by two different calls to addRight or append then one of them must
pay the cost of copying the list elements.

166

Note also that the implementation has not yet been carefully checked for amortization, so it is quite likely there are a
number of asymptotic infelicities.

Finally, note that this is an efficient amortized structure. An individual operation may be quite slow due to copying
work.

Baking these off vs PureLists (which have good persistent behavior and non-amortized worst case behavior), they
look very good in practice.

Lists of some item type. Used to collect elements of unknown type into a list whose element type is as specific as
possible. This should not be necessary in the presence of true type inference.
trait SomeList excludes {Number,HasRank }

Not yet: “ comprises ListJEK where JEK ”
append(f : SomeList): SomeList
addLeft(e : Any): SomeList
addRight(e : Any): SomeList

end

List . We return a Generator for non-list-specific operations for which reuse of the Generator will not increase
asymptotic complexity, but return a List in cases (such as map and filter) where it will.
trait ListJEK extends {EqualityJEK,ZeroIndexedJEK }

excludes {Number,HasRank }
getter left() : MaybeJEK
getter right() : MaybeJEK
getter extractLeft():MaybeJ(E,ListJEK)K
getter extractRight():MaybeJ(ListJEK, E)K
append(f : ListJEK): ListJEK
addLeft(e :E) : ListJEK
addRight(e :E) : ListJEK
take(n : Z32): ListJEK
drop(n : Z32): ListJEK
split(n : Z32): (ListJEK,ListJEK)
split(): (ListJEK,ListJEK)
reverse(): ListJEK
zipJF K(other : ListJF K):GeneratorJ(E,F)K
filter(p:E → Boolean): ListJEK
toString() : String
concatMapJGK(f :E → ListJGK): ListJGK

end

Vararg factory for lists; provides aggregate list constants:
opr 〈JEKxs:E . . . 〉: ListJEK

List comprehensions:
opr BIG〈JT,UKg: (ReductionJSomeListK, T → SomeList)→ SomeList 〉: ListJUK

Convert generator into list (simpler type than comprehension above):
listJEK(g : GeneratorJEK) : ListJEK

Flatten a list of lists

167

concatJEK(x : ListJListJEKK) : ListJEK

emptyListJEK(): ListJEK

emptyListJEK(n) allocates an empty list that can accept n addRight operations without reallocating the
underlying storage.
emptyListJEK(n : Z32): ListJEK

singletonJEK(e :E): ListJEK

A reduction object for concatenating lists.
object ConcatJEK extends ReductionJListJEK K

empty(): ListJEK
join(a : ListJEK, b : ListJEK): ListJEK

end

Covariant Singleton function, for use with CVConcat:
cvSingleton(e : Any): SomeList

A reduction object for concatenating SomeLists covariantly.
object CVConcat extends ReductionJSomeListK

empty(): SomeList
join(a : SomeList, b : SomeList): SomeList

end

end

25.3 PureList
api PureList
import List.{SomeList}

Finger trees, based on Ralf Hinze and Ross Paterson’s article, Journal of Funtional Programming 16:2 2006 [9].

These are API-compatible with the List library, except that they do not support covariant construction. In most cases,
you should be able to replace an import of List by PureList or vice versa and see only performance differences
between the two.

Why finger trees? They are balanced and support nearly any operation we care to think of in optimal asymptotic time
and space. The code is niggly due to lots of cases, but fast in practice.

It is also a trial for encoding type-based invariants in Fortress. Can we represent “array of size at most n ”? Not yet,
but we ought to be able to do so. This involves questions about the encoding of existentials, especially constrained
existentials. If you are curious about the details of type-based invariants, the source code may prove instructive.

List . We return a Generator for non-list-specific operations for which reuse of the Generator will not increase
asymptotic complexity, but return a List in cases (such as map and filter) where it will.
trait ListJEK extends {EqualityJEK,ZeroIndexedJEK }

excludes {Number,HasRank }
getter left() : MaybeJEK
getter right() : MaybeJEK

168

getter extractLeft():MaybeJ(E,ListJEK)K
getter extractRight():MaybeJ(ListJEK, E)K
append(f : ListJEK): ListJEK
addLeft(e :E) : ListJEK
addRight(e :E) : ListJEK
take(n : Z32): ListJEK
drop(n : Z32): ListJEK
split(n : Z32): (ListJEK,ListJEK)
split(): (ListJEK,ListJEK)
reverse(): ListJEK
zipJF K(other : ListJF K):GeneratorJ(E,F)K
filter(p:E → Boolean): ListJEK
toString() : String
concatMapJGK(f :E → ListJGK): ListJGK

end

Vararg factory for lists; provides aggregate list constants:
opr 〈JEKxs:E . . . 〉: ListJEK

List comprehensions:
opr BIG〈JT,UKg: (ReductionJSomeListK, T → SomeList)→ SomeList〉: ListJUK

Convert generator into list (simpler type than comprehension above):
listJEK(g : GeneratorJEK) : ListJEK

Flatten a list of lists.
concatJEK(x : ListJListJEKK) : ListJEK

emptyListJEK(): ListJEK
singletonJEK(e :E): ListJEK

object ConcatJEK extends ReductionJListJEK K
empty(): ListJEK
join(a : ListJEK, b : ListJEK): ListJEK

end

end

25.4 File
api File
import FileSupport.{. . .}
object FileReadStream(transient filename : String) extends {FileStream,ReadStream }

getter fileName() : String
getter toString() : String

eof returns true if an end-of-file (EOF) condition has been encountered on the stream.
getter eof () : Boolean

ready returns true if there is currently input from the stream available to be consumed.

169

getter ready() : Boolean

close the stream.
close() : ()

readLine returns the next available line from the stream, discarding line termination characters. Returns “” on
EOF.
readLine() : String

Returns the next available character from the stream, or “” on EOF.
readChar() : Char

read returns the next k characters from the stream. It will block until at least one character is available, and
will then return as many characters as are ready. Will return “” on end of file. If k <= 0 or absent a default
value is chosen.
read(k : Z32) : String
read() : String

All file generators yield file contents in parallel by default, with a natural ordering corresponding to the order
data occurs in the underlying file. The file is closed if all its contents have been read.

These generators pull in multiple chunks of data (where a “chunk” is a line, a character, or a block) before it is
processed. The maximum number of chunks to pull in before processing is given by the last optional argument
in every case; if it is <= 0 or absent a default value is chosen.

It is possible to read from a ReadStream before invoking any of the following methods. Previously-read data
is ignored, and only the remaining data is provided by the generator.

At the moment, it is illegal to read from a ReadStream once any of these methods has been called; we do not
check for this condition. However, the sequential versions of these generators may use label/exit or throw in
order to escape from a loop, and the ReadStream will remain open and ready for reading.

Once the ReadStream has been completely consumed it is closed.

lines yields the lines found in the file a la readLine .
lines(n : Z32) :GeneratorJStringK
lines() : GeneratorJStringK

characters yields the characters found in the file a la readChar .
characters(n : Z32) : GeneratorJStringK
characters() : GeneratorJStringK

chunks returns chunks of characters found in the file, in the sense of read . The first argument is equivalent to
the argument k to read, the second (if present) is the number of chunks at a time.
chunks(n : Z32,m : Z32) :GeneratorJStringK
chunks(n : Z32):GeneratorJStringK
chunks():GeneratorJStringK

end

end

170

25.5 Set
api Set
import List.{SomeList}

Thrown when taking big intersection of no sets.
object EmptyIntersection extends UncheckedException end

Sets represented using a (size-balanced) tree structure. The underlying type E must support comparison using < and
=. When generated, these sets produce their elements in sorted order.
trait SetJEK

extends {ZeroIndexedJEK,EqualityJSetJEKK }
comprises { . . . }

printTree() : ()
toString() : String
minimum() : E
maximum() : E
deleteMinimum() : SetJEK
deleteMaximum() : SetJEK
removeMinimum() : (E,SetJEK)
removeMaximum() : (E,SetJEK)
add(x :E) : SetJEK
delete(x :E) : SetJEK
opr ∪(self, t2 : SetJEK) : SetJEK
opr ∩(self, t2 : SetJEK) : SetJEK
opr DIFFERENCE(self, t2 : SetJEK) : SetJEK

Symmetric difference: all elements in exactly one of the two sets.
opr SYMDIFF(self, t2 : SetJEK) : SetJEK
splitAt(e :E) : (SetJEK,Boolean,SetJEK)
opr ⊂(self, other : SetJEK): Boolean
opr ⊆(self, other : SetJEK): Boolean
opr ⊃(self, other : SetJEK): Boolean
opr ⊇(self, other : SetJEK): Boolean
opr SETCMP(self, other : SetJEK): Comparison

Ordered concatenation; use only if you know what you are doing.
concat(t2 : SetJEK) : SetJEK
concat3(v :E, t2 : SetJEK)

end

singletonJEK(x :E): SetJEK
setJEK(): SetJEK
setJEK(g: GeneratorJEK): SetJEK
opr {JEKes:E . . . }: SetJEK
opr BIG{JT,UKg: (ReductionJSomeListK, T → SomeList)→ SomeList } : SetJUK

opr BIG ∪ JRK(g : (ReductionJSetJRKK,SetJRK→ SetJRK)→ SetJRK) :
SetJRK

object UnionJEK extends ReductionJSetJEKK end

opr BIG ∩ JRK(g : (ReductionJMaybeJSetJRKKK,

171

SetJRK→ MaybeJSetJRKK)→
MaybeJSetJRKK): SetJRK

end

25.6 Map
api Map
import List.{SomeList}
import Set.{Set}
object KeyOverlapJKey,ValK(key : Key, val1 : Val, val2 : Val)

extends UncheckedException
getter toString(): String

end

Note that the map interface is purely functional; methods return a fresh map rather than updating the receiving map in
place. Methods that operate on a particular key leave the rest of the map untouched unless otherwise specified.
trait MapJKey,ValK

extends {GeneratorJ(Key,Val)K,EqualityJMapJKey,ValKK }
comprises { . . . }
getter isEmpty() : Boolean
getter showTree() : String
getter toString() : String
dom(self) : SetJKeyK
opr |self |: Z32
opr [k : Key]: Val throws NotFound
member(x : Key): MaybeJValK

The two-argument version of member returns the default value v if the key is absent from the map.
member(x : Key, v : Val): Val

minimum and maximum refer to the key.
minimum() : (Key,Val) throws NotFound
deleteMinimum() : MapJKey,ValK throws NotFound
removeMinimum() : ((Key,Val),MapJKey,ValK) throws NotFound
maximum(): (Key,Val) throws NotFound
deleteMaximum() : MapJKey,ValK throws NotFound
removeMaximum() : ((Key,Val),MapJKey,ValK) throws NotFound

If no mapping presently exists, maps k to v .
add(k : Key, v : Val) : MapJKey,ValK

Maps k to v .
update(k : Key, v : Val) : MapJKey,ValK

Eliminate any mapping for key k .
delete(k : Key) :MapJKey,ValK

172

Process mapping for key k with function f :

• If no mapping exists, f is passed NothingJValK

• If k maps to value v , f is passed JustJValK(v)

If f returns Nothing , any mapping for k is deleted; otherwise, k is mapped to the value contained in the result.
updateWith(f :MaybeJValK→ MaybeJValK, k : Key): MapJKey,ValK

∪ favors the leftmost value when a key occurs in both maps.
opr ∪(self, other :MapJKey,ValK):MapJKey,ValK

] (disjoint union) throws the KeyOverlap exception when a key occurs in both maps.
opr](self, other :MapJKey,ValK):MapJKey,ValK

The union method takes a function f used to combine the values of keys that overlap.
union(f : (Key,Val,Val)→ Val, other :MapJKey,ValK):MapJKey,ValK

combine is the “swiss army knife” combinator on pairs of maps. We call f on keys present in both input maps.
We call doThis on keys present in self but not in that . We call doThat on keys present in that but not in
self . When any of these functions returns r = JustJResultK , the key is mapped to r.unJust() in the result.
When any of these functions returns NothingJResultK , there is no mapping for the key in the result.

mapThis must be equivalent to mapFilter(doThis) and mapThat must be equivalent to
mapFilter(doThat) ; they are included because often they can do their jobs without traversing their argument
(eg. for union and interesection operations we can pass through or discard whole submaps without traversing
them).
combineJThat,ResultK(f : (Key,Val,That)→ MaybeJResultK,

doThis : (Key,Val)→ MaybeJResultK,
doThat : (Key,That)→ MaybeJResultK,
mapThis :MapJKey,ValK→ MapJKey,ResultK,
mapThat :MapJKey,ValK→ MapJKey,ResultK,
that :MapJKey,ThatK):MapJKey,ResultK

self.mapFilter(f) is equivalent to:

{ k 7→ v′ | (k, v)← self, v′ ← f(k, v) }

It fuses generation, mapping, and filtering.
mapFilterJResultK(f : (Key,Val)→ MaybeJResultK):MapJKey,ResultK

end

mappingJKey,ValK():MapJKey,ValK
mappingJKey,ValK(g: GeneratorJ(Key,Val)K):MapJKey,ValK

opr {7→ JKey,ValKxs : (Key,Val) . . . }:MapJKey,ValK

opr BIG{7→ JKey,ValKg: (ReductionJSomeListK, (Key,Val)→ SomeList)→
SomeList } : MapJKey,ValK

opr BIG ∪ JKey,ValK(g: (ReductionJMapJKey,ValKK,
MapJKey,ValK→ MapJKey,ValK)→

MapJKey,ValK) : MapJKey,ValK

opr BIG] JKey,ValK(g: (ReductionJMapJKey,ValKK,

173

MapJKey,ValK→ MapJKey,ValK)→
MapJKey,ValK) : MapJKey,ValK

end

25.7 Sparse
api Sparse

Trim array v to length l .
trimJT K(v : ArrayJT, Z32K, l : Z32) :ArrayJT, Z32K

object SparseVectorJT, nat nK(mem : ArrayJ(Z32, T), Z32K)
extends VectorJT, nK

end

sparse constructs a sparse vector from dense vector.
sparseJT extends Number, nat nK(me : Array1JR64, 0, nK) : SparseVectorJR64, nK

Compressed sparse row matrix.
object CsrJN extends Number, nat n, nat mK

(rows : Array1JSparseVectorJN,mK, 0, nK)
extends MatrixJN,n,mK

end

Compressed sparse column matrix.
object CscJN extends Number, nat n, nat mK

(cols : Array1JSparseVectorJN,nK, 0,mK)
extends MatrixJN,n,mK

end

end

25.8 Heap
api Heap

Mergeable, pure priority queues (heaps).

At the moment, we are baking off several potential priority queue implementations, based on part on some advice
from “Purely Functional Data Structures” by Okasaki [19].

• Pairing heaps, the current default: O(1) merge; O(lg n) amortized extractMin , with O(n) worst case. The
worst case is proportional to the number of deferred merge operations performed with the min; if you merge n
entries tree-fashion rather than one at a time you should obtain O(lg n) worst case performance as well. The
heap(gen) function will follow the merge structure of the underlying generator; for a well-written generator
this will be sufficient to give good performance.

• Lazy-esque pairing heaps (supposedly slower but actually easier in some ways to implement than pairing heaps,
and avoiding a potential stack overflow in the latter). These do not seem to be quite as whizzy in this setting as
ordinary Pairing heaps: O(lg n) merge, O(lg n) worst-case extractMin .

174

• Splay heaps (noted as “fastest in practice”, borne out by other experiments). Problem: O(n) merge operation,
vs O(lg n) for everything else. If we build heaps by performing reductions over a generator, with each iteration
generating a few elements, this will be a problem. This is not yet implemented.

Minimum complete implementation of HeapJK, V K :

empty
singleton
isEmpty
extractMin
merge(HeapJK, V K)

trait HeapJK, V K extends GeneratorJ(K, V)K
getter isEmpty(): Boolean

Given an instance of HeapJK, V K , get the empty HeapJK, V K .

getter empty(): HeapJK, V K

Get the (key,value) pair with minimal associated key.

getter minimum(): (K, V) throws NotFound

Given an instance of HeapJK, V K , generate a singleton HeapJK, V K .

singleton(k :K, v :V): HeapJK, V K

Return a heap that contains the key-value pairings in both of the heaps passed in.

merge(h : HeapJK, V K): HeapJK, V K

Return a heap that contains the additional key-value pairs.

insert(k :K, v :V): HeapJK, V K

Extract the (key,value) pair with minimal associated key, along with a heap with that key and value pair
removed.

extractMin(): (K, V,HeapJK, V K) throws NotFound
end

object HeapMergeJK, V K(boiler : HeapJK, V K) extends ReductionJHeapJK, V KK
end

trait PairingJK, V K extends HeapJK, V K
comprises { . . . }

dump(): String
end

emptyPairingJK, V K(): PairingJK, V K
singletonPairingJK, V K(k :K, v :V): PairingJK, V K

pairingJK, V K(g : GeneratorJ(K, V)K): PairingJK, V K

Not actually lazy pairing heaps; these are actuallly more eager in that they merge siblings incrementally on insertion.

175

trait LazyPairingJK, V K extends HeapJK, V K
comprises { . . . }

dump(): String
end

emptyLazyJK, V K(): LazyPairingJK, V K
singletonLazyJK, V K(k :K, v :V): LazyPairingJK, V K

lazyJK, V K(g : GeneratorJ(K, V)K): HeapJK, V K

Use these default factories unless you are experimenting. Right now, they yield non-lazy pairing heaps.
emptyHeapJK, V K(): PairingJK, V K
singletonHeapJK, V K(k :K, v :V): PairingJK, V K
heapJK, V K(g : GeneratorJ(K, V)K): PairingJK, V K

end

25.9 SkipList
api SkipList
import PureList.{. . .}

A SkipList type consists of a root node and pInverse = 1/p , where the fraction p is used in the negative binomial
distribution to select random levels for insertion.
trait SkipListJKey,Val, nat pInverseK

comprises { . . . }
toString() : String

The number of values stored in this tree.
size() : Z32

Given a search key, try to return a value that matches that key.
search(k : Key) :MaybeJValK

Add a (key, value) pair to this tree.
add(k : Key, v : Val) : SkipListJKey,Val, pInverseK

Remove one (key, value) pair from this tree.
remove(k : Key) : SkipListJKey,Val, pInverseK

Merge two skip trees.
merge(other : SkipListJKey,Val, pInverseK) : SkipListJKey,Val, pInverseK

end

(∗ Construct an empty skip list. ∗)
NewListJKey,Val, nat pInverseK() : SkipListJKey,Val, pInverseK

end

176

25.10 QuickSort
api QuickSort

http://en.wikipedia.org/wiki/Quicksort

quicksortJT K(lt : (T, T)→ Boolean, arr : ArrayJT, Z32K, left : Z32, right : Z32) : ()

end

177

http://en.wikipedia.org/wiki/Quicksort

Part V

Appendices

178

Appendix A

Fortress Calculi

A.1 Basic Core Fortress

In this section, we define a basic core calculus for Fortress. We call this calculus Basic Core Fortress. Following the
precedent set by prior core calculi such as Featherweight Generic Java [10], we have abided by the restriction that all
valid Basic Core Fortress programs are valid Fortress programs.

A.1.1 Syntax

A syntax for Basic Core Fortress is provided in Figure A.1. We use the following notational conventions:

• For brevity, we omit separators such as , and ; from Basic Core Fortress.

• −→τ is a shorthand for a (possibly empty) sequence τ1, · · · , τn.

• Similarly, we abbreviate a sequence of relations α1 extends N1, · · · , αn extends Nn to
−−−−−−−−−→
α extends N

• We use τi to denote the ith element of −→τ .

• For simplicity, we assume that every name (type variables, field names, and parameters) is different and every
trait/object declaration declares unique name.

• We prohibit cycles in type hierarchies.

The syntax of Basic Core Fortress allows only a small subset of the Fortress language to be formalized. Basic Core
Fortress includes trait and object definitions, method and field invocations, and self expressions. The types of Basic
Core Fortress include type variables, instantiated traits, instantiated objects, and the distinguished trait Object . Note
that we syntactically prohibit extending objects. Among other features, Basic Core Fortress does not include top-
level variable and function definitions, overloading, excludes clauses, comprises clauses, where clauses, object
expressions, and function expressions. Basic Core Fortress will be extended to formalize a larger set of Fortress
programs in the future.

A.1.2 Dynamic Semantics

A dynamic semantics for Basic Core Fortress is provided in Figure A.2. This semantics has been mechanized via
the PLT Redex tool [13]. It therefore follows the style of explicit evaluation contexts and redexes. The Basic Core

179

α, β type variables
f method name
x field name
T trait name
O object name
τ, τ ′, τ ′′ ::= α type

| σ
σ ::= N type that is not a type variable

| OJ−→τ K
N,M,L ::= T J−→τ K type that can be a type bound

| Object
e ::= x expression

| self
| OJ−→τ K(−→e)
| e.x
| e.fJ−→τ K(−→e)

fd ::= fJ
−−−−−−−−−→
α extends NK(−→x:τ):τ = e method definition

td ::= trait T J
−−−−−−−−−→
α extends NK extends {

−→
N }
−→
fd end trait definition

od ::= object OJ
−−−−−−−−−→
α extends NK(−→x:τ) extends {

−→
N }
−→
fd end object definition

d ::= td definition
| od

p ::=
−→
d e program

Figure A.1: Syntax of Basic Core Fortress

Fortress dynamic semantics consists of two evaluations rules: one for field access and another for method invocation.
For simplicity, we use ‘ ’ to denote some parts of the syntax that do not have key roles in a rule. We assume that
does not expand across definition boundaries unless the entire definition is included in it.

A.1.3 Static Semantics

A static semantics for Basic Core Fortress is provided in Figures A.3, A.4, and A.5. The Basic Core Fortress static
semantics is based on the static semantics of Featherweight Generic Java (FGJ) [10]. The major difference is the
division of classes into traits and objects. Both trait and object definitions include method definitions but only object
definitions include field definitions. With traits, Basic Core Fortress supports multiple inheritance. However, due to
the similarity of traits and objects, many of the rules in the Basic Core Fortress dynamic and static semantics combine
the two cases. Note that Basic Core Fortress allows parametric polymorphism, subtype polymorphism, and overriding
in much the same way that FGJ does.

We proved the type soundness of Basic Core Fortress using the standard technique of proving a progress theorem and
a subject reduction theorem.

180

Values, evaluation contexts, redexes, and trait and object names

v ::= OJ−→τ K(−→v) value
E ::= � evaluation context
| OJ−→τ K(−→e E−→e)
| E.x
| E.fJ−→τ K(−→e)
| e.fJ−→τ K(−→e E−→e)

R ::= v.x redex
| v.fJ−→τ K(−→v)

C ::= T trait name
| O object name

Evaluation rules: p ` E[R] −→ E[e]

[R-FIELD] object O (−−→x:) end ∈ p

p ` E[OJ−→τ K(−→v).xi] −→ E[vi]

[R-METHOD]
object O (−−→x:) end ∈ p mbodyp(fJ

−→
τ ′ K, OJ−→τ K) = {(

−→
x′)→ e}

p ` E[OJ−→τ K(−→v).fJ
−→
τ ′ K(
−→
v′)] −→ E[[−→v /−→x][OJ−→τ K(−→v)/self][

−→
v′/
−→
x′]e]

Method body lookup: mbodyp(fJ−→τ K, τ) = {(−→x)→ e}

[MB-SELF]
CJ−−−−−−−−−→α extends K

−→
fd ∈ p fJ

−−−−−−−−−→
α′ extends K(

−−→
x′:) = e ∈ {

−→
fd}

mbodyp(fJ
−→
τ ′ K, CJ−→τ K) = {[

−→
τ ′/
−→
α′][−→τ /−→α](

−→
x′)→ e}

[MB-SUPER]
CJ−−−−−−−−−→α extends K extends {

−→
N }

−→
fd ∈ p f 6∈ {

−−−−−−−→
Fname(fd)}

mbodyp(fJ
−→
τ ′ K, CJ−→τ K) =

⋃
Ni∈{

−→
N}

mbodyp(fJ
−→
τ ′ K, [−→τ /−→α]Ni)

[MB-OBJ] mbodyp(fJ−→τ K,Object) = ∅

Function/method name lookup: Fname(fd) = f

Fname(fJ
−−−−−−−−−→
α extends NK(−→x:τ):τ = e) = f

Figure A.2: Dynamic Semantics of Basic Core Fortress

181

Environments

∆ ::=
−−−−−→
α <: N bound environment

Γ ::= −−→x : τ type environment

Program typing: ` p : τ

[T-PROGRAM]
p =
−→
d e p `

−→
d ok p; ∅; ∅ ` e : τ

` p : τ

Definition typing: p ` d ok

[T-TRAITDEF]

∆ =
−−−−−→
α <: N p;∆ `

−→
N ok p;∆ `

−→
M ok p;∆; self : T J−→α K;T `

−→
fd ok

p ` oneOwner(T)

p ` trait T J
−−−−−−−−−→
α extends NK extends {

−→
M}
−→
fd end ok

[T-OBJECTDEF]

∆ =
−−−−−→
α <: N p;∆ `

−→
N ok p;∆ ` −→τ ok p;∆ `

−→
M ok

p;∆; self : OJ−→α K −−→x : τ ;O `
−→
fd ok p ` oneOwner(O)

p ` object OJ
−−−−−−−−−→
α extends NK(−→x:τ) extends {

−→
M}
−→
fd end ok

Method typing: p;∆; Γ; C ` fd ok

[T-METHODDEF]

C extends {
−→
M} ∈ p p;∆ ` override(f, {

−→
M}, J

−−−−−−−−−→
α extends NK −→τ → τ0)

∆′ = ∆
−−−−−→
α <: N p;∆′ `

−→
N ok p;∆′ ` −→τ ok p;∆′ ` τ0 ok

p;∆′; Γ −−→x : τ ` e : τ ′ p;∆′ ` τ ′ <: τ0

p;∆; Γ; C ` fJ
−−−−−−−−−→
α extends NK(−→x:τ):τ0 = e ok

Method overriding: p;∆ ` override(f, {
−→
N }, J

−−−−−−−−−→
α extends NK −→τ → τ)

[OVERRIDE]

