
Interlanguage Migration
From Scripts to Programs

Sam Tobin-Hochstadt and Matthias Felleisen

Northeastern University

DLS 2006

1

A Story

2

About a programmer

3

Who needed to manage his budget

4

And so, he wrote a simple little program

5

In his favorite (dynamic) language:

6

PLT Scheme

7

He did well for himself, and now he needed to manage some
investments as well

8

So he added more pieces to his program

9

Then he decided he wanted to access the system remotely

10

So he added a web front-end

11

He kept it all nicely organized

12

Since, after all, the program was managing

13

$5,000

14

Soon, his friends noticed that he was making lots of money on the
stock market

15

And they wanted to use his system as well

16

And soon the system was managing

17

$50,000

18

Of course, having his friends use his system entailed new
responsibilites

19

Like testing ...

20

And lots more code

21

Fortunately, he was very productive in his favorite language

22

Which was good - after all, the system managed

23

$500,000

24

But his friends

25

(and their friends,

26

and their grandmothers,

27

and their grandmothers' friends)

28

kept wanting more features

29

To help them manage

30

$5,000,000

31

But he was still very productive

32

So the system handled

33

$50,000,000

34

very nicely

35

Then, one day, the suits gave our hero a call

36

The suits paid him a lot of money for his application

37

But then the suits took a look at all the code

38

They said "Some of this code is very important!"

39

"We need assurance that the key portions of this code are safe!"

40

So, they rewrote the whole application in C++

41

42

How can we avoid this (all-too-common) result?

43

How can we avoid this (all-too-common) result?

How can we statically check parts of our programs - without rewriting
them?

44

Overview

45

Goals

• Migrate a program in a dynamic language by adding some static
checking

46

Goals

• Migrate a program in a dynamic language by adding some static
checking

• Don't rewrite the whole thing

47

Goals

• Migrate a program in a dynamic language by adding some static
checking

• Don't rewrite the whole thing

• Use the same language everywhere

48

Goals

• Migrate a program in a dynamic language by adding some static
checking

• Don't rewrite the whole thing

• Use the same language everywhere

• Continue maintaining the code

49

Goals

• Migrate a program in a dynamic language by adding some static
checking

• Don't rewrite the whole thing

• Use the same language everywhere

• Continue maintaining the code

• Be sure of what we get in the end

50

Assumptions

• All code is in modules

51

Assumptions

• All code is in modules

• Each module can be typed independently

52

Assumptions

• All code is in modules

• Each module can be typed independently

• We have a type system that can check lots of the code

53

Assumptions

• All code is in modules

• Each module can be typed independently

• We have a type system that can check lots of the code

• We add types a module at a time

54

Migration

A system built out of untyped modules

55

Migration

Add types to some of the modules

56

Migration

Untyped code depending on typed code

57

Migration

Dependencies go both ways

58

Questions

• What do we check?

• How much code change is acceptable?

• How do we integrate typed and untyped code?

59

Questions

• What do we check?

Precisely what modern type systems can check:

That we don't misapply operations - those we define, or those
the language defines

• How much code change is acceptable?

• How do we integrate typed and untyped code?

60

Questions

• What do we check?

Precisely what modern type systems can check:

That we don't misapply operations - those we define, or those
the language defines

• How much code change is acceptable?

As little as possible, as much as neccessary

• How do we integrate typed and untyped code?

61

Questions

• What do we check?

Precisely what modern type systems can check:

That we don't misapply operations - those we define, or those
the language defines

• How much code change is acceptable?

As little as possible, as much as neccessary

• How do we integrate typed and untyped code?

Flows in both directions

Callbacks

62

How do we do it?

Specify the language of particular modules

63

How do we do it?

Specify the language of particular modules

Enforce contracts at module boundaries

64

How do we do it?

Specify the language of particular modules

Enforce contracts at module boundaries

Infer required contracts

65

Modules

A group of definitions, with explicit export of some of them

Imports specified explicity

Internal linking

66

Modules

A group of definitions, with explicit export of some of them

Imports specified explicity

Internal linking

A close resemblance to the {PLT Scheme, Python, Ruby, ...} module
systems

67

Modules

Each module is either typed or untyped

Typed modules specify the types of their exports

Either kind of module can refer to the other kind

68

Contracts

Dynamic checks on steroids

Allow us to check both data and functions

Higher-order contracts allow callbacks (and objects) to work in both
directions

Contracts allow richer specifications

69

Contracts

Dynamic checks on steroids

Allow us to check both data and functions

Higher-order contracts allow callbacks (and objects) to work in both
directions

Contracts allow richer specifications

See [Findler & Felleisen, OOPSLA 2001]

