
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
LD
I
*

Ar
tifact *

A
E
C

Taming the Parallel Effect Zoo
Extensible Deterministic Parallelism with LVish

Lindsey Kuper Aaron Todd Sam Tobin-Hochstadt Ryan R. Newton
Indiana University

{lkuper, toddaaro, samth, rrnewton}@cs.indiana.edu

Abstract
A fundamental challenge of parallel programming is to ensure that
the observable outcome of a program remains deterministic in spite
of parallel execution. Language-level enforcement of determinism
is possible, but existing deterministic-by-construction parallel pro-
gramming models tend to lack features that would make them ap-
plicable to a broad range of problems. Moreover, they lack exten-
sibility: it is difficult to add or change language features without
breaking the determinism guarantee.

The recently proposed LVars programming model, and the ac-
companying LVish Haskell library, took a step toward broadly-
applicable guaranteed-deterministic parallel programming. The
LVars model allows communication through shared monotonic data
structures to which information can only be added, never removed,
and for which the order in which information is added is not ob-
servable. LVish provides a Par monad for parallel computation
that encapsulates determinism-preserving effects while allowing a
more flexible form of communication between parallel tasks than
previous guaranteed-deterministic models provided.

While applying LVar-based programming to real problems us-
ing LVish, we have identified and implemented three capabilities
that extend its reach: inflationary updates other than least-upper-
bound writes; transitive task cancellation; and parallel mutation of
non-overlapping memory locations. The unifying abstraction we
use to add these capabilities to LVish—without suffering added
complexity or cost in the core LVish implementation, or compro-
mising determinism—is a form of monad transformer, extended
to handle the Par monad. With our extensions, LVish provides
the most broadly applicable guaranteed-deterministic parallel pro-
gramming interface available to date. We demonstrate the viability
of our approach both with traditional parallel benchmarks and with
results from a real-world case study: a bioinformatics application
that we parallelized using our extended version of LVish.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Concurrent programming structures; D.1.3 [Con-
current Programming]: Parallel programming; D.3.2 [Language
Classifications]: Concurrent, distributed, and parallel languages

Keywords Deterministic parallelism

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PLDI ’14, June 9-11, 2014, Edinburgh, United Kingdom.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2784-8/14/06. . . $15.00.
http://dx.doi.org/10.1145/2594291.2594312

1. Expressive Deterministic Parallelism
For parallelism to become the norm it must become easier. One
great stride in this direction would be to provide deterministic-
by-default1 parallel languages that are broadly applicable, avail-
able, and practical—enabling more software to avoid heisenbugs
by construction. Historically, language-level enforcement of deter-
minism can be found in languages based on synchronous dataflow
[8], data-parallel languages [5, 20], and languages with advanced
permissions systems that prevent data races [3]. However, virtually
all practical parallel programs are written in traditional languages
(e.g., C++, Java, Fortran), rather than in these more restricted lan-
guages that could guarantee determinism.

It must be that the benefits of determinism do not yet in prac-
tice outweigh the limitations of guaranteed-deterministic program-
ming models. One practical issue is that many applications do
not fit into a single, restrictive paradigm—such as synchronous
dataflow parallelism or functional task parallelism—which is what
most guaranteed-deterministic parallel programming models offer.
We find that would-be guaranteed-deterministic parallel programs
either have multiple components spanning different paradigms, or
they depend on deterministic algorithms not yet expressible in a
guaranteed-deterministic fashion. For deterministic languages to
make an impact, therefore, they require the breadth to span mul-
tiple paradigms and accommodate a wide variety of algorithms.

Determinism and its breadth dilemma Deterministic parallel
languages necessarily restrict effects. If they allowed arbitrary ac-
cess to shared memory locations, nondeterminism would directly
follow. The particular restrictions on effects vary by language: in
a stream-processing language (e.g., StreamIt [8]), the only effects
possible within a stream filter are push() and pop() operations
on a linear stream data structure. Deterministic data-parallel lan-
guages [5, 20], on the other hand, typically do not allow effects in
parallel regions at all, encapsulating parallelism in aggregate opera-
tions such as map and fold that apply pure element-wise functions.
Clearly, many deterministic parallel programs cannot be expressed
with these abstractions: for example, an asynchronous quorum vot-
ing program, where a vote succeeds (and causes an effect) only
when the number of “aye”s exceeds a threshold.

Sharply restricted communication and synchronization capabil-
ities have consequences not only for the immediate usability of
guaranteed-deterministic languages, but for those languages’ exten-
sibility as well. In an unrestricted parallel language, such as Java,
new synchronization or communication constructs can always be
implemented as needed, without changing the language—but no
deterministic parallel language has offered anything comparable.

1 We refer here to external determinism, also called determinacy. Of course,
many parallel applications depend critically on observably nondeterministic
behavior—for example, hardware designs and GUIs. These are not candi-
dates for deterministic execution, but that still leaves many that are.

The difficulty of extensibility means that having a fully fleshed-
out set of built-in parallel primitives is more important in a deter-
ministic parallel language than it is in a traditional, unrestricted lan-
guage. If a guaranteed-deterministic parallel language must limit
the user to a certain set of idioms, then those idioms should encom-
pass as much functionality as possible.

Choosing such a set of broadly applicable built-in parallel id-
ioms is not easy. They must preserve determinism even under ar-
bitrary composition and even against an adversarial programmer.
Determinism is a global property of the language that can be dif-
ficult to verify, as the proofs of determinism for such languages
testify [3, 4, 9, 11], and composition of language features may not
preserve determinism, even if those features behave deterministi-
cally in isolation. Finally, adding features to a parallel runtime sys-
tem can become an increasingly delicate engineering challenge as
the feature list grows [7].

LVars: a step forward In this paper we build on our previous
work on the LVars programming model [11, 12] and the accom-
panying LVish library for deterministic parallel programming in
Haskell. LVars (which we review in more detail in Section 2) are
shared monotonic data structures to which information can only be
added, never removed, and for which the order in which informa-
tion is added is not observable.

The key insight behind LVars is that the states a shared data
structure can take on have an ordering, and updates preserve that
ordering because writes take the least upper bound (lub) of the pre-
vious value and the new value. Because the lub operation is idem-
potent, multiple writes of the same value to a single location can
be allowed deterministically. LVars are already far more expres-
sive than the write-once IVars [1] of prior work on deterministic
parallelism, and are a step in the direction of broadly-applicable
deterministic parallelism. Unfortunately, they fall short in a wide
variety of domains where deterministic parallel algorithms should
be expressible.

Our contributions In this paper we describe the design and im-
plementation of extensions to LVish that enable the following ca-
pabilities, while leaving the basic model intact:

• Commutative (but non-idempotent) read-modify-write opera-
tions such as fetch-and-add (Section 3). We make use of this
capability to parallelize PhyBin [18], a bioinformatics applica-
tion for comparing genealogical histories (phylogenetic trees)
that relies heavily on a parallel tree-edit distance computation.
• Full access to mutable state with enforced disjoint access for

parallel threads (Section 5). The addition of this feature to
LVish is, to our knowledge, the first integration of parallel
updates to mutable memory (à la Deterministic Parallel Java
[3]) with blocking dataflow communication in a guaranteed-
deterministic programming model.
• Deterministic speculation and cancellation, which have a par-

ticular synergy with a new data structure we add to LVish for
memoization (Section 6).

The result of our work is a significantly extended LVish library, now
well suited for parallelizing a far broader variety of pre-existing
Haskell programs. LVish is implemented purely as a Haskell li-
brary, even though it provides features that usually require language
extensions, e.g., enforced alias-free mutable data to support disjoint
parallel update. Further, we show in Section 7 that our new library
is effective, providing parallel speedup on benchmarks old and new,
and a 3.35× parallel speedup on eight cores for the parallelized
PhyBin application.

In order to implement our extensions to LVish, we introduce
Par-monad transformers (Section 4), an extension of traditional
monad transformers. Using transformers to add new capabilities

only where they are required has two benefits: first, the cost of
added functionality is paid only when it is needed, and, second,
it minimizes the impact of our changes on the core LVish sched-
uler. Moreover, the infrastructure we have created for Par-monad
transformers paves the way for future extensibility and provides a
modular way to think about determinism guarantees.

2. Background: LVars and LVish
The LVars programming model [11, 12] offers a principled ap-
proach to guaranteed-deterministic parallel programming with
shared state. In this section we review previous work on LVars and
LVish, a Haskell library that implements the LVars programming
model; Sections 3-6 then describe our extensions to LVish.

An LVar is a mutable data structure that can be shared among
multiple threads. Unlike an ordinary shared mutable data struc-
ture, though, LVars come with a determinism guarantee: a program
in which all communication among threads takes place through
LVars—and in which there are no other observable side effects—is
guaranteed to evaluate to the same value on every run, regardless
of thread scheduling. This determinism property holds because for
every LVar, the set of states that the LVar can take on form a lat-
tice2 specific to that LVar, and the semantics of reading from and
writing to the LVar is defined in terms of this lattice of states. The
two fundamental LVar operations are put, for writing, and get, for
reading. At a high level:

• A put operation can only change an LVar’s state in a way that is
inflationary with respect to its lattice. Informally, the contents
of an LVar must stay the same or “grow bigger” with each write.
This is guaranteed to be the case because put takes the least
upper bound (lub) of the current state and the new state with
respect to the lattice.
• A get operation allows limited observations of the state of an

LVar. The key idea is that reads from an LVar are threshold
reads: they only return a value when the LVar’s state meets
a certain (monotonic) criterion, or “threshold”, and the value
returned is the same regardless of how high above the threshold
the LVar’s state goes. We give a concrete example later in this
section.