⋃
Li∈{

−→
L}

mtypep(f, Li) = {J
−−−−−−−−−→
β extends MK

−→
τ ′ → τ ′0}

−→
N = [−→α /

−→
β]
−→
M −→τ = [−→α /

−→
β]
−→
τ ′ p;

−−−−−→
α <: N ` τ0 <: [−→α /

−→
β]τ ′0

p;∆ ` override(f, {
−→
L }, J

−−−−−−−−−→
α extends NK −→τ → τ0)

Method type lookup: mtypep(f, τ) = {J
−−−−−−−−−→
α extends NK −→τ → τ}

[MT-SELF]
CJ−−−−−−−−−→α extends K

−→
fd ∈ p fJ

−−−−−−−−−→
β extends MK(

−−→
:τ ′):τ ′0 = e ∈ {

−→
fd}

mtypep(f, CJ−→τ K) = {[−→τ /−→α]J
−−−−−−−−−→
β extends MK

−→
τ ′ → τ ′0}

[MT-SUPER]
CJ−−−−−−−−−→α extends K extends {

−→
N }

−→
fd ∈ p f 6∈ {

−−−−−−−→
Fname(fd)}

mtypep(f, CJ−→τ K) =
⋃

Ni∈{
−→
N}

mtypep(f, [−→τ /−→α]Ni)

[MT-OBJ] mtypep(f,Object) = ∅

Figure A.3: Static Semantics of Basic Core Fortress (I)

182

Expression typing: p;∆; Γ ` e : τ

[T-VAR] p;∆; Γ ` x : Γ(x)

[T-SELF] p;∆; Γ ` self : Γ(self)

[T-OBJECT]

object OJ−−−−−−−−−→α extends K(
−−→

:τ ′) end ∈ p p;∆ ` OJ−→τ Kok

p;∆; Γ ` −→e :
−→
τ ′′ p;∆ `

−→
τ ′′ <: [−→τ /−→α]

−→
τ ′

p;∆; Γ ` OJ−→τ K(−→e) : OJ−→τ K

[T-FIELD]
p;∆; Γ ` e0 : τ0 bound∆(τ0) = OJ

−→
τ ′ K object OJ−−−−−−−−−→α extends K(−→x:τ) end ∈ p

p;∆; Γ ` e0.xi : [
−→
τ ′/−→α]τi

[T-METHOD]

p;∆; Γ ` e0 : τ0 mtypep(f, bound∆(τ0)) = {J
−−−−−−−−−→
α extends NK

−→
τ ′ → τ ′0}

p;∆ ` −→τ ok p;∆ ` −→τ <: [−→τ /−→α]
−→
N

p;∆; Γ ` −→e :
−→
τ ′′ p;∆ `

−→
τ ′′ <: [−→τ /−→α]

−→
τ ′

p;∆; Γ ` e0.fJ−→τ K(−→e) : [−→τ /−→α]τ ′0

Subtyping: p;∆ ` τ <: τ

[S-OBJ] p;∆ ` τ <: Object

[S-REFL] p;∆ ` τ <: τ

[S-TRANS]
p;∆ ` τ1 <: τ2 p;∆ ` τ2 <: τ3

p;∆ ` τ1 <: τ3

[S-VAR] p;∆ ` α <: ∆(α)

[S-TAPP]
CJ−−−−−−−−−→α extends K extends {

−→
N } ∈ p

p;∆ ` CJ−→τ K <: [−→τ /−→α]Ni

Well-formed types: p;∆ ` τ ok

[W-OBJ] p;∆ ` Object ok

[W-VAR]
α ∈ dom(∆)

p;∆ ` α ok

[W-TAPP]
CJ
−−−−−−−−−→
α extends NK ∈ p p;∆ ` −→τ ok p;∆ ` −→τ <: [−→τ /−→α]

−→
N

p;∆ ` CJ−→τ K ok

Figure A.4: Static Semantics of Basic Core Fortress (II)

183

Bound of type: bound∆(τ) = σ

bound∆(α) = ∆(α)
bound∆(σ) = σ

One owner for all the visible methods: p ` oneOwner (C)

[ONEOWNER]
∀f ∈ visiblep(C) . f only occurs once in visiblep(C)

p ` oneOwner(C)

Auxiliary functions for methods: definedp / inheritedp / visiblep(C) = {
−→
f }

definedp(C) = {
−−−−−−−→
Fname(fd)} where C

−→
fd ∈ p

inheritedp(C) =
⊎

Ni∈{
−→
N}
{fi | fi ∈ visiblep(Ni), fi 6∈ definedp(C)} where C extends {

−→
N } ∈ p

visiblep(C) = definedp(C)] inheritedp(C)

Figure A.5: Static Semantics of Basic Core Fortress (III)

A.2 Core Fortress with Overloading

In this section, we define a Fortress core calculus with overloading for dotted methods and first-order functions. We
call this calculus Core Fortress with Overloading. Core Fortress with Overloading is an extension of Basic Core
Fortress with overloading.

A.2.1 Syntax

The syntax for Core Fortress with Overloading is provided in Figure A.6.

A.2.2 Dynamic Semantics

A dynamic semantics for Core Fortress with Overloading is provided in Figure A.7.

A.2.3 Static Semantics

A static semantics for Core Fortress with Overloading is provided in Figures A.8, A.9, A.10, and A.11.

We proved the type soundness of Core Fortress with Overloading using the standard technique of proving a progress
theorem and a subject reduction theorem.

184

α, β type variables
f function or method name
x field name
T trait name
O object name
τ, τ ′, τ ′′ ::= α type

| σ
σ ::= N type that is not a type variable

| OJ−→τ K
N,M,L ::= T J−→τ K type that can be a type bound

| Object
e ::= x expression

| self
| OJ−→τ K(−→e)
| e.x
| e.fJ−→τ K(−→e)
| fJ−→τ K(−→e)

fd ::= fJ
−−−−−−−−−→
α extends NK(−→x:τ):τ = e function or method definition

td ::= trait T J
−−−−−−−−−→
α extends NK extends {

−→
N }
−→
fd end trait definition

od ::= object OJ
−−−−−−−−−→
α extends NK(−→x:τ) extends {

−→
N }
−→
fd end object definition

d ::= fd definition
| td
| od

p ::=
−→
d e program

Figure A.6: Syntax of Core Fortress with Overloading

185

Values, evaluation contexts, and redexes

v ::= OJ−→τ K(−→v) value
E ::= � evaluation context
| OJ−→τ K(−→e E−→e)
| E.x
| E.fJ−→τ K(−→e)
| e.fJ−→τ K(−→e E−→e)
| fJ−→τ K(−→e E−→e)

R ::= v.x redex
| v.fJ−→τ K(−→v)
| fJ−→τ K(−→v)

Evaluation rules: p ` E[R] −→ E[e]

[R-FIELD]
object O (−−→x:) end ∈ p

p ` E[OJ−→τ K(−→v).xi] −→ E[vi]

[R-METHOD]

object OJ
−−−−−−−−−→
α extends NK(−−→x:) end ∈ p

−−−−−→
type(v′) =

−→
τ ′′

mostspecificp;∅(applicablep;∅(fJ
−→
τ ′ K(
−→
τ ′′), visiblep(OJ−→τ K))) = fJ

−−−−−−−−−−→
α′ extends N ′K(

−−→
x′:): = e

p ` E[OJ−→τ K(−→v).fJ
−→
τ ′ K(
−→
v′)] −→ E[[−→v /−→x][OJ−→τ K(−→v)/self][

−→
v′/
−→
x′]e]

[R-FUNCTION]

−−−−→
type(v) =

−→
τ ′

mostspecificp;∅(applicablep;∅(fJ−→τ K(
−→
τ ′), {(fd ,Object) | fd ∈ p})) = fJ

−−−−−−−−−→
α extends NK(−−→x:): = e

p ` E[fJ−→τ K(−→v)] −→ E[[−→v /−→x]e]

Types of values: type(v) = τ

type(OJ−→τ K(−→v)) = OJ−→τ K

Figure A.7: Dynamic Semantics of Core Fortress with Overloading

186

Environments and trait or object names

∆ ::=
−−−−−→
α <: N bound environment

Γ ::= −−→x : τ type environment
C ::= T trait name
| O object name

Program typing: ` p : τ

[T-PROGRAM]
p =
−→
d e p; ∅; ∅ `

−→
d ok p ` validFun(

−→
d) p; ∅; ∅ ` e : τ

` p : τ

Trait typing: p; ∅; ∅ ` td ok

[T-TRAITDEF]

∆ =
−−−−−→
α <: N p;∆ `

−→
N ok p;∆ `

−→
M ok

p;∆; self : T J−→α K `
−→
fd ok p ` validMeth(T)

p; ∅; ∅ ` trait T J
−−−−−−−−−→
α extends NK extends {

−→
M}
−→
fd end ok

Object typing: p; ∅; ∅ ` od ok

[T-OBJECTDEF]

∆ =
−−−−−→
α <: N p;∆ `

−→
N ok p;∆ ` −→τ ok p;∆ `

−→
M ok

p;∆; self : OJ−→α K −−→x : τ `
−→
fd ok p ` validMeth(O)

p; ∅; ∅ ` object OJ
−−−−−−−−−→
α extends NK(−→x:τ) extends {

−→
M}
−→
fd end ok

Function and method typing: p;∆; Γ ` fd ok

[T-FUNMETHDEF]

∆′ = ∆
−−−−−→
α <: N p;∆′ `

−→
N ok p;∆′ ` −→τ ok p;∆′ ` τ0 ok

p;∆′; Γ −−→x : τ ` e : τ ′ p;∆′ ` τ ′ <: τ0

p;∆; Γ ` fJ
−−−−−−−−−→
α extends NK(−→x:τ):τ0 = e ok

Valid method declarations: p ` validMeth(C)

[VALIDMETH]

∀ (fd , CJ
−→
τ cK), (fd ′, C ′J

−→
τ c′

K) ∈ visiblep(CoJ
−→
αoK).

where CoJ
−−−−−−−−−−→
αo extends K ∈ p,

fd 6= fd ′ (not same declaration),
fd = fJ

−−−−−−−−−→
α extends NK(−−→:τ):τ r = , fd ′ = fJ

−−−−−−−−−−→
α′ extends N ′K(

−−→
:τ ′):τ r′

= ,

p ` valid(J
−−−−−−−−−→
α extends NKCJ

−→
τ cK−→τ → τ r, J

−−−−−−−−−−→
α′ extends N ′KC ′J

−→
τ c′

K
−→
τ ′ → τ r′

, visiblep(CoJ
−→
αoK))

p ` validMeth(Co)

Figure A.8: Static Semantics of Core Fortress with Overloading (I)

187

Valid function declarations: p ` validFun(
−→
d)

[VALIDFUN]

∀ fd , fd ′ ∈
−→
d .

where fd 6= fd ′ (not same declaration),
fd = fJ

−−−−−−−−−→
α extends NK(−−→:τ):τ r = , fd ′ = fJ

−−−−−−−−−−→
α′ extends N ′K(

−−→
:τ ′):τ r′

= ,

p ` valid(J
−−−−−−−−−→
α extends NKObject−→τ → τ r, J

−−−−−−−−−−→
α′ extends N ′KObject

−→
τ ′ → τ r′

, {(fd ,Object) | fd ∈
−→
d })

p ` validFun(
−→
d)

Valid declarations: p ` valid (J
−−−−−−−−−→
α extends NK−→τ → τ, J

−−−−−−−−−→
α extends NK−→τ → τ, {

−−−−→
(fd , τ)})

[VALID]

∆ =
−−−−−→
α <: N, |−→τ | = n

1. |−→τ | 6= |
−→
τ ′ |

∨ 2. 1)
−→
N = [−→α /

−→
α′]
−→
N ′

∧ 2) ∀ 1 ≤ i ≤ n. p;∆ ` τi <: [−→α /
−→
α′]τ ′i ∨ p;∆ ` [−→α /

−→
α′]τ ′i <: τi

∧ 3) ∃ 1 ≤ i ≤ n. τi 6= [−→α /
−→
α′]τ ′i

∧ 4) ∃ (fJ
−−−−−−−−−−−→
α′′ extends N ′′K(

−−−→
:τ ′′):τ r′′

= , τ ′′0) ∈ S.
where

∀ 0 ≤ i ≤ n. p;∆ ` meet({τi, [−→α /
−→
α′]τ ′i}, [

−→α /
−→
α′′]τ ′′i)

∧
−→
N = [−→α /

−→
α′′]
−→
N ′′

∧ p;∆ ` [−→α /
−→
α′′]τ r′′

<: τ r

∧ p;∆ ` [
−→
α′/
−→
α′′]τ r′′

<: τ r′

p ` valid(J
−−−−−−−−−→
α extends NK−→τ → τ r, J

−−−−−−−−−−→
α′ extends N ′K

−→
τ ′ → τ r′

, S)

Expression typing: p;∆; Γ ` e : τ

[T-VAR] p;∆; Γ ` x : Γ(x)

[T-SELF] p;∆; Γ ` self : Γ(self)

[T-OBJECT]

object OJ−−−−−−−−−→α extends K(
−−→

:τ ′) end ∈ p p;∆ ` OJ−→τ Kok

p;∆; Γ ` −→e :
−→
τ ′′ p;∆ `

−→
τ ′′ <: [−→τ /−→α]

−→
τ ′

p;∆; Γ ` OJ−→τ K(−→e) : OJ−→τ K

[T-FIELD]
p;∆; Γ ` e0 : τ0 bound∆(τ0) = OJ

−→
τ ′ K object OJ−−−−−−−−−→α extends K(−→x:τ) end ∈ p

p;∆; Γ ` e0.xi : [
−→
τ ′/−→α]τi

[T-METHOD]

p;∆; Γ ` e0 : τ0 p;∆ ` −→τ ok p;∆; Γ ` −→e :
−→
τ ′

mostspecificp;∆(applicablep;∆(fJ−→τ K(
−→
τ ′), visiblep(bound∆(τ0)))) = fJ

−−−−−−−−−→
α extends NK():τ r

p;∆; Γ ` e0.fJ−→τ K(−→e) : τ r

[T-FUNCTION]

p;∆ ` −→τ ok p;∆; Γ ` −→e :
−→
τ ′

mostspecificp;∆(applicablep;∆(fJ−→τ K(
−→
τ ′), {(fd ,Object) | fd ∈ p}))) = fJ

−−−−−−−−−→
α extends NK():τ r

p;∆; Γ ` fJ−→τ K(−→e) : τ r

Figure A.9: Static Semantics of Core Fortress with Overloading (II)

188

Subtyping: p;∆ ` τ <: τ

[S-OBJ] p;∆ ` τ <: Object

[S-REFL] p;∆ ` τ <: τ

[S-TRANS]
p;∆ ` τ1 <: τ2 p;∆ ` τ2 <: τ3

p;∆ ` τ1 <: τ3

[S-VAR] p;∆ ` α <: ∆(α)

[S-TAPP]
CJ−−−−−−−−−→α extends K extends {

−→
N } ∈ p

p;∆ ` CJ−→τ K <: [−→τ /−→α]Ni

Well-formed types: p;∆ ` τ ok

[W-OBJ] p;∆ ` Object ok

[W-VAR]
α ∈ dom(∆)

p;∆ ` α ok

[W-TAPP]
CJ
−−−−−−−−−→
α extends NK ∈ p p;∆ ` −→τ ok p;∆ ` −→τ <: [−→τ /−→α]

−→
N

p;∆ ` CJ−→τ K ok

Most specific definitions: mostspecificp;∆({
−−−−→
(fd , τ)}) = fd

−→
fd = fJ(

−−−−−−−−−→
α extends N)1K((

−−−→
:τa)1):τ r

1 · · · fJ(
−−−−−−−−−→
α extends N)nK((

−−−→
:τa)n):τ r

n

1 ≤ i ≤ n (
−→
τa)i = τa

i1 · · · τa
im τa

i0 = τi ∀ 0 ≤ j ≤ m . p;∆ ` meet({τa
1j , · · · , τa

nj}, τa
ij)

mostspecificp;∆({
−−−−→
(fd , τ)}) = fd i

Applicable definitions: applicablep;∆(fJ−→τ K(−→τ), {
−−−−→
(fd , τ)}) = {

−−−−→
(fd , τ)}

applicablep;∆(fJ
−→
τ ′ K(
−→
τ ′′), S) =


{([
−→
τ ′/−→α]fd , τ) | where (fd , τ) ∈ S,

fd = fJ
−−−−−−−−−→
α extends NK(

−−−→
x:τ ′′′): ,

p;∆ `
−→
τ ′′ <: [

−→
τ ′/−→α]

−→
τ ′′′

p;∆ `
−→
τ ′ <: [

−→
τ ′/−→α]

−→
N }

Figure A.10: Static Semantics of Core Fortress with Overloading (III)

189

Method definition lookup: visiblep / definedp(CJ−→τ K) = {
−−−−−−−→
(fd , CJ−→τ K)}

visiblep(CJ−→τ K) = definedp(CJ−→τ K) ∪
⋃

C′J
−→
τ ′K∈{

−→
N}

visiblep([−→τ /−→α]C ′J
−→
τ ′ K) where CJ−−→α K extends {

−→
N } ∈ p

definedp(CJ−→τ K) = {
−−−−−−−−−−−−−→
([−→τ /−→α]fd , CJ−→τ K)} where CJ−−→α K

−→
fd ∈ p

Most specific type: p;∆ ` meet({−→τ }, τ)

[MEET]
τ ′ ∈ {−→τ } ∀ 1 ≤ i ≤ |−→τ | . p;∆ ` τ ′ <: τi

p;∆ ` meet({−→τ }, τ ′)

Bound of type: bound∆(τ) = σ

bound∆(α) = ∆(α)
bound∆(σ) = σ

Figure A.11: Static Semantics of Core Fortress with Overloading (IV)

190

Appendix B

Rendering of Fortress Code

In order to more closely approximate mathematical notation, Fortress mandates standard rendering for various input
elements, particularly for numerals and identifiers, as specified in Section 4.16.

In this appendix, we describe the detailed rules for rendering an identifier, as well as rules used for rendering other
constructions.

B.1 Rendering of Fortress Identifiers

If an identifier consists of letters and possibly digits, but no underscores, prime marks, or apostrophes, then the rules
are fairly simple:

(a) If the identifier consists of two ASCII capital letters that are the same, possibly followed by digits, then a single
capital letter is rendered double-struck, followed by full-sized (not subscripted) digits in roman font.

QQ is rendered as Q RR64 is rendered as R64
ZZ is rendered as Z ZZ512 is rendered as Z512

(b) Otherwise, if the identifier has more than two characters and begins with a capital letter, then it is rendered in roman
font. (Such names are typically used as names of types in Fortress. Note that an identifier cannot consist entirely of
capital letters, because such a token is considered to be an operator.)

Integer is rendered as Integer Matrix is rendered as Matrix
TotalOrder is rendered as TotalOrder BooleanAlgebra is rendered as BooleanAlgebra

Fred17 is rendered as Fred17 R2D2 is rendered as R2D2

(c) Otherwise, if the identifier consists of one or more letters followed by one or more digits, then the letters are
rendered in italic and the digits are rendered as roman subscripts.

a3 is rendered as a3 foo7 is rendered as foo7

M1 is rendered as M1 z128 is rendered as z128

OMEGA13 is rendered as Ω13 myFavoriteThings1625 is rendered as myFavoriteThings1625

(d) The following names are always rendered in roman type out of respect for tradition:

191

sin cos tan cot sec csc
sinh cosh tanh coth sech csch
arcsin arccos arctan arccot arcsec arccsc
arsinh arcosh artanh arcoth arsech arcsch
arg deg det exp inf sup
lg ln log gcd max min

(e) Otherwise the identifier is simply rendered entirely in italic type.

a is rendered as a foobar is rendered as foobar
length is rendered as length isInstanceOf is rendered as isInstanceOf
foo7a is rendered as foo7a l33tsp33k is rendered as l33tsp33k

If the identifier begins or ends with an underscore, or both, but has no other underscores, or prime marks, or apostro-
phes:

(f) If the identifier, ignoring its underscores, consists of two ASCII capital letters that are the same, possibly followed
by one or more digits, then a single capital letter is rendered in sans-serif (for a leading underscore), script (for a
trailing underscore), or italic san-serif (for both a leading and a trailing underscore), and any digits are rendered as
roman subscripts.

(g) Otherwise, the identifier without its underscores is rendered in boldface (for a leading underscore), roman (for a
trailing underscore), or bold italic (for both a leading and a trailing underscore); except that if the identifier, ignoring
its underscores, consists of one or more letters followed by one or more digits, then the digits are rendered as roman
subscripts regardless of the underscores.

m is rendered as m s is rendered as s
km is rendered as km kg is rendered as kg
V is rendered as V kW is rendered as kW
v is rendered as v foo13 is rendered as foo13

(Roman identifiers are typically used for names of SI dimensional units. See sections 6.1.1 and 6.2.1 of [21] for style
questions with respect to dimensions and units.)

These last two rules are actually special cases of the following general rules that apply whenever an identifier contains
at least one underscore, prime mark, or apostrophe:

An identifier containing underscores is divided into portions by its underscores; in addition, any apostrophe, prime, or
double prime character separates portions and is also itself a portion.

(h) If any portion is empty other than the first or last, then the entire identifier is rendered in italics, underscores and
all.

Otherwise, the portions are rendered as follows. The idea is that there is a principal portion that may be preceded
and/or followed by modifiers, and there may also be a face portion:

• If the first portion is not empty, script, fraktur, sansserif, or monospace, then the principal portion is
the first portion and there is no face portion.

• If the first portion is script, fraktur, sansserif, or monospace, then the principal portion is the second
portion and the face portion is the first portion.

• If the first portion is empty and the second portion is not script, fraktur, sansserif, or monospace, then
the principal portion is the second portion and there is no face portion.

• Otherwise the principal portion is the third portion and the face portion is the second portion.

If there is no face portion, the principal portion will be rendered in ordinary italics. However, if the first portion is
empty (that is, the identifier begins with a leading underscore), then the principal portion is to be rendered in roman

192

boldface. If the last portion is empty (that is, the identifier ends with a trailing underscore), then the principal portion
will be roman rather than italic, or bold italic rather than bold.

If there is a face portion, then that describes an alternate typeface to be used in rendering the principal portion. If there
is no face portion, but the principal portion consists of two copies of the same letter, then it is rendered as a single
letter in a double-struck face (also known as “blackboard bold”), sans-serif, script, or italic sans-serif font according
to whether the first and last portions are (not empty, not empty), (empty, not empty), (not empty, empty), or (empty,
empty), respectively. Otherwise, if the first portion is empty (that is, the identifier begins with a leading underscore),
then the principal portion is to be rendered in a bold version of the selected face, and if the last portion is empty (that
is, the identifier ends with a trailing underscore), then the principal portion to be rendered in an italic (or bold italic)
version of the selected face. The bold and italic modifiers may be used only in combination with certain faces; the
following are the allowed combinations:

script

bold script

fraktur

bold fraktur

double-struck

sans-serif

bold sans-serif

italic sans-serif

bold italic sans-serif

monospace

If a combination can be properly rendered, then the principal portion is rendered but not any preceding portions or
underscores. If a combination cannot be properly rendered, then the principal portion and all portions and underscores
preceding it are rendered all in italics if possible, and otherwise all in some other default face.

If the principal portion consists of a sequence of letters followed by a sequence of digits, then the letters are rendered
in the chosen face and the digits are rendered as roman subscripts. Otherwise the entire principal portion is rendered
in the chosen face. The remaining portions (excepting the last, if it is empty) are then processed according to the
following rules:

• If a portion is bar, then a bar is rendered above what has already been rendered, excluding superscripts and
subscripts. For example, x_bar is rendered as x̄ , x17_bar is rendered as x̄17 , x_bar_bar is rendered
as ¯̄x , and foo_bar is rendered as foo . (Contrast this last with foo_baz , which is rendered as foo baz .)

• If a portion is vec, then a right-pointing arrow is rendered above what has already been rendered, exclud-
ing superscripts and subscripts. For example, v_vec is rendered as ~v , v17_vec is rendered as ~v17 , and
zoom_vec is rendered as −−−→zoom .

• If a portion is hat, then a hat is rendered above what has already been rendered, excluding superscripts and
subscripts. For example, x17_hat is rendered as x̂17 .

• If a portion is dot, then a dot is rendered above what has already been rendered, excluding superscripts and
subscripts; but if the preceding portion was also dot, then the new dot is rendered appropriately relative to the
previous dot(s). Up to four dots will be rendered side-by-side rather than vertically. For example, a_dot is ren-
dered as ȧ , a_dot_dot is rendered as ä , a_dot_dot_dot is rendered as

...a , a_dot_dot_dot_dot
is rendered as

....a . Also, a_vec_dot is rendered as ~̇v .

• If a portion is star, then an asterisk * is rendered as a superscript. For example, a_star is rendered as a∗ ,
a_star_star is rendered as a∗∗ , ZZ_star is rendered as Z∗ .

• If a portion is splat, then a number sign # is rendered as a superscript. For example, QQ_splat is rendered
as Q# .

• If a portion is prime, then a prime mark is rendered as a superscript.

193

• A prime character is treated the same as prime, and a double prime character is treated the same as two consec-
utive prime portions. An apostrophe is treated the same as a prime character, but only if all characters following
it in the identifier, if any, are also apostrophes. For example, a’ is rendered as a′ , a13’ is rendered as a′13 ,
and a’’ is rendered as a′′ , but don’t is rendered as don’t .

• If a portion is super and another portion follows, then that other portion is rendered as a superscript in roman
type, and enclosed in parentheses if it is all digits.

• If a portion is sub and another portion follows, then that other portion is rendered as a subscript in roman type,
and enclosed in parentheses if it is all digits, and preceded by a subscript-separating comma if this portion was
immediately preceded by another portion that was rendered as a subscript.

• If a portion consists entirely of capital letters and would, if considered by itself as an identifier, be the name
of a non-letter Unicode character that would be subject to replacement by preprocessing, then that Unicode
character is rendered as a subscript. For example, id_OPLUS is rendered as id⊕ , ZZ_GT is rendered as Z> ,
and QQ_star_LE is rendered as Q∗≤ .