70

Contracts

When we encounter a boundary-crossing, one of the sides must have
a type

Convert that type to a contract

Add the contract to the interface of the exporting module

71

Examples

72

Simple Example

(module fast-mul mzscheme
 (provide fast-mul)

 (define (fast-mul a b) (if (zero? a) 0 (* a b))))

73

Simple Example

(module fast-mul mzscheme
 (provide fast-mul)

 (define (fast-mul a b) (if (zero? a) 0 (* a b))))

(module interest mzscheme
 (define (interest x)

 (+ x (fast-mul x 0.05))))

74

Simple Example

(module fast-mul mzscheme
 (provide fast-mul)

 (define (fast-mul a b) (if (zero? a) 0 (* a b))))

(module interest typed-scheme
 (define: (interest (x : number)) : number

 (+ x (fast-mul x 0.05))))

75

Simple Example

(module fast-mul mzscheme
 (provide/contract fast-mul

(number number . -> . number))
 (define (fast-mul a b) (if (zero? a) 0 (* a b))))

(module interest typed-scheme
 (define: (interest (x : number)) : number

 (+ x (fast-mul x 0.05))))

76

Simple Example

(module fast-mul mzscheme
 (provide/contract fast-mul

(number number . -> . number))
 (define (fast-mul a b) (if (zero? a) 0 (* a b))))

(module interest typed-scheme
 (define: (interest (x : number)) : number

 (+ x (fast-mul x 0.05))))

But how did we know the type of fast-mul?

77

Simple Example

(module fast-mul mzscheme
 (provide/contract fast-mul

(number number . -> . number))
 (define (fast-mul a b) (if (zero? a) 0 (* a b))))

(module interest typed-scheme
 (define: (interest (x : number)) : number

 (+ x (fast-mul x 0.05))))

But how did we know the type of fast-mul?

From how fast-mul is used in the typed module, we can infer the
required type and contract.

78

Contracts that fail

(module add-interest-mod mzscheme
 (require inc-mod interest)
 (define (add-interest balance)

 (increment (interest balance))))

(module inc-mod mzscheme
 (provide increment)
 (define increment 999))

(module main mzscheme
 (require add-interest-mod)
 (add-interest 10000.0))

79

Contracts that fail

(module add-interest-mod typed-scheme
 (require inc-mod interest)
 (define: (add-interest (balance : number)) : number

 (increment (interest balance))))

(module inc-mod mzscheme
 (provide increment)
 (define increment 999))

(module main mzscheme
 (require add-interest-mod)
 (add-interest 10000.0))

80

Contracts that fail

(module add-interest-mod typed-scheme
 (require inc-mod interest)
 (define: (add-interest (balance : number)) : number

 (increment (interest balance))))

(module inc-mod mzscheme
 (provide/contract increment (number . -> . number))
 (define increment 999))

(module main mzscheme
 (require add-interest-mod)
 (add-interest 10000.0))

81

Contracts that fail

(module add-interest-mod typed-scheme
 (require inc-mod interest)
 (define: (add-interest (balance : number)) : number

 (increment (interest balance))))

(module inc-mod mzscheme
 (provide/contract increment (number . -> . number))
 (define increment 999))

(module main mzscheme
 (require add-interest-mod)
 (add-interest 10000.0))

Now main will fail when run, because increment does not meet its
contract.

82

Handling incompatible uses
(module n-mod mzscheme
 (require inverse-mod)
 (define n

 (if (not (inverse true))
(inverse 5)

 7)))

(module inverse-mod mzscheme
 (provide inverse)
 (define (inverse x)

 (if (boolean? x) (not x) (* x -1))))

83

Handling incompatible uses
(module n-mod typed-scheme
 (require inverse-mod)
 (define: n : number

 (if (not (inverse true))
(inverse 5)

 7)))

(module inverse-mod mzscheme
 (provide inverse)
 (define (inverse x)

 (if (boolean? x) (not x) (* x -1))))

84

Handling incompatible uses
(module n-mod typed-scheme
 (require inverse-mod)
 (define: n : number

 (if (not (inverse true))
(inverse 5)

 7)))

(module inverse-mod mzscheme
 (provide/contract inverse)
 (define (inverse x)

 (if (boolean? x) (not x) (* x -1))))

What contract could we add to inverse?