Together, least-upper-bound puts and threshold gets guarantee
that programs behave in an observably deterministic way, despite
schedule nondeterminism and concurrent access to shared memory.
Furthermore, since the LVars model is lattice-generic, it guarantees
the safety of arbitrary compositions of programs mixing and match-
ing concurrent data structures, so long as the state spaces of those
data structures can be viewed as lattices and the operations their
APIs expose are expressible in terms of puts and gets.3

The LVish library LVish is an implementation of the LVars pro-
gramming model as a library in Haskell. Like the monad-par li-
brary that preceded it [16], the LVish library provides a Par monad
for encapsulating parallel computation. Par computations run in
lightweight, library-level threads that are scheduled by a custom

2 Formally, the lattice of states is given as a 4-tuple (D,v,⊥,>) where
D is a set, v is a partial order on D, ⊥ is D’s least element according
to v, and > is D’s greatest element. We do not require that every pair
of elements in D have a greatest lower bound, only a least upper bound;
hence (D,v,⊥,>) is really a bounded join-semilattice with a designated
greatest element (>). For brevity, we use the term “lattice” as a shorthand.
3 In practice, it is also important to be able to register latent event handlers
that run when puts that change the state of an LVar occur, but these are
equivalent to an implicit set of functions blocked on gets.

work-stealing scheduler provided by LVish.4 LVish also provides a
variety of LVar data structures (e.g., sets, maps, graphs) that support
concurrent insertion, but not deletion, during Par computations.

In addition to the data structures the LVish library provides,
users may implement their own LVar data structures (although
note the proof obligations for data structure implementors, below).
LVars can be quite sophisticated and correspond to many physical
memory locations (e.g., implemented as a concurrent skip list or
bag), but the simplest way to implement an LVar data structure (and
the easiest way to satisfy said proof obligations) is to represent it as
a single, pure value in a mutable box. LVish provides a PureLVar

type constructor to facilitate the definition of such “pure” LVars.

An example: parallel “and” Consider an LVar that stores the
result of a parallel logical “and” operation between two inputs. At
any point in time, each input will have written true, false, or nothing
yet. In Haskell, we encode this:

data Inp = Bot | T | F

The state of a complete parallel-and LVar, then, would capture the
state of each of its inputs, plus the possibility of an error (the top

state in Figure 1). In Haskell we model this using the following
type for lattice states:

type State = Maybe (Inp,Inp)
top :: State
top = Nothing

Maybe is commonly used for computations that might fail. Indeed,
here top (Nothing) represents a failure, whereas the Just (Bot,Bot)

state is the least element of the lattice and represents the state of
the LVar before any writes have taken place. Then, when one of the
two inputs becomes available, the state moves to the second tier
of states above (Bot,Bot), and then to the third if a second input
arrives.

The join (lub) function for States combines their information,
and is as simple as writing down the lattice from Figure 1 as a total
function in Haskell:

instance JoinSemiLattice State where
-- Use the Maybe monad to keep this code simple
join a b =

do (x1,y1) ← a
(x2,y2) ← b
x3 ← joinInp x1 x2
y3 ← joinInp y1 y2
return (x3,y3)

joinInp :: Inp → Inp → Maybe Inp
joinInp x y | x == y = Just x
joinInp Bot x = Just x
joinInp T F = top
joinInp x y = joinInp y x

instance BoundedJoinSemiLattice State where
bottom = Just (Bot,Bot)

Next, we can use the PureLVar type constructor provided by LVish
to define an LVar type called AndLV, whose states are of the State

type we just defined:
type AndLV = PureLVar State

Threshold reads from an AndLV Under what circumstances can
we deterministically read from an AndLV? It is not safe, for example,

4 LVish is available at http://hackage.haskell.org/package/
lvish. It generalizes the original Par monad exposed by the monad-par
library (http://hackage.haskell.org/package/monad-par), which
allowed determinism-preserving communication between threads using
IVars—single-assignment variables with blocking read semantics. IVars are
a special case of LVars, corresponding to a lattice with one “empty” and
multiple “full” states, where ∀i. empty < fulli .

(Bot,Bot)

(Bot,T)(T,Bot)

(T,T)

top

(F,F)

(F,Bot) (Bot,F)

(T,F)(F,T)

Figure 1. Lattice of states that a parallel-and LVar (that is, an
AndLV) can take on. The five red states in the lattice correspond
to a false result, and the one green to a true one.

to test whether one or both inputs have been written at a point in
time. Rather, we must describe a monotonic threshold function for
when the read may return. One handy way to do this is to create a
threshold set of (pairwise incompatible) “trigger values”. When the
state of the LVar moves above a trigger, the trigger is returned as
the result of the get operation. For example:

getAndLV :: AndLV → Par Bool
getAndLV lv = do

let bothtrue = [Just (T,T)]
anyfalse = map Just [(F,Bot),(Bot,F),

(F,T),(T,F),(F,F)]
res ← getPureLVar lv [bothtrue, anyfalse]
return (res == bothtrue)

Here, bothtrue and anyfalse are the threshold triggers.5 These
two sets are pairwise incompatible (that is, the lub of Just (T,T)

and each element of anyfalse is top), and thus no more than
one of them can be activated by monotonic change in lv’s state.
When getPureLVar returns, res holds whichever of the triggers
was activated. Note that getPureLVar may unblock after only one
input is written, if that input is false; otherwise, it must wait for the
second input.

Adding parallelism An AndLV variable can be shared between
threads, but does not itself add parallelism. The next step is to build
a combinator for launching two boolean computations in parallel,
and returning the result of their logical and:

asyncAnd :: Par Bool → Par Bool → Par Bool
asyncAnd m1 m2 = do

res ← newPureLVar bottom
fork (do b1 ← m1

putPureLVar res (Just (toInp b1,Bot)))
fork (do b2 ← m2

putPureLVar res (Just (Bot,toInp b2)))
getAndLV res

toInp True = T
toInp False = F

Finally, to run an asyncAnd computation, we can use the runPar op-
eration provided by LVish, which converts Par a to a—initializing
the library’s scheduler and running the parallel computation. Thus

5 The original LVars programming model [12] only allows each trigger
to contain a single lattice state, but in practice, we allow ourselves to
use more general monotonic threshold functions. Using sets of states as
triggers (while still satisfying pairwise incompatibility) is a relatively minor
generalization.

http://hackage.haskell.org/package/lvish
http://hackage.haskell.org/package/lvish
http://hackage.haskell.org/package/monad-par

runPar provides the means by which parallel LVish code can be
embedded inside ordinary, pure Haskell programs. For example, to
fold asyncAnd over the results of 100 trivial boolean computations
launched in parallel, we could write:

main = do
print (runPar

foldr asyncAnd (return True)
(concat (replicate 100 [return True, return False])))

Proof obligations for LVish data structures When implementing
a data structure with LVish, it is the data structure author’s obliga-
tion to ensure that the states of their data structure correspond to
elements of a lattice, and that the operations in the API they expose
would be expressible using the aforementioned put and get opera-
tions. To put it another way, operations on a data structure exposed
as an LVar must have the semantic effect of a lub for writes or a
threshold for reads, but none of this need be visible to clients. Any
data structure API that provides such a semantics is guaranteed to
provide deterministic communication.

Because AndLV has a finite lattice, its join function can be
trivially and exhaustively verified to compute a lub. In fact, the
following list comprehension generates every possible input:

[join x y | x ← [bottom .. top]
, y ← [bottom .. top]]

Likewise, it is trivial to verify this join’s associativity, commuta-
tivity, and idempotence. In general, however, definitions of LVar-
based data structures, their join functions, or their get operations
should occur only in trusted code. Fortunately, most LVish appli-
cations need not define any new LVar-based data structures and in-
stead make use of those that the LVish library provides.

A missing feature: task cancellation The AndLV LVar just de-
scribed makes it possible to do a “short-circuit” computation be-
cause getAndLV unblocks and returns a result as soon as any F is
written. However, it is still the case that the other thread writing to
the AndLV runs to completion. Although this cannot affect the deter-
ministic outcome of the computation, it needlessly uses up cycles.
This motivates the desire to be able to cancel an in-flight thread that
cannot affect the deterministic outcome of a Par computation. We
discuss our extension that enables cancellation in Section 6.

Features not covered here In this section we overviewed LVars
and their use, but have not covered all features in detail. In partic-
ular, it is possible to register handlers that are invoked whenever
an LVar changes, and also to freeze an LVar to read its contents
exactly. For example, freezing enables iteration over the full con-
tents of collection LVars, and can be done unsafely during paral-
lel computation, or safely upon exiting the parallel computation
(runParThenFreeze). Both these features are covered in detail in
previous work [12].