• If the portion is the last portion, and the principal portion was a single letter (or two letters indicating a double-
struck letter), and none of the preceding rules in this list applies, it is rendered as a subscript in roman type. For
example, T_min is rendered as Tmin . Note that T_MAX is rendered simply as T MAX—because all its letters
are capital letters, it is considered to be an operator—but T_sub_MAX is rendered as TMAX .

• Otherwise, this portion and all succeeding portions are rendered in italics, along with any underscores that
appear adjacent to any of them.

Examples:

M is rendered as M M is rendered as M
v vec is rendered as ~v v vec is rendered as ~v

v1 is rendered as v1 v x is rendered as vx

v1 is rendered as v1 v x is rendered as vx

a dot is rendered as ȧ a dot dot is rendered as ä
a dot dot dot is rendered as

...
a a dot dot dot dot is rendered as

....
a

a dot dot dot dot dot is rendered as ˙....a p13’ is rendered as p′13
p’ is rendered as p′ p prime is rendered as p′

T min is rendered as Tmin T max is rendered as Tmax

foo bar is rendered as foo foo baz is rendered as foo baz

In this way, through the use of underscore characters and annotation portions delimited by underscores, the program-
mer can exercise considerable typographical control over the rendering of variable names; but if no underscores are
used, the rendering rules are quite simple.

B.2 Rendering of Other Fortress Constructs

An expression of the form aˆb or aˆ(b) is rendered by making the expression b a superscript, and possibly
removing an outer set of parentheses, if it is reasonably simple; otherwise it is rendered as if ˆ were an ordinary
binary operator.

xˆy is rendered as xy

xˆ43 is rendered as x43

xˆ(n+1) is rendered as xn+1

xˆ(|s.substring(a,b)|) is rendered as xˆ(|s.substring(a, b)|)

An expression of the form a[b] is rendered by making the expression b a subscript, if it is reasonably simple.

194

a[43] is rendered as a43

a[k] is rendered as ak

a[n_max] is rendered as anmax

a[k+k’] is rendered as ak+k′

a[b-c] is rendered as ab−c

a[3 k + 1] is rendered as a3k+1

a[b[c[d]]] is rendered as a[b[cd]]
a[s.substring(p,q)] is rendered as a[s.substring(p, q)]

If there is more than one subscript expression, then they are rendered as subscripts only if each subscript is a single
letter or digit, or a single letter followed by digits and/or prime marks:

a[1,1] is rendered as a11

a[1,n] is rendered as a1n

a[j,m,n] is rendered as ajmn

a[n1,n2,n3] is rendered as an1n2n3

a[k,k’,k’’] is rendered as akk′k′′

a[1,n-1] is rendered as a[1, n− 1]

(There is, of course, some opportunity here to make the rules for subscripted rendering more elaborate.)

If there is whitespace adjacent to the subscripting brackets or any separating comma, then actual subscripts are not
used and the brackets remain (so putting spaces after the commas of a multidimensional subscript is a simple way to
guarantee that bracket syntax will be used in the formatted version):

a[i,j] is rendered as aij

a[i, j] is rendered as a[i, j]
a[b[c[d]]] is rendered as a[b[c[d]]]

The presence or absence of whitespace inside and adjacent to enclosing operators is reflected in the rendered form by
the presence or absence of a thin space:

a[s.substring(p,q)] is rendered as a[s.substring(p, q)]
a[s.substring(p,q)] is rendered as a[s.substring(p, q)]

{1,2} is rendered as {1, 2}
{ 1, 2 } is rendered as { 1, 2 }
<|1,2,3|> is rendered as 〈1, 2, 3〉

<| x+y | x<-a, y<-b |> is rendered as 〈x + y | x← a, y ← b 〉

Rendered comprehensions look best if there is whitespace inside the enclosers and on both sides of the separating
vertical bar.

The presence or absence of whitespace on either side of a colon is also handled especially carefully. In general, one
should put a space on both sides, or neither side, of a colon that is used as an operator to construct a range; on the other
hand, one should put a space after, but not before, a colon that separates a variable or function header from a type.
This will produce the best rendered spacing. (The assignment operator := is recognized separately and whitespace
doesn’t matter.)

for i <- 1:10 do print i end is rendered as for i← 1 : 10 do print i end
for i <- 0 : n+1 do print i end is rendered as for i← 0 : n + 1 do print i end

k: ZZ32 := 5 is rendered as k: Z32 := 5
factorial(n: NN): NN is rendered as factorial(n: N): N

a:=b is rendered as a := b

195

Generators and filters in brackets after a reduction operator are rendered by stacking them beneath the operator:

PROD[k<-1#n] n is rendered as
∏

k←1#n

n

SUM[i<-1:n, j<-1:p, prime j] a[i] xˆj is rendered as
∑

i←1:n
j←1:p
prime j

ai xj

MAX[j<-S, k<-j:j+m] a[k] is rendered as MAX
j←S

k←j:j+m

ak

196

Appendix C

Operator Precedence, Associativity,
Chaining, and Enclosure

This appendix contains the detailed rules for which Unicode 5.0 characters may be used as operators, which operators
form enclosing pairs, which operators may be chained, which operators are associative, and what precedence rela-
tionships exist among the various operators. An infix operator is left associative, nonassociative, or chainable. If no
precedence relationship is stated explicitly for any given pair of operators, then there is no precedence relationship
between those two operators. Remember that precedence is not transitive in Fortress.

In each of the character lists below, each line gives the Unicode codepoint, the full Unicode 5.0 name, a rendering of
the character in TEX (if possible), and any ASCII shorthand or short names for the character.

C.1 Bracket Pairs for Enclosing Operators

Here are the bracket pairs that may be used as enclosing operators. Note that there is one group of four brackets;
within that group, either left bracket may be paired with either right bracket to form an enclosing operator.

U+005B LEFT SQUARE BRACKET [[
U+005D RIGHT SQUARE BRACKET]]

U+007B LEFT CURLY BRACKET { {
U+007D RIGHT CURLY BRACKET } }

U+2045 LEFT SQUARE BRACKET WITH QUILL [./
U+2046 RIGHT SQUARE BRACKET WITH QUILL /.]

U+2308 LEFT CEILING d |/
U+2309 RIGHT CEILING e \|

U+230A LEFT FLOOR b |\
U+230B RIGHT FLOOR c /|

U+27C5 LEFT S-SHAPED BAG DELIMITER |.\
U+27C6 RIGHT S-SHAPED BAG DELIMITER /.|

U+27E8 MATHEMATICAL LEFT ANGLE BRACKET 〈 <|
U+27E9 MATHEMATICAL RIGHT ANGLE BRACKET 〉 |>

U+27EA MATHEMATICAL LEFT DOUBLE ANGLE BRACKET 〈〈 <<|
U+27EB MATHEMATICAL RIGHT DOUBLE ANGLE BRACKET 〉〉 |>>

197

U+2983 LEFT WHITE CURLY BRACKET {| {\
U+2984 RIGHT WHITE CURLY BRACKET |} \}

U+2985 LEFT WHITE PARENTHESIS (\
U+2986 RIGHT WHITE PARENTHESIS \)

U+2987 Z NOTATION LEFT IMAGE BRACKET (/
U+2988 Z NOTATION RIGHT IMAGE BRACKET /)

U+2989 Z NOTATION LEFT BINDING BRACKET <||
U+298A Z NOTATION RIGHT BINDING BRACKET ||>

U+298B LEFT SQUARE BRACKET WITH UNDERBAR [.\
U+298C RIGHT SQUARE BRACKET WITH UNDERBAR \.]

U+298D LEFT SQUARE BRACKET WITH TICK IN TOP CORNER [.//
U+298E RIGHT SQUARE BRACKET WITH TICK IN BOTTOM CORNER //.]

U+298F LEFT SQUARE BRACKET WITH TICK IN BOTTOM CORNER [.\\
U+2990 RIGHT SQUARE BRACKET WITH TICK IN TOP CORNER \\.]

U+2991 LEFT ANGLE BRACKET WITH DOT <.|
U+2992 RIGHT ANGLE BRACKET WITH DOT |.>

U+2993 LEFT ARC LESS-THAN BRACKET (<
U+2994 RIGHT ARC GREATER-THAN BRACKET >)

U+2995 DOUBLE LEFT ARC GREATER-THAN BRACKET ((>
U+2996 DOUBLE RIGHT ARC LESS-THAN BRACKET <))

U+2997 LEFT BLACK TORTOISE SHELL BRACKET [*/
U+2998 RIGHT BLACK TORTOISE SHELL BRACKET /*]

U+29D8 LEFT WIGGLY FENCE [/\/
U+29D9 RIGHT WIGGLY FENCE /\/]

U+29DA LEFT DOUBLE WIGGLY FENCE [/\/\/
U+29DB RIGHT DOUBLE WIGGLY FENCE /\/\/]

U+29FC LEFT-POINTING CURVED ANGLE BRACKET <|||
U+29FD RIGHT-POINTING CURVED ANGLE BRACKET |||>

U+300C LEFT CORNER BRACKET p </
U+300D RIGHT CORNER BRACKET q \>

U+300E LEFT WHITE CORNER BRACKET <</
U+300F RIGHT WHITE CORNER BRACKET \>>

U+3010 LEFT BLACK LENTICULAR BRACKET {*/
U+3011 RIGHT BLACK LENTICULAR BRACKET /*}

U+3018 LEFT WHITE TORTOISE SHELL BRACKET [//
U+3014 LEFT TORTOISE SHELL BRACKET [/
U+3015 RIGHT TORTOISE SHELL BRACKET /]
U+3019 RIGHT WHITE TORTOISE SHELL BRACKET //]

U+3016 LEFT WHITE LENTICULAR BRACKET {/
U+3017 RIGHT WHITE LENTICULAR BRACKET /}

C.2 Vertical-Line Operators

The following are vertical-line operators. They are left associative when they are used as infix operators.

198

U+007C VERTICAL LINE | |
U+2016 DOUBLE VERTICAL LINE ‖ ||
U+2AF4 TRIPLE VERTICAL BAR BINARY RELATION |||

C.3 Arithmetic Operators

C.3.1 Multiplication and Division

The following are multiplication operators. They are left associative.

U+002A ASTERISK * *
U+00B7 MIDDLE DOT · DOT
U+00D7 MULTIPLICATION SIGN × TIMES BY
U+2217 ASTERISK OPERATOR ∗ *
U+228D MULTISET MULTIPLICATION

U+2297 CIRCLED TIMES ⊗ OTIMES
U+2299 CIRCLED DOT OPERATOR � ODOT
U+229B CIRCLED ASTERISK OPERATOR ~ CIRCLEDAST
U+22A0 SQUARED TIMES � BOXTIMES
U+22A1 SQUARED DOT OPERATOR � BOXDOT
U+22C5 DOT OPERATOR ·
U+29C6 SQUARED ASTERISK BOXAST
U+29D4 TIMES WITH LEFT HALF BLACK

U+29D5 TIMES WITH RIGHT HALF BLACK

U+2A2F VECTOR OR CROSS PRODUCT × CROSS
U+2A30 MULTIPLICATION SIGN WITH DOT ABOVE DOTTIMES
U+2A31 MULTIPLICATION SIGN WITH UNDERBAR

U+2A34 MULTIPLICATION SIGN IN LEFT HALF CIRCLE

U+2A35 MULTIPLICATION SIGN IN RIGHT HALF CIRCLE

U+2A36 CIRCLED MULTIPLICATION SIGN WITH CIRCUMFLEX ACCENT

U+2A37 MULTIPLICATION SIGN IN DOUBLE CIRCLE

U+2A3B MULTIPLICATION SIGN IN TRIANGLE TRITIMES

The following are division operators. They are nonassociative.

U+002F SOLIDUS / /
U+00F7 DIVISION SIGN ÷ DIV
U+2215 DIVISION SLASH / /
U+2298 CIRCLED DIVISION SLASH � OSLASH
U+29B8 CIRCLED REVERSE SOLIDUS

U+29BC CIRCLED ANTICLOCKWISE-ROTATED DIVISION SIGN

U+29C4 SQUARED RISING DIAGONAL SLASH BOXSLASH
U+29F5 REVERSE SOLIDUS OPERATOR \ \
U+29F8 BIG SOLIDUS

/
U+29F9 BIG REVERSE SOLIDUS

∖
U+2A38 CIRCLED DIVISION SIGN ODIV
U+2AFD DOUBLE SOLIDUS OPERATOR // //
U+2AFB TRIPLE SOLIDUS BINARY RELATION ///

Note also that per is treated as a division operator.

199

C.3.2 Addition and Subtraction

Addition and subtraction operators are left associative.

The following three operators have the same precedence and may be mixed.

U+002B PLUS SIGN + +
U+002D HYPHEN-MINUS − -
U+2212 MINUS SIGN − -

They each have lower precedence than any of the following multiplication and division operators:

U+002A ASTERISK * *
U+002F SOLIDUS / /
U+00B7 MIDDLE DOT · DOT
U+00D7 MULTIPLICATION SIGN × TIMES BY
U+00F7 DIVISION SIGN ÷ DIV
U+2215 DIVISION SLASH / /
U+2217 ASTERISK OPERATOR ∗ *
U+22C5 DOT OPERATOR ·
U+2A2F VECTOR OR CROSS PRODUCT × CROSS

The following two operators have the same precedence and may be mixed.

U+2214 DOT PLUS u DOTPLUS
U+2238 DOT MINUS −̇ DOTMINUS

They each have lower precedence than this multiplication operator:

U+2A30 MULTIPLICATION SIGN WITH DOT ABOVE DOTTIMES

The following two operators have the same precedence and may be mixed.

U+2A25 PLUS SIGN WITH DOT BELOW

U+2A2A MINUS SIGN WITH DOT BELOW

The following two operators have the same precedence and may be mixed.

U+2A39 PLUS SIGN IN TRIANGLE TRIPLUS
U+2A3A MINUS SIGN IN TRIANGLE TRIMINUS

They each have lower precedence than this multiplication operator:

U+2A3B MULTIPLICATION SIGN IN TRIANGLE TRITIMES

The following two operators have the same precedence and may be mixed.

U+2295 CIRCLED PLUS ⊕ OPLUS
U+2296 CIRCLED MINUS 	 OMINUS

They each have lower precedence than any of the following multiplication and division operators:

U+2297 CIRCLED TIMES ⊗ OTIMES
U+2298 CIRCLED DIVISION SLASH � OSLASH
U+2299 CIRCLED DOT OPERATOR � ODOT
U+229B CIRCLED ASTERISK OPERATOR ~ CIRCLEDAST
U+2A38 CIRCLED DIVISION SIGN ODIV

The following two operators have the same precedence and may be mixed.

200

U+229E SQUARED PLUS � BOXPLUS
U+229F SQUARED MINUS � BOXMINUS

They each have lower precedence than any of these multiplication or division operators:

U+22A0 SQUARED TIMES � BOXTIMES
U+22A1 SQUARED DOT OPERATOR � BOXDOT
U+29C4 SQUARED RISING DIAGONAL SLASH BOXSLASH
U+29C6 SQUARED ASTERISK BOXAST

These are other miscellaneous addition and subtraction operators:

U+00B1 PLUS-MINUS SIGN ±
U+2213 MINUS-OR-PLUS SIGN ∓
U+2242 MINUS TILDE

U+2A22 PLUS SIGN WITH SMALL CIRCLE ABOVE
◦
+

U+2A23 PLUS SIGN WITH CIRCUMFLEX ACCENT ABOVE +̂
U+2A24 PLUS SIGN WITH TILDE ABOVE

∼
+

U+2A26 PLUS SIGN WITH TILDE BELOW +
∼

U+2A27 PLUS SIGN WITH SUBSCRIPT TWO +2

U+2A28 PLUS SIGN WITH BLACK TRIANGLE

U+2A29 MINUS SIGN WITH COMMA ABOVE
,
−

U+2A2B MINUS SIGN WITH FALLING DOTS

U+2A2C MINUS SIGN WITH RISING DOTS

U+2A2D PLUS SIGN IN LEFT HALF CIRCLE

U+2A2E PLUS SIGN IN RIGHT HALF CIRCLE

C.3.3 Miscellaneous Arithmetic Operators

The operators MAX, MIN, REM, MOD, GCD, LCM, CHOOSE, and per, none of which corresponds to a single Unicode
character, are considered to be arithmetic operators, having higher precedence than certain relational operators, as
described in a later section. Among these operators, MAX, MIN, GCD, and LCM are left associative and REM, MOD,
CHOOSE, and per are nonassociative.

C.3.4 Set Intersection, Union, and Difference

The following are the set intersection operators. They are left associative.

U+2229 INTERSECTION ∩ CAP INTERSECT
U+22D2 DOUBLE INTERSECTION e CAPCAP
U+2A40 INTERSECTION WITH DOT

U+2A43 INTERSECTION WITH OVERBAR ∩
U+2A44 INTERSECTION WITH LOGICAL AND

U+2A4B INTERSECTION BESIDE AND JOINED WITH INTERSECTION

U+2A4D CLOSED INTERSECTION WITH SERIFS

U+2ADB TRANSVERSAL INTERSECTION

The following are the set union operators. They are left associative.

U+222A UNION ∪ CUP UNION
U+228E MULTISET UNION] UPLUS

201

U+22D3 DOUBLE UNION d CUPCUP
U+2A41 UNION WITH MINUS SIGN

U+2A42 UNION WITH OVERBAR ∪
U+2A45 UNION WITH LOGICAL OR

U+2A4A UNION BESIDE AND JOINED WITH UNION

U+2A4C CLOSED UNION WITH SERIFS

U+2A50 CLOSED UNION WITH SERIFS AND SMASH PRODUCT

They each have lower precedence than any of the set intersection operators.

This is a miscellaneous set operator. It is nonassociative.

U+2216 SET MINUS \ SETMINUS

C.3.5 Square Arithmetic Operators

Square arithmetic operators are left associative.

The following are the square intersection operators.

U+2293 SQUARE CAP u SQCAP
U+2A4E DOUBLE SQUARE INTERSECTION SQCAPCAP

The following are the square union operators:

U+2294 SQUARE CUP t SQCUP
U+2A4F DOUBLE SQUARE UNION SQCUPCUP

They each have lower precedence than either of the square intersection operators.

C.3.6 Curly Arithmetic Operators

Curly arithmetic operators are left associative.

The following is the curly intersection operator:

U+22CF CURLY LOGICAL AND f CURLYAND

The following is the curly union operator:

U+22CE CURLY LOGICAL OR g CURLYOR

It has lower precedence than the curly intersection operator.

C.4 Relational Operators

C.4.1 Equivalence and Inequivalence Operators

Every operator listed in this section has lower precedence than any operator listed in Section C.3.

The following are equivalence operators. They may be chained. Moreover, they may be chained with any other single
group of chainable relational operators, as described in later sections.

202

U+003D EQUALS SIGN = EQ
U+2243 ASYMPTOTICALLY EQUAL TO ' SIMEQ
U+2245 APPROXIMATELY EQUAL TO ∼=
U+2246 APPROXIMATELY BUT NOT ACTUALLY EQUAL TO

U+2248 ALMOST EQUAL TO ≈ APPROX
U+224A ALMOST EQUAL OR EQUAL TO u APPROXEQ
U+224C ALL EQUAL TO

U+224D EQUIVALENT TO �
U+224E GEOMETRICALLY EQUIVALENT TO m BUMPEQV
U+2251 GEOMETRICALLY EQUAL TO + DOTEQDOT
U+2252 APPROXIMATELY EQUAL TO OR THE IMAGE OF ;
U+2253 IMAGE OF OR APPROXIMATELY EQUAL TO :
U+2256 RING IN EQUAL TO P EQRING
U+2257 RING EQUAL TO $ RINGEQ
U+225B STAR EQUALS

U+225C DELTA EQUAL TO , EQDEL
U+225D EQUAL TO BY DEFINITION EQDEF
U+225F QUESTIONED EQUAL TO

U+2261 IDENTICAL TO ≡ EQV EQUIV
U+2263 STRICTLY EQUIVALENT TO === SEQV
U+229C CIRCLED EQUALS

U+22CD REVERSED TILDE EQUALS w
U+22D5 EQUAL AND PARALLEL TO

U+29E3 EQUALS SIGN AND SLANTED PARALLEL

U+29E4 EQUALS SIGN AND SLANTED PARALLEL WITH TILDE ABOVE

U+29E5 IDENTICAL TO AND SLANTED PARALLEL

U+2A66 EQUALS SIGN WITH DOT BELOW

U+2A67 IDENTICAL WITH DOT ABOVE

U+2A6C SIMILAR MINUS SIMILAR

U+2A6E EQUALS WITH ASTERISK

U+2A6F ALMOST EQUAL TO WITH CIRCUMFLEX ACCENT

U+2A70 APPROXIMATELY EQUAL OR EQUAL TO

U+2A71 EQUALS SIGN ABOVE PLUS SIGN

U+2A72 PLUS SIGN ABOVE EQUALS SIGN

U+2A73 EQUALS SIGN ABOVE TILDE OPERATOR

U+2A75 TWO CONSECUTIVE EQUALS SIGNS

U+2A76 THREE CONSECUTIVE EQUALS SIGNS

U+2A77 EQUALS SIGN WITH TWO DOTS ABOVE AND TWO DOTS BELOW

U+2A78 EQUIVALENT WITH FOUR DOTS ABOVE

U+2AAE EQUALS SIGN WITH BUMPY ABOVE

U+FE66 SMALL EQUALS SIGN

U+FF1D FULLWIDTH EQUALS SIGN

The following are inequivalence operators. They might not be chained and they are nonassociative.

U+2244 NOT ASYMPTOTICALLY EQUAL TO 6' NSIMEQ
U+2247 NEITHER APPROXIMATELY NOR ACTUALLY EQUAL TO �
U+2249 NOT ALMOST EQUAL TO 6≈ NAPPROX
U+2260 NOT EQUAL TO 6= =/= NE
U+2262 NOT IDENTICAL TO 6≡ NEQV
U+226D NOT EQUIVALENT TO 6�

203

C.4.2 Plain Comparison Operators

Every operator listed in this section has lower precedence than any operator listed in Sections C.3.1, C.3.2, and C.3.3.

The following are less-than operators. They may be mixed and chained with each other and with equivalence operators
(see Section C.4.1).

U+003C LESS-THAN SIGN < < LT
U+2264 LESS-THAN OR EQUAL TO ≤ <= LE
U+2266 LESS-THAN OVER EQUAL TO 5
U+2268 LESS-THAN BUT NOT EQUAL TO �
U+226A MUCH LESS-THAN � <<
U+2272 LESS-THAN OR EQUIVALENT TO .
U+22D6 LESS-THAN WITH DOT l DOTLT
U+22D8 VERY MUCH LESS-THAN ≪ <<<
U+22DC EQUAL TO OR LESS-THAN

U+22E6 LESS-THAN BUT NOT EQUIVALENT TO �
U+29C0 CIRCLED LESS-THAN

U+2A79 LESS-THAN WITH CIRCLE INSIDE

U+2A7B LESS-THAN WITH QUESTION MARK ABOVE

U+2A7D LESS-THAN OR SLANTED EQUAL TO

U+2A7F LESS-THAN OR SLANTED EQUAL TO WITH DOT INSIDE

U+2A81 LESS-THAN OR SLANTED EQUAL TO WITH DOT ABOVE

U+2A83 LESS-THAN OR SLANTED EQUAL TO WITH DOT ABOVE RIGHT

U+2A85 LESS-THAN OR APPROXIMATE

U+2A87 LESS-THAN AND SINGLE-LINE NOT EQUAL TO

U+2A89 LESS-THAN AND NOT APPROXIMATE

U+2A8D LESS-THAN ABOVE SIMILAR OR EQUAL

U+2A95 SLANTED EQUAL TO OR LESS-THAN

U+2A97 SLANTED EQUAL TO OR LESS-THAN WITH DOT INSIDE

U+2A99 DOUBLE-LINE EQUAL TO OR LESS-THAN

U+2A9B DOUBLE-LINE SLANTED EQUAL TO OR LESS-THAN

U+2A9D SIMILAR OR LESS-THAN

U+2A9F SIMILAR ABOVE LESS-THAN ABOVE EQUALS SIGN

U+2AA1 DOUBLE NESTED LESS-THAN

U+2AA3 DOUBLE NESTED LESS-THAN WITH UNDERBAR

U+2AA6 LESS-THAN CLOSED BY CURVE

U+2AA8 LESS-THAN CLOSED BY CURVE ABOVE SLANTED EQUAL

U+2AF7 TRIPLE NESTED LESS-THAN

U+2AF9 DOUBLE-LINE SLANTED LESS-THAN OR EQUAL TO

U+FE64 SMALL LESS-THAN SIGN

U+FF1C FULLWIDTH LESS-THAN SIGN

The following are greater-than operators. They may be mixed and chained with each other and with equivalence
operators (see Section C.4.1).

U+003E GREATER-THAN SIGN > > GT
U+2265 GREATER-THAN OR EQUAL TO ≥ >= GE
U+2267 GREATER-THAN OVER EQUAL TO =
U+2269 GREATER-THAN BUT NOT EQUAL TO 	
U+226B MUCH GREATER-THAN � >>
U+2273 GREATER-THAN OR EQUIVALENT TO &
U+22D7 GREATER-THAN WITH DOT m DOTGT
U+22D9 VERY MUCH GREATER-THAN ≫ >>>

204

U+22DD EQUAL TO OR GREATER-THAN

U+22E7 GREATER-THAN BUT NOT EQUIVALENT TO �
U+29C1 CIRCLED GREATER-THAN

U+2A7A GREATER-THAN WITH CIRCLE INSIDE

U+2A7C GREATER-THAN WITH QUESTION MARK ABOVE

U+2A7E GREATER-THAN OR SLANTED EQUAL TO

U+2A80 GREATER-THAN OR SLANTED EQUAL TO WITH DOT INSIDE

U+2A82 GREATER-THAN OR SLANTED EQUAL TO WITH DOT ABOVE

U+2A84 GREATER-THAN OR SLANTED EQUAL TO WITH DOT ABOVE LEFT

U+2A86 GREATER-THAN OR APPROXIMATE

U+2A88 GREATER-THAN AND SINGLE-LINE NOT EQUAL TO

U+2A8A GREATER-THAN AND NOT APPROXIMATE

U+2A8E GREATER-THAN ABOVE SIMILAR OR EQUAL

U+2A96 SLANTED EQUAL TO OR GREATER-THAN

U+2A98 SLANTED EQUAL TO OR GREATER-THAN WITH DOT INSIDE

U+2A9A DOUBLE-LINE EQUAL TO OR GREATER-THAN

U+2A9C DOUBLE-LINE SLANTED EQUAL TO OR GREATER-THAN

U+2A9E SIMILAR OR GREATER-THAN

U+2AA0 SIMILAR ABOVE GREATER-THAN ABOVE EQUALS SIGN

U+2AA2 DOUBLE NESTED GREATER-THAN

U+2AA7 GREATER-THAN CLOSED BY CURVE

U+2AA9 GREATER-THAN CLOSED BY CURVE ABOVE SLANTED EQUAL

U+2AF8 TRIPLE NESTED GREATER-THAN

U+2AFA DOUBLE-LINE SLANTED GREATER-THAN OR EQUAL TO

U+FE65 SMALL GREATER-THAN SIGN

U+FF1E FULLWIDTH GREATER-THAN SIGN

The following are miscellaneous plain comparison operators. They might not be mixed or chained and they are
nonassociative.