85

Handling incompatible uses
(module n-mod typed-scheme
 (require inverse-mod)
 (define: n : number

 (if (not (inverse true))
(inverse 5)

 7)))

(module inverse-mod mzscheme
 (provide/contract inverse ((or/c boolean number)

. -> .
 (or/c boolean number)))

 (define (inverse x)
 (if (boolean? x) (not x) (* x -1))))

86

Handling incompatible uses
(module n-mod typed-scheme
 (require inverse-mod)
 (define: n : number

 (if (not (inverse true))
(inverse 5)

 7)))

(module inverse-mod mzscheme
 (provide/contract inverse ((or/c boolean number)

. -> .
 (or/c boolean number)))

 (define (inverse x)
 (if (boolean? x) (not x) (* x -1))))

But that's insufficient for safety

87

Handling incompatible uses
(module n-mod typed-scheme
 (require inverse-mod)
 (define: n : number

 (if (not (inverse true))
(inverse 5)

 7)))

(module inverse-mod mzscheme
 (provide/contract inverse ((or/c boolean number)

. -> .
 (or/c boolean number)))

 (define (inverse x)
 (if (boolean? x) (not x) (* x -1))))

But that's insufficient for safety

(define (inverse x)
 (if (boolean? x) 1 true))

88

Handling incompatible uses
(module n-mod typed-scheme
 (require inverse-mod)
 (define: n : number

 (if (not (boolean <= (inverse true)))
(number <= (inverse 5))

 7)))

(module inverse-mod mzscheme
 (provide/contract inverse ((or/c boolean number)

. -> .
 (or/c boolean number)))

 (define (inverse x)
 (if (boolean? x) (not x) (* x -1))))

Adding casts recovers safety

89

Handling incompatible uses
(module n-mod typed-scheme
 (require inverse-mod)
 (define: n : number

 (if (not (boolean <= (inverse true)))
(number <= (inverse 5))

 7)))

(module inverse-mod mzscheme
 (provide/contract inverse ((or/c boolean number)

. -> .
 (or/c boolean number)))

 (define (inverse x)
 (if (boolean? x) (not x) (* x -1))))

Adding casts recovers safety

Can we avoid casts?

90

Handling incompatible uses
(module n-mod typed-scheme
 (require inverse1 inverse2)
 (define: n : number

 (if (not (inverse1 true))
(inverse2 5)

 7)))

(module inverse1 mzscheme
 (require inverse-mod)
 (provide/contract inverse1 (boolean . -> . boolean))
 (define inverse1 inverse))
(module inverse2 mzscheme
 (require inverse-mod)
 (provide/contract inverse2 (number . -> . number))
 (define inverse2 inverse))

(module inverse-mod mzscheme
 (provide/contract inverse ---)
 (define (inverse x)
 (if (boolean? x) (not x) (* x -1))))

91

Theoretical Contributions

92

Modeling our system

Start with the λ-calculus with numbers

93

Modeling our system

Start with the λ-calculus with numbers

Add modules and contracts

94

Modeling our system

Start with the λ-calculus with numbers

Add modules and contracts

Add simple types and typed modules

95

Modeling our system

Start with the λ-calculus with numbers

Add modules and contracts

Add simple types and typed modules

Define a migration process with inference

96

Theorems

What can we prove about such a system?

97

Theorems

What can we prove about such a system?

Programs in the untyped portion can go wrong

But the typed portions should be safe

98

Theorems

What can we prove about such a system?

Programs in the untyped portion can go wrong

But the typed portions should be safe

Use the blame annotations from contracts to track where errors occur

Prove that all runtime type errors are blamed on untyped code

99

Contributions

Theoretical Contributions

A solid foundation for interlanguage migration

Reformulating type soundness for mixed programs

100

Contributions

Theoretical Contributions

A solid foundation for interlanguage migration

Reformulating type soundness for mixed programs

Practical Contributions

A framework for designing systems

101

Contributions

Theoretical Contributions

A solid foundation for interlanguage migration

Reformulating type soundness for mixed programs

Practical Contributions

A framework for designing systems

An implementation of the system for PLT Scheme

102

Related Work

Soft Typing

Fagan, Wright, Henglein, Flanagan, Meunier, Aiken, and many
more

103

Related Work

Soft Typing

Fagan, Wright, Henglein, Flanagan, Meunier, Aiken, and many
more

Type Dynamic

Abadi et al, Siek & Taha, Baars & Sweirstra, Leroy & Mauny

104

Related Work

Soft Typing

Fagan, Wright, Henglein, Flanagan, Meunier, Aiken, and many
more

Type Dynamic

Abadi et al, Siek & Taha, Baars & Sweirstra, Leroy & Mauny

Type systems for dynamic languages

Strongtalk [Bracha], Erlang [Marlow & Wadler]

105

Conclusion

We can avoid C++ and keep using our languages

Modular migration of programs allows for flexibility

Need for new type systems to support dynamic languages

106

Conclusion

We can avoid C++ and keep using our languages

Modular migration of programs allows for flexibility

Need for new type systems to support dynamic languages

Create one for your favorite language!

107

Thank You

http://www.ccs.neu.edu/home/samth

108