3. Warm-up: Read-modify-write extension
In the original LVars model [11, 12], the only way for the state of
an LVar to evolve over time is through a series of least-upper-bound
(lub) updates resulting from calls to put operations. Unfortunately,
this way of updating an LVar provides no efficient way to model
an atomically incremented counter that occupies one memory lo-
cation. Yet, atomic increments to such a counter are efficient, com-
mutative, and ultimately fit well inside the LVish framework. Hence
the most basic extension we make to LVish is to (optionally) relax
its reliance on idempotence of operations. Thereafter we can safely
add a restricted set of atomic read-modify-write operations that are
inflationary with respect to a lattice, but do not compute a lub. We
will see one example of an application that critically requires this
functionality in Section 7.1.

We consider a new family of LVar update operations that are re-
quired to commute and be inflationary with respect to the lattice in
question, but are not limited to the lub semantics of put. Specifi-
cally, for a lattice (D,v,⊥,>), a data structure author may define
a set of bump operations bumpi : D → D, which must meet the
following two conditions:

• ∀a, i. a v bumpi(a)

• ∀a, i, j. bumpi(bumpj(a)) = bumpj(bumpi(a))

As a simple example, consider an LVar whose states are natural
numbers, with 0 as the least element and with the usual ≤ oper-
ation on natural numbers as the ordering on states. The ordering
induces a lub operation equivalent to the max operation on natu-
ral numbers. We can implement a family of bump operations that
increment the LVar by various amounts: {(+1), (+2), (+3), . . . }.
A critical point to note, however, is that it is not safe to update
the same LVar with both put and bump. For example, a put of 4
and a bump(+1) do not commute! If we start with an initial state
of 0 and the put occurs first, then the state of the LVar changes to
4 since max(0, 4) = 4, and the subsequent bump(+1) updates it
to 5. But if the bump(+1) happens first, then the final state of the
LVar will be max(1, 4) = 4. Furthermore, multiple distinct fam-
ilies of bump functions only commute among themselves and can-
not be combined. In practice, this distinction is enforced by the
type system. For example, the LVish-provided set data structure
Data.LVar.Set supports only put, whereas Data.LVar.Counter

supports only bump.
Composing these data structures, however, is fine. For example,

an LVar could represent a monotonically growing collection (which
supports put) of counter LVars, where each counter is itself mono-
tonically increasing and supports only bump. Indeed, the PhyBin
application described in Section 7.1 uses just such a collection of
counters.

Determinism guarantee The determinism of LVish [11] relies on
the fact that the states of all LVars evolve monotonically with re-
spect to their lattices, and that the lub operation is commutative and
therefore the order in which puts occur does not matter. Together,
these properties suffice to ensure that the threshold reads made by
get operations are deterministic. The rest of an LVish program is
purely functional, and its behavior is, in fact, a pure function of
these get observations. Since bump operations are also commutative
and inflationary with respect to the lattice of the LVar they operate
on, we see that they preserve determinism, as long as programs do
not use bump and put on the same LVar.

We can go further and generalize this argument, and in fact will
need to for the other extensions described in this paper. Consider
LVish with put, bump, and get effects. By commutativity, we can
reduce the effects in a program execution to three unordered sets:
(P, B, G). By slicing the system at this interface, we can decom-
pose determinism proof obligations into two parts:

• The LVish (Haskell) code must guarantee that it implements
a monotone function P(G) → P(P)× P(B). That is, adding
more get results on the left results only in more put/bump effects
on the right (as more gets unblock and run, more put and bump

operations can run); furthermore, those effects are a function of
nothing other than get.
• The mutable (but monotonically growing) heap of LVars must

likewise guarantee that the set of get results is a pure function
of the set of puts and bumps. This is straightforward to show,
given the lattice-based semantics of put and bump.

This communicating agents formulation of determinism for LVish
puts us in a position to replace the monotonically growing heap
with other deterministic agents that fulfill the same contract, as we

will see in Section 5. At that point, we will also discuss temporal
contracts on the order of operations, going beyond the simple case
of completely unordered sets at the interfaces.

Deleveraging idempotency Since lub is an idempotent operation,
the previously existing LVish implementation assumed idempo-
tence of all writes, which in turn enabled the scheduler to relax
synchronization requirements at the cost of low-probability dupli-
cation of work [12]. Adding support for operations like bump makes
this assumption untenable. Therefore, we re-engineered the LVish
runtime system to (optionally) include additional synchronization.6

Fine-grained effect tracking Naturally, it is best to pay the afore-
mentioned synchronization overhead only when required. This re-
quires static information about whether a given program uses bump.
With that as one of our goals, we extend LVish to allow for static
fine-grained effect tracking. The idea is to guarantee that only cer-
tain LVar effects can occur within a given Par computation. In
Haskell, we can do so at the type level by indexing Par compu-
tations with a phantom type e that indicates their effect level. That
is, the Par type becomes, instead, Par e, where e is a type-level
encoding of booleans indicating whether or not writes, reads, non-
idempotent (bump), or non-deterministic (IO) operations are allowed
to run inside it.

Moreover, in real LVish programs, the Par type constructor has
a second type parameter, s, making Par e s a the complete type
of a computation that returns a result of type a.7 The s parameter
ensures that it is not possible to reuse an LVar from one runPar ses-
sion to the next, just as the ST monad in Haskell prevents an STRef

from escaping runST; likewise the types of individual LVars must
be parameterized by s as well. For simplicity of presentation, we
elided the e and s type parameters in Section 2, instead following
the simpler Par a format of the earlier monad-par library [16], but
we include them from this point onward.

To enable future additions of effect “switches” encoded in e, we
follow the precedent of recent work by Kiselyov et al. on extensible
effects in Haskell [10]: we abstract away the specific structure of e
into type class constraints, which allow a Par computation to be
annotated with the interface that its e type parameter is expected to
satisfy. For example, a Par computation annotated with the effect
level constraint HasPut can perform puts. Thus the signature for
the put operation on IVars becomes:

put :: HasPut e ⇒ IVar s a → a → Par e s ()

while the signature for an incrCounter operation uses the HasBump

constraint:
incrCounter :: HasBump e ⇒ Counter s → Par s e ()

These constraints can also be negative. For example, the runPar

function for executing Par computations in a purely functional
context requires the absence of explicit freeze or IO operations:
runPar :: (NoFreeze e, NoIO e) ⇒ (∀ s . Par e s a) → a

4. Par-monad transformers
The effect-tracking system of the previous section gives us a way
to toggle on and off a fixed set of basic capabilities using the type

6 Space constraints preclude full description here, but the key challenge
is resolving a race between puts and attempts to register new handlers
(callbacks) on an LVar. Our solution is a specialized variant of a reader-
writer lock that requires zero writes to shared addresses if no handlers are
currently being registered.
7 To be precise, in the earlier 1.x releases of LVish, the e type parameter for
effect level was instead d, for “determinism level”, and was a simple type-
level boolean switch distinguishing deterministic from quasi-deterministic
Par computations [12]. The effect signatures in this paper generalize deter-
minism levels and correspond to the newer LVish 2.x API.

system—that is, with the switches embedded in the e parameteriz-
ing the Par type. These type-level distinctions are needed for defin-
ing restricted but safe idioms, but they do not address extensibility.
For that, we turn to multiple monads rather than a single parame-
terized Par monad.

Working Haskell programmers use a variety of different mon-
ads: Reader for threading parameters, State for in-place update,
Cont for continuations, and so on. All monads support the same
core operations (bind and return from the Monad type class) and
satisfy the three monad laws. However, each monad must also pro-
vide other operations that make it worth using. Most famously, the
IO monad provides various input-output operations.

A monad transformer, on the other hand, is a type construc-
tor that adds “plug-in” capabilities to an underlying monad. For
example, the StateT monad transformer adds an extra piece of im-
plicit, modifiable state to an underlying monad. Adding a monad
transformer to a type always returns another monad (preserving the
Monad instance). In the same way, we can define a Par-monad trans-
former as a type constructor T, where, for all Par monads m, T m

is another Par monad with additional capabilities, and a value of
type T m a, for instance, T (Par e s) a, is a computation in that
monad. Indeed, Par-monad transformers are valid monad trans-
formers (in the sense of providing a standard MonadTrans instance).

Just as Monad is a type class (interface) with associated laws, the
semantics of a Par monad is captured by a series of type classes, all
of which are closed under Par-monad transformer application. At
minimum, a Par monad must have a fork operation, satisfying this
type class:

class (Monad m) ⇒ ParMonad m where
fork :: m () → m ()

Programs with fork create a binary tree of monadic actions with ()

(unit) return values.
Whereas the original LVish library8 provided a single, concrete

Par type, here we allow any instantiation of the ParMonad type
class. Additional type classes capture the interfaces to basic parallel
data structures and control constructs such as futures (ParFuture),
IVars (ParIVar), and more general LVars (ParLVar). For example,
the class ParIVar provides new and put methods with the signatures
below.9

class (ParMonad m) ⇒ ParFuture m where
. . .

class (ParMonad m) ⇒ ParIVar m where
type IVar m :: ∗ → ∗
new :: m (IVar m a)
put :: IVar m a → a → m ()
get :: IVar m a → m a

The ParFuture, ParIVar, and ParLVar type classes form a hierar-
chy: any implementation that can support LVars can support IVars,
and any that can support IVars can support futures. Taken together,
this framework for generic Par programming makes it possible for
LVish programs to be reusable across a variety of schedulers. This
can be quite useful; for example, we provide a ParFuture instance
for the native GHC work-stealing scheduler [15].