U+226E NOT LESS-THAN ≮ NLT
U+226F NOT GREATER-THAN ≯ NGT
U+2270 NEITHER LESS-THAN NOR EQUAL TO � NLE
U+2271 NEITHER GREATER-THAN NOR EQUAL TO � NGE
U+2274 NEITHER LESS-THAN NOR EQUIVALENT TO 6.
U+2275 NEITHER GREATER-THAN NOR EQUIVALENT TO 6&
U+2276 LESS-THAN OR GREATER-THAN ≶
U+2277 GREATER-THAN OR LESS-THAN ≷
U+2278 NEITHER LESS-THAN NOR GREATER-THAN

U+2279 NEITHER GREATER-THAN NOR LESS-THAN

U+22DA LESS-THAN EQUAL TO OR GREATER-THAN Q
U+22DB GREATER-THAN EQUAL TO OR LESS-THAN R
U+2A8B LESS-THAN ABOVE DOUBLE-LINE EQUAL ABOVE GREATER-THAN

U+2A8C GREATER-THAN ABOVE DOUBLE-LINE EQUAL ABOVE LESS-THAN

U+2A8F LESS-THAN ABOVE SIMILAR ABOVE GREATER-THAN

U+2A90 GREATER-THAN ABOVE SIMILAR ABOVE LESS-THAN

U+2A91 LESS-THAN ABOVE GREATER-THAN ABOVE DOUBLE-LINE EQUAL

U+2A92 GREATER-THAN ABOVE LESS-THAN ABOVE DOUBLE-LINE EQUAL

U+2A93 LESS-THAN ABOVE SLANTED EQUAL ABOVE GREATER-THAN ABOVE SLANTED EQUAL

U+2A94 GREATER-THAN ABOVE SLANTED EQUAL ABOVE LESS-THAN ABOVE SLANTED EQUAL

U+2AA4 GREATER-THAN OVERLAPPING LESS-THAN

U+2AA5 GREATER-THAN BESIDE LESS-THAN

205

The following are not really comparison operators, but it is convenient to list them here because they also have lower
precedence than any operator listed in Sections C.3.1, C.3.2, and C.3.3. They are nonassociative.

U+0023 NUMBER SIGN # #
U+003A COLON : :

C.4.3 Set Comparison Operators

Every operator listed in this section has lower precedence than any operator listed in Section C.3.4.

The following are subset comparison operators. They may be mixed and chained with each other and with equivalence
operators (see Section C.4.1).

U+2282 SUBSET OF ⊂ SUBSET
U+2286 SUBSET OF OR EQUAL TO ⊆ SUBSETEQ
U+228A SUBSET OF WITH NOT EQUAL TO (SUBSETNEQ
U+22D0 DOUBLE SUBSET b SUBSUB
U+27C3 OPEN SUBSET

U+2ABD SUBSET WITH DOT

U+2ABF SUBSET WITH PLUS SIGN BELOW

U+2AC1 SUBSET WITH MULTIPLICATION SIGN BELOW

U+2AC3 SUBSET OF OR EQUAL TO WITH DOT ABOVE

U+2AC5 SUBSET OF ABOVE EQUALS SIGN

U+2AC7 SUBSET OF ABOVE TILDE OPERATOR

U+2AC9 SUBSET OF ABOVE ALMOST EQUAL TO

U+2ACB SUBSET OF ABOVE NOT EQUAL TO

U+2ACF CLOSED SUBSET

U+2AD1 CLOSED SUBSET OR EQUAL TO

U+2AD5 SUBSET ABOVE SUBSET

The following are superset comparison operators. They may be mixed and chained with each other and with equiva-
lence operators (see Section C.4.1).

U+2283 SUPERSET OF ⊃ SUPSET
U+2287 SUPERSET OF OR EQUAL TO ⊇ SUPSETEQ
U+228B SUPERSET OF WITH NOT EQUAL TO) SUPSETNEQ
U+22D1 DOUBLE SUPERSET c SUPSUP
U+27C4 OPEN SUPERSET

U+2ABE SUPERSET WITH DOT

U+2AC0 SUPERSET WITH PLUS SIGN BELOW

U+2AC2 SUPERSET WITH MULTIPLICATION SIGN BELOW

U+2AC4 SUPERSET OF OR EQUAL TO WITH DOT ABOVE

U+2AC6 SUPERSET OF ABOVE EQUALS SIGN

U+2AC8 SUPERSET OF ABOVE TILDE OPERATOR

U+2ACA SUPERSET OF ABOVE ALMOST EQUAL TO

U+2ACC SUPERSET OF ABOVE NOT EQUAL TO

U+2AD0 CLOSED SUPERSET

U+2AD2 CLOSED SUPERSET OR EQUAL TO

U+2AD6 SUPERSET ABOVE SUPERSET

The following are miscellaneous set comparison operators. They might not be mixed or chained and they are nonas-
sociative.

U+2284 NOT A SUBSET OF 6⊂ NSUBSET

206

U+2285 NOT A SUPERSET OF 6⊃ NSUPSET
U+2288 NEITHER A SUBSET OF NOR EQUAL TO * NSUBSETEQ
U+2289 NEITHER A SUPERSET OF NOR EQUAL TO + NSUPSETEQ
U+2AD3 SUBSET ABOVE SUPERSET

U+2AD4 SUPERSET ABOVE SUBSET

U+2AD7 SUPERSET BESIDE SUBSET

U+2AD8 SUPERSET BESIDE AND JOINED BY DASH WITH SUBSET

C.4.4 Square Comparison Operators

Every operator listed in this section has lower precedence than any operator listed in Section C.3.5.

The following are square “image of” comparison operators. They may be mixed and chained with each other and with
equivalence operators (see Section C.4.1).

U+228F SQUARE IMAGE OF @ SQSUBSET
U+2291 SQUARE IMAGE OF OR EQUAL TO v SQSUBSETEQ
U+22E4 SQUARE IMAGE OF OR NOT EQUAL TO

The following are square “original of” comparison operators. They may be mixed and chained with each other and
with equivalence operators (see Section C.4.1).

U+2290 SQUARE ORIGINAL OF A SQSUPSET
U+2292 SQUARE ORIGINAL OF OR EQUAL TO w SQSUPSETEQ
U+22E5 SQUARE ORIGINAL OF OR NOT EQUAL TO

The following are miscellaneous square comparison operators. They might not be mixed or chained and they are
nonassociative.

U+22E2 NOT SQUARE IMAGE OF OR EQUAL TO 6v
U+22E3 NOT SQUARE ORIGINAL OF OR EQUAL TO 6w

C.4.5 Curly Comparison Operators

Every operator listed in this section has lower precedence than any operator listed in Section C.3.6.

The following are curly “precedes” comparison operators. They may be mixed and chained with each other and with
equivalence operators (see Section C.4.1).

U+227A PRECEDES ≺ PREC
U+227C PRECEDES OR EQUAL TO 4 PRECEQ
U+227E PRECEDES OR EQUIVALENT TO - PRECSIM
U+22B0 PRECEDES UNDER RELATION

U+22DE EQUAL TO OR PRECEDES 2 EQPREC
U+22E8 PRECEDES BUT NOT EQUIVALENT TO � PRECNSIM
U+2AAF PRECEDES ABOVE SINGLE-LINE EQUALS SIGN

U+2AB1 PRECEDES ABOVE SINGLE-LINE NOT EQUAL TO

U+2AB3 PRECEDES ABOVE EQUALS SIGN

U+2AB5 PRECEDES ABOVE NOT EQUAL TO

U+2AB7 PRECEDES ABOVE ALMOST EQUAL TO

U+2AB9 PRECEDES ABOVE NOT ALMOST EQUAL TO

U+2ABB DOUBLE PRECEDES

207

The following are curly “succeeds” comparison operators. They may be mixed and chained with each other and with
equivalence operators (see Section C.4.1).

U+227B SUCCEEDS � SUCC
U+227D SUCCEEDS OR EQUAL TO < SUCCEQ
U+227F SUCCEEDS OR EQUIVALENT TO % SUCCSIM
U+22B1 SUCCEEDS UNDER RELATION

U+22DF EQUAL TO OR SUCCEEDS 3 EQSUCC
U+22E9 SUCCEEDS BUT NOT EQUIVALENT TO � SUCCNSIM
U+2AB0 SUCCEEDS ABOVE SINGLE-LINE EQUALS SIGN

U+2AB2 SUCCEEDS ABOVE SINGLE-LINE NOT EQUAL TO

U+2AB4 SUCCEEDS ABOVE EQUALS SIGN

U+2AB6 SUCCEEDS ABOVE NOT EQUAL TO

U+2AB8 SUCCEEDS ABOVE ALMOST EQUAL TO

U+2ABA SUCCEEDS ABOVE NOT ALMOST EQUAL TO

U+2ABC DOUBLE SUCCEEDS

The following are miscellaneous curly comparison operators. They might not be mixed or chained and they are
nonassociative.

U+2280 DOES NOT PRECEDE ⊀ NPREC
U+2281 DOES NOT SUCCEED � NSUCC
U+22E0 DOES NOT PRECEDE OR EQUAL 64
U+22E1 DOES NOT SUCCEED OR EQUAL 6<

C.4.6 Triangular Comparison Operators

The following are triangular “subgroup” comparison operators. They may be mixed and chained with each other and
with equivalence operators (see Section C.4.1).

U+22B2 NORMAL SUBGROUP OF C
U+22B4 NORMAL SUBGROUP OF OR EQUAL TO E

The following are triangular “contains as subgroup” comparison operators. They may be mixed and chained with each
other and with equivalence operators (see Section C.4.1).

U+22B3 CONTAINS AS NORMAL SUBGROUP B
U+22B5 CONTAINS AS NORMAL SUBGROUP OR EQUAL TO D

The following are miscellaneous triangular comparison operators. They might not be mixed or chained and they are
nonassociative.

U+22EA NOT NORMAL SUBGROUP OF 6
U+22EB DOES NOT CONTAIN AS NORMAL SUBGROUP 7
U+22EC NOT NORMAL SUBGROUP OF OR EQUAL TO 5
U+22ED DOES NOT CONTAIN AS NORMAL SUBGROUP OR EQUAL 4

C.4.7 Chickenfoot Comparison Operators

The following are chickenfoot “smaller than” comparison operators. They may be mixed and chained with each other
and with equivalence operators (see Section C.4.1).

U+2AAA SMALLER THAN <− SMALLER
U+2AAC SMALLER THAN OR EQUAL TO ≤− SMALLEREQ

208

The following are chickenfoot “larger than” comparison operators. They may be mixed and chained with each other
and with equivalence operators (see Section C.4.1).

U+2AAB LARGER THAN −> LARGER
U+2AAD LARGER THAN OR EQUAL TO −≥ LARGEREQ

C.4.8 Miscellaneous Relational Operators

The following operators are considered to be relational operators, having higher precedence than certain boolean
operators, as described in a later section. They are nonassociative.

U+2208 ELEMENT OF ∈ IN
U+2209 NOT AN ELEMENT OF /∈ NOTIN
U+220A SMALL ELEMENT OF ∈
U+220B CONTAINS AS MEMBER 3 CONTAINS
U+220C DOES NOT CONTAIN AS MEMBER 63
U+220D SMALL CONTAINS AS MEMBER 3
U+22F2 ELEMENT OF WITH LONG HORIZONTAL STROKE

U+22F3 ELEMENT OF WITH VERTICAL BAR AT END OF HORIZONTAL STROKE

U+22F4 SMALL ELEMENT OF WITH VERTICAL BAR AT END OF HORIZONTAL STROKE

U+22F5 ELEMENT OF WITH DOT ABOVE ∈̇
U+22F6 ELEMENT OF WITH OVERBAR ∈
U+22F7 SMALL ELEMENT OF WITH OVERBAR ∈
U+22F8 ELEMENT OF WITH UNDERBAR ∈
U+22F9 ELEMENT OF WITH TWO HORIZONTAL STROKES

U+22FA CONTAINS WITH LONG HORIZONTAL STROKE

U+22FB CONTAINS WITH VERTICAL BAR AT END OF HORIZONTAL STROKE

U+22FC SMALL CONTAINS WITH VERTICAL BAR AT END OF HORIZONTAL STROKE

U+22FD CONTAINS WITH OVERBAR 3
U+22FE SMALL CONTAINS WITH OVERBAR 3
U+22FF Z NOTATION BAG MEMBERSHIP

C.5 Boolean Operators

Every operator listed in this section has lower precedence than any operator listed in Section C.4.

The following are the boolean conjunction operators. They are left associative.

U+2227 LOGICAL AND ∧ AND
U+27D1 AND WITH DOT

U+2A51 LOGICAL AND WITH DOT ABOVE ∧̇
U+2A53 DOUBLE LOGICAL AND

U+2A55 TWO INTERSECTING LOGICAL AND ∧∧
U+2A5A LOGICAL AND WITH MIDDLE STEM

U+2A5C LOGICAL AND WITH HORIZONTAL DASH

U+2A5E LOGICAL AND WITH DOUBLE OVERBAR

U+2A60 LOGICAL AND WITH DOUBLE UNDERBAR

The following are the boolean disjunction operators. They are left associative.

U+2228 LOGICAL OR ∨ OR
U+2A52 LOGICAL OR WITH DOT ABOVE ∨̇

209

U+2A54 DOUBLE LOGICAL OR

U+2A56 TWO INTERSECTING LOGICAL OR ∨∨
U+2A5B LOGICAL OR WITH MIDDLE STEM

U+2A5D LOGICAL OR WITH HORIZONTAL DASH

U+2A62 LOGICAL OR WITH DOUBLE OVERBAR

U+2A63 LOGICAL OR WITH DOUBLE UNDERBAR

They each have lower precedence than any of the boolean conjunction operators.

The following are miscellaneous boolean operators that are nonassociative.

U+2192 RIGHTWARDS ARROW → -> IMPLIES
U+2194 LEFT RIGHT ARROW ↔ <-> IFF
U+22BC NAND Z
U+22BD NOR ∨

The following is a miscellaneous boolean operator that is left associative.

U+22BB XOR Y

C.6 Other Operators

All the operators listed in this section are nonassociative.

As specified in Section 16.2, the following operator has higher precedence than any other operator.

U+005E CIRCUMFLEX ACCENT ˆ ˆ

Each of the following operators has no defined precedence relationships to any of the other operators listed in this
appendix.

U+0021 EXCLAMATION MARK ! !
U+0024 DOLLAR SIGN $ $
U+0025 PERCENT SIGN % %
U+003F QUESTION MARK ? ?
U+0040 COMMERCIAL AT @ @
U+007E TILDE ˜ ˜
U+00A1 INVERTED EXCLAMATION MARK ¡
U+00A2 CENT SIGN CENTS
U+00A3 POUND SIGN

U+00A4 CURRENCY SIGN

U+00A5 YEN SIGN

U+00A6 BROKEN BAR

U+00AC NOT SIGN ¬ NOT
U+00B0 DEGREE SIGN ◦ DEGREES
U+00BF INVERTED QUESTION MARK ¿
U+203C DOUBLE EXCLAMATION MARK !! !!
U+2190 LEFTWARDS ARROW ← <-
U+2191 UPWARDS ARROW ↑ UPARROW
U+2193 DOWNWARDS ARROW ↓ DOWNARROW
U+2195 UP DOWN ARROW l UPDOWNARROW

210

U+2196 NORTH WEST ARROW ↖ NWARROW
U+2197 NORTH EAST ARROW ↗ NEARROW
U+2198 SOUTH EAST ARROW ↘ SEARROW
U+2199 SOUTH WEST ARROW ↙ SWARROW
U+219A LEFTWARDS ARROW WITH STROKE 8 <-/-
U+219B RIGHTWARDS ARROW WITH STROKE 9 -/->
U+219C LEFTWARDS WAVE ARROW

U+219D RIGHTWARDS WAVE ARROW LEADSTO
U+219E LEFTWARDS TWO HEADED ARROW

U+219F UPWARDS TWO HEADED ARROW

U+21A0 RIGHTWARDS TWO HEADED ARROW

U+21A1 DOWNWARDS TWO HEADED ARROW

U+21A2 LEFTWARDS ARROW WITH TAIL

U+21A3 RIGHTWARDS ARROW WITH TAIL

U+21A4 LEFTWARDS ARROW FROM BAR

U+21A5 UPWARDS ARROW FROM BAR

U+21A6 RIGHTWARDS ARROW FROM BAR 7→ MAPSTO |->
U+21A7 DOWNWARDS ARROW FROM BAR

U+21A8 UP DOWN ARROW WITH BASE

U+21A9 LEFTWARDS ARROW WITH HOOK

U+21AA RIGHTWARDS ARROW WITH HOOK

U+21AB LEFTWARDS ARROW WITH LOOP

U+21AC RIGHTWARDS ARROW WITH LOOP

U+21AD LEFT RIGHT WAVE ARROW

U+21AE LEFT RIGHT ARROW WITH STROKE

U+21AF DOWNWARDS ZIGZAG ARROW

U+21B0 UPWARDS ARROW WITH TIP LEFTWARDS

U+21B1 UPWARDS ARROW WITH TIP RIGHTWARDS

U+21B2 DOWNWARDS ARROW WITH TIP LEFTWARDS

U+21B3 DOWNWARDS ARROW WITH TIP RIGHTWARDS

U+21B4 RIGHTWARDS ARROW WITH CORNER DOWNWARDS

U+21B5 DOWNWARDS ARROW WITH CORNER LEFTWARDS

U+21B6 ANTICLOCKWISE TOP SEMICIRCLE ARROW

U+21B7 CLOCKWISE TOP SEMICIRCLE ARROW

U+21B8 NORTH WEST ARROW TO LONG BAR

U+21B9 LEFTWARDS ARROW TO BAR OVER RIGHTWARDS ARROW TO BAR

U+21BA ANTICLOCKWISE OPEN CIRCLE ARROW

U+21BB CLOCKWISE OPEN CIRCLE ARROW

U+21BC LEFTWARDS HARPOON WITH BARB UPWARDS ↼ LEFTHARPOONUP
U+21BD LEFTWARDS HARPOON WITH BARB DOWNWARDS ↽ LEFTHARPOONDOWN
U+21BE UPWARDS HARPOON WITH BARB RIGHTWARDS � UPHARPOONRIGHT
U+21BF UPWARDS HARPOON WITH BARB LEFTWARDS � UPHARPOONLEFT
U+21C0 RIGHTWARDS HARPOON WITH BARB UPWARDS ⇀ RIGHTHARPOONUP
U+21C1 RIGHTWARDS HARPOON WITH BARB DOWNWARDS ⇁ RIGHTHARPOONDOWN
U+21C2 DOWNWARDS HARPOON WITH BARB RIGHTWARDS � DOWNHARPOONRIGHT
U+21C3 DOWNWARDS HARPOON WITH BARB LEFTWARDS � DOWNHARPOONLEFT
U+21C4 RIGHTWARDS ARROW OVER LEFTWARDS ARROW � RIGHTLEFTARROWS
U+21C5 UPWARDS ARROW LEFTWARDS OF DOWNWARDS ARROW

U+21C6 LEFTWARDS ARROW OVER RIGHTWARDS ARROW � LEFTRIGHTARROWS
U+21C7 LEFTWARDS PAIRED ARROWS ⇔ LEFTLEFTARROWS
U+21C8 UPWARDS PAIRED ARROWS � UPUPARROWS
U+21C9 RIGHTWARDS PAIRED ARROWS ⇒ RIGHTRIGHTARROWS

211

U+21CA DOWNWARDS PAIRED ARROWS � DOWNDOWNARROWS
U+21CB LEFTWARDS HARPOON OVER RIGHTWARDS HARPOON

U+21CC RIGHTWARDS HARPOON OVER LEFTWARDS HARPOON
 RIGHTLEFTHARPOONS
U+21CD LEFTWARDS DOUBLE ARROW WITH STROKE :
U+21CE LEFT RIGHT DOUBLE ARROW WITH STROKE <
U+21CF RIGHTWARDS DOUBLE ARROW WITH STROKE ;
U+21D0 LEFTWARDS DOUBLE ARROW ⇐
U+21D1 UPWARDS DOUBLE ARROW ⇑
U+21D2 RIGHTWARDS DOUBLE ARROW ⇒ =>
U+21D3 DOWNWARDS DOUBLE ARROW ⇓
U+21D4 LEFT RIGHT DOUBLE ARROW ⇔ <=>
U+21D5 UP DOWN DOUBLE ARROW m
U+21D6 NORTH WEST DOUBLE ARROW

U+21D7 NORTH EAST DOUBLE ARROW

U+21D8 SOUTH EAST DOUBLE ARROW

U+21D9 SOUTH WEST DOUBLE ARROW

U+21DA LEFTWARDS TRIPLE ARROW W
U+21DB RIGHTWARDS TRIPLE ARROW V
U+21DC LEFTWARDS SQUIGGLE ARROW

U+21DD RIGHTWARDS SQUIGGLE ARROW
U+21DE UPWARDS ARROW WITH DOUBLE STROKE

U+21DF DOWNWARDS ARROW WITH DOUBLE STROKE

U+21E0 LEFTWARDS DASHED ARROW L99
U+21E1 UPWARDS DASHED ARROW

U+21E2 RIGHTWARDS DASHED ARROW 99K
U+21E3 DOWNWARDS DASHED ARROW

U+21E4 LEFTWARDS ARROW TO BAR

U+21E5 RIGHTWARDS ARROW TO BAR

U+21E6 LEFTWARDS WHITE ARROW

U+21E7 UPWARDS WHITE ARROW

U+21E8 RIGHTWARDS WHITE ARROW

U+21E9 DOWNWARDS WHITE ARROW

U+21EA UPWARDS WHITE ARROW FROM BAR

U+21EB UPWARDS WHITE ARROW ON PEDESTAL

U+21EC UPWARDS WHITE ARROW ON PEDESTAL WITH HORIZONTAL BAR

U+21ED UPWARDS WHITE ARROW ON PEDESTAL WITH VERTICAL BAR

U+21EE UPWARDS WHITE DOUBLE ARROW

U+21EF UPWARDS WHITE DOUBLE ARROW ON PEDESTAL

U+21F0 RIGHTWARDS WHITE ARROW FROM WALL

U+21F1 NORTH WEST ARROW TO CORNER

U+21F2 SOUTH EAST ARROW TO CORNER

U+21F3 UP DOWN WHITE ARROW

U+21F4 RIGHT ARROW WITH SMALL CIRCLE

U+21F5 DOWNWARDS ARROW LEFTWARDS OF UPWARDS ARROW

U+21F6 THREE RIGHTWARDS ARROWS

U+21F7 LEFTWARDS ARROW WITH VERTICAL STROKE

U+21F8 RIGHTWARDS ARROW WITH VERTICAL STROKE

U+21F9 LEFT RIGHT ARROW WITH VERTICAL STROKE

U+21FA LEFTWARDS ARROW WITH DOUBLE VERTICAL STROKE

U+21FB RIGHTWARDS ARROW WITH DOUBLE VERTICAL STROKE

U+21FC LEFT RIGHT ARROW WITH DOUBLE VERTICAL STROKE

U+21FD LEFTWARDS OPEN-HEADED ARROW

212

U+21FE RIGHTWARDS OPEN-HEADED ARROW

U+21FF LEFT RIGHT OPEN-HEADED ARROW

U+2201 COMPLEMENT {
U+2202 PARTIAL DIFFERENTIAL ∂ DEL
U+2204 THERE DOES NOT EXIST 6 ∃
U+2206 INCREMENT ∆
U+220F N-ARY PRODUCT

∏
PROD

U+2210 N-ARY COPRODUCT
∐

COPROD
U+2211 N-ARY SUMMATION

∑
SUM

U+2218 RING OPERATOR ◦ CIRC RING COMPOSE
U+2219 BULLET OPERATOR •
U+221A SQUARE ROOT

√
SQRT

U+221B CUBE ROOT CBRT
U+221C FOURTH ROOT FOURTHROOT
U+221D PROPORTIONAL TO ∝ PROPTO
U+2223 DIVIDES | DIVIDES
U+2224 DOES NOT DIVIDE -
U+2225 PARALLEL TO ‖ PARALLEL
U+2226 NOT PARALLEL TO ∦ NPARALLEL
U+222B INTEGRAL

∫
U+222C DOUBLE INTEGRAL

U+222D TRIPLE INTEGRAL

U+222E CONTOUR INTEGRAL
∮

U+222F SURFACE INTEGRAL

U+2230 VOLUME INTEGRAL

U+2231 CLOCKWISE INTEGRAL

U+2232 CLOCKWISE CONTOUR INTEGRAL

U+2233 ANTICLOCKWISE CONTOUR INTEGRAL

U+2234 THEREFORE ∴
U+2235 BECAUSE ∵
U+2236 RATIO

U+2237 PROPORTION

U+2239 EXCESS

U+223A GEOMETRIC PROPORTION

U+223B HOMOTHETIC

U+223C TILDE OPERATOR ∼
U+223D REVERSED TILDE v
U+223E INVERTED LAZY S

U+223F SINE WAVE

U+2240 WREATH PRODUCT o WREATH
U+2241 NOT TILDE �
U+224B TRIPLE TILDE

U+224F DIFFERENCE BETWEEN l BUMPEQ
U+2250 APPROACHES THE LIMIT

.= DOTEQ
U+2258 CORRESPONDS TO

U+2259 ESTIMATES

U+225A EQUIANGULAR TO

U+225E MEASURED BY

U+226C BETWEEN G
U+228C MULTISET

U+229A CIRCLED RING OPERATOR } CIRCLEDRING
U+229D CIRCLED DASH �

213

U+22A2 RIGHT TACK ` VDASH TURNSTILE
U+22A3 LEFT TACK a DASHV
U+22A6 ASSERTION `
U+22A7 MODELS �
U+22A8 TRUE |=
U+22A9 FORCES

U+22AA TRIPLE VERTICAL BAR RIGHT TURNSTILE �
U+22AB DOUBLE VERTICAL BAR DOUBLE RIGHT TURNSTILE

U+22AC DOES NOT PROVE 0
U+22AD NOT TRUE

U+22AE DOES NOT FORCE 1
U+22AF NEGATED DOUBLE VERTICAL BAR DOUBLE RIGHT TURNSTILE 3
U+22B6 ORIGINAL OF

U+22B7 IMAGE OF

U+22B8 MULTIMAP (
U+22B9 HERMITIAN CONJUGATE MATRIX

U+22BA INTERCALATE ᵀ
U+22BE RIGHT ANGLE WITH ARC

U+22BF RIGHT TRIANGLE

U+22C0 N-ARY LOGICAL AND
∧

BIGAND ALL
U+22C1 N-ARY LOGICAL OR

∨
BIGOR ANY

U+22C2 N-ARY INTERSECTION
⋂

BIGCAP BIGINTERSECT
U+22C3 N-ARY UNION

⋃
BIGCUP BIGUNION

U+22C4 DIAMOND OPERATOR � DIAMOND
U+22C6 STAR OPERATOR ? STAR
U+22C7 DIVISION TIMES >
U+22C8 BOWTIE ./
U+22C9 LEFT NORMAL FACTOR SEMIDIRECT PRODUCT n
U+22CA RIGHT NORMAL FACTOR SEMIDIRECT PRODUCT o
U+22CB LEFT SEMIDIRECT PRODUCT h
U+22CC RIGHT SEMIDIRECT PRODUCT i
U+22D4 PITCHFORK t
U+22EE VERTICAL ELLIPSIS

U+22EF MIDLINE HORIZONTAL ELLIPSIS

U+22F0 UP RIGHT DIAGONAL ELLIPSIS

U+22F1 DOWN RIGHT DIAGONAL ELLIPSIS

U+27C0 THREE DIMENSIONAL ANGLE

U+27C1 WHITE TRIANGLE CONTAINING SMALL WHITE TRIANGLE

U+27C2 PERPENDICULAR PERP
U+27D0 WHITE DIAMOND WITH CENTRED DOT

U+27D2 ELEMENT OF OPENING UPWARDS

U+27D3 LOWER RIGHT CORNER WITH DOT

U+27D4 UPPER LEFT CORNER WITH DOT

U+27D5 LEFT OUTER JOIN

U+27D6 RIGHT OUTER JOIN

U+27D7 FULL OUTER JOIN

U+27D8 LARGE UP TACK

U+27D9 LARGE DOWN TACK

U+27DA LEFT AND RIGHT DOUBLE TURNSTILE

U+27DB LEFT AND RIGHT TACK

U+27DC LEFT MULTIMAP

U+27DD LONG RIGHT TACK

214

U+27DE LONG LEFT TACK

U+27DF UP TACK WITH CIRCLE ABOVE

U+27E0 LOZENGE DIVIDED BY HORIZONTAL RULE

U+27E1 WHITE CONCAVE-SIDED DIAMOND

U+27E2 WHITE CONCAVE-SIDED DIAMOND WITH LEFTWARDS TICK

U+27E3 WHITE CONCAVE-SIDED DIAMOND WITH RIGHTWARDS TICK

U+27E4 WHITE SQUARE WITH LEFTWARDS TICK

U+27E5 WHITE SQUARE WITH RIGHTWARDS TICK

U+27F0 UPWARDS QUADRUPLE ARROW

U+27F1 DOWNWARDS QUADRUPLE ARROW

U+27F2 ANTICLOCKWISE GAPPED CIRCLE ARROW

U+27F3 CLOCKWISE GAPPED CIRCLE ARROW

U+27F4 RIGHT ARROW WITH CIRCLED PLUS

U+27F5 LONG LEFTWARDS ARROW

U+27F6 LONG RIGHTWARDS ARROW

U+27F7 LONG LEFT RIGHT ARROW

U+27F8 LONG LEFTWARDS DOUBLE ARROW

U+27F9 LONG RIGHTWARDS DOUBLE ARROW

U+27FA LONG LEFT RIGHT DOUBLE ARROW

U+27FB LONG LEFTWARDS ARROW FROM BAR

U+27FC LONG RIGHTWARDS ARROW FROM BAR

U+27FD LONG LEFTWARDS DOUBLE ARROW FROM BAR

U+27FE LONG RIGHTWARDS DOUBLE ARROW FROM BAR

U+27FF LONG RIGHTWARDS SQUIGGLE ARROW

U+2900 RIGHTWARDS TWO-HEADED ARROW WITH VERTICAL STROKE

U+2901 RIGHTWARDS TWO-HEADED ARROW WITH DOUBLE VERTICAL STROKE

U+2902 LEFTWARDS DOUBLE ARROW WITH VERTICAL STROKE

U+2903 RIGHTWARDS DOUBLE ARROW WITH VERTICAL STROKE

U+2904 LEFT RIGHT DOUBLE ARROW WITH VERTICAL STROKE

U+2905 RIGHTWARDS TWO-HEADED ARROW FROM BAR

U+2906 LEFTWARDS DOUBLE ARROW FROM BAR

U+2907 RIGHTWARDS DOUBLE ARROW FROM BAR

U+2908 DOWNWARDS ARROW WITH HORIZONTAL STROKE

U+2909 UPWARDS ARROW WITH HORIZONTAL STROKE

U+290A UPWARDS TRIPLE ARROW

U+290B DOWNWARDS TRIPLE ARROW

U+290C LEFTWARDS DOUBLE DASH ARROW

U+290D RIGHTWARDS DOUBLE DASH ARROW

U+290E LEFTWARDS TRIPLE DASH ARROW

U+290F RIGHTWARDS TRIPLE DASH ARROW

U+2910 RIGHTWARDS TWO-HEADED TRIPLE DASH ARROW

U+2911 RIGHTWARDS ARROW WITH DOTTED STEM

U+2912 UPWARDS ARROW TO BAR

U+2913 DOWNWARDS ARROW TO BAR

U+2914 RIGHTWARDS ARROW WITH TAIL WITH VERTICAL STROKE

U+2915 RIGHTWARDS ARROW WITH TAIL WITH DOUBLE VERTICAL STROKE

U+2916 RIGHTWARDS TWO-HEADED ARROW WITH TAIL

U+2917 RIGHTWARDS TWO-HEADED ARROW WITH TAIL WITH VERTICAL STROKE

U+2918 RIGHTWARDS TWO-HEADED ARROW WITH TAIL WITH DOUBLE VERTICAL STROKE

U+2919 LEFTWARDS ARROW-TAIL

U+291A RIGHTWARDS ARROW-TAIL

U+291B LEFTWARDS DOUBLE ARROW-TAIL

215

U+291C RIGHTWARDS DOUBLE ARROW-TAIL

U+291D LEFTWARDS ARROW TO BLACK DIAMOND

U+291E RIGHTWARDS ARROW TO BLACK DIAMOND

U+291F LEFTWARDS ARROW FROM BAR TO BLACK DIAMOND

U+2920 RIGHTWARDS ARROW FROM BAR TO BLACK DIAMOND

U+2921 NORTH WEST AND SOUTH EAST ARROW

U+2922 NORTH EAST AND SOUTH WEST ARROW

U+2923 NORTH WEST ARROW WITH HOOK

U+2924 NORTH EAST ARROW WITH HOOK

U+2925 SOUTH EAST ARROW WITH HOOK

U+2926 SOUTH WEST ARROW WITH HOOK

U+2927 NORTH WEST ARROW AND NORTH EAST ARROW

U+2928 NORTH EAST ARROW AND SOUTH EAST ARROW

U+2929 SOUTH EAST ARROW AND SOUTH WEST ARROW

U+292A SOUTH WEST ARROW AND NORTH WEST ARROW

U+292B RISING DIAGONAL CROSSING FALLING DIAGONAL

U+292C FALLING DIAGONAL CROSSING RISING DIAGONAL

U+292D SOUTH EAST ARROW CROSSING NORTH EAST ARROW

U+292E NORTH EAST ARROW CROSSING SOUTH EAST ARROW

U+292F FALLING DIAGONAL CROSSING NORTH EAST ARROW

U+2930 RISING DIAGONAL CROSSING SOUTH EAST ARROW

U+2931 NORTH EAST ARROW CROSSING NORTH WEST ARROW

U+2932 NORTH WEST ARROW CROSSING NORTH EAST ARROW

U+2933 WAVE ARROW POINTING DIRECTLY RIGHT

U+2934 ARROW POINTING RIGHTWARDS THEN CURVING UPWARDS

U+2935 ARROW POINTING RIGHTWARDS THEN CURVING DOWNWARDS

U+2936 ARROW POINTING DOWNWARDS THEN CURVING LEFTWARDS

U+2937 ARROW POINTING DOWNWARDS THEN CURVING RIGHTWARDS

U+2938 RIGHT-SIDE ARC CLOCKWISE ARROW

U+2939 LEFT-SIDE ARC ANTICLOCKWISE ARROW

U+293A TOP ARC ANTICLOCKWISE ARROW

U+293B BOTTOM ARC ANTICLOCKWISE ARROW

U+293C TOP ARC CLOCKWISE ARROW WITH MINUS

U+293D TOP ARC ANTICLOCKWISE ARROW WITH PLUS

U+293E LOWER RIGHT SEMICIRCULAR CLOCKWISE ARROW

U+293F LOWER LEFT SEMICIRCULAR ANTICLOCKWISE ARROW

U+2940 ANTICLOCKWISE CLOSED CIRCLE ARROW

U+2941 CLOCKWISE CLOSED CIRCLE ARROW

U+2942 RIGHTWARDS ARROW ABOVE SHORT LEFTWARDS ARROW

U+2943 LEFTWARDS ARROW ABOVE SHORT RIGHTWARDS ARROW

U+2944 SHORT RIGHTWARDS ARROW ABOVE LEFTWARDS ARROW

U+2945 RIGHTWARDS ARROW WITH PLUS BELOW

U+2946 LEFTWARDS ARROW WITH PLUS BELOW

U+2947 RIGHTWARDS ARROW THROUGH X

U+2948 LEFT RIGHT ARROW THROUGH SMALL CIRCLE

U+2949 UPWARDS TWO-HEADED ARROW FROM SMALL CIRCLE

U+294A LEFT BARB UP RIGHT BARB DOWN HARPOON

U+294B LEFT BARB DOWN RIGHT BARB UP HARPOON

U+294C UP BARB RIGHT DOWN BARB LEFT HARPOON

U+294D UP BARB LEFT DOWN BARB RIGHT HARPOON

U+294E LEFT BARB UP RIGHT BARB UP HARPOON

U+294F UP BARB RIGHT DOWN BARB RIGHT HARPOON

216

U+2950 LEFT BARB DOWN RIGHT BARB DOWN HARPOON

U+2951 UP BARB LEFT DOWN BARB LEFT HARPOON

U+2952 LEFTWARDS HARPOON WITH BARB UP TO BAR

U+2953 RIGHTWARDS HARPOON WITH BARB UP TO BAR

U+2954 UPWARDS HARPOON WITH BARB RIGHT TO BAR

U+2955 DOWNWARDS HARPOON WITH BARB RIGHT TO BAR

U+2956 LEFTWARDS HARPOON WITH BARB DOWN TO BAR

U+2957 RIGHTWARDS HARPOON WITH BARB DOWN TO BAR

U+2958 UPWARDS HARPOON WITH BARB LEFT TO BAR

U+2959 DOWNWARDS HARPOON WITH BARB LEFT TO BAR

U+295A LEFTWARDS HARPOON WITH BARB UP FROM BAR

U+295B RIGHTWARDS HARPOON WITH BARB UP FROM BAR

U+295C UPWARDS HARPOON WITH BARB RIGHT FROM BAR

U+295D DOWNWARDS HARPOON WITH BARB RIGHT FROM BAR

U+295E LEFTWARDS HARPOON WITH BARB DOWN FROM BAR

U+295F RIGHTWARDS HARPOON WITH BARB DOWN FROM BAR

U+2960 UPWARDS HARPOON WITH BARB LEFT FROM BAR

U+2961 DOWNWARDS HARPOON WITH BARB LEFT FROM BAR

U+2962 LEFTWARDS HARPOON WITH BARB UP ABOVE LEFTWARDS HARPOON WITH BARB DOWN

U+2963 UPWARDS HARPOON WITH BARB LEFT BESIDE UPWARDS HARPOON WITH BARB RIGHT

U+2964 RIGHTWARDS HARPOON WITH BARB UP ABOVE RIGHTWARDS HARPOON WITH BARB DOWN

U+2965 DOWNWARDS HARPOON WITH BARB LEFT BESIDE DOWNWARDS HARPOON WITH BARB RIGHT

U+2966 LEFTWARDS HARPOON WITH BARB UP ABOVE RIGHTWARDS HARPOON WITH BARB UP

U+2967 LEFTWARDS HARPOON WITH BARB DOWN ABOVE RIGHTWARDS HARPOON WITH BARB DOWN

U+2968 RIGHTWARDS HARPOON WITH BARB UP ABOVE LEFTWARDS HARPOON WITH BARB UP

U+2969 RIGHTWARDS HARPOON WITH BARB DOWN ABOVE LEFTWARDS HARPOON WITH BARB DOWN

U+296A LEFTWARDS HARPOON WITH BARB UP ABOVE LONG DASH

U+296B LEFTWARDS HARPOON WITH BARB DOWN BELOW LONG DASH

U+296C RIGHTWARDS HARPOON WITH BARB UP ABOVE LONG DASH

U+296D RIGHTWARDS HARPOON WITH BARB DOWN BELOW LONG DASH

U+296E UPWARDS HARPOON WITH BARB LEFT BESIDE DOWNWARDS HARPOON WITH BARB RIGHT

U+296F DOWNWARDS HARPOON WITH BARB LEFT BESIDE UPWARDS HARPOON WITH BARB RIGHT

U+2970 RIGHT DOUBLE ARROW WITH ROUNDED HEAD

U+2971 EQUALS SIGN ABOVE RIGHTWARDS ARROW

U+2972 TILDE OPERATOR ABOVE RIGHTWARDS ARROW

U+2973 LEFTWARDS ARROW ABOVE TILDE OPERATOR

U+2974 RIGHTWARDS ARROW ABOVE TILDE OPERATOR

U+2975 RIGHTWARDS ARROW ABOVE ALMOST EQUAL TO

U+2976 LESS-THAN ABOVE LEFTWARDS ARROW

U+2977 LEFTWARDS ARROW THROUGH LESS-THAN

U+2978 GREATER-THAN ABOVE RIGHTWARDS ARROW

U+2979 SUBSET ABOVE RIGHTWARDS ARROW

U+297A LEFTWARDS ARROW THROUGH SUBSET

U+297B SUPERSET ABOVE LEFTWARDS ARROW

U+297C LEFT FISH TAIL

U+297D RIGHT FISH TAIL

U+297E UP FISH TAIL

U+297F DOWN FISH TAIL

U+2980 TRIPLE VERTICAL BAR DELIMITER

U+2981 Z NOTATION SPOT

U+2982 Z NOTATION TYPE COLON

U+2999 DOTTED FENCE

217

U+299A VERTICAL ZIGZAG LINE

U+299B MEASURED ANGLE OPENING LEFT

U+299C RIGHT ANGLE VARIANT WITH SQUARE

U+299D MEASURED RIGHT ANGLE WITH DOT

U+299E ANGLE WITH S INSIDE

U+299F ACUTE ANGLE

U+29A0 SPHERICAL ANGLE OPENING LEFT

U+29A1 SPHERICAL ANGLE OPENING UP

U+29A2 TURNED ANGLE

U+29A3 REVERSED ANGLE

U+29A4 ANGLE WITH UNDERBAR

U+29A5 REVERSED ANGLE WITH UNDERBAR

U+29A6 OBLIQUE ANGLE OPENING UP

U+29A7 OBLIQUE ANGLE OPENING DOWN

U+29A8 MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING UP AND RIGHT

U+29A9 MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING UP AND LEFT

U+29AA MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING DOWN AND RIGHT

U+29AB MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING DOWN AND LEFT

U+29AC MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING RIGHT AND UP

U+29AD MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING LEFT AND UP

U+29AE MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING RIGHT AND DOWN

U+29AF MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING LEFT AND DOWN

U+29B0 REVERSED EMPTY SET

U+29B1 EMPTY SET WITH OVERBAR

U+29B2 EMPTY SET WITH SMALL CIRCLE ABOVE

U+29B3 EMPTY SET WITH RIGHT ARROW ABOVE

U+29B4 EMPTY SET WITH LEFT ARROW ABOVE

U+29B5 CIRCLE WITH HORIZONTAL BAR

U+29B6 CIRCLED VERTICAL BAR

U+29B7 CIRCLED PARALLEL

U+29B9 CIRCLED PERPENDICULAR

U+29BA CIRCLE DIVIDED BY HORIZONTAL BAR AND TOP HALF DIVIDED BY VERTICAL BAR

U+29BB CIRCLE WITH SUPERIMPOSED X

U+29BD UP ARROW THROUGH CIRCLE

U+29BE CIRCLED WHITE BULLET

U+29BF CIRCLED BULLET

U+29C2 CIRCLE WITH SMALL CIRCLE TO THE RIGHT

U+29C3 CIRCLE WITH TWO HORIZONTAL STROKES TO THE RIGHT

U+29C5 SQUARED FALLING DIAGONAL SLASH

U+29C7 SQUARED SMALL CIRCLE

U+29C8 SQUARED SQUARE

U+29C9 TWO JOINED SQUARES

U+29CA TRIANGLE WITH DOT ABOVE

U+29CB TRIANGLE WITH UNDERBAR

U+29CC S IN TRIANGLE

U+29CD TRIANGLE WITH SERIFS AT BOTTOM

U+29CE RIGHT TRIANGLE ABOVE LEFT TRIANGLE

U+29CF LEFT TRIANGLE BESIDE VERTICAL BAR

U+29D0 VERTICAL BAR BESIDE RIGHT TRIANGLE

U+29D1 BOWTIE WITH LEFT HALF BLACK

U+29D2 BOWTIE WITH RIGHT HALF BLACK

U+29D3 BLACK BOWTIE

218

U+29D6 WHITE HOURGLASS

U+29D7 BLACK HOURGLASS

U+29DC INCOMPLETE INFINITY

U+29DD TIE OVER INFINITY

U+29DE INFINITY NEGATED WITH VERTICAL BAR

U+29DF DOUBLE-ENDED MULTIMAP

U+29E0 SQUARE WITH CONTOURED OUTLINE

U+29E1 INCREASES AS

U+29E2 SHUFFLE PRODUCT

U+29E6 GLEICH STARK

U+29E7 THERMODYNAMIC

U+29E8 DOWN-POINTING TRIANGLE WITH LEFT HALF BLACK

U+29E9 DOWN-POINTING TRIANGLE WITH RIGHT HALF BLACK

U+29EA BLACK DIAMOND WITH DOWN ARROW

U+29EB BLACK LOZENGE

U+29EC WHITE CIRCLE WITH DOWN ARROW

U+29ED BLACK CIRCLE WITH DOWN ARROW

U+29EE ERROR-BARRED WHITE SQUARE

U+29EF ERROR-BARRED BLACK SQUARE

U+29F0 ERROR-BARRED WHITE DIAMOND

U+29F1 ERROR-BARRED BLACK DIAMOND

U+29F2 ERROR-BARRED WHITE CIRCLE

U+29F3 ERROR-BARRED BLACK CIRCLE

U+29F4 RULE-DELAYED

U+29F6 SOLIDUS WITH OVERBAR

U+29F7 REVERSE SOLIDUS WITH HORIZONTAL STROKE

U+29FA DOUBLE PLUS ++
U+29FB TRIPLE PLUS +++
U+29FE TINY

U+29FF MINY

U+2A00 N-ARY CIRCLED DOT OPERATOR
⊙

BIGODOT
U+2A01 N-ARY CIRCLED PLUS OPERATOR

⊕
BIGOPLUS

U+2A02 N-ARY CIRCLED TIMES OPERATOR
⊗

BIGOTIMES
U+2A03 N-ARY UNION OPERATOR WITH DOT BIGUDOT
U+2A04 N-ARY UNION OPERATOR WITH PLUS BIGUPLUS
U+2A05 N-ARY SQUARE INTERSECTION OPERATOR BIGSQCAP
U+2A06 N-ARY SQUARE UNION OPERATOR BIGSQCUP
U+2A07 TWO LOGICAL AND OPERATOR

U+2A08 TWO LOGICAL OR OPERATOR

U+2A09 N-ARY TIMES OPERATOR BIGTIMES
U+2A0A MODULO TWO SUM

U+2A10 CIRCULATION FUNCTION

U+2A11 ANTICLOCKWISE INTEGRATION

U+2A12 LINE INTEGRATION WITH RECTANGULAR PATH AROUND POLE

U+2A13 LINE INTEGRATION WITH SEMICIRCULAR PATH AROUND POLE

U+2A14 LINE INTEGRATION NOT INCLUDING THE POLE

U+2A1D JOIN on JOIN
U+2A1E LARGE LEFT TRIANGLE OPERATOR

U+2A1F Z NOTATION SCHEMA COMPOSITION

U+2A20 Z NOTATION SCHEMA PIPING

U+2A21 Z NOTATION SCHEMA PROJECTION

U+2A32 SEMIDIRECT PRODUCT WITH BOTTOM CLOSED

219

U+2A33 SMASH PRODUCT

U+2A3C INTERIOR PRODUCT

U+2A3D RIGHTHAND INTERIOR PRODUCT

U+2A3E Z NOTATION RELATIONAL COMPOSITION

U+2A3F AMALGAMATION OR COPRODUCT

U+2A57 SLOPING LARGE OR

U+2A58 SLOPING LARGE AND

U+2A61 SMALL VEE WITH UNDERBAR

U+2A64 Z NOTATION DOMAIN ANTIRESTRICTION

U+2A65 Z NOTATION RANGE ANTIRESTRICTION

U+2A68 TRIPLE HORIZONTAL BAR WITH DOUBLE VERTICAL STROKE

U+2A69 TRIPLE HORIZONTAL BAR WITH TRIPLE VERTICAL STROKE

U+2A6A TILDE OPERATOR WITH DOT ABOVE

U+2A6B TILDE OPERATOR WITH RISING DOTS

U+2A6D CONGRUENT WITH DOT ABOVE

U+2ACD SQUARE LEFT OPEN BOX OPERATOR

U+2ACE SQUARE RIGHT OPEN BOX OPERATOR

U+2AD9 ELEMENT OF OPENING DOWNWARDS

U+2ADA PITCHFORK WITH TEE TOP

U+2ADC FORKING

U+2ADD NONFORKING

U+2ADE SHORT LEFT TACK

U+2ADF SHORT DOWN TACK

U+2AE0 SHORT UP TACK

U+2AE1 PERPENDICULAR WITH S

U+2AE2 VERTICAL BAR TRIPLE RIGHT TURNSTILE

U+2AE3 DOUBLE VERTICAL BAR LEFT TURNSTILE

U+2AE4 VERTICAL BAR DOUBLE LEFT TURNSTILE

U+2AE5 DOUBLE VERTICAL BAR DOUBLE LEFT TURNSTILE

U+2AE6 LONG DASH FROM LEFT MEMBER OF DOUBLE VERTICAL

U+2AE7 SHORT DOWN TACK WITH OVERBAR

U+2AE8 SHORT UP TACK WITH UNDERBAR

U+2AE9 SHORT UP TACK ABOVE SHORT DOWN TACK

U+2AEA DOUBLE DOWN TACK

U+2AEB DOUBLE UP TACK

U+2AEC DOUBLE STROKE NOT SIGN

U+2AED REVERSED DOUBLE STROKE NOT SIGN

U+2AEE DOES NOT DIVIDE WITH REVERSED NEGATION SLASH

U+2AEF VERTICAL LINE WITH CIRCLE ABOVE

U+2AF0 VERTICAL LINE WITH CIRCLE BELOW

U+2AF1 DOWN TACK WITH CIRCLE BELOW

U+2AF2 PARALLEL WITH HORIZONTAL STROKE

U+2AF3 PARALLEL WITH TILDE OPERATOR

U+2AF5 TRIPLE VERTICAL BAR WITH HORIZONTAL STROKE

U+2AF6 TRIPLE COLON OPERATOR

U+2AFC LARGE TRIPLE VERTICAL BAR OPERATOR

U+2AFE WHITE VERTICAL BAR

U+2AFF N-ARY WHITE VERTICAL BAR

220

Appendix D

Simplified Grammar for Application
Programmers and Library Writers

In this chapter, we provide a simplified grammar of the Fortress concrete syntax as documentation, to enable Fortress
programmers to understand it more easily. It includes unimplemented Fortress language features such as dimensions
and units, tests and properties, coercions, and where clauses. The full Fortress grammar is described in Appendix E.

The simplified grammar does not describe the details of the uses of operators, whitespaces, and semicolons. Instead,
they are described as follows according to three different contexts influencing the whitespace-sensitivity of expres-
sions:

statement Expressions immediately enclosed by an expression block are in a statement-like context. Multiple expres-
sions can appear on a line if they are separated (or terminated) by semicolons. If an expression can legally end
at the end of a line, it does; if it cannot, it does not. A prefix or infix operator that lacks its last operand prevents
an expression from ending. For example,

an = expression+
spanning+
four+
lines

a = oneLiner
four(); on(); one(); line();

nested An expression or list of expressions immediately enclosed by parentheses or braces is nested. Multiple ex-
pressions are separated by commas, and the end of a line does not end an expression. Because of this effect,
the meaning of a several lines of code can change if they are wrapped in parentheses. Parentheses can also be
used to ensure that a multiline expression is not terminated prematurely without paying special attention to line
endings.

lhs = rhs
−aSeparateExpression

postProfit(revenue
−expenses)

pasted Fortress has special syntax for matrix pasting. Within square brackets, whitespace-separated expressions are
treated (depending on their type) as either matrix elements or submatrices within a row. Because whitespace
is the separator, it also ends expressions where possible. In addition, newline-or-semicolon-separated rows are
pasted vertically along their columns. Higher-dimensional pasting is expressed with repeated semicolons, but
repeated newlines do not have the same effect.