Example: threading state in parallel Perhaps the simplest ex-
ample of a Par-monad transformer is the standard StateT monad
transformer (provided by Haskell’s Control.Monad.State pack-
age). However, even if m is a Par monad, for StateT s m to also be
a Par monad, the state s must be splittable; that is, it must be spec-
ified what is to be done with the state at fork points in the control

8 By “the original”, we refer to 1.x releases of LVish, e.g., http://
hackage.haskell.org/package/lvish-1.1.2.
9 Although it may appear that generic treatment of Par monads as type
variables m removes the additional metadata in a type such as Par e s a,
note that it is possible to recover this information with type-level functions.

http://hackage.haskell.org/package/lvish-1.1.2
http://hackage.haskell.org/package/lvish-1.1.2

flow. For example, the state may be duplicated, split, or otherwise
updated to note the fork. The below code promotes StateT to be a
Par-monad transformer:

class SplittableState a where
splitState :: a → (a,a)

instance (SplittableState s, ParMonad m) ⇒
ParMonad (StateT s m) where

fork task =
do s ← State.get

let (s1,s2) = splitState s
State.put s2
lift (fork (do runStateT task s1; return ()))

Note that here, put and get are not LVar operations, but the standard
procedures for setting and retrieving the state in a StateT. Here are
two immediately useful applications of threaded, splittable state:

• PedigreeT keeps the index in the binary control-flow tree as im-
plicit state, e.g., “LRRLL”. This is sometimes called the pedi-
gree of the parallel computation [13]. In this case the split action
is to add “L” or “R” for each branch of the fork, respectively.
Pedigrees can then be augmented with counters that increase
with certain sequential actions, thus providing a form of parallel
“program counter”. Also, examining pedigrees at runtime can
answer “happens before” or “happens in parallel” questions.
• RngT is an application of pedigrees to the problem of determin-

istic pseudo-random number generation. The idea is simple: ei-
ther use the pedigree itself as a seed, or keep the random gener-
ator state itself with StateT. The interface to the user is a simple
rand nullary function that can be called on any thread.

In fact, parallel deterministic random number generation was con-
sidered important enough for Intel to significantly modify the Cilk
runtime system to support it directly [13]. In LVish, no such run-
time system modification is necessary: instead, we add the StateT

transformer to Par to track pedigree only for applications that need
it. (Section 7.2 discusses the overhead of Par-monad transformers.)
Further, given the above instances, we can declare all random num-
ber generators into splittable states, and thus define a very simple
interface for random number generation, e.g.:

instance RandomGen g ⇒ SplittableState g where
splitState = System.Random.split

randInt :: (ParMonad m, RandomGen g) ⇒ StateT g m Int

Determinism guarantee The StateT transformer preserves deter-
minism because it is effectively syntactic sugar. That is, StateT
does not allow one to write any program that could not already be
written using the underlying Par monad, simply by passing around
an extra argument. This is because StateT only provides a func-
tional state (an implicit argument and return value), not actual mu-
table heap locations. Genuine mutable locations in pure computa-
tions, on the other hand, require Haskell’s ST monad, the safer sister
monad to IO. We return to ST in Section 5.

The case for pluggability Why should parallel effects be plug-in,
rather than baked-in? In summary, there are three reasons:

• Modularity: Runtime systems for parallel schedulers like Cilk
and language runtimes like GHC’s grow into enormously com-
plicated low-level concurrent codebases. Isolating parallel ca-
pabilities in transformers makes them modular and maintain-
able.
• Runtime cost: The transformers introduced in this paper in-

troduce book-keeping and synchronization overheads (Sec-
tion 7.2), which should be paid only by computations that use
them. Expensive features should pay their own way.

• Composability: While a user only wants one copy of RngT—
and thus it could be hard-coded into the scheduler if desired—
other transformers make it useful to have more than one copy
in the stack. For example, a program with two implicit states
might stack two StateT transformers. This is not possible for
capabilities baked into the core scheduler.

Engineering note: independent extensibility Because extensibil-
ity is an explicit goal, we must ask what functionality can be added
by separate packages, deployed independently from LVish. The
framework presented thus far enables new (trusted) packages to add
transformers that preserve the ability to use core data structures;
that is, they provide instances for the classes ParMonad, ParFuture,
and ParIVar. In the other direction, separate packages can provide
new data structures that work with the base Par monad. But how
can new transformers provide instances for new data types they do
not know about? This is simply the problem of “independent exten-
sibility” in a new guise.

Fortunately, there is a good solution. The interactions between a
concurrent data-structure implementation (such as Data.LVar.Map

or Data.LVar.Counter) and the scheduler are limited and have
a common structure. Thus, rather than splitting out fine-grained
classes for each conceivable data structure (ParMap, ParCounter,
and so on), we make ParLVar into a general data-structure/scheduler
interface.10 For intuition, a small portion of the ParLVar type class
interface is shown below. As described in previous work [12], the
implementation distinguishes between the type of complete LVar
states, for which we use the type parameter a, and state changes, or
“deltas”, for which we use d:
class (Monad m, ...) ⇒ParLVar m where

-- The type of raw LVars
type LVar m :: ∗ → ∗ → ∗
newLV :: IO a → m (LVar m a d)
-- 2nd arg does the update, reports any change:
putLV :: LVar m a d → (a → IO (Maybe d)) → m ()
. . .

With this approach, a generic monotonic Map package can work
with any monad satisfying ParLVar, including those produced by
stacking transformers that were written with no knowledge of the
data structure. Likewise, transformers that preserve ParLVar in-
stances work with past and future data structures.

5. Disjoint parallel update with ParST
LVish is based on the notion that it is fine for multiple threads to ac-
cess and update shared memory, so long as updates commute and
“build on” one another, only adding information rather than de-
stroying it. Yet it should be possible for threads to update memory
destructively, so long as the memory updated by different threads
is disjoint. This is the approach to deterministic parallelism taken
by, for example, Deterministic Parallel Java (DPJ) [3], which uses
a region-based type and effect system to ensure that each mutable
region of the heap is passed linearly to a thread that then gains ex-
clusive permission to update that region. In order to add this capa-
bility to LVish, though, we need destructive updates to interoperate
with other LVish put/get/bump effects. Moreover, we wish to do so
at the library level, without requiring language extensions.

Our solution is to provide a ParST transformer, a variant of the
StateT transformer of Section 4. ParST allows arbitrarily complex
mutable state, such as tuples of vectors (arrays). However, ParST
enforces the restriction that every memory location in the state is
reachable by only one pointer: alias freedom.

10 We retain interfaces like ParIVar as well because they provide a means
to interoperate with legacy Par monads that provide only IVars or futures
and have no notion of LVars, or with the built-in GHC work-stealing runtime
itself, which provides only a ParFuture instance.

Previous approaches to integrating mutable memory with pure
functional code (i.e., the ST monad) work with LVish, but only al-
low thread-private memory. There is no way to operate on the same
structure (for instance, on two halves of an array) from different
threads. ParST exploits the fact that it is perfectly safe to do so as
long as the different threads are accessing disjoint parts of the data
structure. Below we demonstrate the idea using a simplified con-
venience module provided alongside the general (ParST) library,
which handles the specific case of a single vector as the mutable
state being shared.

runParVecT 10 (
do -- Fill all 10 slots with "a":

set "a"
-- Get a pointer to the state:
ptr ← reify
-- Call pre-existing ST code:
new ← pickLetter ptr
forkSTSplit (SplitAt 5)

(write 0 new)
(write 0 "c")

-- ptr is again accessible here
. . .)

This program demonstrates running a parallel, stateful session
within a Par computation. The shared mutable vector is implicit
and global within the monadic do block. We fork the control
flow of the program with forkSTSplit, where (write 0 new)

and (write 0 "c") are the two forked child computations. The
SplitAt value describes how to partition the state into disjoint
pieces: (SplitAt 5) indicates that the element at index 5 in the
vector is the “split point”, and hence the first child computation
passed to forkSTSplit may access only the first half of the vec-
tor, while the other may access only the second half. (We will see
shortly how this generalizes.) Each child computation sees only
a local view of the vector, so writing "c" to index 0 in the sec-
ond child computation is really writing to index 5 of the global
vector. This is exactly the splitting method in our parallel sort (Sec-
tion 7.3).

Ensuring the safety of ParST hinges on two requirements:

• Disjointness: Any thread can get a direct pointer to its state.
In the above example, ptr is an STVector that can be passed
to any standard library procedures in the ST monad. However,
it must not be possible to access ptr from forkSTSplit’s child
computations. We accomplish this using Haskell’s support for
higher-rank types,11 ensuring that accessing ptr from a child
computation causes a type error. Finally, forkSTSplit is a fork-
join construct; after it completes the parent thread again has full
access to ptr.
• Alias freedom: Imagine that we expanded the example above

to have as its state a tuple of two vectors: (v1, v2). (In fact,
this is the state we need for the merge phase in Section 7.3.) If
we allowed the user to supply an arbitrary initial state to their
ParST computation, then they might provide the state (v1, v1),
i.e., two copies of the same pointer. This breaks the abstraction,
enabling them to reach the same mutable location from mul-
tiple threads (by splitting the supposedly-disjoint vectors at a
different index).
Thus, in LVish, users do not populate the state directly, but only
describe a recipe for its creation. Each type used as a ParST state
has an associated type for descriptions of (1) how to create an
initial structure, and (2) how to split it into disjoint pieces. We
provide a trusted library of instances for commonly used types.