221

id2a = [1 0; 0 1]
id2b = [1 0;

0 1]
id2c = [1 0

0 1]
cube2 = [1 0; 0 1; ; 1− 1; 1 1]

The simplified grammar is written in the extended BNF form with the following three postfix operators:

• ?: which means that its argument (the symbol or group of symbols in parentheses to the left of the operator) can
appear zero or one time

• ∗: which means that its argument can appear zero or more times

• +: which means that its argument can appear one or more times

D.1 Components and APIs

File ::= CompilationUnit
| Imports? Exports Decls?
| Imports? AbsDecls
| Imports AbsDecls?

CompilationUnit ::= Component
| Api

Component ::= native ? component APIName Imports? Exports Decls? end
Api ::= native ? api APIName Imports? AbsDecls? end
Imports ::= Import+

Import ::= import ImportedNames
| import api AliasedAPINames

ImportedNames ::= APIName . { ... } (except SimpleNames)?
| APIName . { AliasedSimpleNameList (, ...)? }
| QualifiedName (as Id)?

SimpleNames ::= SimpleName
| { SimpleNameList }

SimpleNameList ::= SimpleName(, SimpleName)∗

AliasedSimpleName ::= Id (as Id)?
| opr Op (as Op)?
| opr EncloserPair (as EncloserPair)?

AliasedSimpleNameList ::= AliasedSimpleName(, AliasedSimpleName)∗

AliasedAPINames ::= AliasedAPIName
| { AliasedAPINameList }

AliasedAPIName ::= APIName (as Id)?
AliasedAPINameList ::= AliasedAPIName(, AliasedAPIName)∗

Exports ::= Export+

Export ::= export APINames
APINames ::= APIName

| { APINameList }
APINameList ::= APIName(, APIName)∗

222

D.2 Top-level Declarations

Decls ::= Decl+

Decl ::= TraitDecl
| ObjectDecl
| VarDecl
| FnDecl
| DimUnitDecl
| TypeAlias
| TestDecl
| PropertyDecl
| ExternalSyntax

AbsDecls ::= AbsDecl+

AbsDecl ::= AbsTraitDecl
| AbsObjectDecl
| AbsVarDecl
| AbsFnDecl
| DimUnitDecl
| TypeAlias
| TestDecl
| PropertyDecl
| AbsExternalSyntax

D.3 Trait and Object Declarations

A TraitHeaderFront may have 0 or 1 of each TraitClause.

TraitDecl ::= TraitMods? TraitHeaderFront TraitClauses GoInATrait? end
TraitHeaderFront ::= trait Id StaticParams? ExtendsWhere?
TraitClauses ::= TraitClause∗

TraitClause ::= Excludes
| Comprises
| Where

GoInATrait ::= Coercions? GoFrontInATrait GoBackInATrait?
| Coercions? GoBackInATrait
| Coercions

Coercions ::= Coercion+

GoFrontInATrait ::= GoesFrontInATrait+

GoesFrontInATrait ::= AbsFldDecl
| GetterSetterDecl
| PropertyDecl

GoBackInATrait ::= GoesBackInATrait+

GoesBackInATrait ::= MdDecl
| PropertyDecl

ObjectDecl ::= ObjectMods? ObjectHeader GoInAnObject? end
ObjectHeader ::= object Id StaticParams? ObjectValParam? ExtendsWhere? FnClauses

223

ObjectValParam ::= (ObjectParams?)
ObjectParams ::= (ObjectParam ,)∗ (ObjectVarargs ,)? ObjectKeyword(, ObjectKeyword)∗

| (ObjectParam ,)∗ ObjectVarargs
| ObjectParam (, ObjectParam)∗

ObjectVarargs ::= transient Varargs
ObjectKeyword ::= ObjectParam = Expr
ObjectParam ::= ParamFldMods? Param

| transient Param
GoInAnObject ::= Coercions? GoFrontInAnObject GoBackInAnObject?

| Coercions? GoBackInAnObject
| Coercions

GoFrontInAnObject ::= GoesFrontInAnObject+

GoesFrontInAnObject ::= FldDecl
| GetterSetterDef
| PropertyDecl

GoBackInAnObject ::= GoesBackInAnObject+

GoesBackInAnObject ::= MdDef
| PropertyDecl

AbsTraitDecl ::= AbsTraitMods? TraitHeaderFront AbsTraitClauses AbsGoInATrait? end
AbsTraitClauses ::= AbsTraitClause∗

AbsTraitClause ::= Excludes
| AbsComprises
| Where

AbsGoInATrait ::= AbsCoercions? AbsGoFrontInATrait AbsGoBackInATrait?
| AbsCoercions? AbsGoBackInATrait
| AbsCoercions

AbsCoercions ::= AbsCoercion+

AbsGoFrontInATrait ::= AbsGoesFrontInATrait+

AbsGoesFrontInATrait ::= ApiFldDecl
| AbsGetterSetterDecl
| PropertyDecl

AbsGoBackInATrait ::= AbsGoesBackInATrait+

AbsGoesBackInATrait ::= AbsMdDecl
| PropertyDecl

AbsObjectDecl ::= AbsObjectMods? ObjectHeader AbsGoInAnObject? end
AbsGoInAnObject ::= AbsCoercions? AbsGoFrontInAnObject AbsGoBackInAnObject?

| AbsCoercions? AbsGoBackInAnObject
| AbsCoercions

AbsGoFrontInAnObject ::= AbsGoesFrontInAnObject+

AbsGoesFrontInAnObject ::= ApiFldDecl
| AbsGetterSetterDecl
| PropertyDecl

AbsGoBackInAnObject ::= AbsGoesBackInAnObject+

AbsGoesBackInAnObject ::= AbsMdDecl
| PropertyDecl

224

D.4 Variable Declarations

VarDecl ::= VarMods? VarWTypes InitVal
| VarMods? BindIdOrBindIdTuple = Expr
| VarMods? BindIdOrBindIdTuple : Type ... InitVal
| VarMods? BindIdOrBindIdTuple : TupleType InitVal

VarMods ::= VarMod+

VarMod ::= AbsVarMod | private
VarWTypes ::= VarWType

| (VarWType(, VarWType)+)
VarWType ::= BindId IsType
InitVal ::= (= | :=) Expr
AbsVarDecl ::= AbsVarMods? VarWTypes

| AbsVarMods? BindIdOrBindIdTuple : Type ...
| AbsVarMods? BindIdOrBindIdTuple : TupleType

AbsVarMods ::= AbsVarMod+

AbsVarMod ::= var | test

D.5 Function Declarations

FnDecl ::= FnMods? FnHeaderFront FnHeaderClause (= Expr)?
| FnSig

FnSig ::= SimpleName : Type
AbsFnDecl ::= AbsFnMods? FnHeaderFront FnHeaderClause

| FnSig
FnHeaderFront ::= NamedFnHeaderFront

| OpHeaderFront
NamedFnHeaderFront ::= Id StaticParams? ValParam

D.6 Dimension, Unit, Type Alias, Test, Property, and External Syntax Dec-
larations

DimUnitDecl ::= dim Id (= Type)? (unit | SI unit) Id+ (= Expr)?
| dim Id (= Type)? (default Id)?
| (unit | SI unit) Id+ (: Type)? (= Expr)?

TypeAlias ::= type Id StaticParams? = Type
TestDecl ::= test Id [GeneratorClauseList] = Expr
PropertyDecl ::= property (Id =)? (∀ ValParam)? Expr
ExternalSyntax ::= syntax OpenExpander Id CloseExpander = Expr
OpenExpander ::= Id

| LeftEncloser
| Encloser

CloseExpander ::= Id
| RightEncloser
| Encloser
| end

AbsExternalSyntax ::= syntax OpenExpander Id CloseExpander

225

D.7 Headers

Each modifier should not appear multiple times in a declaration.

IsType ::= : Type
ExtendsWhere ::= extends TraitTypeWheres
TraitTypeWheres ::= TraitTypeWhere

| { TraitTypeWhereList }
TraitTypeWhereList ::= TraitTypeWhere(, TraitTypeWhere)∗

TraitTypeWhere ::= TraitType Where?
Extends ::= extends TraitTypes
Excludes ::= excludes TraitTypes
Comprises ::= comprises TraitTypes
AbsComprises ::= comprises ComprisingTypes
TraitTypes ::= TraitType

| { TraitTypeList }
TraitTypeList ::= TraitType(, TraitType)∗

ComprisingTypes ::= TraitType
| { ComprisingTypeList }

ComprisingTypeList ::= . . .
| TraitType(, TraitType)∗ (, . . .)?

Where ::= where J WhereBindingList K ({ WhereConstraintList })?
| where { WhereConstraintList }

WhereBindingList ::= WhereBinding(, WhereBinding)∗

WhereBinding ::= Id Extends?
| nat Id
| int Id
| bool Id
| unit Id

WhereConstraintList ::= WhereConstraint(, WhereConstraint)∗

WhereConstraint ::= Id Extends
| TypeAlias
| Type coerces Type
| Type widens Type
| UnitConstraint
| QualifiedName = QualifiedName
| IntConstraint
| BoolConstraint

UnitConstraint ::= dimensionless = Id
| Id = dimensionless

IntConstraint ::= IntExpr ≤ IntExpr
| IntExpr < IntExpr
| IntExpr ≥ IntExpr
| IntExpr > IntExpr
| IntExpr = IntExpr

IntVal ::= IntLiteralExpr
| QualifiedName

226

IntExpr ::= IntVal
| IntExpr + IntExpr
| IntExpr − IntExpr
| IntExpr · IntExpr
| IntExpr IntExpr
| IntExpr ˆ IntVal
| (IntExpr)

BoolConstraint ::= NOT BoolExpr
| BoolExpr OR BoolExpr
| BoolExpr AND BoolExpr
| BoolExpr IMPLIES BoolExpr
| BoolExpr = BoolExpr

BoolVal ::= true
| false
| QualifiedName

BoolExpr ::= BoolVal
| BoolConstraint
| (BoolExpr)

FnHeaderClause ::= IsType? FnClauses
FnClauses ::= Throws? Where? Contract
Throws ::= throws MayTraitTypes
MayTraitTypes ::= {}

| TraitTypes
Contract ::= Requires? Ensures? Invariant?
Requires ::= requires { ExprList? }
Ensures ::= ensures { EnsuresClauseList? }
EnsuresClauseList ::= EnsuresClause(, EnsuresClause)∗

EnsuresClause ::= Expr (provided Expr)?
Invariant ::= invariant { ExprList? }
TraitMods ::= TraitMod+

TraitMod ::= AbsTraitMod | private
AbsTraitMods ::= AbsTraitMod+

AbsTraitMod ::= value | test
ObjectMods ::= TraitMods
AbsObjectMods ::= AbsTraitMods
MdMods ::= MdMod+

MdMod ::= FnMod | override
AbsMdMods ::= AbsMdMod+

AbsMdMod ::= AbsFnMod | override
FnMods ::= FnMod+

FnMod ::= AbsFnMod | private
AbsFnMods ::= AbsFnMod+

AbsFnMod ::= LocalFnMod | test
LocalFnMods ::= LocalFnMod+

LocalFnMod ::= atomic | io
ParamFldMods ::= ParamFldMod+

ParamFldMod ::= var | hidden | settable | wrapped
FldMods ::= FldMod+

FldMod ::= var | AbsFldMod
AbsFldMods ::= AbsFldMod+

AbsFldMod ::= ApiFldMod | wrapped | private
ApiFldMods ::= ApiFldMod+

ApiFldMod ::= hidden | settable | test

227

StaticParams ::= JStaticParamListK
StaticParamList ::= StaticParam(, StaticParam)∗

StaticParam ::= Id Extends? (absorbs unit)?
| nat Id
| int Id
| bool Id
| dim Id
| unit Id (: Type)? (absorbs unit)?
| opr Op

StaticArgs ::= JStaticArgList K
StaticArgList ::= StaticArg(, StaticArg)∗

StaticArg ::= Op
| Unity
| dimensionless
| 1 / Type
| DimPrefixOp Type
| (StaticArg)
| IntExpr
| BoolExpr
| Type
| Expr

D.8 Parameters

ValParam ::= BindId
| (Params?)

Params ::= (Param ,)∗ (Varargs ,)? Keyword(, Keyword)∗

| (Param ,)∗ Varargs
| Param(, Param)∗

VarargsParam ::= BindId : Type ...
Varargs ::= VarargsParam
Keyword ::= Param = Expr
PlainParam ::= BindId IsType?

| Type
Param ::= PlainParam
OpHeaderFront ::= opr BIG ? ({ 7→ | LeftEncloser | Encloser) StaticParams? Params (RightEncloser | Encloser)

| opr ValParam (Op | ExponentOp) StaticParams?
| opr BIG ? (Op | ˆ | Encloser |

∑
|
∏

) StaticParams? ValParam

D.9 Method Declarations

MdDecl ::= MdDef
| abstract ? MdMods? MdHeaderFront FnHeaderClause

MdDef ::= MdMods? MdHeaderFront FnHeaderClause = Expr
AbsMdDecl ::= abstract ? AbsMdMods? MdHeaderFront FnHeaderClause
MdHeaderFront ::= NamedMdHeaderFront

| OpMdHeaderFront
NamedMdHeaderFront ::= Id StaticParams? MdValParam
GetterSetterDecl ::= GetterSetterDef

| abstract ? FnMods? GetterSetterMod MdHeaderFront FnHeaderClause

228

GetterSetterDef ::= FnMods? GetterSetterMod MdHeaderFront FnHeaderClause = Expr
GetterSetterMod ::= getter | setter
AbsGetterSetterDecl ::= abstract ? AbsFnMods? GetterSetterMod MdHeaderFront FnHeaderClause
Coercion ::= coerce StaticParams?(BindId IsType)CoercionClauses widens ? = Expr
AbsCoercion ::= coerce StaticParams?(BindId IsType)CoercionClauses widens ?
CoercionClauses ::= CoercionWhere? Ensures? Invariant?
CoercionWhere ::= where J WhereBindingList K ({ CoercionWhereConstraintList })?

| where { CoercionWhereConstraintList }
CoercionWhereConstraintList ::= CoercionWhereConstraint(, CoercionWhereConstraint)∗

CoercionWhereConstraint ::= WhereConstraint
| Type widens or coerces Type

D.10 Method Parameters

MdValParam ::= (MdParams?)
MdParams ::= (MdParam ,)∗ (Varargs ,)? MdKeyword(, MdKeyword)∗

| (MdParam ,)∗ Varargs
| MdParam(, MdParam)∗

MdKeyword ::= MdParam = Expr
MdParam ::= Param

| self
OpMdHeaderFront ::= opr BIG ? ({ 7→ | LeftEncloser | Encloser) StaticParams? Params

(RightEncloser | Encloser) (:= (SubscriptAssignParam))?
| opr ValParam (Op | ExponentOp) StaticParams?
| opr BIG ? (Op | ˆ | Encloser |

∑
|
∏

) StaticParams? ValParam
SubscriptAssignParam ::= Varargs

| Param

D.11 Field Declarations

FldDecl ::= FldMods? FldWTypes InitVal
| FldMods? BindIdOrBindIdTuple = Expr
| FldMods? BindIdOrBindIdTuple : Type ... InitVal
| FldMods? BindIdOrBindIdTuple : TupleType InitVal

FldWTypes ::= FldWType
| (FldWType(, FldWType)+)

FldWType ::= BindId IsType

D.12 Abstract Field Declarations

AbsFldDecl ::= AbsFldMods? AbsFldWTypes
| AbsFldMods? BindIdOrBindIdTuple : Type ...
| AbsFldMods? BindIdOrBindIdTuple : TupleType

AbsFldWTypes ::= AbsFldWType
| (AbsFldWType(, AbsFldWType)+)

AbsFldWType ::= BindId IsType
ApiFldDecl ::= ApiFldMods? BindId IsType

229

D.13 Expressions

Expr ::= AssignExpr
| OpExpr
| DelimitedExpr
| FlowExpr
| fn ValParam IsType? Throws? ⇒ Expr
| Expr as Type
| Expr asif Type

AssignExpr ::= AssignLefts AssignOp Expr
AssignLefts ::= (AssignLeft(, AssignLeft)∗)

| AssignLeft
AssignLeft ::= SubscriptExpr

| FieldSelection
| QualifiedName

SubscriptExpr ::= Primary LeftEncloser ExprList? RightEncloser
FieldSelection ::= Primary . Id
OpExpr ::= EncloserOp OpExpr? EncloserOp?

| OpExpr EncloserOp OpExpr?
| Primary

EncloserOp ::= Encloser
| Op

Primary ::= ArrayExpr
| MapExpr
| Comprehension
| LeftEncloser ExprList? RightEncloser
| ParenthesisDelimited
| VarOrFnRef
| LiteralExpr
| self
| Primary LeftEncloser ExprList? RightEncloser
| Primary . Id StaticArgs? ParenthesisDelimited
| Primary . Id
| Primary ˆ Exponent
| Primary ExponentOp
| Primary ArgExpr
| Primary Primary

VarOrFnRef ::= Id StaticArgs?
ParenthesisDelimited ::= Parenthesized

| ArgExpr
| ()

Exponent ::= Id
| ParenthesisDelimited
| LiteralExpr
| self

FlowExpr ::= exit Id? (with Expr)?
| Accumulator StaticArgs? ([GeneratorClauseList])? Expr
| atomic AtomicBack
| tryatomic AtomicBack
| spawn Expr
| throw Expr

230

AtomicBack ::= AssignExpr
| OpExpr
| DelimitedExpr

GeneratorClauseList ::= GeneratorBinding(, GeneratorClause)∗

GeneratorBinding ::= BindIdOrBindIdTuple←Expr
GeneratorClause ::= GeneratorBinding

| Expr

D.14 Expressions Enclosed by Keywords or Symbols

DelimitedExpr ::= ArgExpr
| Parenthesized
| object ExtendsWhere? GoInAnObject? end
| Do
| label Id BlockElems end Id
| while Expr Do
| for GeneratorClauseList DoFront end
| if Expr then BlockElems Elifs? Else? end
| (if Expr then BlockElems Elifs? Else end ?)
| case Expr Op? of CaseClauses CaseElse? end
| case most Op of CaseClauses end
| typecase TypecaseBindings of TypecaseClauses CaseElse? end
| try BlockElems Catch? (forbid TraitTypes)? (finally BlockElems)? end

Do ::= (DoFront also)∗ DoFront end
DoFront ::= (at Expr)? atomic ? do BlockElems?
ArgExpr ::= ((Expr ,)∗ (Expr ... ,)? KeywordExpr (, KeywordExpr)∗)

| TupleExpr
| ((Expr ,)∗ Expr ...)

TupleExpr ::= ((Expr ,)+ Expr)
KeywordExpr ::= BindId = Expr
Parenthesized ::= (Expr)
Elifs ::= Elif +

Elif ::= elif Expr then BlockElems
Else ::= else BlockElems
CaseClauses ::= CaseClause+

CaseClause ::= Expr ⇒ BlockElems
CaseElse ::= else ⇒ BlockElems
TypecaseBindings ::= TypecaseVars (= Expr)?
TypecaseVars ::= BindId

| (BindId(, BindId)+)
TypecaseClauses ::= TypecaseClause+

TypecaseClause ::= TypecaseTypes ⇒ BlockElems
TypecaseTypes ::= (TypeList)

| Type
Catch ::= catch BindId CatchClauses
CatchClauses ::= CatchClause+

CatchClause ::= TraitType ⇒ BlockElems

231

MapExpr ::= { EntryList? }
Comprehension ::= BIG ? [StaticArgs? ArrayComprehensionClause+]

| BIG ? { StaticArgs? Entry | GeneratorClauseList }
| BIG ? LeftEncloser StaticArgs? Expr | GeneratorClauseList RightEncloser

Entry ::= Expr 7→ Expr
ArrayComprehensionClause ::= ArrayComprehensionLeft | GeneratorClauseList
ArrayComprehensionLeft ::= IdOrInt 7→ Expr

| (IdOrInt , IdOrIntList) 7→ Expr
IdOrInt ::= Id

| IntLiteralExpr
IdOrIntList ::= IdOrInt(, IdOrInt)∗

ExprList ::= Expr(, Expr)∗

EntryList ::= Entry(, Entry)∗

D.15 Local Declarations

BlockElems ::= BlockElem+

BlockElem ::= LocalVarFnDecl
| Expr(, GeneratorClauseList)?

LocalVarFnDecl ::= LocalFnDecl+

| LocalVarDecl
LocalFnDecl ::= LocalFnMods? NamedFnHeaderFront FnHeaderClause = Expr
LocalVarDecl ::= var ? LocalVarWTypes InitVal

| var ? LocalVarWTypes
| var ? LocalVarWoTypes = Expr
| var ? LocalVarWoTypes : Type ... InitVal?
| var ? LocalVarWoTypes : TupleType InitVal?

LocalVarWTypes ::= LocalVarWType
| (LocalVarWType(, LocalVarWType)+)

LocalVarWType ::= BindId IsType

LocalVarWoTypes ::= LocalVarWoType
| (LocalVarWoType(, LocalVarWoType)+)

LocalVarWoType ::= BindId
| Unpasting

Unpasting ::= [UnpastingElems]
UnpastingElems ::= UnpastingElem RectSeparator UnpastingElems

| UnpastingElem
UnpastingElem ::= BindId ([UnpastingDim])?

| Unpasting
UnpastingDim ::= ExtentRange (× ExtentRange)+

232

D.16 Literals

LiteralExpr ::= ()
| NumericLiteralExpr
| CharLiteralExpr
| StringLiteralExpr

ArrayExpr ::= [RectElements]
RectElements ::= Expr MultiDimCons∗

MultiDimCons ::= RectSeparator Expr

D.17 Types

Type ::= TypeRef
| TraitType
| TupleType
| (Type)
| ()
| ArgType → Type Throws?
| Type DimType

TypeRef ::= DottedId StaticArgs?
TraitType ::= TypeRef

| Type [ArraySize?]
| Type ˆ IntExpr
| Type ˆ (ExtentRange (× ExtentRange)∗)

ArgType ::= ((Type ,)∗ (Type ... ,)? KeywordType(, KeywordType)∗)
| ((Type ,)∗ Type ...)
| TupleType

KeywordType ::- BindId = Type
TupleType ::= (Type , TypeList)
TypeList ::= Type(, Type)∗

ArraySize ::= ExtentRange(, ExtentRange)∗

ExtentRange ::= StaticArg?# StaticArg?
| StaticArg? : StaticArg?
| StaticArg

DimType ::= DottedId
| (DimType)
| 1
| DimPrefixOp DimType
| DimType DimInfixOp DimType
| DimType DimPostfixOp
| DimType in Expr

DimPrefixOp ::= square | cubic | inverse
DimInfixOp ::= · | / | per
DimPostfixOp ::= squared | cubed

233

D.18 Symbols and Operators

EncloserPair ::= (LeftEncloser | Encloser) · ? (RightEncloser | Encloser)
ExponentOp ::= ˆT | ˆOp
AssignOp ::= := | Op =
Accumulator ::=

∑
|
∏
| BIG Op

D.19 Identifiers

BindId ::= Id
|

BindIdList ::= BindId(, BindId)∗

BindIdOrBindIdTuple ::= BindId
| (BindId , BindIdList)

SimpleName ::= Id
| opr Op
| opr EncloserPair

APIName ::= Id(. Id)∗

QualifiedName ::= Id(. Id)∗

D.20 Spaces and Comments

RectSeparator ::= ; +
| Whitespace

234

Appendix E

Full Grammar for Fortress Implementors

In this chapter, we provide a complete definition of the Fortress concrete syntax. It includes unimplemented Fortress
language features such as dimensions and units, tests and properties, coercions, and where clauses. This syntax has
been extracted from the parser-generator source files of an open source partial Fortress reference implementation [8],
available at:

http://projectfortress.sun.com

The parser of this reference implementation is generated by Rats! [7], which generates “packrat parsers” that memoize
intermediate results to ensure linear time performance in the presence of unlimited lookahead and backtracking. Rats!
includes production naming, module modifications, and semantic predicates. Actions that generate semantic values
are omitted for simplicity. See [7] for more information about the Rats! parser generator.

E.1 Components and APIs

File =
w CompilationUnit w EndOfFile

/ (w Imports w ";"?)? w Exports w ";"? (w Decls w ";"?)? w EndOfFile
/ (w Imports w ";"?)? w AbsDecls w ";"? w EndOfFile
/ w Imports w ";"? (w AbsDecls w ";"?)? w EndOfFile

CompilationUnit =
Component

/ Api

Component = ("native" w)? "component" w APIName (w Imports w ";"?)? w Exports w ";"? (w Decls w ";"?)? w "end"

Api = ("native" w)? "api" w APIName (w Imports w ";"?)? (w AbsDecls w ";"?)? w "end"

Imports = Import (br Import)*

Import =
"import" w ImportedNames

/ "import" w "api" w AliasedAPINames

ImportedNames =
APIName "." w "{" w "..." w "}" (w "except" w SimpleNames)?

/ APIName "." w "{" w AliasedSimpleNameList (w "," w "...")? w "}"
/ QualifiedName (w "as" w Id)?

SimpleNames =

235

http://projectfortress.sun.com

SimpleName
/ "{" w SimpleNameList w "}"

SimpleNameList = SimpleName (w "," w SimpleName)*

AliasedSimpleName =
Id (w "as" w Id)?

/ "opr" w Op (w "as" w Op)?
/ "opr" w EncloserPair (w "as" w EncloserPair)?

AliasedSimpleNameList = AliasedSimpleName (w "," w AliasedSimpleName)*

AliasedAPINames =
AliasedAPIName

/ "{" w AliasedAPINameList w "}"

AliasedAPIName = APIName (w "as" w Id)?

AliasedAPINameList = AliasedAPIName (w "," w AliasedAPIName)*

Exports = Export (br Export)*

Export = "export" w APINames

APINames =
APIName

/ "{" w APINameList w "}"

APINameList = APIName (w "," w APIName)*

E.2 Top-level Declarations

Decls = Decl (br Decl)*

Decl =
TraitDecl

/ ObjectDecl
/ VarDecl
/ FnDecl
/ DimUnitDecl
/ TypeAlias
/ TestDecl
/ PropertyDecl
/ ExternalSyntax

AbsDecls = AbsDecl (br AbsDecl)*

AbsDecl =
AbsTraitDecl

/ AbsObjectDecl
/ AbsVarDecl
/ AbsFnDecl
/ DimUnitDecl
/ TypeAlias
/ TestDecl
/ PropertyDecl
/ AbsExternalSyntax

E.3 Trait and Object Declarations

TraitDecl = TraitMods? TraitHeaderFront TraitClauses (w GoInATrait)? w "end"

236

TraitHeaderFront = "trait" w Id (w StaticParams)? (w ExtendsWhere)?

/* Each trait clause cannot appear more than once. */
TraitClauses = (w TraitClause)*

TraitClause =
Excludes

/ Comprises
/ Where

GoInATrait =
(Coercions br)? GoFrontInATrait (br GoBackInATrait)?

/ (Coercions br)? GoBackInATrait
/ Coercions

Coercions = Coercion (br Coercion)*

GoFrontInATrait = GoesFrontInATrait (br GoesFrontInATrait)*

GoesFrontInATrait =
AbsFldDecl

/ GetterSetterDecl
/ PropertyDecl

GoBackInATrait = GoesBackInATrait (br GoesBackInATrait)*

GoesBackInATrait =
MdDecl

/ PropertyDecl

ObjectDecl = ObjectMods? ObjectHeader (w GoInAnObject)? w "end"

ObjectHeader = "object" w Id (w StaticParams)? (w ObjectValParam)? (w ExtendsWhere)? FnClauses

ObjectValParam = "(" (w Params)? w ")"

Varargs := "transient" w VarargsParam

Param :=
ParamFldMods? PlainParam

/ "transient" w PlainParam

GoInAnObject =
(Coercions br)? GoFrontInAnObject (br GoBackInAnObject)?

/ (Coercions br)? GoBackInAnObject
/ Coercions

GoFrontInAnObject = GoesFrontInAnObject (br GoesFrontInAnObject)*

GoesFrontInAnObject =
FldDecl

/ GetterSetterDef
/ PropertyDecl

GoBackInAnObject = GoesBackInAnObject (br GoesBackInAnObject)*

GoesBackInAnObject =
MdDef

/ PropertyDecl

AbsTraitDecl = AbsTraitMods? TraitHeaderFront AbsTraitClauses (w AbsGoInATrait)? w "end"

/* Each trait clause cannot appear more than once. */
AbsTraitClauses = (w AbsTraitClause)*

237

AbsTraitClause =
Excludes

/ AbsComprises
/ Where

AbsGoInATrait =
(AbsCoercions br)? AbsGoFrontInATrait (br AbsGoBackInATrait)?

/ (AbsCoercions br)? AbsGoBackInATrait
/ AbsCoercions

AbsCoercions = AbsCoercion (br AbsCoercion)*

AbsGoFrontInATrait = AbsGoesFrontInATrait (br AbsGoesFrontInATrait)*

AbsGoesFrontInATrait =
ApiFldDecl

/ AbsGetterSetterDecl
/ PropertyDecl

AbsGoBackInATrait = AbsGoesBackInATrait (br AbsGoesBackInATrait)*

AbsGoesBackInATrait =
AbsMdDecl

/ PropertyDecl

AbsObjectDecl = AbsObjectMods? ObjectHeader (w AbsGoInAnObject)? w "end"

AbsGoInAnObject =
(AbsCoercions br)? AbsGoFrontInAnObject (br AbsGoBackInAnObject)?

/ (AbsCoercions br)? AbsGoBackInAnObject
/ AbsCoercions

AbsGoFrontInAnObject = AbsGoesFrontInAnObject (br AbsGoesFrontInAnObject)*

AbsGoesFrontInAnObject =
ApiFldDecl

/ AbsGetterSetterDecl
/ PropertyDecl

AbsGoBackInAnObject = AbsGoesBackInAnObject (br AbsGoesBackInAnObject)*

AbsGoesBackInAnObject =
AbsMdDecl

/ PropertyDecl

E.4 Variable Declarations

VarDecl =
VarMods? NoNewlineVarWTypes w InitVal

/ VarMods? BindIdOrBindIdTuple w "=" w NoNewlineExpr
/ VarMods? BindIdOrBindIdTuple w ":" w Type w "..." w InitVal
/ VarMods? BindIdOrBindIdTuple w ":" w TupleType w InitVal

/* Each modifier cannot appear more than once. */
VarMods = (VarMod w)+

VarMod =
AbsVarMod

/ "private"

VarWTypes =
VarWType

238

/ "(" w VarWType (w "," w VarWType)+ w ")"

VarWType = BindId w IsType

InitVal = ("=" / ":=") w NoNewlineExpr

AbsVarDecl =
AbsVarMods? VarWTypes

/ AbsVarMods? BindIdOrBindIdTuple w ":" w Type w "..."
/ AbsVarMods? BindIdOrBindIdTuple w ":" w TupleType

/* Each modifier cannot appear more than once. */
AbsVarMods = (AbsVarMod w)+

AbsVarMod =
"var"

/ "test"

E.5 Function Declarations

FnDecl =
FnMods? FnHeaderFront FnHeaderClause (w "=" w NoNewlineExpr)?

/ FnSig

FnSig = SimpleName w ":" w NoNewlineType

AbsFnDecl =
AbsFnMods? FnHeaderFront FnHeaderClause

/ FnSig

FnHeaderFront =
NamedFnHeaderFront

/ OpHeaderFront

NamedFnHeaderFront = Id (w StaticParams)? w ValParam

E.6 Dimension, Unit, Type Alias, Test, Property, and External Syntax Dec-
larations

DimUnitDecl =
/ "dim" w Id (w "=" w NoNewlineType)? s ("unit" / "SI_unit") w Id (wr Id)*

(w "=" w NoNewlineExpr)?
/ "dim" w Id (w "=" w NoNewlineType)? (w "default" w Id)?
/ ("unit" / "SI_unit") w Id (wr Id)* (w ":" w NoNewlineType)? (w "=" w NoNewlineExpr)?

TypeAlias = "type" w Id (w StaticParams)? w "=" w NoNewlineType

TestDecl = "test" w Id w "[" w GeneratorClauseList w "]" w "=" w NoNewlineExpr

PropertyDecl = "property" (w Id w "=")? (w "FORALL" w ValParam)? w NoNewlineExpr

ExternalSyntax = "syntax" w OpenExpander w Id w CloseExpander w "=" w NoNewlineExpr

OpenExpander =
Id

/ LeftEncloser
/ Encloser

CloseExpander =

239

Id
/ RightEncloser
/ Encloser
/ "end"

AbsExternalSyntax = "syntax" w OpenExpander w Id w CloseExpander

E.7 Headers without Newlines

ExtendsWhere = "extends" w TraitTypeWheres

TraitTypeWheres =
TraitTypeWhere

/ "{" w TraitTypeWhereList w "}"

TraitTypeWhereList = TraitTypeWhere (w "," w TraitTypeWhere)*

TraitTypeWhere = TraitType (w Where)?

Extends = "extends" w TraitTypes

Excludes = "excludes" w TraitTypes

Comprises = "comprises" w TraitTypes

AbsComprises = "comprises" w ComprisingTypes

TraitTypes =
TraitType

/ "{" w TraitTypeList w "}"

TraitTypeList = TraitType (w "," w TraitType)*

ComprisingTypes =
TraitType

/ "{" w ComprisingTypeList w "}"

ComprisingTypeList =
"..."

/ TraitType (w "," w TraitType)* (w "," w "...")?

Where =
"where" w "[\" w WhereBindingList w "\]" (w "{" w WhereConstraintList w "}")?

/ "where" w "{" w WhereConstraintList w "}"

WhereBindingList = WhereBinding (w "," w WhereBinding)*

WhereBinding =
"nat" w Id

/ "int" w Id
/ "bool" w Id
/ "unit" w Id
/ Id (w Extends)?
/ "[\" // Error production

FnHeaderClause = (w NoNewlineIsType)? FnClauses

FnClauses = (w Throws)? (w Where)? Contract

Throws = "throws" w MayTraitTypes

MayTraitTypes =
"{" w "}"

240

/ TraitTypes

/* Each modifier cannot appear more than once. */
TraitMods = (TraitMod w)+

TraitMod =
AbsTraitMod

/ "private"

/* Each modifier cannot appear more than once. */
AbsTraitMods = (AbsTraitMod w)+

AbsTraitMod =
"value"

/ "test"

/* Each modifier cannot appear more than once. */
ObjectMods = TraitMods

/* Each modifier cannot appear more than once. */
AbsObjectMods = AbsTraitMods

/* Each modifier cannot appear more than once. */
MdMods = (MdMod w)+

MdMod =
FnMod

/ "override"

/* Each modifier cannot appear more than once. */
AbsMdMods = (AbsMdMod w)+

AbsMdMod =
AbsFnMod

/ "override"

/* Each modifier cannot appear more than once. */
FnMods = (FnMod w)+

FnMod =
AbsFnMod

/ "private"

/* Each modifier cannot appear more than once. */
AbsFnMods = (AbsFnMod w)+

AbsFnMod =
LocalFnMod

/ "test"

/* Each modifier cannot appear more than once. */
LocalFnMods = (LocalFnMod w)+

LocalFnMod =
"atomic"

/ "io"

/* Each modifier cannot appear more than once. */
ParamFldMods = (ParamFldMod w)+

ParamFldMod =
"var"

/ "hidden"
/ "settable"
/ "wrapped"

241

/* Each modifier cannot appear more than once. */
FldMods = (FldMod w)+

FldMod =
"var"

/ AbsFldMod

/* Each modifier cannot appear more than once. */
AbsFldMods = (AbsFldMod w)+

AbsFldMod =
ApiFldMod

/ "wrapped"
/ "private"

/* Each modifier cannot appear more than once. */
ApiFldMods = (ApiFldMod w)+

ApiFldMod =
"hidden"

/ "settable"
/ "test"

StaticParams = "[\" w StaticParamList w "\]"

StaticParamList = StaticParam (w "," w StaticParam)*

StaticParam =
"nat" w Id

/ "int" w Id
/ "bool" w Id
/ "dim" w Id
/ "unit" w Id (w ":" w NoNewlineType)? (w "absorbs" w "unit")?
/ "opr" w Op
/ Id (w Extends)? (w "absorbs" w "unit")?
/ "[\" // Error production

E.8 Headers Maybe with Newlines

IsType = ":" w Type

WhereConstraintList = WhereConstraint (w "," w WhereConstraint)*

WhereConstraint =
Id w Extends

/ TypeAlias
/ Type w "coerces" w Type
/ Type w "widens" w Type
/ UnitConstraint
/ QualifiedName w "=" w QualifiedName
/ IntConstraint
/ BoolConstraint

UnitConstraint =
"dimensionless" w "=" w Id

/ Id w "=" w "dimensionless"

IntConstraint =
IntExpr w lessthanequal w IntExpr

/ IntExpr w lessthan w IntExpr
/ IntExpr w greaterthanequal w IntExpr
/ IntExpr w greaterthan w IntExpr

242

/ IntExpr w equals w IntExpr

IntVal =
IntLiteralExpr

/ QualifiedName

IntExpr = IntExprFront IntExprTail*

IntExprFront =
IntVal

/ "(" w IntExpr w ")"

IntExprTail =
SumIntExpr

/ MinusIntExpr
/ ProductIntExpr
/ ExponentIntExpr

SumIntExpr = w "+" w IntExpr

MinusIntExpr = w "-" w IntExpr

ProductIntExpr = (w "DOT" w / sr) IntExpr

ExponentIntExpr = "ˆ" IntVal

BoolConstraint = BoolConstraintFront BoolConstraintTail*

BoolConstraintFront =
NOT w BoolExpr

/ BoolConstraintHead w OR w BoolExpr
/ BoolConstraintHead w AND w BoolExpr
/ BoolConstraintHead w IMPLIES w BoolExpr
/ BoolConstraintHead w "=" w BoolExpr

BoolConstraintHead =
BoolVal

/ "(" w BoolExpr w ")"

BoolConstraintTail =
OrBoolConstraint

/ AndBoolConstraint
/ ImpliesBoolConstraint
/ EqualsBoolConstraint

OrBoolConstraint = w OR w BoolExpr

AndBoolConstraint = w AND w BoolExpr

ImpliesBoolConstraint = w IMPLIES w BoolExpr

EqualsBoolConstraint = w "=" w BoolExpr

BoolVal =
"true"

/ "false"
/ QualifiedName

BoolExpr = BoolExprFront BoolExprTail*

BoolExprFront =
BoolVal

/ "(" w BoolExpr w ")"
/ NOT w BoolExpr

243

BoolExprTail =
OrBoolExpr

/ AndBoolExpr
/ ImpliesBoolExpr
/ EqualsBoolExpr

OrBoolExpr = w OR w BoolExpr

AndBoolExpr = w AND w BoolExpr

ImpliesBoolExpr = w IMPLIES w BoolExpr

EqualsBoolExpr = w "=" w BoolExpr

Contract = (w Requires)? (w Ensures)? (w Invariant)?

Requires = "requires" w "{" (w ExprList)? w "}"

Ensures = "ensures" w "{" (w EnsuresClauseList)? w "}"

EnsuresClauseList = EnsuresClause (w "," w EnsuresClause)*

EnsuresClause = Expr (w "provided" w Expr)?

Invariant = "invariant" w "{" (w ExprList)? w "}"

StaticArgs = "[\" w StaticArgList w "\]"

StaticArgList = StaticArg (w "," w StaticArg)*

StaticArg =
Op

/ "Unity"
/ "dimensionless"
/ "1" w "/" w Type
/ DimPrefixOp sr Type
/ "(" w StaticArg w ")"
/ !(QualifiedName (w "\]" / w "]" / w "," / w "[\" / w "[" / w "->" /

w "OR" / w "AND" / w "IMPLIES" / w "="))
IntExpr

/ !(QualifiedName (w "\]" / w "]" / w "," / w "[\" / w "[" / w "->"))
BoolExpr

/ !(QualifiedName (w "DOT" / w "/" / w "per" / w DimPostfixOp))
Type

/ Expr

E.9 Parameters

ValParam =
BindId

/ "(" (w Params)? w ")"

Params =
(Param w "," w)* (Varargs w "," w)? Keyword (w "," w Keyword)*

/ (Param w "," w)* Varargs
/ Param (w "," w Param)*

VarargsParam = BindId w ":" w Type w "..."

Varargs = VarargsParam

Keyword = Param w "=" w Expr

244

PlainParam =
BindId w IsType

/ !(BindId (w "\]" / w "]" / w "[\" / w "[" / w "->")) BindId
/ Type

Param = PlainParam

OpHeaderFront =
"opr" (w "BIG")? w ("{" w "|->" / LeftEncloser / Encloser) (w StaticParams)? w Params w
(RightEncloser / Encloser)

/ "opr" w ValParam w (Op / ExponentOp) (w StaticParams)?
/ "opr" (w "BIG")? w (Op / "ˆ" / Encloser / SUM / PROD) (w StaticParams)? w ValParam

E.10 Method Declarations

MdDecl =
MdDef

/ ("abstract" w)? MdMods? MdHeaderFront FnHeaderClause

MdDef = MdMods? MdHeaderFront FnHeaderClause w "=" w NoNewlineExpr

AbsMdDecl = ("abstract" w)? AbsMdMods? MdHeaderFront FnHeaderClause

MdHeaderFront =
NamedMdHeaderFront

/ OpHeaderFront

NamedMdHeaderFront = Id (w StaticParams)? w ValParam

GetterSetterDecl =
GetterSetterDef

/ (abstract w)? FnMods? GetterSetterMod MdHeaderFront FnHeaderClause

GetterSetterDef =
FnMods? GetterSetterMod MdHeaderFront FnHeaderClause w "=" w NoNewlineExpr

GetterSetterMod =
"getter" w

/ "setter" w

AbsGetterSetterDecl = (abstract w)? AbsFnMods? GetterSetterMod MdHeaderFront FnHeaderClause

Coercion = "coerce" (w StaticParams)? w "(" w BindId w IsType w ")" CoercionClauses w
("widens" w)? "=" w NoNewlineExpr

AbsCoercion = "coerce" (w StaticParams)? w "(" w BindId w IsType w ")" CoercionClauses (w "widens")?

CoercionClauses = (w CoercionWhere)? (w Ensures)? (w Invariant)?

CoercionWhere =
"where" w "[\" w WhereBindingList w "\]" (w "{" w CoercionWhereConstraintList w "}")?

/ "where" w "{" w CoercionWhereConstraintList w "}"

CoercionWhereConstraintList = CoercionWhereConstraint (w "," w CoercionWhereConstraint)*

CoercionWhereConstraint =
WhereConstraint

/ Type w "widens" w "or" w "coerces" w Type

245

E.11 Method Parameters

ValParam := "(" (w Params)? w ")"

Param :=
PlainParam

/ "self"

OpHeaderFront :=
"opr" (w "BIG")? w ("{" w "|->" / LeftEncloser / Encloser) (w StaticParams)? w Params w

(RightEncloser / Encloser) (w ":=" w "(" w SubscriptAssignParam w ")")?
/ ...

SubscriptAssignParam =
Varargs

/ Param

E.12 Field Declarations

FldDecl = VarDecl

VarMods := FldMods

E.13 Abstract Field Declarations

AbsFldDecl = AbsVarDecl

VarMods := AbsFldMods

ApiFldDecl = ApiFldMods? BindId w NoNewlineIsType

E.14 Expressions

Expr = ExprFront ExprTail*

ExprFront =
AssignExpr

/ OpExpr
/ DelimitedExpr
/ <Flow> FlowExpr
/ <Fn> "fn" w ValParam (w IsType)? (w Throws)? w "=>" w Expr

ExprTail =
<As> As

/ <Asif> AsIf

As = w "as" w Type

AsIf = w "asif" w Type

AssignExpr = AssignLefts w AssignOp w Expr

AssignLefts =
"(" w AssignLeft (w "," w AssignLeft)* w ")"

/ AssignLeft

AssignLeft =

246

PrimaryFront AssignLeftTail+
/ QualifiedName

AssignLeftTail =
SubscriptAssign

/ FieldSelectionAssign

SubscriptAssign = LeftEncloser (w ExprList)? w RightEncloser

FieldSelectionAssign = "." Id

OpExpr =
OpExprNoEnc

/ OpExprLeftEncloser
/ Encloser

OpExprNoEnc =
OpExprPrimary

/ OpExprPrefix
/ Op

TightInfixRight =
Encloser OpExprPrimary

/ Encloser OpExprPrefix
/ <Primary> Encloser wr OpExprPrimary
/ <Loose> Encloser wr LooseInfix
/ <LeftLoose> Encloser wr LeftLooseInfix
/ Encloser

LeftLooseInfix =
OpExprLeftEncloser

/ <Primary> Encloser wr OpExprPrimary
/ <Prefix> Encloser wr OpExprPrefix
/ <Left> Encloser wr OpExprLeftEncloser

OpExprLeftEncloser = Encloser OpExprNoEnc

OpExprPrimary =
Primary TightInfixPostfix

/ Primary TightInfixRight
/ <Primary> Primary wr OpExprPrimary
/ <Loose> Primary wr LooseInfix
/ <LeftLoose> Primary wr LeftLooseInfix
/ Primary

OpExprPrefix =
Op OpExprPrimary

/ Op OpExprPrefix
/ Op OpExprLeftEncloser
/ <Primary> Op wr OpExprPrimary
/ <Prefix> Op wr OpExprPrefix
/ <Left> Op wr OpExprLeftEncloser

TightInfixPostfix =
Op OpExprPrimary

/ Op OpExprPrefix
/ Op OpExprLeftEncloser
/ <Primary> Op wr OpExprPrimary
/ <Prefix> Op wr OpExprPrefix
/ <Left> Op wr OpExprLeftEncloser
/ Op

LooseInfix =
Op wr OpExprPrimary

/ Op wr OpExprPrefix

247

/ <Left> Op wr OpExprLeftEncloser

Primary = LeftAssociatedPrimary / MathPrimary

LeftAssociatedPrimary =
DottedIdChain StaticArgs ParenthesisDelimited ParenthesisDelimitedLeft* Selector*

/ DottedIdChain SubscriptingLeft+ ParenthesisDelimitedLeft* Selector*
/ DottedIdChain ParenthesisDelimited ParenthesisDelimitedLeft+ Selector*
/ DottedIdChain ParenthesisDelimitedLeft* Selector*
/ PrimaryFront SubscriptingLeft* ParenthesisDelimitedLeft* Selector+

DottedIdChain = Id ("." w Id)+

MathPrimary = PrimaryFront MathItem*

PrimaryFront =
ArrayExpr

/ MapExpr
/ Comprehension
/ LeftEncloser (w ExprList)? w RightEncloser
/ ParenthesisDelimited
/ VarOrFnRef
/ LiteralExpr
/ "self"

/* ArrayExpr is defined in Literal.rats */

VarOrFnRef = Id StaticArgs?

SubscriptingLeft =
("[" / "{") (w ExprList)? w ("]" / "}")

/ LeftEncloser (w ExprList)? w RightEncloser

ParenthesisDelimitedLeft = ParenthesisDelimited

ParenthesisDelimited =
Parenthesized

/ ArgExpr
/ "(" w ")"

Selector =
MethodInvocationSelector

/ FieldSelectionSelector

MethodInvocationSelector =
"." w Id StaticArgs? ParenthesisDelimited ParenthesisDelimitedLeft*

FieldSelectionSelector = "." w Id SubscriptingLeft* ParenthesisDelimitedLeft*

MathItem =
Subscripting

/ Exponentiation
/ ParenthesisDelimited
/ VarOrFnRef
/ LiteralExpr
/ "self"

Subscripting =
("[" / "{") (w ExprList)? w ("]" / "}")

/ LeftEncloser (w ExprList)? w RightEncloser

Exponentiation =
"ˆ" Exponent

/ ExponentOp

248

Exponent =
Id

/ ParenthesisDelimited
/ LiteralExpr
/ "self"

FlowExpr =
"exit" (w Id)? (w "with" w Expr)?

/ Accumulator StaticArgs? (w "[" w GeneratorClauseList w "]")? w Expr
/ "atomic" w AtomicBack
/ "tryatomic" w AtomicBack
/ "spawn" w Expr
/ "throw" w Expr

AtomicBack =
AssignExpr

/ OpExpr
/ DelimitedExpr

GeneratorClauseList = GeneratorBinding (w "," w GeneratorClause)*

GeneratorBinding = BindIdOrBindIdTuple w "<-" w Expr

GeneratorClause =
GeneratorBinding

/ Expr

E.15 Expressions Enclosed by Keywords or Symbols

DelimitedExpr =
ArgExpr

/ Parenthesized
/ "object" (w ExtendsWhere)? (w GoInAnObject)? w "end"
/ Do
/ "label" w Id w BlockElems w "end" w Id
/ "while" w Expr w Do
/ "for" w GeneratorClauseList w DoFront w "end"
/ "if" w Expr w "then" w BlockElems (w Elifs)? (w Else)? w "end"
/ "(" w "if" w Expr w "then" w BlockElems (w Elifs)? w Else (w "end")? w ")"
/ "case" w Expr (w Op)? w "of" w CaseClauses (w CaseElse)? w "end"
/ "case" w "most" w Op w "of" w CaseClauses w "end"
/ "typecase" w TypecaseBindings w "of" w TypecaseClauses (br CaseElse)? w "end"
/ "try" w BlockElems (w Catch)? (w "forbid" w TraitTypes)? (w "finally" w BlockElems)? w "end"

Do = (DoFront w "also" w)* DoFront w "end"

DoFront = ("at" w Expr w)? ("atomic" w)? "do" (w BlockElems)?

ArgExpr =
"(" w (Expr w "," w)* (Expr w "..." w "," w)? KeywordExpr (w "," w KeywordExpr)* w ")"

/ "(" w (Expr w "," w)* Expr w "..." w ")"
/ TupleExpr

TupleExpr = "(" w (Expr w "," w)* Expr w ")"

KeywordExpr = BindId w "=" w Expr

Parenthesized = "(" w Expr w ")"

Elifs = Elif (w Elif)*

Elif = "elif" w Expr w "then" w BlockElems

249

Else = "else" w BlockElems

CaseClauses = CaseClause (br CaseClause)*

/* CaseClause is defined in LocalDecl.rats */

CaseElse = "else" w match w BlockElems

TypecaseBindings = TypecaseVars (w "=" w Expr)?

TypecaseVars =
BindId

/ "(" w BindId (w "," w BindId)+ w ")"

TypecaseClauses = TypecaseClause (br TypecaseClause)*

TypecaseClause = TypecaseTypes w match w BlockElems

TypecaseTypes =
"(" w TypeList w ")"

/ Type

Catch = "catch" w BindId w CatchClauses

CatchClauses = CatchClause (br CatchClause)*

CatchClause = TraitType w match w BlockElems

MapExpr = "{" (w EntrList)? w "}"

Comprehension =
("BIG" w)? "[" StaticArgs? w ArrayComprehensionClause (br ArrayComprehensionClause)* w "]"

/ ("BIG" w)? "{" StaticArgs? w Entry wr bar wr GeneratorClauseList w "}"
/ ("BIG" w)? LeftEncloser StaticArgs? w Expr wr bar wr GeneratorClauseList w RightEncloser

/* The operator "|->" should not be in the left-hand sides of map expressions
and map/array comprehensions.