11 That is, the type of a child computation begins with (∀ s . ParST . . .).

State transformation In comparison to the region-typing ap-
proach of DPJ, it can be painful to keep the state inside a single
structure reachable from one variable. However, it is possible to
define combinator libraries that make this much easier (in the spirit
of the lens library for Haskell). For example, we provide ways
to either “zoom in”, that is, run a computation whose state is a
sub-component of the current state, or “zoom out”, by placing the
current state inside a newly constructed one. We use this ability
inside our code for parallel merge sort (Section 7.3) to shift from
a single vector state to having a second temporary buffer for the
merge phase.

Inter-thread communication Disjoint state update does not solve
the problem of communication between threads. Hence systems
built around this idea often include other means for performing
reductions, or require “commutativity annotations” for operations
such as adding to a set. For instance, DPJ provides a commuteswith

form for asserting that operations commute with one another to en-
able concurrent mutation. In LVish, however, such annotations are
unnecessary, because LVish already provides a language-level guar-
antee that all effects commute! Thus, a programmer using LVish
with ParST can use any of the rich library of LVar-based data struc-
tures to communicate results between threads performing disjoint
updates, without requiring trusted code or annotations. Further-
more, to our knowledge, LVish now provides the first example of
a deterministic parallel programming model allowing both DPJ-
style, disjoint destructive parallel updates and blocking, dataflow-
style communication between threads (through LVars).

Determinism guarantee The ParST transformer relies on the fact
that the disjoint updates made by a forkSTSplit call are equivalent
to a single sequential state update. This means that if ParST were
a base monad instead of a transformer, its determinism would be
a straightforward consequence of this disjointness property, which
prevents data races. Indeed, ParST would be equivalent to a proper
subset of DPJ, which is provably deterministic [3].12

The complication is that a ParST computation may spawn ar-
bitrary, asynchronous computations that use the underlying effects
provided by the monads under it in the transformer stack, e.g.,
put and get on LVars. To convince ourselves that this is safe, we
return to the “communicating agents” formulation of Section 3
to enable modular reasoning. The mutable heap of ST objects
(STRef, STVector, and so on) becomes a third agent alongside
the purely functional component of the LVish computation and
the monotonically-growing heap. The purely functional agent ex-
changes put/get messages with the monotonically-growing heap
and read/write messages with the mutable heap. In this case, how-
ever, there is a protocol that must be followed, and we cannot ignore
ordering and control flow to reason only about the sets of messages
exchanged.

In the basic LVish programming model there are two sources
of ordering constraints: monadic bind, and data dependencies from
put to get. Intuitively, we can think of the LVish agent emitting
Before(a, b) messages, meaning that (a, b) is in a happens-before
relation for a pair of events a and b that it previously emitted.
Normally, such a relation would be unnecessary; most Par monads
are so order-insensitive that all their effects satisfy the following
reordering-tolerance property:

(do m1; m2) == (do fork m1; m2)

12 There is a minor caveat here. DPJ requires that the type system statically
determine disjointness of state updates, whereas in LVish, we can also
allow complicated partitioning strategies that are only checkable at runtime.
Nevertheless, DPJ could be extended with this functionality, and it does not
affect the determinism argument.

But for a destructively mutable heap, ordering is important and
ParST effects clearly cannot support the above property—write

operations do not commute! In fact, ParST does not even expose a
one-armed fork operation that allows ST effects in the child compu-
tation.13 Rather, it supports fork-join parallelism with forkSTSplit,
which requires that both child computations complete before re-
turning. Furthermore, the forkSTSplit control construct can be
thought of as generating additional Before(a, b) messages to ex-
press these barriers.

On the mutable-heap side, the contract for determinism is the
standard one: all read/write and write/write pairs must be or-
dered according to the Before relation. Of course, we do not track
Before at runtime, so this must be guaranteed by construction.
How can we guarantee this if there is a stack of monads composed
with ParST? The key here is that get effects can only add more
Before constraints, not take them away. Additional blocking oper-
ations can therefore never break the requirements for determinism
in the mutable heap (race-freedom). Given that, the same argument
as in Section 3 applies: all results returned to the LVish agent from
the heap are deterministic, therefore its final value is.

ParST composition The reader may legitimately be wondering:
how can there be a ParST transformer, if there is no ST transformer
in Haskell? The answer is that ParST is not a transformer supporting
unfettered composition.

Instead, a given Par monad can either have the ST feature, or not.
It is not safe to combine two copies of ParST, nor to apply ParST

on top of certain other transformers that LVish might be eventually
be extended with (e.g., ListT).

To implement this, each Par monad tracks one bit of informa-
tion in its type: whether the ST switch has been turned on for this
monad.14 Once this bit is turned on, new copies of ParST cannot
be applied on top, but other transformers, such as RngT, can be
added. Thus it is possible to compose reordering-tolerant trans-
formers such as StateT and RngT freely on either side of the ParST

transformation, without violating the invariants of the underlying
state implementation.

6. Control-related Effects
In the previous section, we saw a Par transformer that restricts
the control flow of an LVish program to retain determinism: ParST
requires that child computations that modify the state are created in
a fork-join, rather than asynchronous fork, fashion. In this section,
we will instead look at transformers that add additional control-
flow behaviors to a program: for example, the ability for one thread
to cancel another.

Every Par monad provides continuation capture under the
hood15 to be able to support work-stealing scheduling and blocking
gets. This provides significant power for implementing new control
constructs, but it does not change the fact that we must carefully
identify limited idioms that retain determinism, and expose only
those determinism-preserving constructs from the library of Par

transformers.

6.1 Cancellation
It is common to speculatively create a parallel computation whose
result may not be needed; for example, in search problems. In the
parallel “and” example from Section 2, we saw that LVish pro-
grams written using the previously existing LVish library could

13 To be precise, ParST does provide a ParMonad instance, but any attempt
to reference the state in a forked computation results in a runtime error.
14 We enforce this restriction through an extra superclass constraint upon a
class that users are prevented from instantiating.
15 That is, a ParIVar is always also a Cont monad.

create trees of parallel boolean operations and even allow them to
make their results available before all branches completed execu-
tion. However, it was not possible to actually cancel the unneeded
branches to avoid wasted CPU time.

Fundamentally, cancellation is a challenge for guaranteed-
deterministic parallel programming because a cancelled thread
might have side effects and the cancellation could race with those
effects. With fine-grained effect tracking, though, we are able
to provide a CancelT transformer providing operations such as
forkCancelable, which takes a computation as argument and runs
it in parallel, returning a cancellable future; and cancel, which
takes a CFuture and cancels the thread associated with it and all
of that thread’s subthreads, transitively. It is an error to both cancel
and read such a future, even if the read happens first. In our generic
framework, the signatures for forkCancelable and cancel include:

forkCancelable :: (ParLVar m, ReadOnly m, ...) ⇒
CancelT m a → CancelT m (CFuture m a)

cancel :: (HasPut m2, ...) ⇒
CFuture m1 a → CancelT m2 ()

Note that forkCancelable, which requires that the forked com-
putation must be ReadOnly

16, uses the same monad, m, for the child
and parent computations. This is only because lifting a read-only
computation into one that includes writes (explicit subtype coer-
cion) is done separately. In fact, because cancel may cause another
thread to throw an exception, it counts as a put effect; thus a pro-
gram with cancellation must have a non-read-only “trunk” that it
connects read-only branches to.

Finally, if the user wants cancellation of child computations
with arbitrary effects, a variant, forkCancelableND, allows them
but requires nondeterminism (that is, IO) in its own effect signature.
Using forkCancelableND we can write a version of the asyncAnd

function from Section 2 which, when getAndLV returns a False,
calls cancel to terminate any remaining (now useless) forked com-
putations. Using forkCancelable directly is not possible because
of the putPureLVar calls in the code. Because we have verified
manually that this use of cancellable writes is safe, however, we
could add a blessed version of asyncAnd to the library that works
with ReadOnly computations.

Implementation The CancelT transformer allocates one mutable
location whenever a new CFuture is created by forkCancelable

(regular forks continue to share the state of the parent). This lo-
cation stores a tuple (live, children), which tracks whether the
computation is still alive, and a list of the child CFutures, which
must be cancelled if the current thread is cancelled. Thus the im-
plementation is driven by polling a thread’s liveness every time a
scheduler action (get, fork, put, and so on) is performed. Because
scheduler actions are frequent, this is sufficient. Moreover, alterna-
tives that support more direct preemption (e.g., using Haskell asyn-
chronous exceptions to kill the underlying worker threads), require
much more bookkeeping, as well as invasive modifications to the
LVish scheduler itself.

6.2 Memoization
Even though cancellation allows us to write a more efficient ver-
sion of asyncAnd—canceling wasted work—it remains the case that

16 In fact, these subcomputations have an additional stipulation relating to
exception semantics, which also applies to ReadOnly computations used
in memoization. Briefly, normal LVish threads eagerly push exceptions up
to the scheduler, which is necessary when threads perform side effects like
put that may throw exceptions that appear deterministically. A cancellable
future, on the other hand, must have no visible effect but its result, and thus
we require that exceptions not be propagated to the parent until/unless the
future is read.