*/
mapstoOp = !("|->" w Expr (w mapsto / wr bar / w "}" / w ",")) "|->"

Entry = Expr w mapsto w Expr

ArrayComprehensionLeft =
IdOrInt w mapsto w Expr

/ "(" w IdOrInt w "," w IdOrIntList w ")" w mapsto w Expr

/* ArrayComprehensionClause is defined in Symbol.rats */

IdOrInt =
Id

/ IntLiteralExpr

IdOrIntList = IdOrInt (w "," w IdOrInt)*

ExprList = Expr (w "," w Expr)*

EntryList = Entry (w "," w Entry)*

E.16 Local Declarations

BlockElems =
BlockElem br BlockElems

/ BlockElem

250

&(w Elifs / w Else / br CaseClause / br TypecaseTypes / br CaseElse
/ w "also" / w "end" / w Catch / w "forbid" / w "finally" / w ")")

/ BlockElem w ";"
&(w Elifs / w Else / w CaseClause / w TypecaseTypes / w CaseElse
/ w "also" / w "end" / w Catch / w "forbid" / w "finally" / w ")")

BlockElem =
LocalVarFnDecl

/ NoNewlineExpr (s "," w NoNewlineGeneratorClauseList)?

LocalVarFnDecl =
LocalFnDecl (br LocalFnDecl)*

/ LocalVarDecl

LocalFnDecl = LocalFnMods? NamedFnHeaderFront FnHeaderClause w "=" w NoNewlineExpr

LocalVarDecl =
("var" w)? NoNewlineVarWTypes s InitVal

/ ("var" w)? NoNewlineVarWTypes
/ ("var" w)? VarWoTypes s "=" s NoNewlineExpr
/ ("var" w)? VarWoTypes s ":" s Type s "..." (s InitVal)?
/ ("var" w)? VarWoTypes s ":" s TupleType (s InitVal)?

VarWType := BindId s ":" s Type

VarWoTypes =
VarWoType

/ "(" w VarWoType (w "," w VarWoType)+ w ")"

VarWoType =
BindId

/ Unpasting

Unpasting = "[" w UnpastingElems w "]"

UnpastingElems =
UnpastingElem RectSeparator UnpastingElems

/ UnpastingElem

UnpastingElem =
BindId ("[" w UnpastingDim w "]")?

/ Unpasting

UnpastingDim = ExtentRange (w "BY" w ExtentRange)+

CaseClause = NoNewlineExpr w match w BlockElems

E.17 Literals

LiteralExpr =
"(" w ")"

/ NumericLiteralExpr
/ CharLiteralExpr
/ StringLiteralExpr

ArrayExpr = "[" w RectElements w "]"

RectElements = NoSpaceExpr MultiDimCons*

MultiDimCons = RectSeparator NoSpaceExpr

/* RectSeparator is defined in Spacing.rats */

251

NumericLiteralExpr =
FloatLiteralExpr

/ IntLiteralExpr

FloatLiteralExpr = DigitString "." DigitString

IntLiteralExpr = DigitString

DigitString = [0-9]+

CharLiteralExpr = "’" CharLiteralContent "’"

StringLiteralExpr = ["] StringLiteralContent* ["]
StringLiteralContent =

EscapeSequence
/ !["\\] _

EscapeSequence = ’\\’ [btnfr"\\]

CharLiteralContent = ’\\’ [btnfr"\\] / !"’" _

E.18 Expressions without Newlines

NoNewlineExpr = Expr
Expr := ...
ExprFront := ...
NoNewlineAssignExpr = AssignLefts s AssignOp w NoNewlineExpr

ExprTail :=
<As> NoNewlineAs

/ <AsIf> NoNewlineAsIf

NoNewlineAs = s "as" w NoNewlineType

NoNewlineAsIf = s "asif" w NoNewlineType

TightInfixRight := ...
/ <Primary> Encloser sr OpExprPrimary
/ <Loose> Encloser sr LooseInfix
/ <LeftLoose> Encloser sr LeftLooseInfix

LeftLooseInfix := ...
/ <Primary> Encloser sr OpExprPrimary
/ <Prefix> Encloser sr OpExprPrefix
/ <Left> Encloser sr OpExprLeftEncloser

OpExprPrimary := ...
/ <Primary> Primary sr OpExprPrimary
/ <Loose> Primary sr LooseInfix
/ <LeftLoose> Primary sr LeftLooseInfix

OpExprPrefix := ...
/ <Primary> Op sr OpExprPrimary
/ <Prefix> Op sr OpExprPrefix
/ <Left> Op sr OpExprLeftEncloser

TightInfixPostfix := ...
/ <Primary> Op sr OpExprPrimary
/ <Prefix> Op sr OpExprPrefix
/ <Left> Op sr OpExprLeftEncloser

LooseInfix := ...
/ <Left> Op sr OpExprLeftEncloser

252

GeneratorClauseList := GeneratorBinding (s "," w GeneratorClause)*

NoNewlineGeneratorClauseList = GeneratorClauseList

NoNewlineVarWTypes =
NoNewlineVarWType

/ "(" w NoNewlineVarWType (w "," w NoNewlineVarWType)+ w ")"

NoNewlineVarWType = BindId w NoNewlineIsType

NoNewlineIsType = ":" w NoNewlineType

E.19 Expressions within Array Expressions

ExprFront -= <Flow> , <Fn>
NoSpaceExpr = ExprFront

TightInfixRight -= <Primary>, <Loose>, <LeftLoose>

OpExprPrimary -= <Primary>, <Loose>, <LeftLoose>

OpExprPrefix -= <Primary>, <Prefix>, <Left>

TightInfixPostfix -= <Primary>, <Prefix>, <Left>

E.20 Types

Type = !("1") TypePrimary (w "in" w Expr)?

OpType =
TypePrimary

/ TypePrefix

TypePrimary =
TypePrimaryFront TightInfixPostfix

/ <LooseJuxt> TypePrimaryFront wr TypePrimary
/ <LooseInfix> TypePrimaryFront wr LooseInfix
/ TypePrimaryFront

TypePrefix =
DimPrefixOp TypePrimary

/ DimPrefixOp TypePrefix
/ <Prefix> DimPrefixOp wr TypePrimary
/ <PrePrefix> DimPrefixOp wr TypePrefix

TightInfixPostfix =
<Arrow> TypeInfixOp TypePrimary (w Throws)?

/ <ArrowPrefix> TypeInfixOp TypePrefix (w Throws)?
/ DimInfixOp TypePrimary
/ DimInfixOp TypePrefix
/ <Postfix> DimPostfixOp wr TypePrimary
/ <PostPrefix> DimPostfixOp wr TypePrefix
/ DimPostfixOp

LooseInfix =
<Arrow> TypeInfixOp wr TypePrimary (w Throws)?

/ <ArrowPrefix> TypeInfixOp wr TypePrefix (w Throws)?
/ <Infix> DimInfixOp wr TypePrimary
/ <InPrefix> DimInfixOp wr TypePrefix

253

TypePrimaryFront = TypeFront TypeTail*

TypeFront =
ParenthesizedType

/ ArgType
/ TypeRef
/ VoidType
/ "1"

ParenthesizedType = "(" w Type w ")"

ArgType =
"(" w (Type w "," w)* (Type w "..." w "," w)? KeywordType (w "," w KeywordType)* w ")"

/ "(" w (Type w "," w)* Type w "..." w ")"
/ TupleType

KeywordType = BindId w "=" w Type

TupleType = "(" w Type w "," w TypeList w ")"

TypeList = Type (w "," w Type)*

TypeRef = Id StaticArgs?

VoidType = "(" w ")"

TypeTail =
ArrayTypeSize

/ Exponentiation
/ ParenthesizedTypeLeft
/ IdLeft
;

ArrayTypeSize = "[" (w ArraySize)? w "]"

ArraySize = ExtentRange (w "," w ExtentRange)*

ExtentRange =
(StaticArg w)? "#" (w StaticArg)?

/ (StaticArg w)? ":" (w StaticArg)?
/ StaticArg

Exponentiation =
"ˆ" IntExpr

/ "ˆ" "(" w ExtentRange (w "BY" w ExtentRange)* w ")"

ParenthesizedTypeLeft = "(" w OpType w ")"

IdLeft = Id

TypeInfixOp = "->"

DimInfixOp = "DOT" / "/" / "per"

DimPrefixOp = "square" / "cubic" / "inverse"

DimPostfixOp = "squared" / "cubed"

TraitType =
TraitTypeFront TraitTypeTail+

/ TypeRef

TraitTypeFront =
ParenthesizedType

/ TupleType

254

/ TypeRef
/ VoidType

TraitTypeTail =
ArrayTypeSizeTrait

/ ExponentiationTrait

ArrayTypeSizeTrait = "[" (w ArraySize)? w "]"

ExponentiationTrait =
"ˆ" IntExpr

/ "ˆ" "(" w ExtentRange (w "BY" w ExtentRange)* w ")"

E.21 Types without Newlines

Type Type := ...

NoNewlineType = !("1") TypePrimary (w "in" w NoNewlineExpr)?

TypePrimary := ...
/ <LooseJuxt> TypePrimaryFront sr TypePrimary
/ <LooseInfix> TypePrimaryFront sr LooseInfix

TypePrefix := ...
/ <Prefix> DimPrefixOp sr TypePrimary
/ <PrePrefix> DimPrefixOp sr TypePrefix

TightInfixPostfix := ...
/ <Arrow> TypeInfixOp TypePrimary (s Throws)?
/ <ArrowPrefix> TypeInfixOp TypePrefix (s Throws)?
/ <Postfix> DimPostfixOp sr TypePrimary
/ <PostPrefix> DimPostfixOp sr TypePrefix

LooseInfix := ...
/ <Arrow> TypeInfixOp sr TypePrimary (s Throws)?
/ <ArrowPrefix> TypeInfixOp sr TypePrefix (s Throws)?
/ <Infix> DimInfixOp sr TypePrimary
/ <InPrefix> DimInfixOp sr TypePrefix

E.22 Symbols and Operators

Encloser = encloser

LeftEncloser = leftEncloser

RightEncloser = rightEncloser

ExponentOp = exponentOp

EncloserPair = (LeftEncloser / Encloser) (w DOT)? w (RightEncloser / Encloser)

bar = &("|" wr GeneratorClauseList closingComprehension) "|"
closingComprehension =

w "}"
/ w "|>"
/ br ArrayComprehensionClause
/ w "]"

sd = [*.]?
bars = "|" (sd "|")*
slashes = "/" (sd "/")*

255

/ "\\" (sd "\\")*
lesses = "<" (sd "<")*
greaters = ">" (sd ">")*

encloser = !(bar) bars !([*.>/\\] / "->")

leftEncloser =
leftEncloserMulti

/ !(’|’) _

leftEncloserMulti =
"(" ("/"+ / "\\"+)

/ "[/\\/\\/" / "[/\\/"
/ "[" (sd slashes)
/ "{" (sd slashes)
/ lesses sd (slashes / bars)
/ bars sd slashes
/ "{*" / "[*"
/ "((>" / "(<"

rightEncloser =
rightEncloserMulti

/ !(’|’) _

rightEncloserMulti =
"/"+ ")"

/ "\\"+ ")"
/ slashes sd (greaters / bars / [\]}])
/ bars sd greaters
/ "*]" / "*}"
/ "]" / "}"
/ ">)" / "<))"
/ "/\\/\\/]" / "/\\/]"

exponentOp = "ˆT" / "ˆ" op

OpName = opn:id &{FortressUtil.validOp(opn) }

Op = condOp / op !(equalsOp) / compOp

compOp =
"==="

/ "=/="
/ "<="
/ ">="

condOp =
":" op ":"

/ op ":"

multiOp =
"-/->"

/ "<-/-"
/ "-->"
/ "==>"
/ ">>>"
/ mapstoOp
/ "<<<"
/ "<->"
/ leftarrow
/ "<=>"
/ "->"
/ doublerightarrow
/ ">>"
/ "<<"

256

/ "**"
/ "!!"
/ !(rightEncloserMulti) "///"
/ !(rightEncloserMulti) "//"

singleOp = !(encloser / leftEncloser / rightEncloser / multiOp / compOp / match) _

op = OpName
/ multiOp
/ singleOp

CompoundOp = op equalsOp

/* The operator "=>" should not be in the left-hand sides of case/typecase expressions. */
doublerightarrow = "=>" &(w BlockElems w match)
match = "=>"

/* The operator "BY" should not be used with ExtentRange. */
crossOp = "BY":OpName &(w ExtentRange)

leftarrow = "<-"

lessthanequal = "<=":op / "LE":op
lessthan = "<":op / "LT":op
greaterthanequal = ">=":op / "GE":op
greaterthan = ">":op / "GT":op

NOT = "NOT":op
OR = "OR":op
AND = "AND":op
IMPLIES = "->":op / "IMPLIES":op

equalsOp = "=":singleOp

AssignOp =
":="

/ CompoundOp

SUM = "SUM"

PROD = "PROD"

Accumulator =
SUM

/ PROD
/ "BIG" w Op

ArrayComprehensionClause = ArrayComprehensionLeft wr bar wr GeneratorClauseList

E.23 Identifiers

id = s:(idstart idrest*) &{ !FORTRESS_KEYWORDS.contains(s) }
idstart = UnicodeIdStart / "_"
idrest = UnicodeIdStart / "’" / UnicodeIdRest
IdText = a1:id &{ !FortressUtil.validOp(a1) && !a1.equals("_") }

Id = IdText

BindId =
Id

/ "_"

BindIdList = BindId (w "," w BindId)*

257

BindIdOrBindIdTuple =
BindId

/ "(" w BindId w "," w BindIdList w ")"

SimpleName =
Id

/ "opr" w Op
/ "opr" w EncloserPair

APIName = /* If we find ..., the dot doesn’t count */
Id &(w "...")

/ Id ("." Id)* &(w "...")
/ Id ("." Id)*

QualifiedName = /* If we find ..., the dot doesn’t count */
Id &(w "...")

/ Id ("." Id)* &(w "...")
/ Id ("." Id)*

E.24 Spaces and Comments

EndOfFile = !_
Whitespace =

Space
/ "\t" // Error production
/ Newline

Space =
" "

/ "\f"
/ "\t" // Error production
/ NoNewlineComment

Newline = "\r\n" / "\r" / "\n" / NewlineComment
Comment = "(*" CommentContents "*)"
CommentContents = CommentContent*
CommentContent = Comment / ’*’ !’)’ / c:_ &{c != ’*’}
NewlineComment = Comment
NoNewlineComment =

Comment &{ !(yyValue.contains("\r\n") || yyValue.contains("\r") || yyValue.contains("\n")) }

wValue = Whitespace*
wrValue = Whitespace+

w = Whitespace*
wr = Whitespace+

s = Space*
sr = Space+

nl = s Newline w
br = nl / s ";" w

RectSeparator =
(w ";")+ w

/ sr
/ nl

258

Appendix F

Changes between Fortress 1.0 β and 1.0
Specifications

• This release of the Fortress language specification is the first to be released in tandem with a compliant inter-
preter, available as open source and online at:

http://projectfortress.sun.com

Each example in the specification is automatically generated from a corresponding working Fortress program
which is run by every test run of the interpreter.

• To synchronize the specification with the implementation, we temporarily dropped the following features from
the specification:

– Static checks (including static overloading checks)

– Static type inference

– Qualified names (including aliases of imported APIs)

– Getters and setters

– Array comprehensions

– Keyword parameters and keyword arguments

– Most modifiers

– Dimensions and units

– Type aliases

– Where clauses

– Coercion

– Distributions

– Parallel nested transactions

– Abstract function declarations

– Tests and properties

– Syntactic abstraction

259

• Libraries have significantly changed (Part IV).

• Syntax and semantics of the following features have changed:

– Tuple and functional arguments (Chapter 6, Chapter 9, and Section 13.26)

– Operator rules: associativity, precedence, fixity, and juxtaposition (Chapter 16)

– Operator declarations (Chapter 22)

– Extremum expressions (Section 13.20)

– Import statements (Section 20.2)

– Multiple variable declarations (Chapter 8)

– Typecase expressions (Section 13.21)

• The following features have been added to the language:

– native modifier (Chapter 20)

– Explicit static arguments to big operator applications (Section 13.17 and Section 13.28)

• The following features have been eliminated from the language:

– Identifier parameters

– Explicit self parameters of dotted methods

– Local operator declarations

– Shorthands for Set , List , and Map types

– Tuple type encompassing all tuple types

• Significantly more examples have been added.

260

Bibliography

[1] Ole Agesen, Lars Bak, Craig Chambers, Bay-Wei Chang, Urs Hlzle, John Maloney, Randall B. Smith, David
Ungar, and Mario Wolczko. The Self Programmer’s Reference Manual. http://research.sun.com/
self/release 4.0/Self-4.0/manuals/Self-4.1-Pgmers-Ref.pdf, 2000.

[2] Eric Allen, Victor Luchangco, and Sam Tobin-Hochstadt. Encapsulated Upgradable Components, March 2005.

[3] Gilad Bracha, Guy Steele, Bill Joy, and James Gosling. Java(TM) Language Specification, The (3rd Edition)
(Java Series). Addison-Wesley Professional, July 2005.

[4] R. Cartwright and G. Steele. Compatible genericity with run-time types for the Java Programming Language. In
OOPSLA, 1998.

[5] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts, and Andrew P. Black. Traits: A mechanism
for fine-grained reuse. ACM Trans. Program. Lang. Syst., 28(2):331–388, 2006.

[6] Seth C. Goldstein, Klaus E. Schauser, and Dave E. Culler. Lazy Threads: Implementing a Fast Parallel Call.
Journal of Parallel and Distributed Computing, 37(1), August 1996.

[7] Robert Grimm. Rats! – an easily extensible parser generator. http://cs.nyu.edu/∼rgrimm/xtc/
rats.html.

[8] Sun’s Programming Language Research Group. Project fortress. http://projectfortress.sun.com.

[9] Ralf Hinze and Ross Paterson. Finger trees: a simple general-purpose data structure. Journal of Functional
Programming, 16(2):197–217, March 2006.

[10] Atshushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight Java: A minimal core calculus for Java
and GJ. In Loren Meissner, editor, Proceedings of the 1999 ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages & Applications (OOPSLA‘99), volume 34(10), pages 132–146, N. Y., 1999.

[11] Richard Kelsey, William Clinger, and Jonathan Rees. Revised5 report on the algorithmic language Scheme. ACM
SIGPLAN Notices, 33(9):26–76, 1998.

[12] Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rmy, and Jrme Vouillon. The Objective Caml System,
release 3.08. http://caml.inria.fr/distrib/ocaml-3.08/ocaml-3.08-refman.pdf, 2004.

[13] J. Matthews, R. B. Findler, M. Flatt, and M. Felleisen. A Visual Environment for Developing Context-Sensitive
Term Rewriting Systems (system description). In V. van Oostrom, editor, Rewriting Techniques and Applications,
15th International Conference, RTA-04, LNCS 3091, pages 301–311, Valencia, Spain, June 3-5, 2004. Springer.

[14] B. Meyer. Object-oriented Software Construction. Prentice Hall, 1988.

[15] Todd Millstein and Craig Chambers. Modular statically typed multimethods. Information and Computation,
175(1):76–118, May 2002.

[16] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of Standard ML (Revised). The
MIT Press, 1997.

261

http://research.sun.com/self/release_4.0/Self-4.0/manuals/Self-4.1-Pgmers-Ref.pdf
http://research.sun.com/self/release_4.0/Self-4.0/manuals/Self-4.1-Pgmers-Ref.pdf
http://cs.nyu.edu/~rgrimm/xtc/rats.html
http://cs.nyu.edu/~rgrimm/xtc/rats.html
http://projectfortress.sun.com
http://caml.inria.fr/distrib/ocaml-3.08/ocaml-3.08-refman.pdf

[17] Eric Mohr, David A. Kranz, and Robert H. Halstead, Jr. Lazy task creation: A technique for increasing the
granularity of parallel programs. Technical Report TM-449, MIT/LCS, 1991.

[18] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Stphane Micheloud, Nikolay Mihaylov, Michel
Schinz, Erik Stenman, and Matthias Zenger. The Scala Language Specification. http://scala.epfl.ch/
docu/files/ScalaReference.pdf, 2004.

[19] Chris Okasaki. Purely Functional Data Structures. Cambridge University Press, Cambridge, UK, 1998.

[20] Simon Peyton-Jones. Haskell 98 Language and Libraries. Cambridge University Press, 2003.

[21] Barry N. Taylor. Guide for the use of the international system of units (si). Technical report, United States
Department of Commerce, National Institute of Standards and Technology, April 1995.

[22] The Unicode Consortium. The Unicode Standard, Version 5.0. Addison-Wesley, 2006.

262

http://scala.epfl.ch/docu/files/ScalaReference.pdf
http://scala.epfl.ch/docu/files/ScalaReference.pdf

	I Preliminaries
	Introduction
	Fortress in a Nutshell
	Acknowledgments
	Organization

	Overview
	The Fortress Programming Environment
	Exports and Imports
	Rendering
	Some Common Types in Fortress
	Functions in Fortress
	Some Common Expressions in Fortress
	For Loops Are Parallel by Default
	Atomic Expressions
	Aggregate Expressions
	Comprehensions
	Summations and Products
	Tests and Properties
	Objects and Traits
	Features for Library Development

	II Fortress for Application Programmers
	Programs
	Lexical Structure
	Characters
	Words and Chunks
	Lines, Pages and Position
	Input Elements and Scanning
	Comments
	Whitespace Elements
	Reserved Words
	Character Literals
	String Literals
	Boolean Literals
	The Void Literal
	Numerals
	Operator Tokens
	Identifiers
	Special Tokens
	Rendering of Fortress Programs

	Evaluation
	Values
	Normal and Abrupt Completion of Evaluation
	Memory and Memory Operations
	Threads and Parallelism
	Environments
	Input and Output Actions

	Types
	Kinds of Types
	Relationships between Types
	Trait Types
	Object Expression Types
	Tuple Types
	Arrow Types
	Function Types
	Special Types

	Names and Declarations
	Kinds of Declarations
	Namespaces
	Reach and Scope of a Declaration

	Variables
	Top-Level Variable Declarations
	Local Variable Declarations

	Functions
	Function Declarations
	Function Applications
	Function Contracts
	Local Function Declarations

	Traits
	Trait Declarations
	Method Declarations
	Method Contracts
	Value Traits

	Objects
	Object Declarations
	Field Declarations
	Value Objects

	Static Parameters
	Type Parameters
	Nat and Int Parameters
	Bool Parameters
	Operator Parameters

	Expressions
	Literals
	Identifier References
	Dotted Field Accesses
	Dotted Method Invocations
	Naked Method Invocations
	Function Calls
	Operator Applications
	Function Expressions
	Object Expressions
	Assignments
	Do Expressions
	Label and Exit
	While Loops
	Generators
	For Loops
	Ranges
	Summations and Other Reduction Expressions
	If Expressions
	Case Expressions
	Extremum Expressions
	Typecase Expressions
	Atomic Expressions
	Spawn Expressions
	Throw Expressions
	Try Expressions
	Tuple Expressions
	Aggregate Expressions
	Comprehensions
	Type Ascription
	Type Assumption

	Exceptions
	Causes of Exceptions
	Types of Exceptions

	Overloading and Multiple Dispatch
	Principles of Overloading
	Applicability to Named Functional Calls
	Applicability to Dotted Method Calls
	Applicability for Functionals with Varargs Parameters
	Overloading Resolution
	Overloading Rules for Functional Declarations

	Operators
	Operator Names
	Operator Precedence and Associativity
	Operator Fixity
	Chained Operators
	Enclosing Operators
	Conditional Operators
	Big Operators
	Juxtaposition

	Tests
	Type Inference
	Memory Model
	Principles
	Programming Discipline
	Read and Write Atomicity
	Ordering Dependencies among Operations

	Components and APIs
	Overview
	Components
	APIs
	Component and API Identity

	III Fortress for Library Writers
	Parallelism and Locality
	Regions
	Placing Threads
	Shared and Local Data
	Distributed Arrays
	Abortable Atomicity
	Early Termination of Threads
	Use and Definition of Generators

	Operator Declarations
	Infix Operator Declarations
	Prefix Operator Declarations
	Postfix Operator Declarations
	Nofix Operator Declarations
	Bracketing Operator Declarations
	Subscripting Operator Method Declarations
	Subscripted Assignment Operator Method Declarations
	Conditional Operator Declarations
	Big Operator Declarations

	IV Fortress Library APIs and Documentation
	Structure of the Fortress Libraries
	Default Libraries
	FortressLibrary
	Builtins

	Additional Libraries Available to Fortress Programmers
	Constants
	List
	PureList
	File
	Set
	Map
	Sparse
	Heap
	SkipList
	QuickSort

	V Appendices
	Fortress Calculi
	Basic Core Fortress
	Core Fortress with Overloading

	Rendering of Fortress Code
	Rendering of Fortress Identifiers
	Rendering of Other Fortress Constructs

	Operator Precedence, Associativity, Chaining, and Enclosure
	Bracket Pairs for Enclosing Operators
	Vertical-Line Operators
	Arithmetic Operators
	Relational Operators
	Boolean Operators
	Other Operators

	Simplified Grammar for Application Programmers and Library Writers
	Components and APIs
	Top-level Declarations
	Trait and Object Declarations
	Variable Declarations
	Function Declarations
	Dimension, Unit, Type Alias, Test, Property, and External Syntax Declarations
	Headers
	Parameters
	Method Declarations
	Method Parameters
	Field Declarations
	Abstract Field Declarations
	Expressions
	Expressions Enclosed by Keywords or Symbols
	Local Declarations
	Literals
	Types
	Symbols and Operators
	Identifiers
	Spaces and Comments

	Full Grammar for Fortress Implementors
	Components and APIs
	Top-level Declarations
	Trait and Object Declarations
	Variable Declarations
	Function Declarations
	Dimension, Unit, Type Alias, Test, Property, and External Syntax Declarations
	Headers without Newlines
	Headers Maybe with Newlines
	Parameters
	Method Declarations
	Method Parameters
	Field Declarations
	Abstract Field Declarations
	Expressions
	Expressions Enclosed by Keywords or Symbols
	Local Declarations
	Literals
	Expressions without Newlines
	Expressions within Array Expressions
	Types
	Types without Newlines
	Symbols and Operators
	Identifiers
	Spaces and Comments

	Changes between Fortress 1.0 and 1.0 Specifications