ReadOnly cancelled computations are completely wasted: they can-
not do externally useful work.

Canceling a computation that could do externally useful work
would necessarily break determinism—or would it? In this section,
we show how a cancellable, ReadOnly computation can help other
threads along without interfering with determinism. The idea is
that a cancellable ReadOnly computation can contribute work to a
shared memo table LVar. Since the only observable effect of writing
to the memo table is that calls to memoized functions run faster,
determinism is preserved, regardless of whether the computation is
cancelled.

A basic memo table has a direct encoding using only the public
interface of Set and Map LVars. Specifically, we use one LVar for
requests and a second for results:

type Memo e s k v = (ISet s k, IMap k s v)

The set of requests is connected to a handler that launches a com-
pute job for each unique request of type k. When a job completes,
it stores the (k,v) pair into the IMap. Thus doing a lookup on the
memo table consists of simply inserting into the set, and then per-
forming a blocking get on the map. This provides an efficient way
to memoize functions—even functions that have side effects within
the Par monad (i.e., makeMemo takes a function (a → Par e s b)).
It is a great application of existing LVar data structures.

But a further synergy with CancelT is possible. The Memo type
above has an e parameter that tracks the effect signature of the
memoized function. However, making a memo table request means
writing an element into the ISet—a put effect. Thus, reading from
a memo table has a put effect! This in turn means that it cannot
be cancelled. Fortunately, this is a place where we can identify
a specific combination of parallel effects that compose well. It is
safe for an alternate version of the memo-table get function to
require a ReadOnly memoized function, and in return hide (bless
as safe/unobservable) the put effect in the result signature:

getMemoRO :: (ReadOnly e) ⇒
Memo e s k v → k → Par e s v

Then, with getMemoRO, we can safely use ReadOnly memo tables
inside cancelled computations! Hence we retain a full determinism
guarantee, while canceling unneeded work, and retaining partial
solutions discovered in the cancelled threads. The result is that
read-only computations that use memoized functions can allow
one to learn something from a computation that never happened—
deterministically!

The rest of the Zoo While we do not have space to cover all of
them here, there are other interesting examples of transformers that
deal with parallel control flow. One example is DeadlockT, which
returns when all computations underneath a forked child have ei-
ther returned or blocked indefinitely. This transformer is useful
for detecting and responding to cycles in graphs of computations.
Deadlock-detecting computations have the opposite effect require-
ment from cancellation: rather than requiring read-only computa-
tions for determinism, they require “blind” computations which
may only write to the world outside the subcomputation. (If they
could read, they could block on data outside of their control, which
creates ambiguity between genuine deadlock and temporary block-
ing.)

Another example is BulkRetryT, which improves the ability of
a Par monad to support the deterministic reservations [2] idiom
efficiently, and is described in a workshop paper [17]. In brief,
ParIVar monads already support blocking reads, but to efficiently
execute a parallel for loop with a large iteration space, it is often
better to cheaply mark the iterations that fail and retry them in
bulk. However, the approach of aborting and retrying rather than
blocking requires that each iteration of computation have only
idempotent effects. In this example and others, we see that fine-

global: biptable, distmat
(1) for t ∈ alltrees:

for bip ∈ t:
insert(biptable, (t, bip))

(2) for (_, trset) ∈ biptable:
for t1 ∈ alltrees:

for t2 ∈ alltrees:
if t1 ∈ trset ‘xor‘ t2 ∈ trset
then increment(distmat[t1,t2])

Figure 3. Pseudocode of the HashRF algorithm for computing a
tree-edit-distance matrix.

grained effect tracking is essential to how our zoo of additional
capabilities interoperate.

7. Evaluation
In this section, we evaluate the performance of our extended LVish
library. We begin with a case study describing our experience
using LVish to parallelize PhyBin, a bioinformatics application,
and compare the performance of our parallelized PhyBin with its
competitors. Next, we benchmark to measure the runtime overhead
incurred by our use of Par transformers. Finally, to measure the
effectiveness of our ParST transformer for disjoint parallel update,
we evaluate its performance on a parallel merge sort benchmark.
All measurements come from a dual-socket (12-core) Intel Xeon
X5660 system, running RHEL Linux 6.4.

7.1 Case Study: PhyBin: all-to-all tree edit distance
A phylogenetic tree represents a possible ancestry for a set of N
species. Leaf nodes in the tree are labeled with species’ names,
and the structure of the tree represents a hypothesis about common
ancestors. For a variety of reasons, biologists often end up with
many alternative trees, whose relationships they need to then ana-
lyze. PhyBin17 is a medium-sized (3500-line) bioinformatics pro-
gram for this purpose, initially released in 2010. The primary out-
put of the software is a hierarchical clustering of the input tree set
(a tree of trees), but most of its computational effort is spent com-
puting an N×N distance matrix, which records the pairwise edit
distance between trees. It is this distance computation that we par-
allelize in our case study.

The distance metric itself is called Robinson-Foulds (RF) dis-
tance, and the fastest algorithm for all-to-all RF distance computa-
tion is the HashRF algorithm [19], introduced by a software pack-
age of the same name.18 HashRF is about 2-3× as fast as Phy-
Bin. Both packages are dozens or hundreds of times faster than
the more widely-used software that computes RF distance matri-
ces (e.g., Phylip19, DendroPy20). These slower packages use N2−N

2
full applications of the distance metric, which has poor locality in
that it reads all trees in from memory N2−N

2
times.

Before describing how the HashRF algorithm improves on this,
we must observe that edit distance between trees (number of modi-
fications to transform one to the other) can be reduced to symmetric
set difference between sets of bipartitions. That is, each intermedi-
ate node of a tree can be seen as partitioning the set of leaves into
those below and above the node, respectively. For example, with
leaves A, B, C, D, and E, one bipartition would be ‘‘AB|CDE’’,
while another would be ‘‘ABC|DE’’. Identical trees, of course,
convert to the same set of bipartitions. Furthermore, after convert-

17 http://hackage.haskell.org/package/phybin
18 https://code.google.com/p/hashrf/
19 http://evolution.genetics.washington.edu/phylip.html
20 http://pythonhosted.org/DendroPy/

http://hackage.haskell.org/package/phybin
https://code.google.com/p/hashrf/
http://evolution.genetics.washington.edu/phylip.html
http://pythonhosted.org/DendroPy/

11/16/13 LVish_LVishState.svg

file://localhost/ffh/ryan/cloud_drive/working_copies/lvars/sepdetpar/effectzoo/data/LVish_LVishState.svg 1/1

11/16/13 Trace_TraceST.svg

file://localhost/ffh/ryan/cloud_drive/working_copies/lvars/sepdetpar/effectzoo/data/Trace_TraceST.svg 1/1

Figure 2. The overhead of adding one StateT transformer (left) or ParST transformer (right). The Y axis is the speedup/slowdown factor
(higher better), and the X axis is the count of benchmarks. Each color represents one of the benchmarks drawn from Figure 4. For each
benchmark, there is a different bubble per thread setting, with the area proportional to the number of threads. We do not see a trend with
more or less overhead at larger numbers of threads. All times are the median of five runs.

Trees Species PhyBin DendroPy Phylip
100 150 0.269 22.1 12.8

PhyBin 1, 2, 4, 8 core HashRF
1000 150 4.7 3 1.9 1.4 1.7

Table 1. PhyBin performance comparison with DendroPy, Phylip,
and HashRF. All times in seconds.

ing trees to sets of bipartitions, set difference may be computed
using standard set data structures.

The HashRF algorithm makes use of this fact and adds a clever
trick that greatly improves locality. Before computing the actual
distances between trees, it populates a table mapping each observed
bipartition to the set of trees that contain it. In the original PhyBin
source:

type BipTable = Map DenseLabelSet (Set TreeID)

Above, a DenseLabelSet encodes an individual bipartition as a bit
vector. PhyBin uses purely functional data structures for the Map

and Set types, whereas HashRF uses a mutable hash table. Yet in
both cases, these structures grow monotonically during execution.
The full algorithm for computing the distance matrix is shown in
Figure 3. The second phase of the algorithm is still O(N2), but it
only needs to read from the much smaller trset during this phase.
All loops in Figure 3 are potentially parallel.

Parallelization The LVish methodology applies directly to this
application:

• The biptable in the first phase is a map of sets, which are
directly replaced by their LVar counterparts.
• The distmat in the second phase is a vector of monotonic bump

counters.

In fact, the parallel port of PhyBin using LVish was so straightfor-
ward that, after reading the code, parallelizing the first phase took
only 29 minutes.21 Once the second phase was ported, the distance
computation sped up by a factor of 3.35× on 8 cores (Table 1).
This is exactly where we would like to use LVish—to achieve mod-
est speedups for modest effort, in programs with complicated data
structures (and high allocation rates), and without changing the de-
terminism guarantee of the original functional code.

21 Git commit range: https://github.com/rrnewton/PhyBin/
compare/5cbf7d26c07a...6a05cfab490a7a

7.2 Benchmark 1: overhead of transformers
Monad transformers have both direct and secondary costs. The di-
rect cost is to pay for what they do; the secondary cost is that com-
plicated monad-transformer stacks result in extremely complicated
code that the (GHC) compiler must unravel to optimize effectively.
Our Par transformer approach only requires paying these overheads
when a specific capability is needed, but we must still account for
what that cost is and whether it is prohibitive.

LVish’s primary focus is on non-traditional parallel applications
such as k-CFA program analysis [12] or PhyBin. Nevertheless, here
we also include a benchmark suite of traditional parallel kernels
shown in Figure 4. We use these in Figure 2 as well, which summa-
rizes the overhead added when rerunning this benchmark suite with
additional, unneeded transformers added. We measure overheads
for adding a StateT or ParST transformer. (Note that a CancelT

is just such a StateT.) These result in a 4% geomean slowdown,
and 2% geomean speedup, respectively. Indeed, the interactions of
these transformers with the GHC compiler’s optimizer are difficult
to predict, but overall, overhead is not prohibitive.

7.3 Benchmark 2: non-copying parallel sorting
To measure the effectiveness of our ParST transformer, we ported a
well-known parallel merge sort implementation originally written
in Cilk and later reimplemented in DPJ [3]. We omit the details
of the algorithm and comment only on its formulation with ParST.
This is a destructive mergeSort function, which assumes a vector
state, and leaves the sorted result occupying the same memory
locations as the input:

mergeSort :: (ParMonad parM) ⇒
ParST (MVector s2 elt) s parM ()

This function works over any underlying monad parM, extended
with the ParST effect. Internally, the algorithm must add a second
buffer to have extra space for merging, shifting the state to (v1, v2).
At the fork points, both of these buffers are split at the same
locations. The code for the heart of the parallel sort is:

forkSTSplit (sz1,sz1)
(do forkSTSplit (sz2,sz2) mergeSort mergeSort

mergeL2R)
(do forkSTSplit (sz2,sz2) mergeSort mergeSort

mergeL2R)
mergeR2L

As in both the DPJ and Cilk implementations, we need to unroll
the recursive sorting process, splitting twice. This ensures that after
each round the output ends up back in the original buffer. The type-

https://github.com/rrnewton/PhyBin/compare/5cbf7d26c07a...6a05cfab490a7a
https://github.com/rrnewton/PhyBin/compare/5cbf7d26c07a...6a05cfab490a7a

0

2.75

5.5

8.25

11

1 2 4 6 8 10 12

Parallel Speedup

Pa
ra

lle
l S

pe
ed

up
 F

ac
to

r

Number of CPU Threads

blackscholes matmult nbody
mergesortFP sumeuler

Figure 4. Benchmark suite of traditional parallel kernels in the LVish Par monad. These are runnable either with monad-par or LVish.

checking of s parameters ensures that the nested splits can access
only exactly the data they have permission to.

In summary, the ParST-based Haskell implementation offers ex-
actly the same determinism guarantee offered by DPJ. Our version
has the disadvantage of being written with a more restrictive (single
implicit state object) mechanism, but it has the advantage of being
callable from a purely functional context (e.g., from within a func-
tion of type Int →Int) with a guarantee that no visible side effects
occur.

Performance The reason performance suffered in previous paral-
lel sort implementations in Haskell [7] is that each recursive call to
mergeSort had to perform an append (copy) to combine the halves
together. The two independent recursions had to return fresh val-
ues, because no mechanism for (deterministic) mutation in parallel
was available. The performance of such a copying merge sort is
shown in Figure 4 (mergesortFP). This benchmark suite uses only
a base Par monad, not the ParST transformer. It is also the only one
of these benchmarks that completely stops scaling before twelve
cores! Indeed, when sorting arrays larger than the last-level cache,
mergesortFP reads the entire input memory at least log2(N) times,
greatly increasing memory traffic.22

Eliminating the copying by using ParST causes scaling to con-
tinue to twelve cores. We look at two variations of this in Figure 5.
Naturally, all these implementations of merge sort bottom out to
sequential sorts below a granularity threshold. The two variants we
examine bottom out to different sequential sorts: either (1) a pure
Haskell sequential sort, or (2) a library call to a C sort (namely, the
same sequential sort used by the Cilk implementation). The table
in Figure 5 contains the times for the all-Haskell sort. It achieves a
10.7× parallel speedup on 12 cores. The line graph above it shows
the other variant, alongside the DPJ and Cilk benchmarks. Our par-
allel version does add overhead relative to Cilk, with a best time of
0.42 instead of 0.29 seconds.

22 Performing a multi-way merge sort could reduce the impact of this
problem.

THREADS ParST DPJ Cilk ParST DPJ Cilk
1 0.77935323 0.3067352 1 4.465019 11.3447265 3.479827
2 1.52179334 0.52666362 1.95617335 2.286662 6.60730472 1.778895
4 2.95841771 1.04197308 3.9064066 1.176246 3.33965155 0.8908
6 4.30444184 1.43231461 5.65455913 0.808427 2.42951303 0.615402
8 5.29401822 1.96056513 7.3395181 0.657313 1.77491017 0.474122
10 6.11327155 2.25542923 8.60665862 0.569225 1.54286685 0.404318
12 7.3222211 2.48466402 9.6666963 0.475242 1.40052215 0.359981
14 7.66579651 2.77584129 10.5474233 0.453942 1.25361166 0.329922
16 7.93997038 2.64618102 10.8697039 0.438267 1.3150374 0.32014
18 8.04578697 3.04178671 11.3686028 0.432503 1.14400756 0.306091
20 8.00105536 2.71193972 11.9374522 0.434921 1.28315057 0.291505
22 8.26811651 3.12248753 12.253214 0.420873 1.11444064 0.283993
24 8.28329072 2.91519755 12.0728815 0.420102 1.1936848 0.288235

0

2.5

5

7.5

10

1 2 4 6 8 10 12

Parallel Speedup

P
a
ra

lle
l S

p
e
e
d

u
p

,
N

o
rm

a
liz

e
d

 t
o

 C
ilk

Number of CPU Threads

ParST/C
DPJ
Cilk

Threads 1 2 4 6 8 10 12
ParST/HSonly 36.5 18.0 9.2 6.3 4.8 4.6 3.4

Figure 5. Non-copying merge sort. Parallel speedups shown rela-
tive to the Cilk single-thread execution time of 3.48 seconds.

8. Related Work
Work on deterministic parallel programming models is long-
standing. As we discussed in Section 1, deterministic parallel
languages must restrict effects so that schedule nondeterminism
cannot be observed—whether that means avoiding shared mutable
state entirely, as in data-parallel languages [5, 20], allowing sharing
only by a limited form of message passing, as in dataflow-based or
stream processing languages [4, 8, 9], or ensuring that concurrent

accesses to shared state are disjoint [3]. In addition to the models
already discussed, here we contrast our work on extending LVish
with non-language-based approaches, in particular, those that at-
tempt to run arbitrary threaded programs deterministically.

The narrowest form of deterministic parallelism is repeatability:
the property that, on a specific machine, whatever happens the first
time a program is run will also happen on subsequent runs, given
the same inputs. For example, the TERN system [6] uses a sched-
ule memoization approach to improve debuggability by repeating
the same thread interleavings as previous runs. Also of interest is
consistent scheduling on a particular input. The recent work on
DThreads [14] transparently converts multi-threaded programs into
multi-process ones, enforcing a deterministic resolution of conflict-
ing updates to memory. DThreads intercepts the pthreads API to
hook into arbitrary programs.

While supporting legacy software makes this line of research
very important, there are major differences between the approach
taken by systems like DThreads, and that taken by LVish:

• LVish requires no reasoning about interleavings. Deterministic
threading packages make thread interleavings a consistent be-
havior, but the programmer still needs to think about concur-
rency, given that they will not generally be able to predict the
exact schedule chosen by the deterministic scheduling package.
In LVish, all lattice-based actions commute, so interleavings are
not relevant.
• Deterministic threading packages typically support lock-based,

multi-threaded programs, but cannot handle other forms of syn-
chronization based on user-space atomic memory operations—
in particular, lock-free data structures such as those that under-
lie modern work-stealing runtime systems. By contrast, LVish
is specifically focused on enabling the programmer to use fine-
grained concurrent data structures.
• A language-based approach can ensure determinism by stati-

cally limiting what features can be combined (effects, trans-
formers), rather than by runtime enforcement that carries a run-
time overhead.

9. Conclusion
We present an extended version of the LVish library for deter-
ministic parallelism, augmented with the ability to manage a
wide variety of effects previously not seen in combination in any
guaranteed-deterministic parallel programming system. Our ex-
tended library offers the well-known benefits of language-level
enforcement of determinism, but without being limited to a single
shared data structure or a single programming paradigm as previ-
ous deterministic-by-construction programming models have been.
Furthermore, our case study and empirical results demonstrate that
deterministic parallelism can be effective, while also retaining the
ease of use that is the hallmark of deterministic parallel models.

Acknowledgments
Thanks to Aaron Turon for many illuminating conversations that
helped develop the ideas in this paper, and to the anonymous PLDI
reviewers for their insightful and helpful comments. This research
was funded in part by NSF grant CCF-1218375.

References
[1] Arvind, R. S. Nikhil, and K. K. Pingali. I-structures: data structures

for parallel computing. ACM Trans. Program. Lang. Syst., 11(4), Oct.
1989.

[2] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and J. Shun. Internally
deterministic parallel algorithms can be fast. In PPoPP, 2012.

[3] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve, S. Heumann,
R. Komuravelli, J. Overbey, P. Simmons, H. Sung, and M. Vakilian.
A type and effect system for deterministic parallel Java. In OOPSLA,
2009.

[4] Z. Budimlić, M. Burke, V. Cavé, K. Knobe, G. Lowney, R. Newton,
J. Palsberg, D. Peixotto, V. Sarkar, F. Schlimbach, and S. Taşirlar.
Concurrent Collections. Sci. Program., 18(3-4), Aug. 2010.

[5] M. M. Chakravarty, G. Keller, S. Lee, T. L. McDonell, and V. Grover.
Accelerating Haskell array codes with multicore GPUs. In DAMP,
2011.

[6] H. Cui, J. Wu, C.-C. Tsai, and J. Yang. Stable deterministic multi-
threading through schedule memoization. In OSDI, 2010.

[7] A. Foltzer, A. Kulkarni, R. Swords, S. Sasidharan, E. Jiang, and R. R.
Newton. A meta-scheduler for the par-monad: Composable schedul-
ing for the heterogeneous cloud. In ICFP: International Conference
on Functional Programming. ACM, 2012.

[8] M. I. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S. Meli, C. Leger,
A. A. Lamb, J. Wong, H. Hoffman, D. Z. Maze, and S. Amarasinghe.
A stream compiler for communication-exposed architectures. In ASP-
LOS, 2002.

[9] G. Kahn. The semantics of a simple language for parallel program-
ming. In J. L. Rosenfeld, editor, Information processing. North Hol-
land, Amsterdam, Aug. 1974.

[10] O. Kiselyov, A. Sabry, and C. Swords. Extensible effects: an alterna-
tive to monad transformers. In Haskell, 2013.

[11] L. Kuper and R. R. Newton. LVars: lattice-based data structures for
deterministic parallelism. In FHPC, 2013.

[12] L. Kuper, A. Turon, N. R. Krishnaswami, and R. R. Newton. Freeze
after writing: Quasi-deterministic parallel programming with LVars.
In POPL, 2014.

[13] C. E. Leiserson, T. B. Schardl, and J. Sukha. Deterministic parallel
random-number generation for dynamic-multithreading platforms. In
PPoPP, 2012.

[14] T. Liu, C. Curtsinger, and E. D. Berger. Dthreads: Efficient determin-
istic multithreading. In SOSP, 2011.

[15] S. Marlow, S. Peyton Jones, and S. Singh. Runtime support for
multicore Haskell. In ICFP, 2009.

[16] S. Marlow, R. Newton, and S. Peyton Jones. A monad for deterministic
parallelism. In Haskell, 2011.

[17] P. Narayanan and R. R. Newton. Graph algorithms in a guaranteed-
deterministic language. In Workshop on Deterministic and Correct-
ness in Parallel Programming (WoDet’14), 2014.

[18] R. R. Newton and I. L. Newton. PhyBin: binning trees by topology.
PeerJ, 1:e187, Oct. 2013.

[19] S.-J. Sul and T. L. Williams. A randomized algorithm for comparing
sets of phylogenetic trees. In APBC, 2007.

[20] V. Weinberg. Data-parallel programming with Intel Array Building
Blocks (ArBB). CoRR, abs/1211.1581, 2012.

A. Using LVish: two brief examples
The LVish library that we have described in this paper is available
on Hackage, the Haskell package repository.23 To install it, run:

$ cabal install ’lvish >= 2.0’

Once LVish is installed, you can compile and run the LVish pro-
grams from this paper, and many more.24 The following simple ex-
ample demonstrates the threshold read semantics of LVars. In this
example, cart is an LVar representing a shopping cart to which
Items, such as a Book or Shoes, can be added.

import Control.LVish; import Data.LVar.PureMap

data Item = Book | Shoes deriving (Ord, Eq)

p :: (HasPut e, HasGet e) ⇒ Par e s Int
p = do

cart ← newEmptyMap
fork (insert Book 2 cart)
fork (insert Shoes 1 cart)
getKey Book cart

main = print (runPar p)

Running this program deterministically prints 2. The two forked
operations run asynchronously and in arbitrary order; the call
getKey Book cart is a blocking threshold read, and will block
until the operation insert Book 2 cart has occurred.

This example also demonstrates a number of other features of
LVish. First, p is a Par computation parameterized by an effect
level with the constraints HasPut and HasGet, indicating that p may
perform LVar writes and reads. Second, running a Par computation
with runPar produces a pure result. LVish also provides a runParIO

function for running Par computations that return results in the IO

monad. Finally, this example demonstrates one of the many built-
in data structures provided by LVish—a key-value Map. All of
these data structures work with the rest of the LVish infrastructure
without any additional effort on the programmer’s part.

The following example demonstrates two more features of
LVish: handlers, which are callbacks run every time the contents
of an LVar change, and the runParThenFreeze operation, which
freezes an LVar on the way out of a Par computation, allowing the
exact contents of the LVar to be read in a deterministic fashion.
Here, traverse is a function that performs a breadth-first traversal
of a graph g starting from a given node startNode and finds all the
nodes reachable from startNode.

traverse :: HasPut e ⇒ G.Graph → Int
→ Par e s (ISet s Int)

traverse g startNode = do
seen ← newEmptySet
h ← newHandler seen

-- Callback to be run whenever a
-- new node appears in the ‘seen‘ set.
(λnode → do

mapM (λv → insert v seen)
(neighbors g node)

return ())
insert startNode seen -- Kick things off
return seen

main = print (runParThenFreeze
(traverse myGraph (0 :: G.Vertex)))

23 https://hackage.haskell.org/package/lvish
24 See, for instance, https://github.com/lkuper/lvar-examples
for more example LVish programs.

B. Repeating our results
In addition to the LVish library, we also provide the means for
others to re-run our experiments. Infrastructure for the benchmarks
in this paper, in addition to the source code of our library and
further instructions, is available in the following GitHub repository:

https://github.com/iu-parfunc/pldi2014-artifact

With a checkout of that repository, and assuming GHC 7.6.3 and
Cabal 1.18, the command

$ make everything

will compile the library and benchmarks and run them in a slightly-
reduced configuration from the paper. Doing so will produce three
primary outputs, for each of the three benchmarks from our paper.

• For PhyBin, presented in Section 7.1, the results are available
in the phybin results.txt file. These results can be regen-
erated with make phybin bench. Note that this benchmarks
PhyBin, but not the other systems we compare with.
• For the evaluation of transformer overhead, presented in Sec-

tion 7.2, the results are found in the transformer results.txt
file. To regenerate just these results, run make transformer bench.
• For parallel merge sort, presented in Section 7.3, the results

are available in two text files, hs mergesort results.txt
and c mergesort results.txt. The first of these shows the
performance of merge sort with the leaf sequential sort imple-
mented in Haskell; the latter with the leaf sequential sort im-
plemented in C. These results can be regenerated with make
mergesort bench. Again, note that this does not benchmark
the other systems we compare with.

For all of these benchmarks, the Makefile automatically runs up
to four-core versions. The mergesort bench large target will
run the full versions for merge sort; for the others, slight modifi-
cations to the Makefile will be needed. Finally, note that ongoing
benchmarking of the LVish development repository uses a different
mechanism: the HSBencher package and run_benchmarks.hs files,
which upload data to a Google Fusion Table.25

Running our benchmarks in a pre-built environment Our pri-
mary tool for making it easy to re-run our code and benchmarks is
the Docker container tool, which provides lightweight virtualiza-
tion on Linux systems.26 With Docker, you can automatically run
our full suite of benchmarks with a pre-built version of GHC by
running:

$ docker pull iuparfunc/pldi2014-artifact
$ docker run -e USER=pldi -i -t \

iuparfunc/pldi2014-artifact:build /bin/bash

Then follow the instructions above—all of the files are in the
pldi2014-artifact directory inside the Docker container. You
can even automatically compile and run the benchmarks in the
Docker environment with a single command.

$ docker build -t pldi2014-artifact \
github.com/iu-parfunc/pldi2014-artifact

Then you can see the results by running the following command
and looking at the generated files described above.

$ docker run -i -t pldi2014-artifact /bin/bash

25 https://www.google.com/fusiontables/DataSource?docid=
1YxEmNpeUoGCBptDK0ddtomC_oK2IVH1f2M89IIA, is an example.
26 Available at http://docker.io.

https://hackage.haskell.org/package/lvish
https://github.com/lkuper/lvar-examples
https://github.com/iu-parfunc/pldi2014-artifact
https://www.google.com/fusiontables/DataSource?docid=1YxEmNpeUoGCBptDK0ddtomC_oK2IVH1f2M89IIA
https://www.google.com/fusiontables/DataSource?docid=1YxEmNpeUoGCBptDK0ddtomC_oK2IVH1f2M89IIA
http://docker.io

	Expressive Deterministic Parallelism
	Background: LVars and LVish
	Warm-up: Read-modify-write extension
	Par-monad transformers
	Disjoint parallel update with ParST
	Control-related Effects
	Cancellation
	Memoization

	Evaluation
	Case Study: PhyBin: all-to-all tree edit distance
	Benchmark 1: overhead of transformers
	Benchmark 2: non-copying parallel sorting

	Related Work
	Conclusion
	Using LVish: two brief examples
	Repeating our results

